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Summary

Following the axiomatic approach to measures of statistical quantities initiated by van
Zwet(1964) and developed by several other authors, we present a general axiomatic system
for the measure of the quantities risk and price. We argue that risk and insurance price are
closely related through the notion of risk loading, viewed as function of the measure of risk,
and that risk should be closely related to the measures of scale, skewness and kurtosis. We
consider "universal" measures of scale and risk, which can be adjusted for skewness and
kurtosis. Concerning the measure of price, the distortion pricing principle introduced by
Denneberg(1990), studied further by Wang(1996a/b), and justified axiomatically as insurance
price in a competitive market setting by Wang et al.(1997), is a measure of price for our more
general axiomatic system. Our presentation includes numerous examples, some of which have
so far not been encountered in actuarial science.

Key words :  axiomatic approach, measure of risk, measure of price, distortion pricing, stop-
loss order, relative inverse convex order, scale, skewness, kurtosis
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"Risque et Prix: Ordres Stochastiques et Mesures"

Werner Hürlimann
Switzerland

Résumé.

Suivant l’approche axiomatique pour les mesures de quantités statistiques initiée par van
Zwet(1964) et développée par divers autres auteurs, nous présentons un système axiomatique
général pour la mesure des quantités risque et prix. Nous supposons que le risque et le prix de
l’assurance sont étroitement liés par la notion de surcharge de risque, conçue comme fonction
de la mesure de risque, et que le risque est étroitement lié aux mesures d’échelle, d’asymétrie
et d’élongation. Nous considérons des mesures universelles d’échelle et de risque, qui
peuvent être ajustées pour l’asymétrie et l’élongation. En ce qui concerne la mesure de prix,
le principe de distortion introduit par Denneberg(1990), qui a été étudié par Wang(1996a/b) et
justifié axiomatiquement comme prix d’assurance dans un marché compétitif par Wang et
al.(1997), est une mesure de prix pour notre système axiomatique plus général. Notre
présentation inclut de nombreux examples, en partie inédits en sciences actuarielles.

Mots clés :  approche axiomatique, mesure de risque, mesure de prix, principe de distortion,
ordre stop-loss, ordre convexe relatif inverse, échelle, asymétrie, élongation
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1. The formal approach based on orderings and measures.

It is often believed that science progresses through the identification of important
concepts, which are first classified (e.g. risk), compared (e.g. riskier) and then quantified (e.g.
measure of risk), where these three stages of development rarely follows the given temporal
order (see e.g. Oja(81) who refers to Carnap(1962)).

Descriptive Statistics offers the theory and methods to identify statistical quantities
associated with such concepts. In general, there is only a vague concept defining the statistical
quantity, which can be formalized in many ways for practical use. This observation is typical
for the important statistical properties of skewness and kurtosis associated to a distribution
function (e.g. Balanda and MacGillivray(1988) and Groeneveld(1991)), and the same can be
said about risk and price, for which a vague concept only begins to emerge in actuarial
science and finance (e.g. Ramsay(1993)). In view of the different possible formalizations of
risk and price, it seems more reasonable to accept "vague concepts" and develop a coherent
structure of such formalizations (so-called axiomatic approach) rather than to concentrate on
specific measures of risk and price.

The historical development of actuarial science reveals that insurance risks, and their
associated premiums or prices, are closely related with the concepts of location, scale,
skewness and kurtosis. Therefore, a "minimal" theory of actuarial risks and prices should be
based on a thorough understanding of these four statistical quantities (cf. the comments by
Tompkins, p.549, and Clarkson, p.597, in Howison et al.(1994), made in a finance context,
but also valid in actuarial science). In our view, a coherent structure of risk and price should
simultaneously discuss measures of all the relevant concepts as well as their interplay through
common and diverging properties.

The axiomatic approach to measures of statistical quantities involves the following
main steps (e.g. van Zwet(1964), Oja(1981), MacGillivray(1986), Balanda and
MacGillivray(1988/90), among others) :
(i) Define stochastic (partial) orders on random variables or distribution functions,
which allow for comparisons of the given statistical quantity.
(ii) Identify measures of a statistical quantitiy by considering functionals of distributions
that preserve each of the plausible partial orders, and use only such measures in practical
work.
(iii) Make only comparisons for classes or families of distributions, which are totally
ordered with respect to the selected stochastic order.
(iv) Display the hierarchy of (possible) stochastic orders for a given statistical quantity. In
particular, identify the weakest (resp. strongest) order(s), which should cover a largest (resp.
smallest) possible class or family of distributions.

Following this fundamental philosophy, let us fix ideas by specifying the different
axiomatic systems, which so far best fit the vague concepts behind the considered statistical
quantities. Denote by  ≤  a selected ordering of a given statistical quantity, and let  F  be a
family of random variables  X  such that if  ∈YX ,  F, then either  YX ≤   or  XY ≤ .

Concerning the structure of location, scale, skewness and kurtosis, the basic
"minimal" axiomatic framework proposed by Oja(1981) has been widely recognized in the
statistical literature. In some applications, further axioms or/and requirements may be
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considered (e.g. Ruppert(1987), Groeneveld(1991)). In what follows, it is understood that the
selected ordering  ≤  and family  F  will change and may vary for and within each definition.

Definition 1.1.  The function  L :  F → R  is a measure of location in  F  if

(Lo1) [ ] [ ] bXaLbaXL +=+   for all  Rba ∈, , ∈+ baXX ,  F,
(Lo2) [ ] [ ]YLXL ≤   if  ∈YX ,  F  and  YX ≤ .

Definition 1.2.  The function  S :  F → R  is a measure of scale in  F  if

(Sc1) [ ] [ ]XSabaXS ⋅=+   for all  Rba ∈, , ∈+ baXX ,  F,
(Sc2) [ ] [ ]YSXS ≤   if  ∈YX ,  F  and  YX ≤ .

Definition 1.3.  The function  γ :  F → R  is a measure of skewness in  F  if

(Sk1) [ ] 0=Xγ   for all symmetric  ∈X  F,
(Sk2) [ ] [ ]XbaX γγ =+   for all  Rba ∈, , 0>a , ∈+ baXX ,  F,
(Sk3) [ ] [ ]XX γγ −=−   for all  ∈− XX ,  F,
(Sk4) [ ] [ ]YX γγ ≤   if  X Y, ∈ F  and  X Y≤ .

Definition 1.4.  The function  γ 2  :  F → R  is a measure of kurtosis in  F  if

(Ku1) [ ] [ ]XbaX 22 γγ =+   for all  Rba ∈, , 0≠a , ∈+ baXX ,  F,
(Ku2) [ ] [ ]YX 22 γγ ≤   if  ∈YX ,  F  and  YX ≤ .

One notes that the defined measures of scale, skewness and kurtosis are all location
free (or location invariant), that is invariant when one replaces  X  by  bX +   for all  Rb∈ .
During the course of the development following Oja(1981), the need for location dependent
measures has been advocated (e.g. MacGillivray(1986), Arnold and Groeneveld(1995)).
These location dependent measures are defined as follows, where the functional  [ ]XLX =θ ,

∈X  F, represents some fixed location parameter  θ  (e.g. mean, median, mode, etc.), the
value taken by some measure of location.

Definition 1.2'.  The function  S :  F → R  is a measure of scale with respect to  θ  in  F  if

(Sc1') [ ] [ ]XaX XSaaXS θθ ;; ⋅=   for all  Rba ∈, , ∈aXX ,  F,
(Sc2') [ ] [ ]YX YSXS θθ ;; ≤   if  ∈YX ,  F  and  YX ≤ .

Definition 1.3'.  The function  γ :  F → R  is a measure of skewness with respect to  θ  in  F
if

(Sk1') [ ] 0; =XX θγ   for all symmetric  ∈X  F,
(Sk2') [ ] [ ]XaX XaX θγθγ ;; =   for all  Rba ∈, , 0>a , ∈aXX ,  F,
(Sk3') [ ] [ ]XX XX θγθγ ;; −=− −   for all  ∈− XX ,  F,
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(Sk4') [ ] [ ]YX YX θγθγ ;; ≤   if  ∈YX ,  F  and  YX ≤ .

Definition 1.4'.  The function  γ 2  :  F → R  is a measure of kurtosis with respect to  θ  in  F
if

(Ku1') [ ] [ ]XaX XaX θγθγ ;; 22 =   for all  Rba ∈, , 0≠a , ∈aXX ,  F,
(Ku2') [ ] [ ]YX YX θγθγ ;; 22 ≤   if  ∈YX ,  F  and  YX ≤ .

