Reserving using the Gaussian approximation to the Cox process with shot noise process

Overview

. the Cox process (or doubly stochastic Poisson process), N, using the shot noise process, | t
as the intensity function.

. transformation and approximation of the shot noise process, | .» the Cox process, N, and
the total amount of claims up to timet, C,, as Gaussian processes Z,, W, and U, .

Kaman-Busy filtering for linear system driven by the Cox process with shot noise
intensity, i.e. deriving the conditional distribution of Z,, given {WS;O£ S£t} .

reserving based on the filter.

illustration of this reserving model.



Illustration of the claim intensity function for a primary event

t

where:
| isaprimary event, Y, isjump size of primary event | (i.e. magnitude of contribution of primary event i to intensity), t,
istime at which primary event i occursand d is exponential decay which never reaches zero.

The number of claims arising from primary event i following the Poisson process is:

N{ ~ Poissongy,e ¢y
where
N number of claims arising from primary event i, y.e 4" isclaim intensity function, t, <t <¥ and E(y;)<¥ .



[llustration of the claim intensity function for primary events over a period of time

r the rate of primary event jump arrival.

The number of claims arising from primary events in time period t is: N, ~ Poisson[ & ye““]. Let 1 ,= & yedtt
ali al i
{<t

ti<t

then N, ~ Poisson(l ,).




Probability of n claimsfor time period t;
exp(- § ,ds)(d 09"
n! '

Pr{N, =n|l ;0£s£t} =

Expected value of number of claimsfor time period t;
E(N) = 6E(1)ds.
0

Assuming that |, is stationary (by letting t® ¥ ), the asymptotic mean and variance of |, and
the mean of the number of claims for time period t are given by

E() :%, Var(l ,) :% and E(N,) :%t
where m=gydG(y), m =gy?dG(y) and generally distributed jump size with distribution function

G(y) (y>0).



Let usassume r islarge and transform the processes

|- mr
Zt(r)zt d

and

where C, is the total amount of claims up to time t, H(u) (u>0) Is the claim size distribution

function and m = gudH (u).
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L et us also define

and

where and J, =§1y and m, isthetotal number of primary event jumps up to timet.



Now we will offer aproposition used by Ethier & Kurtz (1985).

Proposition For n=12--, let {A"} be afiltration and let M,, be an {A"} -local martingale with sample
paths in D;,[0,¥) and M,(0)=0. Let A =((A!)) be symmetric d” d matrix-valued processes such that
Al has sample pathsin D,,[0,¥) and A,(t)- A,(s) isnonnegative definite for O£ s<t. Assume

i Egsup [A}(D)- Al(t-)] 4=0,
. A 2 ‘_
Lg@ngEgsgg IM,(t)- M (t-)| ﬁ—o,
andfori,j=12,--,d,
ML (M, (1) - Al(t)

isan {A"} -local martingale.

Foreacht30andi,j=12---,d,
Al ® ¢ (t)
in probability where C=((c;)) is a continuous, symmetric, d” d matrix-valued function, defined on
[0,¥), satisfying C(0)=0 and & (g;(t)- ;(s))xx; 2 0, xI A®. Then
MpP X
in law where X is a process with independent Gaussian increments such that X;X;- ¢, are (local)
martingal es with respect to {AX} .



From the proposition, if r ® ¥

\/t(r)—‘]t' mrt b Z_nlBt(z)
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qr=%"MN mz%la(s)

\/@

In law where g, B® and B® are three independent standard Brownian motions and
m, = grdH (u)- géoudH ¢ (variance of claim size).
0 0 (%]



Note that z, w@ and u® can be written as
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Therefore by continuous mapping theorem (see Billingsley (1968)), if r ® ¥

Z( = t_ngir_(lo ngl) - mr _de-d(t-u)t\‘]u'rqrudu
- [mr T m o mr
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Hence it can be written asin differential form

dz, =-dZ.dt+2d dB®

2
dW, =Z,dt + /%da@
du, =mdw, +,/ mz%qu@ =mZdt + /mz%qda(“)

where B®, B?, B® are three independent standard Brownian motions and

2M o) 2M
m,[2Me@ + m, 2T | |
B =110 Zn? (also a standard Brownian motion).
J(rn“mz)m2

and




As aresult of these, we obtained 1, N. and c. which are Gaussian approximations
of I, N, and C;

and




Let R denote the free reserve (or surplus) of theinsurer at time T. We assume that premiums
are received continuously at a constant rate k (>0) and let R- denote the reserve required on hand

at timet.

Then
R =R+k(T-t)-(C;-C), OEtET
where:
A, claim amount
N, - N, number of claims between time T and t,

C -C= NTéN‘Ai total amount of claims betweentime T and t.
i=1

The surplus R- must be non-negative if the insurer is able to meet his liabilities. Therefore it is
very important that the probability that R becomes negative be small (e say), i.e.
Pr(R <0)=e

or
PreC, - C>R+k (T-t)u=e.



Since we have obtained ¢, which is Gaussian approximation of ¢, we will use this

approximation, then
éT CoE[G -G Rk(T-0)- E[G- G):
- fmled] e

=e.