Since there is in general no agreement on what risk measures are, and how prices are
built, universally accepted axiomatic systems for the structures of risk and price do not yet
seem to exist in actuarial science and finance. It appears reasonable to start from "minimal"
sets of axioms that are believed most important, and then refine or replace non-appropriate
axioms by others if inconsistencies are revealed either by theoretical or practical work.

For the structure of risk, we distinguish between "absolute" and "relative" risk
(Garrido(1993), Hürlimann(1992/95)). We assume that  F  contains only non-negative
random variables. A precise measure of (actuarial) risk formalizes the intuitive notion of
actuarial risk, understood as variation and uncertainty in potential future insurance losses
(e.g. Ramsay(1993)). This notion must not be confounded with the intuitive notion of
financial risk, which is interpreted as the capital investment required to render a future value
of a position acceptable, and which can be formalized similarly by defining a precise measure
of (financial) risk in the sense of Arztner et al.(1997a/b).

Definition 1.5.  The function  R :  F → R  is a measure of (absolute) risk in  F  if

(aR1) [ ] 0=XR   if  ∈X  F  is riskless, that is  1)Pr( == µX   for some constant  µ
(aR2) [ ] 0≥XR   for all  ∈X  F,
(aR3) [ ] [ ] [ ]YRXRYXR +≤+   for all  ∈YX ,  F  such that  X, Y  are independent 

random variables and  ∈+YX  F,
(aR4) [ ] [ ]XRabaXR ⋅=+   for all  Rba ∈, , 0>a , and  ∈+ baXX ,  F,
(aR5) [ ] [ ]YRXR ≤   if  ∈YX ,  F  and  YX ≤ .

Though we will not use it in the present work, it seems that a corresponding structure of
"relative" risk should satisfy the following axioms (cf. Garrido(1993) for the property (rR4)).

Definition 1.6.  The function  r :  F → R  is a measure of relative risk in  F  if

(rR1) [ ] 0=Xr   if  ∈X  F  is riskless,
(rR2) [ ] 0≥Xr   for all  ∈X  F,
(rR3) [ ] [ ] [ ]YrXrYXr +≤+   for all  ∈YX ,  F  such that  X, Y  are independent 

 random variables and  ∈+YX  F,
(rR4) [ ] [ ]XraXr =   for all  0>a , ∈aXX ,  F,
(rR5) [ ] [ ]YrXr ≤   if  ∈YX ,  F  and  YX ≤ .

The structure of price for absolute or/and relative risks is presumably quite complex
because it should take into consideration all of the preceding structures. For simplicity, we
will just focus on price for absolute risks. A precise definition of a measure of price
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formalizes the intuitive notion of price, which is understood as a certainty equivalent of risk.
To be applicable in actuarial science, a "minimal" set of axioms for a coherent structure of
price should (at least) contain the following plausible requirements (e.g. Denneberg(1990)).

Definition 1.7.  The function  P :  F → R  is a measure of price in  F  if

(P1) [ ] [ ]XEXP ≥   if  ∈X  F  is non-negative,
(P2) [ ] [ ]XXP sup≤   if  ∈X  F  is non-negative,
(P3) [ ] [ ] bXPabaXP +⋅=+   for all  Rba ∈, , 0>a , ∈+ baXX ,  F,
(P4) [ ] [ ] [ ]YPXPYXP +≤+   for all  ∈YX ,  F  such that  ∈+YX  F,
(P5) [ ] [ ]YPXP ≤   if  ∈YX ,  F  and  YX ≤ .

Let us follow these definitions by a brief outline of the content of our study together
with some significant actuarial motivation. In Section 2, a review of the class of stop-loss
transform orders is given. These orders are of basic importance in risk and price theory
because they essentially provide the possible ordering of risks, under which measures of risk
and price should be preserved. Then we describe in Section 3 the class of relative inverse
convex orders of arbitrary degree, whose lower degree orders are essential for the definition
of coherent measures of location, scale, skewness and kurtosis. Section 4 is a summary about
some main facts concerning the measures of scale, skewness and kurtosis, including some
signigicant examples. The actuarial main part of the subject is an illustrative review about
measures of risk (Section 5) and price (Section 6). It is argued that actuaries describe
insurance price roughly as "expected cost plus a safety loading in form of a function of the
measure of risk", and that risk should be closely related to scale, skewness and kurtosis. In
particular, it is of interest to analyze when a measure of scale, which preserves an ordering of
scale, also preserves an ordering of risk. Some counterexamples are analyzed in Section 5.1,
and "universal" examples of simultaneous measures of scale and risk are displayed in Section
5.2. As a novelty, we show in Section 5.3 how to adjust a measure of scale and risk for
positive skewness. As a concrete example, we adjust the median absolute deviation measure
of risk for the modified Yule measure of skewness. Section 6 contains a short survey of the
main pricing principles, which define measures of price in the sense of Definition 1.7. We
recall that the distortion pricing principle introduced by Denneberg(1990), studied further by
Wang(1996a/b), and justified axiomatically as insurance price in a competitive market setting
by Wang et al.(1997), is a measure of price in our more general axiomatic approach to pricing
theory (see also Hürlimann(1998c) for complements on this approach). As a recent new
example of distortion pricing measure, we mention an "entropy" measure of price, which has
been motivated from considerations in option pricing theory (see also
Hürlimann(1997c/98d)). Finally, we conclude with a measure of price derived from the
measure of risk adjusted for positive skewness, which has been described in Example 5.8.

2. The class of stop-loss transform orders.

For simplicity, let  X, Y  be random variables with absolutely continuous and strictly
increasing distributions )(),( xFxF YX , which are defined on the supports  GF SS , . For each
n=0,1,2,..., the degree  n  stop-loss transform of  X  consists of the collection of partial
moments of order  n  given by  [ ] RxxXEx nn

X ∈−= + ,)()(π . The convention is made that
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)(1)()(0 xFxFxX −==π   is the survival function of  X. For  n=1  the function  )(1 xXπ   is the
usual stop-loss transform  )(xXπ , written without upper index.

Recall the class of higher degree stop-loss orders (e.g. van Heerwaarden(1991),
Section 5, or Kaas et al.(1994), chap. V).

Definition 2.1.  The random variable  X  precedes  Y  in the degree n stop-loss order, written
YX n

sl
)(≤ , if the moments of order  n  are finite and the following conditions are satisfied :

(2.1) [ ] [ ] ,1,...,1, −=≤ nkYEXE kk

(2.2) )()( xx n
Y

n
X ππ ≤ ,  uniformly for all  Rx∈ .

For  n=0  the relation  )0(
sl≤   is identical to  st≤ . The order  )1(

sl≤   coincides with  sl≤   or  icx≤ .
The restriction (2.1) is required for the characterization as common preferences of a group of
decision makers with increasingly regular utility functions (e.g. Kaas et al.(1994), Theorem
V.2.1). For this reason, the class of stop-loss transform orders is highly significant in actuarial
science, finance and economics, and plays a fundamental role in the definition of coherent
structures of risk and price. Also, by equal means and variances, and possibly higher order
moments, the usual stochastic and stop-loss order comparisons of two random variables do
not apply. In this situation, a higher degree stop-loss order comparison can be useful (e.g.
Hürlimann(1995), Section 6, Kaas et al.(1995)). In applications, to establish stop-loss order
comparison properties, one requires some fundamental facts and equivalent characterizations,
which are described below (see also Hürlimann(1998b)).

First of all, the following well-known elementary equivalent statements hold :

(SL1) YX sl≤
(SL2) [ ] [ ])()( YEXE ϕϕ ≤   for all increasing convex functions  ϕ(x)
(SL3) [ ] [ ]),max(),max( YxEXxE ≤   uniformly for all  Rx∈

Furthermore, recall the following famous and widely known sufficient condition.

Lemma 2.1. (Karlin-Novikoff(1963), Ohlin(1969)). Let  X  and  Y  be random variables with
finite means such that  YX µµ ≤ , and there exists  c  such that  )()( xFxF YX ≤ , for  cx ≤ , and

)()( xFxF YX ≥ , for  cx > . Then  X  precedes  Y  in dangerousness order, written  YX D≤ ,
and this implies the stop-loss order  YX sl≤ .

Through application of appropriate limiting arguments, it is often possible to restrict
the attention to random variables, which belong to the large set  S, which consists of all  non-
negative random variables with finite means, such that the distribution functions of any two
of them cross finitely many times (finite crossing condition).

A generalized version of Lemma 2.1 is the sign-change characterization of the stop-
loss order (Taylor(1983), Stoyan(1977)).

Theorem 2.1. Let SYX ∈,  such that the distributions cross  n≥1  times in the crossing points

nttt <<< ...21 . Then one has  YX sl≤   if, and only if, one of the following is fulfilled :
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Case 1 :  The first sign change of the difference  )()( xFxF XY −   occurs from  −  to  +, there is
an even number of crossing points  n=2m, and one has the inequalities

(2.3) mjtt jYjX ,...,1),()( 1212 =≤ −− ππ

Case 2 :  The first sign change of the difference  )()( xFxF XY −   occurs from  +  to  −, there is
an odd number of crossing points  n=2m+1, and one has the inequalities

(2.4) mjtt jYjXYX ,...,1),()(, 22 =≤≤ ππµµ

Proof.  This is shown in Hürlimann(1998b).  ◊

The condition of Lemma 2.1 is not a transitive relation. The transitive (stop-loss)-closure of
the order  D≤ , denoted by  *D≤ , which is defined as the smallest partial order containing all
pairs  (X,Y)  with  YX D≤   as a subset, identifies with the stop-loss order (Kaas and
Heerwaarden(1992), Müller(1996)). For finitely many sign changes one has the result.

Theorem 2.2.  Let  SYX ∈,   such that YX sl≤ . Then there exists a finite sequence of
random variables  nZZZ ...,,, 21   such that  nZYZX == ,1   and  1+≤ iDi ZZ  for all  i=1,...,n−1.

Proof.  This is Kaas et al.(1994), Theorem III.1.3. Alternatively, the ordered sequences (2.8)
and (2.12) in Hürlimann(1998b) yield a more detailed constructive proof of this result.  ◊

The stop-loss order separates as follows.

Theorem 2.3.  If  YX sl≤ , then there exists a random variable  Z  such that  YZX slst =≤≤ , .

Proof.  Proofs are given by Kaas et al.(1994), Theorem IV.2.1, Makowski(1994), Shaked and
Shanthikumar(1994), Theorem 3.A.3, and Müller(1996), Theorem 3.7.  ◊

Other characterizations of the stop-loss order can be obtained. For a random variable
X  with finite mean and quantile function  )(1 uFX

− , the Hardy-Littlewood transform  HX   of
X  is defined by its quantile function on  [ ]1,0   through the formula

(2.5)






=− )()( 1 uF H
X

.1),(

,1,)(
1

1

1

1 1

=

<
−
−

−∫
uuF

udvvF
u

X

u X

Its name stems from the Hardy-Littlewood(1930) maximal function. The random variable
HX   is the least majorant with respect to  st≤   among all random variables  XY sl≤   (e.g.

Meilijson and Nàdas(1979)). Its great importance in applied probability and related fields has
been noticed by several further authors, among others Blackwell and Dubins(1963), Dubins
and Gilat(1978), Rüschendorf(1991), and Kertz and Rösler(1990/92/93). Recent actuarial
applications are found in Hürlimann(1997a/c).
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Theorem 2.4.  For  i=1,2, let  SX i ∈   with finite means. Then one has  21 XX sl≤   if, and
only if, one has  H

st
H XX 21 ≤ .

Proof.  This is Lemma 1.8 in Kertz and Rösler(1992) (see also Hürlimann(1998b)).  ◊

By existence of a common mean, the characterization of the convex order
H

st
H

cx XXXX 2121 ≤⇔≤   is found in van der Vecht(1986), p.69. For any non-negative
random variable  X  with fixed mean  µ, consider the integrated tail transform  IX   of  X
with survival function defined by

(2.6) 0,)()( ≥= xxxF XI
X µ

π ,

which plays an important role in actuarial ruin models (e.g. Embrechts et al.(1997)). In
renewal theory (2.6)  is called stationary renewal distribution.

Theorem 2.5.  For  i=1,2, let  iX   be non-negative random variables with common finite
mean. Then 2

)(
,1 XX n

sl =≤   In
sl

I XX 2
)1(

,1
−
=≤⇔   for all  n = 1 2 3, , ,... .

Proof.  Consult for example van Heerwaarden(1991), p.69.  ◊

An alternative characterization goes back to Blackwell(1953). A bivariate real function
[ ]1,0: 2 →RT   is called Markov kernel if for each  Rx∈   the function  ),( yxT   of  y  defines

a distribution function. The function  T  is called mean preserving Markov kernel if
additionally the mean value of  ),( yxT   by fixed  x  is preserved, that is

(2.7) ∫
∞

∞−
= xyxydT ),( ,  for all  Rx∈ .

The function  T  associates to  X  the transformed random variable  )(XTY =   with

(2.8) [ ]),()(),()( yXTExdFyxTxF XY == ∫
∞

∞−
.

Theorem 2.6.  Let  X  and  Y  with a common finite mean. Then one has  YX cx≤   if, and
only if, there exists a mean preserving Markov kernel  ),( yxT   such that  )(XTY = .

Proof.  The sufficient part is immediate. The necessary condition is easily verified for
discrete distributions (see Szekli(1995)) while a general proof is beyond elementary
mathematics (see Alfsen(1971)).  ◊

A more recent characterization of the convex order relies on the mathematical notion of
fusion for probability measures as studied by Elton and Hill(1992). For more details on this,
the interested reader should consult Szekli(1995), Theorem 1.3D.
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3. The class of relative inverse convex orders.

The class of higher degree stop-loss transform orders is of fundamental importance in
risk and price theory. There is a second class of increasingly more complex orders, which is
of similar importance in the modern theory of descriptive statistics.

For simplicity, let  X, Y  be random variables with absolutely continuous and strictly
increasing distributions  F(x), G(x), densities  f(x), g(x), which are defined on the supports

GF SS , . The relative inverse function of  F  with respect to  G  (G  with respect to  F) is
defined by  FYX SxxFGxR ∈= − ),()( 1

,   ( GYXYX SxxGFxRxS ∈== −− ),()()( 11
,, ), and is viewed as

a real functional of the pair  (X,Y). It is useful to set  xxRD YXYX −= )(,,   and

xxSE YXYX −= )(,,   (which correspond to  )(x∆   and  )(* x∆   in Oja(1981)).
Recall the notion of higher degree convexity (e.g. Karlin(1968), p.23, and Karlin and

Ziegler(1976)).

Definition 3.1.  For a real interval  I, a function  f : I → R  is called convex (concave) of
degree  0  if
( )C0 0)()( ≥≤xf   for all  Ix∈

It is called convex (concave) of degree  1  if the determinant

( )C1 0)(
)()(

11

21

≤≥
xfxf

  for all  Ixxxx ∈< 2121 ,, ,

and convex (concave) of degree  n≥2  if the determinant

( )Cn  0)(

)()()(

111

121

1
1

1
2

1
1

121

≤≥

+

−
+

−−

+

n

n
n

nn

n

xfxfxf
xxx

xxx
  for all  Ixxxxxx nn ∈<<< ++ 121121 ,...,,,... .

For the lower degrees, one notes that the statement  f  is convex (concave) of degree  0
says that  f  is non-negative (non-positive),  f  is convex (concave) of degree  1  means that  f
is non-decreasing (non-increasing) and  f  is convex (concave) of degree  2  exactly when  f
is convex (concave) (Karlin(1968), p.280-83). As a special case, note that if the  n-th
derivative exists, then  f  is convex (concave) of degree  n  if and only if  0)()()( ≤≥xf n .

The class of higher degree relative inverse convex orders has been introduced by
Oja(1981) as follows.

Definition 3.2.  The random variable  X  precedes  Y  in the degree  n  relative inverse convex
order, written  YX n≤ , if the function  )(, xD YX   is convex of degree  n.
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The significance of the lower degree orders for  n = 0 1 2, ,   lies in the fundamental role
they take in clarifying coherent structures of location, scale, skewness and kurtosis (see
Section 4). In the following, we present some useful alternative characterizations and relate
these orders to alternative order concepts and other notions. The given facts will be exploited
later throughout.

The order  0≤   is identical to  ≤ st   while  1≤ , introduced by Doksum(1969), coincides
with the dispersion order  disp≤   introduced by Bickel and Lehmann(1979).

Definition 3.3.  The random variable  X  precedes  Y  in the dispersion order, written
YX disp≤ , if  )()()()( 1111 αβαβ −−−− −≤− GGFF   for all  10 <<< βα .

This order can be characterized through sign change properties, where the number of sign
changes is described by the function  )(⋅−S . The notation  )()( cxfxfc +=   is used.