('D'D('D(D('DCD
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Set k(T-1)=(1+q)E(C;- G), e=5% and consider the information available (i.e. the
observed claims) up to timet,

R =1.645 ar(cir - Q|NS;0£s£t) - qE(éT ey NS;O£s£t)
where q >0 isarelative security loading.



Now let us examine how the above equation would be altered if the direct insurer purchase a stop-loss
reinsurance contract that covers the total 1oss excess over b, aretention limit. Let R denote the free reserve
of the insurer after purchasing reinsurance contract at time T. We assume that reinsurance premiums are
paid continuously at aconstant rate k,,(>0) and let R denote the reserve required on hand at timet. Then

RM=R+k (T-t)-k,(T-t)- (Ci-C!), OEtET

CT C. C-C.Eb

h '— :
where C! - C, b, C-C>b

z ~ _ +\
Set kh(T-t):(1+x)E§(Cr GJ- } i, ©=5% and consider the information available (i.e. the observed

claims) up to timet,

If x =q, it becomes R =1.645 ar(f?r' -G |NS;O£s£t)- qE(éT' - ¢ |NS;O£S£t).



Since we have obtained C. and N which are Gaussian approximations of ¢, and N,, we will use

. . ~ r . . .
these approximations. Therefore set &, = ml%t +U,, /% then the risk (net) insurance premium
atimetis

ELC, - GIN;OESELY= E W (Ur - Uy)+m (T - W 0£ £y
s

and the stop-loss reinsurance premium at t| metis

Eg(c}-cit)-b}+||<|s;oss£tgJ FU u+mi (- )by |WO£s£tu

U

We can see that mean and variance of U, - U, given {W,;0£s£t}, need to be determined to obtain
insurance / reinsurance premium. Therefore we derive them, i.e.

1 -d(T-t)

E(Ur - U WG 0£ SEL)=m =5 —E(Z |W,;0£ SEt)
and
_aM Ol g 20(T-1) 4 4T _ 0y @, MM O
Var (U; - U, [W;; O£S£t)—gﬁa%( ) War (Z,[W,0£ sEt)- & @) +4g %1 - 3 *2g (T )



The Filtering Problem:

Suppose the process z, is not accessible for observation and one can observe only the values
(W;;0£s£t}. Therefore, at any time t, it is required to estimate the unobservable state z,. This

problem of estimating z, based on {W,;0£s£t} is called the filtering problem.

If we take the optimality of estimation in the mean square sense, the optimal estimate for z,
given {W,;0£s£t} coincides with the conditional expectation

E(Z |W,;0£s£t).

One of the methods to solve the filtering problem, where the process is Gaussian, is the Kalman-
Bucy filter.

Therefore we will derive the conditional distribution of z, given {W,0£s£t}, by the linear

system driven by the Cox process with shot noise intensity where
dz, =-dZdt++/2ddB®

2
dW, = Z,dt + /E”lda@ .



Now we will offer a proposition used by Oksendal (1992).

Proposition The solution Zot:E(Zt|WS;O£S£t) of the 1-dimensional linear filtering

problem
dZ, =F (t)Zdt+ X (t)dB?; F(t),C(t)
t

A
dW, =G(t)Zdt+D(t)dB?; G(t),D(t)T A

t)1
)
satisfies the stochastic dlfferentlal eguation
G*(t)S()'5 4, C()S(t) gpy- 5 =
dz, = T F(t)- o2 )éztdt 20 dW; Z, =E(Z,)
where




From the proposition, we can obtain the estimate of Z, based on the observed {W,;0£ s£t}

t
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From the fact that 2z, given {w;o0£set, IS normally distributed, with
Var (Z,W,;0£ s£t)=S(t), we can find the distribution of Z,:

U
Efe 9% W, 0£ sEte=g ¥ 20
@

where z, , w, Z and s() as defined



Therefore the net premium for insurance/stop-loss reinsurance contract at time t, based
on the observations {w,;0£s£t} isas follows:

ES - GIN Esgtgzgz %(UT-Ut)+ml%(T-t)[\Ns;O£s£t§— nZ]Zer nlglr (T-1)

and
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and F (3 1sthe cumulative normal distribution function.




Similarly,
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where A=B- S and =" d _
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Therefore we can obtain

Var (€1~ & |N;0E sE£1) - (ér ) |NS;O£s£t§-{E(éT'-ég |NS;0£s£t)}z
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The parameter values used to calculate the reserves required are fo =0, S(0)=a*=0, d =0.5, r =100, m =1,
m=2, m=1, m=3, t=1 T=2,9=0, 0.1, 0.2,0.2129. By computing, using MAPLE and S-Plus, where

£1 =0.5579152, the calculation of the reserves for insurance contract, at each security loading q , are shown

in Table 1,

and the reserves after purchasing stop-loss reinsurance contracts at the retention limit b=0, 270, 280, ¥ are

Tablel

Security loading q Reserve R at € =5%
0.0 43.903
0.1 23.282
0.2 2.661
0.2129 0

showninTable2 (q=x=0.1) andin Table3(q =0.1 and x =0.2).

Table2 Table 3
Retention level b Reserve R" at e =5% Retention level b Reserve R" at e =5%
0 0 0 20.621
270 8.874 270 8.890
280 18.442 280 18.448
¥ 23.282 ¥ 23.282