Theorem 3.1.  Let  X  and  Y  be random variables with absolutely continuous and strictly
increasing distributions. The following statements are equivalent :

(a) YX 1≤
(b) YX disp≤
(c) 1)( ≤−− FGS c   for all  Rc∈ , with a sign sequence  ),( −+   if a sign change occurs
(d) 1)('

, ≥xR YX   for all  FSx∈
(e) The density-quantile functions satisfy the inequality [ ] [ ] ( )1,0,)()( 11 ∈≥ −− uuGguFf
(f) The distribution-density-inverse functions satisfy the inequality [ ] [ ])()( 11 xgGxfF −− ≥

provided  f  and  g  are decreasing functions
(g) +

−
+

− −≤− ))(())(( 11 uGYuFX st   for all  )1,0(∈u
(h) If  X  and  Y  are non-negative random variables, (a)-(g) are equivalent to YX st≤   and

1)( ≤−− FGS c   for all  +∈Rc , with a sign sequence  ),( −+   if a sign change occurs

Proof.  The equivalence of (a) and (b) is shown in Deshpande and Kochar(1983). Similarly
simple is the equivalence of (a) and (d). The criteria (e) and (f) are restatements of (d). The
equivalence of (b) and (c) is in Shaked(1982) (also Szekli(1995), p.29). The equivalence of
(b) and (g) is in Muñoz-Pérez(1990). The equivalence of (b) and (h) is in Shaked(1982).  ◊

The following sufficient (but not necessary) criterion is often useful.

Theorem 3.2.  Let  X  and  Y  be absolutely continuous random variables with densities  f  and
g. If  2)( ≤−− fgS c   for all  Rc∈ , with a sign sequence  ( )+−+ ,,   in case of equality, then
one has  YX disp≤ .

Proof.  A proof is given in Szekli(1995), p.30.  ◊

An elementary general fact, which is useful in both risk and price theory involves
comonotone random variables, a notion introduced by Schmeidler(1986) and Yaari(1987).
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Definition 3.4.  Two random variables  X  and  Y  are called comonotone if there exists  Z
and weakly increasing functions  u  and  v  such that  )(),( ZvYZuX == .

Theorem 3.3.  If  X  and  Y  are comonotone, then one has  YXYX disp +≤, .

Proof.  This follows from Definition 3.3 using the well-known fact
)()()( 111 uFuFuF YXYX

−−−
+ +=   (e.g. Denneberg(1990/94), Landsberger and Meilijson(1994)). ◊

There exist a number of interesting results relating the dispersion order with some aging
classes (e.g. Bartoszewicz(1985/87), Bagai and Kochar(1986)).

Theorem 3.4.  If  X  and  Y  are non-negative random variables, one has the statements :

(a) If  YX hr≤   and  X  or  Y  is of class  DFR, then  YX disp≤ .
(b) If  YX disp≤   and  X  or  Y  is of class  IFR, then  YX hr≤
(c) Let  X  be of class  NBU (new better than used) and  Y  of class  NWU (new worse 

than used). Then one has  YX disp≤   if and only if  YX hr≤

Proof. Bartoszewicz(1987), Prop. 1, 2, Bagai/Kochar(1986), Theorem 2.1, Corollary 2.1.  ◊

The order  2≤   coincides with "convex order" introduced by van Zwet(1964) denoted by  c≤ .
Setting  )()(, baxGxG ba += , an equivalent condition is that  2)( , ≤−− FGS ba   for all

Rba ∈,   with a sign sequence  ( )−+− ,,   if two sign changes occur.
Besides its use as ordering of skewness (see Section 4), the stochastic order  c≤   is of

importance in reliability theory and related to the starshaped and superadditive orders. Let  X
and  Y  be non-negative random variables with distributions  F(x)  and  G(x)  such that

0)0()0( == GF , which have finite means  YX µµ , . For the class of functions  ++ → RR:ϕ ,
which are continuous such that  0)0( =ϕ , one says that  ϕ   is starshaped if for each

[ ]1,0∈α , and all  x, one has  )()( xx αϕαϕ ≤ . The function  ϕ   is superadditive if
)()()( yxyx ϕϕϕ +≥+   for all  x  and  y. When applied to the relative inverse function

)()()( 1
, xFGxRx YX

−==ϕ , one obtains the following stochastic orders. As already stated  X
precedes  Y  in the "convex" order, written  YX c≤ , if  )(, xR YX   is convex. Similarly  X
precedes  Y  in the starshaped order, written  YX ∗≤ , if   )(, xR YX   is starshaped, and  X
precedes  Y  in the superadditive order, written  YX su≤ , if   )(, xR YX   is superadditive. Since
the convex property implies the starshaped property, which implies itself the superadditive
property (e.g. Bruckner and Ostrow(1962)), these stochastic orders are increasingly weaker in
the sense that  suc ≤⇒≤⇒≤ ∗ . It is worthwile to mention the following result.

Theorem 3.5.  Let  X  and  Y  be non-negative random variables with finite means  YX µµ ≤ .
If  YX ∗≤  (or stronger  YX c≤ ) then  YX sl≤ .

Proof.  Consult Dharmadhikari and Joag-Dev(1988), Theorem 9.3, and Szekli(1995), p.23.  ◊
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4. Measures of scale, skewness and kurtosis.

Measures of statistical quantities based on divers stochastic orders are relatively long
known. The usual stochastic order  0≡≤≤st   has been introduced by Mann and Whitney(1947)
and studied further by Lehmann(1955). As an ordering of location, it has been used by Bickel
and Lehmann(1975) to define measures of location for asymmetric random variables. These
authors(1976/79) also introduced  1≡≤≤disp   as an ordering of scale. Van Zwet's(1964)
ordering  2≡≤≤c   is used as an ordering of skewness, and a modification of it is used as an
ordering of kurtosis for symmetric random variables. Oja(1981) unified the previous work
and introduced some weaker stochastic orders of scale, skewness and kurtosis. The
subsequent papers by Groeneveld and Meeden(1984), MacGillivray(1986), Balanda and
MacGillivray(1988/90), Groeneveld(1991) and Arnold and Groeneveld(1995) discuss how to
refine and obtain "complete" structures of scale, skewness and kurtosis. These results are of
interest for defining measures of risk and price, as exemplified in Section 5 and 6.

4.1. Measures of scale.

For the ordering of scale  disp≡≤≤1 , the location parameter may be arbitrary, a fact
which is reflected in the property (c) of Theorem 3.1. Fixing the particular location parameter
around which scale is taken necessarily weakens the order  1≤ . Though there is a huge
number of possible location parameters (e.g. Andrews et al.(1972) study 58 different location
estimators), let us restrict our attention to three of the most important ones, namely the mean

Xµ , the median  Xm   and the mode  XM   of a given random variable  X  (cf.
Hutchinson(1993)). In all definitions, we assume that these quantities are well-defined, and
consider only random variables for which this is the case.

Definition 4.1. (Oja(1981))  The random variable  X  precedes  Y  in the order of mean-scale,
written  YX µ

1≤ , if one of the following equivalent statements holds :

( )µS1 1)( =−−
XY

FGS µµ   with a sign sequence  ),( −+
( )µS2 YDX YX µµ −≤− =,

( )µS3 There exists  c  such that  XYYX xD µµ −≥≤ )()(,   for all  cx )(≥≤

( )µS4 There exists  )1,0(∈ξ   such that  XYuFuG µµ −≥≤− −− )()()( 11   for all  
)1,0(∈u   such that  ξ)(≥≤u

Definition 4.2. (MacGillivray(1986))  The random variable  X  precedes  Y  in the order of
median-scale, written  YX m

1≤ , if one of the following holds :

(mS1) XYYX mmxD −≥≤ )()(,   for all  Xmx )(≥≤

( )mS2 XY mmuFuG −≥≤− −− )()()( 11   for all  )1,0(∈u   such that  2
1)(≥≤u

Note that in contrast to Definition 4.1, the crossing point is necessarily  Xm   (resp. 2
1 )

because if  YX disp≤   then  )()( 11 uFuG −− −   is necessarily increasing in  u.
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Definition 4.3.  The random variable  X  precedes  Y  in the order of mode-scale, written
YX M

1≤ , if one of the following holds :

(MS1) There exists  c  such that  XYYX MMxD −≥≤ )()(,   for all  cx )(≥≤

(MS2) There exists  )1,0(∈ξ   such that  XY MMuFuG −≥≤− −− )()()( 11   for all  
)1,0(∈u   such that  ξ)(≥≤u

(MS3) 1)( =−−
XY MM FGS   with a sign sequence  ),( −+

The equivalent characterizations of  1≤   given in Theorem 3.1 yield the following result.

Theorem 4.1. (Hierarchy of orderings of scale)  Each of the partial orders  YX µ
1≤ , YX m

1≤
and  YX M

1≤   is implied by the location free order of scale  YX 1≤ .

Remark 4.1.  The order  ∗∗≤1   of Oja(1981) weakens further  µ
1≤   but seems less significant.

For each of the orderings of scale, it is possible to describe measures of scale together
with totally ordered families of random variables for which these measures apply. Only a
small list will suffice for our purpose. In view of Theorem 4.1, each measure of scale with
respect to one of  m

11 , ≤≤µ   and  M
1≤   is also a measure of scale for the stronger order  1≤ .

Examples 4.1 :  location free and location dependent measures of scale

(1) location free measures

(1a) The Gini measure  [ ] [ ]YXEXGini −= 2
1 , where  X  and  Y  are independent and

identically distributed (see Oja(1981)).

(1b) The class of density-quantile measures  [ ] ( )[ ])(XfEXDQ oϕϕ −= , where  'Ff =   is
the density and  )(xϕ   is a monotone increasing function defined on  )( FSf  (use criterion (e)
of Theorem 3.1). In the special case  )ln()( xx =ϕ   one recovers the measure of entropy

[ ] { }[ ])(ln XfEXEn −=   mentioned in Oja(1981).

(1c) The class of survival-density-inverse measures  [ ] ( )[ ])(XFEXSD dx
d oϕϕ −= , where

)(xϕ   is a monotone increasing function defined on  )1,0( , and  X  is a non-negative random
variable with decreasing density  f  (use (f) of Theorem 3.1). In the special case  )ln()( xx =ϕ
one obtains the measure of hazard  [ ] [ ])(XhEXEh = , where  )(xh   is the hazard rate.

(2)  mean dependent measures

By Definition 4.1, statement ( )µS2 ,  the relation  YX µ
1≤   implies  YslX YX µµ −≤− =,  (by

the Karlin-Novikoff(1963) cut-criterion or dangerousness order relation). It follows that any
functional  [ ] [ ])(, XXEXS µϕϕµ −= , where  )(xϕ   is a convex function, preserves the
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ordering of scale  µ
1≤ . The choice of  )(xϕ   is further restricted by the scaling axiom (Sc1') in

Definition 1.2'. As special cases one has :

(2a) The standard deviation  [ ] [ ]2)( XXEX µσµ −= , which is Corollary 4.2 in Oja(1981).

(2b) The "stop-loss at mean" measure or "one half of the mean absolute deviation" measure
[ ] [ ] [ ]XX XEXEX µµπµ −=−= + 2

1)( .

(3) median dependent measures

Appropriate functionals, which preserve  m
1≤   are of the form  [ ] { }∫ −= −1

0

1
, )( dumuFXS Xm ϕϕ ,

where  )(xϕ   is a monotone increasing function on  ( , )0 1 . As an example one has the
absolute deviation from the median defined by  [ ] [ ]Xm mXEX −=σ .

(4) mode dependent measures

By Definition 4.3, statement (MS3), the dangerousness order relation  YDX MYMX −≤− ,
which implies  YslX MYMX −≤− , is fulfilled provided  XYXY MM µµ −≤− . Under the
latter mean-mode condition, any functional  [ ] [ ])(, XM MXEXS −= ϕϕ , where  )(xϕ   is an

increasing convex function, preserves the ordering  M
1≤ . Measures of this type include :

(4a) The square root of the quadratic deviation from the mode  [ ] [ ]2)( XM MXEX −=σ .

(4b) The "stop-loss at mode" measure  [ ] [ ]+−= )( XM MXEXπ .

4.2. Measures of skewness.

For weakening the ordering of skewness  2≡≤≤c , the location parameter may be
chosen arbitrarily, and there is also much freedom in the choice of the remaining scale
parameter. Due to its complexity, an exhaustive classification has not yet been given in the
statistical literature. For this reason, we restrict our attention to some main situations.

Definition 4.4. (MacGillivray(1986), refined ordering  ∗≤2  of Oja(1981))  The random
variable  X  precedes  Y  in the order of mean-skewness, written  YX µ

2≤ , if the standardized
distribution difference  )()()(, xFxGxd XXYYYX σµσµ +−+=   is either identically zero or
changes sign twice with a sign sequence  ),,( −+− .

The next four orderings of skewness, in other nomenclature, were all proposed by
MacGillivray(1986).
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Definition 4.5.  The random variable  X  precedes  Y  in the order of median-star-skewness,
written  YX m

∗≤ ,2 , if  ( ) ( )XYYX mxmxR −− /)(,   is non-decreasing in  FS , or equivalently

( ) ( )XY muFmuG −− −− )(/)( 11   is nondecreasing in  ( , )0 1 .

Definition 4.6.  The random variable  X  precedes  Y  in the order of median-Doksum-

skewness, written  YX m
D,2≤ , if  x

mg
mfxR

Y

X
YX )(

)()(, −   is nonincreasing (nondecreasing) for all

FSx∈   such that  Xmx )(≥< , or equivalently  )(
)(
)()( 11 uF

mg
mfuG

Y

X −− −   is nonincreasing

(nondecreasing) for all  )1,0(∈u   such that  2
1)(≥<u .

Definition 4.7.  The random variable  X  precedes  Y  in the order of median-skewness,
written  YX m

2≤ , if  ( ) ( ) )()()(, XXYYYX mfmxmgmxR ⋅−≥⋅−   for all  FSx∈   or equivalently

( ) ( ) )()()()( 11
XXYY mfmuFmgmuG ⋅−≥⋅− −−   for all  )1,0(∈u .

Definition 4.8.  The random variable  X  precedes  Y  in the order of median-quantile-

skewness, written  YX m
γ,2≤ , if  [ ]

X

YYX

X

Y

mx
mxR

muF
mxFG

−
−

≥
−−
−

−

− )(
)1(
)( ,

1

1

  for all  Xmx ≤ , or

equivalently  [ ] [ ]
X

Y

X

Y

muF
muG

muF
muG

−
−≥

−−
−−

−

−

−

−

)()1(
1

1

1

1

1

  for all  ),0( 2
1∈u .

Though a measure of skewness with respect to the mode has been recently proposed
by Arnold and Groeneveld(1995), corresponding orderings with respect to the mode, which
are weaker than van Zwet's ordering  2≤ , are still missing.

Theorem 4.2. (Hierarchy of orderings of skewness)  Between the defined orderings of
skewness, the following implications hold :

(i) YXYX µ
22 ≤⇒≤

(ii) YXYXYXYXYX mmm
D

m
γ,22,2,22 ≤⇒≤⇒≤⇒≤⇒≤ ∗

Proof.  For details, consult MacGillivray(1986).  ◊

There are four classical measures of skewness, which were known by 1920 :

[ ]
X

XX
K

MX
σ

µγ −=   (Karl Pearson(1895))

[ ] 3
,3

X

XX
σ
µ

γ =   (Edgeworth(1904), Charlier(1905), Doodson(1917), Haldane(1942))

[ ]
)25.0()75.0(
2)25.0()75.0(

11

11

25.0 −−

−−

−
−−=

FF
mFFX Xγ   (Bowley(1901), David and Johnson(1954/56))

[ ]
X

XX
m

mX
σ

µγ −=0   (Yule(1911), Hotelling/Solomons(1932), Garver(1932), Majindar(1962))
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By 1964, when van Zwet's ordering of skewness revolutionized the subject, only the
last one did not pass the ordering axiom (Sk4), Definition 1.3. In fact, failing is solely due to
the wrong choice of the measure of scale, and this measure can be replaced by

[ ] [ ]X

XX
m mXE

mX
−
−= µγ   (see Groeneveld and Meeden(1984))

There are many different formalizations of the concept of skewness, which according
to Groeneveld(1991) should best be viewed as "a location- and scale-free deformation of the
probability mass of a symmetric distribution". Further information about measures of
skewness can be extracted from the influence function of Hampel(1968/74). We list various
measures of skewness, which preserve one of the possible orderings of skewness. It seems
that the generalized Bowley quantile measure  [ ]Xuγ   with respect to the weakest ordering

m
γ,2≤   (suggested first by David and Johnson(1956)) is valuable in discussing both skewness

and asymmetry (see MacGillivray(1986)). As a result in robust statistics, it is constantly
affected by contamination in the tails of the distribution (see Groeneveld(1991)).

Examples 4.2 :  location free and location dependent measures of skewness

(1) location free measures

Oja(1981) gives [ ]











−
−

=
)1()3(

)2()3(

XX
XX

EXOγ , with  )3()2()1( ,, XXX   an ordered sample from  X.

(2) mean dependent measures

The usual coefficient of skewness  [ ] 3
,3

X

XX
σ
µ

γ =   is justified as measure of skewness with

respect to the mean by the following result.

Theorem 4.3. (MacGillivray(1985/86))  If  YX µ
2≤   then one has the inequalities

,...3,2,1,12
,12

12
,12 =≤ +

+
+

+ nn
Y

Yn
n

X

Xn

σ
µ

σ
µ

 .

If equality holds for any  n, then the standardized distributions of  X  and  Y  coincide.

(3) median dependent measures

Details about the following results are found in MacGillivray(1986).

(3a) The generalized Bowley quantile measure of skewness defined by

[ ] ),,0(,
)()1(
2)()1(

2
1

11

11

∈
−−

−−−= −−

−−

u
uFuF

muFuFX X
uγ
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preserves the weakest ordering  m
γ,2≤ .

(3b) The modified Yule measure of skewness  [ ] [ ]X

XX
m mXE

mX
−
−= µγ   by Groeneveld and

Meeden(1984) preserves the ordering  m
2≤ .

(3c) The symmetrically weighted quantile averages based measure of skewness

[ ] [ ]( ) )( XXK
K
m mfmXX ⋅−= µγ , with  [ ] ∫ −=

1

0

1 )()( udKuFXKµ ,

where  K(u)  is a distribution function on  ( , )0 1   with symmetry center  1
2   preserves  m

2≤ .

(3d) The median-density scaled measure of skewness

[ ] [ ] )()( 3
XX

d
m mfmXEX ⋅−=γ

preserves  m
2≤ . In fact, all the higher order measures  [ ] ,...3,2,1),()( 12 =⋅− + nmfmXE X

n
X ,

are preserved by  m
2≤ .

(3e) The pure quantile measure of skewness

[ ] ,0,
)()1(

)()1()()1(
2
1

11

1111

, ≤<≤
−−

−−−+−= −−

−−−−

vu
vFvF

vFvFuFuFXvuγ

preserves  m
∗≤ ,2 .

(4) mode dependent measures

Let  F  be a class of random variables, which is totally ordered with respect to  2≤ , such that
each member  X  in  F  with distribution  F(x)  has a continuously differentiable density

0)( >xf   defined on an interval  ∞≤<≤∞−= babaSF ),,( . Assume that  0)(' >xf   for

XMx < ,  0)(' <xf   for  XMx > , and  0)(' =XMf . In particular,  XM   is the unique mode
of  X. Then the measure of skewness with respect to the mode

[ ] )(21 XM MFX ⋅−=γ

preserves the ordering of skewness  2≤ . For details, consult Arnold and Groeneveld(1995).

4.3. Measures of kurtosis.

According to Balanda and MacGillivray(1988/90) increasing kurtosis should best be
defined vaguely as "the location- and scale-free movement of probability mass from the
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"shoulders" of a distribution into its centre and tails" and formalize this movement by a
coherent structure of orderings and measures.

For the class of symmetric distributions, a suitable ordering of kurtosis has been
introduced by van Zwet(1964) (see also Oja(1981)).

Definition 4.9.  If  X  and  Y  are symmetric, then  X  precedes  Y  in the  s-order, written
YX s≤ , if  )()( 1

, xFGxR YX
−=   is convex for  Xmx >   and concave for   Xmx < .

It is only quite recently that orderings of kurtosis, which apply in asymmetrical models
and which imply  s≤   in symmetrical models, have been constructed. Using quantile-based
and moment-based spread functions, Balanda and MacGillivray(1990) have proposed two
such coherent structures. The strongest orderings in these structures are defined as follows.

Definition 4.10.  The random variable  X  precedes  Y  in the  s-order, written  YX s≤ , if
[ ])(1 xss XY

−   is convex for  0≥x , where  )(usX  (resp.  )(usY ) is the quantile-based spread
function of  X  (resp. Y) defined by  ( ) ( ) .0,)( 2

1
2
11

2
11 <≤−−+= −− uuFuFusX

Definition 4.11.  The random variable  X  precedes  Y  in the  ζ-order, written  YX ζ≤ , if

[ ])(1 xXY
−ζζ   is convex for  0≥x , where  )(uXζ  (resp.  )(uYζ ) is the moment-based spread

function of  X  (resp. Y) defined by  ( ) ( ) 0,)( ≥−−+= xxFxFu XXX µµζ .

For kurtosis comparisons within larger classes of random variables than those possible
with  ζ≤≤ ands , it is necessary to weaken successively the convexity conditions defining
these orders. Let us describe the hierarchy of kurtosis orderings obtained by Balanda and
MacGillivray(1990).

For a specific scale-matching of kurtosis, one needs the following measure of scale,
which preserves the dispersion order  disp≡≤≤1 .

Definition 4.12.  Let  X  be a random variable with distribution  F(x)  and let  2
1,0 <≤ βα .

The average change of spread over the interval  ( )βα ,   defines the measure of scale

[ ]
αβ

αβσ βα −
−= )()(

,
XX ssX ,

which reduces to  )(' αXs   in case  αβ = .

In the following, suppose that  2
10 <≤ γ   and  2

1,0 <≤ βα .

Definition 4.13.  The random variable  X  precedes  Y  in the  star-shaped order of kurtosis,
written  YX γ

*≤ , if

)()(
)()(
γ
γ

XX

YY

sus
sus

−
−

is increasing for  2
10 <≤ u .
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Definition 4.14.  The random variable  X  precedes  Y  in the  Doksum order of kurtosis,
written  YX D

α
β,≤ , if

(a) [ ] [ ]X
sus

Y
sus XXYY

βαβα σ
α

σ
α

,,

)()()()( −−−   is decreasing for  α<≤ u0

(b)
[ ] [ ]

)()()()(
,,

α
σ

α
σ βαβα

XXYY sus
X

sus
Y

−
−

−
  is decreasing for  βα ≤≤ u

(c) [ ] [ ]X
sus

Y
sus XXYY

βαβα σ
α

σ
α

,,

)()()()( −−−   is increasing for  2
1<≤ uβ .

Definition 4.15.  The random variable  X  precedes  Y  in the  weak order of kurtosis, written
YX α

β≤ , if

[ ] 











≥
≤
≥

−
Y
sus YY

βασ
α

,

)()(
[ ]X
sus XX

βασ
α

,

)()( −   for  












<≤
<≤
<<

2
1

0

u
u
u

β
βα
α

.

For each pair  ( )βα , , one has the following ordering of kurtosis structure.

Theorem 4.4. (Hierarchy of orderings of kurtosis)

(a) YX s≤   ⇔  YX γ
*≤   for all  [ )2

1,0∈γ
(b) YX γ

*≤   ⇔  YX D
α

β,≤   for all  [ )2
1,γδ ∈

   ⇔  YX γ
δ≤   for all  [ )2

1,γδ ∈
(c) YX s≤   ⇒  YX α

*≤   ⇒  YX D
α

β,≤   ⇒  YX α
β≤ .

Proof.  For details, consult Balanda and MacGillivray(1990).  ◊

Similarly to the generalized Bowley quantile measure of skewness, which preserves
the weakest ordering of skewness as given in (3a) of the Examples 4.2, there exists a measure
of kurtosis, which preserves the weakest ordering of kurtosis.

Example 4.3 :  measures of kurtosis and tailweight

For each  2
1,0 <≤ βα , 2

10 <≤ u , the quantile-based functional

[ ]









=Xu,,
2

βαγ
[ ]
[ ]

,,
)()(

,,0,)()(

,

2
1

,

βα
α

σ

βα
σ

α

βα

βα

<<
−

<<<<−

u
sus
X

uoru
X
sus

XX

XX

preserves  α
β≤   and all partial orderings preceding it in the hierarchy of Theorem 4.1(c). The

special case  βα <=0   yields a large class of tailweight measures
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which is well-known in robust statistics literature. Balanda and MacGillivray(1990) have
noticed that the quantile-based functional

[ ] ( ) ( ) ( )
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2 <<
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which has been suggested as a measure of kurtosis for symmetric random variables by
Groeneveld and Meeden(1984), does not preserve van Zwet's extension  s≤   to the
asymmetric case. Further details are found in the papers by Balanda and MacGillivray.

5. Measures of "absolute" risk.

Historically, the concept of "risk" has been used in many different senses, and has
been defined according to its context of application in economics, statistics, insurance and
finance (e.g. Borch(1967)).

One of the first notion of "risk" is attributed to Tetens(1786), who defined risk as
"expected loss to the company, if the insurance contract leads to a loss". Greatly simplified,
this yields risk as "one half of the mean absolute deviation". In modern terms, this first
measure of risk is simultaneously our measure of scale (2b) in Example 4.1, that is

(5.1) [ ] [ ] [ ]XX XEXEXTetens µµ −=−= + 2
1)( .

Though obsolete from a dynamic point of view (e.g. Borch(1967)), renewed interest, mainly
in "static risk theory", can be found in many quite recent papers (consult Hürlimann(1998a)
and references). Since it is usually more convenient to work with the standard deviation, the
latter measure of scale has also been advocated as measure of risk (e.g. Hausdorff(1897)).

Concerning the practical use of measures of risk, a vague concept of risk emerged
through the concept of (insurance) price defined roughly as "expected cost plus a safety
loading in form of a function of the measure of risk", first suggested by Wold(1936),
reconsidered in Ramsay(1993), and which can be formalized in many ways. For example, the
concept of "safety loading" can be reconciled with expected utility theory (e.g. Nolfi(1957),
Borch(1990) among others).

The above historical sketch reveals a certain connection between the concepts of scale
and risk intuitively perceived by each actuary. In fact, the formal analogy in the axiomatic
foundation of these notions (see Definitions 1.2 and 1.5) suggest that any measure of scale is
potentially a candidate for a measure of risk. However, one requires more from the latter and
there is also a main difference, which has been made precise only quite recently through the
development of the theory of ordering of actuarial risks (a monograph entirely devoted to this
topic is Kaas et al.(1994)). Indeed, the selected ordering of scale (say out of  Mm

1111 ,,, ≤≤≤≤ µ ,
etc.) usually differs from the selected ordering of risk (say out of  slslst ≤≤≤ = ,, , , etc.). Though
there exist relationships between these orderings, it is not always guaranteed that a measure of
scale, which preserves an ordering of scale, also preserves an ordering of risk. In Section 5.1,
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some counterexamples are analyzed. In particular, we show that entropy is not a measure of
risk, a fact which may be of interest in connection with the controverse raised by
Sundt(1982). In contrast to this, "universal" examples, which are simultaneously measures of
scale and risk, are displayed in Section 5.2.

On the other side, there is an indisputable need in actuarial science and finance to
develop measures of risk, which explicitely use measures of skewness and kurtosis. As an
example, Ramsay(1993), Section 4.3, derived from the normal power (NP) approximation to
a moderately positively skewed random variable (e.g. Beard et al.(1984), Section 3.11) the

"measure of risk"  [ ] [ ] [ ] )1( 2
18
1 XXVarXR γ+⋅= . However, as shown by Promislow(1993),

the Rothschild-Stiglitz ordering of risk  =≡≤≤ ,slcx   is not preserved by this (NP) measure of
risk, rejecting it as a genuine measure of risk. In Section 5.3, we show how to adjust a
measure of scale and risk for a positive measure of skewness. As illustration, an authentic
skewness based measure of risk is discussed in Example 5.8. Similarly, using measures of
kurtosis as constructed in Section 4.3, it should be possible to adjust a measure of scale and
risk for kurtosis or for both skewness and kurtosis. However, this is a widely open area of
investigation, which is beyond the scope of the present work and requires further research.

5.1. Some counterexamples.

To define a measure of risk, one has to specify a family  F  of non-negative random
variables, which is totally ordered with respect to the selected ordering of risk, and verify if
the axioms (aR1)-(aR4) in Section 1 are fulfilled for the proposed measure of risk. If a
proposal passes this test for "big" classes of possible families  F, it will be called a universal
measure of risk. Otherwise, there exists a family  F  in such a "big" class, for which one
axiom is not fulfilled, and the corresponding measure of risk is a counterexample.

Example 5.1 :  standard deviation with respect to the usual stochastic order

The ordering of risk  st≤   is often assumed. Let  F  be the totally ordered family of diatomic
random variables  X  with support  { } baba <≤0,, , b  fixed, and probabilities

2
1)Pr()Pr( ==== bXaX . For  { } { } babaYbX <<== 0,,,,0 , one has  YX st≤ , but the

standard deviations satisfy  )(2
1

2
1 abb YX −=>= σσ .

Example 5.2 :  entropy with respect to the stop-loss order

From Examples 4.1, (1b), we know that entropy, defined by  [ ] { }[ ])(ln XfEXEn −=   with
f(x)  the density of the random variable  X, is a measure of scale. Consider the family of
Pareto risks  ),(~ γaParX   with survival function  ( ) 1,0,)( >>≥= − γγ axxF a

x . Since

1>γ , the mean exists and equals  ( )1−⋅= γ
γµ a . In the parametrization  ),( γµ , one has the

stop-loss order comparison rules (e.g. van Heerwaarden(1991), Section 6.4) :

212211 0),(),( µµγµγµ ≤<⇔≤ ParPar sl   and  121 >≥ γγ .

As totally ordered family  F, choose only those  ),(~ γµParX   with parameters  ),( γµ   in
the region defined by the right-hand side in this comparison result. From calculation, the
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entropy of a member of this family is given by [ ] ( ) { } { }( )µγµ γ
γ

γ
γ lnln2,; 1

1 −⋅⋅= −
+XEn . Now, if

1, 2121 >==< γγγµµ , corresponding Pareto risks  21 XX sl≤   are stop-loss ordered, but
the measures of entropy satisfy  [ ] [ ]γµγµ ,;,; 2211 XEnXEn > .

Example 5.3 :  hazard with respect to the stop-loss order by equal means

Examples 4.1, (1c), tells us that the expected hazard  [ ] [ ])(XhEXEh =   for non-negative
random variables with decreasing densities is a measure of scale. Consider the one-parameter
family of Pareto risks  ),(~ γµParX   with fixed mean  µ  and  1>γ . The hazard rate is

xxh γ=)(   and its expected value equals  [ ] [ ] ( )
1

1
2

3

−
⋅==

γ
γ

µ
γ
XEXEh . Let

2,1),,(~ =iParX ii γµ , with  121 >> γγ , hence  2,1 XX sl =≤ . It is easy to see that

[ ] [ ]21 XEhXEh < , if  31 12 <<< γγ , and  [ ] [ ]21 XEhXEh > , if  321 ≥> γγ .

In particular, the expected hazard is not a measure of risk with respect to  =≤ ,sl   for the Pareto

family with fixed mean and index  3≥γ .

5.2. Universal measures of scale and risk.

Among the measures of scale mentioned in the Examples 4.1, the following ones, may
be viewed as measures of risk with respect to some ordering of risk.

Example 5.4 :  standard deviation with respect to the Rothschild-Stiglitz order  =≡≤≤ ,slcx

It is well-known that  YX sl =≤ ,   implies  [ ] [ ]YVarXVar ≤ , hence axiom (aR5) is fulfilled.
Since the remaining axioms are satisfied, standard deviation is a measure of risk with respect
to  =≤ ,sl . By unequal means, this is not a measure of risk, as follows from Example 5.1 ( st≤
implies  sl≤ ). Moreover, as in case of the variance, its application has hitherto been justified
only in situations for which a normal distribution or a quadratic utility can be assumed (see
e.g. the comments and references in Ramsay(1993)).

 Example 5.5 :  Teten's measure with respect to the Rothschild-Stiglitz order

It is remarkable that the oldest proposed measure (5.1) is a genuine measure of risk with
respect to the stop-loss ordering of risk by equal means. For several families of random
variables it preserves also the weaker stop-loss order by unequal means. Moreover, it satisfies
a lot of other interesting and important statistical, economical and actuarial properties. For
some references, consult Hürlimann(1998a).

Example 5.6 :  a class of distortion measures with respect to the Rothschild-Stiglitz order

A close look at the common structure of the median absolute deviation and the Gini measure
suggests the following generalized measure.
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Theorem 5.1. (Distortion measures of scale and risk)  Let  )(xϕ   be a differentiable
increasing concave function on  ),0( 2

1   such that  )1,0()(,0)0( 2
1 ∈= ϕϕ , 1)('0 ≤≤ xϕ   for

[ )2
1,0∈x , and set





=)(xh
[ )

[ ].1,),1(
,,0),(

2
1

2
1

∈−
∈

xx
xx

ϕ
ϕ

For the class of non-negative random variables with survival function  )(xFX , the functional

(5.2) [ ] [ ]∫
∞

=
0

)( dxxFhXR X

is a measure of scale for  1≤   and a measure of risk for  =≤ ,sl .

Proof.  Making the substitution  uxF =)( , one obtains

(5.3) [ ] [ ] { }∫∫∫ −−−∞
−−=−== 2

1

0

111

0

1

0
)(')()1()(')1()( duuuFuFduuhuFdxxFhXR XXXX ϕ .

This quantile integral representation shows that  [ ]XR   preserves the ordering  disp≡≤≤1 , and
since  [ ] [ ]XRaaXR ⋅= , it is a measure of scale. To verify axiom (aR5) for  =≤ ,sl , observe
that the associated "measure of price" in the sense of Definition 1.7 defined by

[ ] [ ] [ ] [ ] 10),()(,)(
0

≤<⋅+==⋅+= ∫
∞

θθθ xhxxgdxxFgXRXEXP X ,

preserves  sl≤   by Theorem 6.1. By equal means, it follows that  [ ]XR   preserves  =≤ ,sl . It
remains to verify (aR3). From Wang(1996), Theorem 2, applied to the measure of price
[ ]XP , one obtains the stronger subadditive property  [ ] [ ] [ ]YRXRYXR +≤+   for all  X  and

Y  regardless of dependence.  ◊

As straightforward examples, one recovers the mean absolute deviation from median measure

[ ] [ ]Xm mXEX −=σ   for  xx =)(ϕ , and the Gini measure  [ ] ∫
∞

=
0

)()( dxxFxFXGini   for

)1()( xxx −=ϕ . Among recent examples, one notes  )ln()( xxx ⋅−=ϕ , which has been
considered in relation with option pricing theory (see Hürlimann(1997c/98d)) and xx =)(ϕ
used by Wang(1998) to define an actuarial index of the right-tail risk. In general, it is not
clear when the functional (5.2) preserves the usual stochastic order  st≤ , from which it would
follow through application of the so-called separation theorem (e.g. Kaas et al.(1994),
Theorem IV.2.1) that it is a measure with respect to the weaker ordering  sl≤ . In any case, this
is true for many families or random variables or/and choices of  ϕ( )x . It is also interesting to
mention that (5.3) is a measure of scale with respect to the (new) ordering of scale  q

1≤ , which
is weaker than  disp≤   and defined by

)()1()()1( 1111
1 uFuFuFuFYX YYXX
q −−−− −−≤−−⇔≤   for all  ),0( 2

1∈u .
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Example 5.7 :  stop-loss at mode with respect to the stop-loss order

Assume  F  is a totally ordered family of non-negative unimodal random variables with
respect to  sl≤   such that  XY MM ≤   if  YX sl≤   and  YXYX MMM +≥+   for independent

∈YX ,  F  such that  ∈+YX  F. To be sure that  YX +   is unimodal for independent  X  and
Y, one can assume that either  X  or  Y  is strongly unimodal, a notion introduced by
Ibragimov(1956) (see the book by Dharmadhikari and Joag-dev(1988)). Then the stop-loss at
mode functional  [ ] [ ]+−= )( XM MXEXπ   is a measure of scale for  1≤   and a measure of risk
for  sl≤ . By assumption, one has  XY MM ≤   in case  YX sl≤ , hence the stop-loss order is
preserved. Since  1≤   implies  st≤   (and  sl≤ ) (condition (g) in Theorem 3.1), the ordering of
scale is also preserved. Finally, subadditivity for independent  X  and  Y  follows from the
assumption  YXYX MMM +≥+   and the inequalities

[ ] [ ] [ ] [ ]+++++ −+−≤−−+≤−+ )()()()( YXYXYX MYEMXEMMYXEMYXE .

5.3. Adjustment of measures of scale and risk for positive skewness.

It is well-known that the standard deviation measure of risk (with respect to
=≡≤≤ ,slcx ) is usually accepted as measure of risk only if random variables are (approximately)

normally distributed. There does not seem to exist in the actuarial and financial literature
measures of risk, which adjust a "universal" measure of scale and risk (as standard deviation)
for positive skewness (and kurtosis) risk, and preserves an accepted ordering of risk (as the
Rothschild-Stiglitz measure). Indeed, the most recent proposed special normal power measure
of risk

[ ] [ ] [ ]( ) [ ] 3
,32

18
1 ,1

X

XXXXXR
σ
µ

γγσ =+⋅= ,

does not always preserve  cx≤   (comment by Promislow(1993)). A general  method to adjust a
measure of scale and risk  [ ]XS   for a positive measure of skewness  [ ] 0≥Xγ   is to set

(5.4) [ ] [ ] [ ]( ) 0,1 ≥⋅+⋅= cXcXSXR γ ,

such that the required axioms for a measure of risk are satisfied. A single example suffices to
illustrate what is meant.

Example 5.8 :  the median absolute deviation measure of risk adjusted for the modified Yule
measure of skewness

If in (5.4) one sets  [ ] [ ]XmXEXS −=   (see Example 5.6),  [ ] [ ] [ ]X

XX
m mXE

mXX
−
−== µγγ

(which is (3b) from Example 4.2), and   0,1 ≥+= εεc , one obtains

(5.5) [ ] [ ] ( ) ( ) [ ]+−⋅+−⋅=−⋅+−= )(2 XXXXXX mXEmmcmXEXR µεµ .
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There are many families of random variables for which (5.5) is a measure of risk with respect
to  cx≤ . In particular, when  0=ε , replacing the mean by the median in Teten's measure of
risk (Example 5.5) yields a measure of risk, which adjusts for positive skewness. An example
often used to model financial assets under a risk-neutral valuation assumption is the
lognormal  ),(ln XXN σµ   with constant mean  { }2

2
1exp XXr σµ +=   and median

{ } { }2
2
1expexp XXX rm σµ −⋅== . It is well-known that lognormal distributions with equal

mean increase in stop-loss order with increasing volatility parameter (e.g. Hürlimann(1995),
Lemma 4.1). It follows that  { })exp1( 2

2
1

XXX rm σµ −−⋅=−   and  (5.5) are preserved with
respect to  cx≤ . A similar popular example, used to model large claims in reinsurance, is the
Pareto already considered in Example 5.2. For the reparametrized version in terms of  ),( γµ ,
recall the stop-loss order comparison rule :

(5.6) YXYYslXX ParPar µµγµγµ ≤<⇔≤ 0),(),(   and  1>≥ XY γγ .

A calculation yields  )12()1(
1

−⋅−⋅= X
XXXm γγµ ,  [ ] X

XXmXE γµ
1

2
2
1)( =− + , and thus

(5.7) [ ]












+











−⋅−−⋅= XX

XXXR γγγεµ
11

2)12()1(1 .

Taking the derivative with respect to  Xγ , one sees that if  3863.1)4ln(0 =≤≤ ε , then (5.7)
preserves the stop-loss order.

6. Measures of price.

Since Bühlmann(1970) the functional approach to premium calculation has seen a
tremendous development. Monographs of risk theory containing accounts of this approach
include Gerber(1979), Goovaerts et al.(1984), Heilmann(1987) and Kaas et al.(1994). Though
the stop-loss ordering preserving property of the Swiss family of premium calculation
principles has been known since its consideration in Bühlmann et al.(1977), the recognition
of  sl≤   as a sound ordering of risk seems more recent. For example, the order preserving
axiom (P5) is considered in Heilmann(1987) but without mention of a specific partial order,
which could be used as selected ordering of risk. Furthermore, the absolute deviation
principle and the Gini principle, introduced by Denneberg(1985/90), and which satisfy
axioms (P1)-(P4), have been shown to satisfy (P5) for  sl≤   only very recently (Theorem 6.1
and its comments). For this reason, it seems useful to present a short chronological review of
some main non-trivial pricing functionals, which preserve  sl≤ , and inspect whether the
remaining axioms (P1)-(P4) are satisfied. We restrict our attention to non-negative random
variables.

The Swiss family is positively homogeneous if, and only if, it is the net principle (see
Schmidt(1989), simpler proof by Hürlimann(1997b), Example 4.1 (continued), p.9). The first
genuine "measures of price", which satisfy (P1)-(P5), are the absolute deviation principle
[ ] [ ] [ ] 10, ≤≤−⋅+= θθ XmXEXEXP   (Denneberg(1985/90)) and the Gini principle
[ ] [ ] [ ] 10, ≤≤⋅+= θθ XGiniXEXP   (Denneberg(1990)). These functionals are special cases

of the class of distortion pricing principles
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(6.1) [ ] [ ] ∫∫ −== −∞ 1

0

1

0
)()1()( udguFdxxFgXP XX ,

where  g(x)  is an increasing concave function such that  1)1(,0)0( == gg , and  1−
XF   is a

generalized inverse of  XF . The right-hand side representation has been introduced by
Denneberg(1990) and its equivalence with the first integral has been used by Wang(1996a)
and Wang et al.(1997).

The following main result is in a great extent accessible from an elementary
perspective, as shown in Hürlimann(1998b) (see also Goovaerts and Dhaene(1998)).

Theorem 6.1. (Distortion measure of price with respect to stop-loss order)  Let  F  be the
family of non-negative random variables  X  with survival functions  )(xFX   and quantile
functions  )(1 uFX

− , and let  g(x)  be a differentiable increasing concave function on  0 1,
such that  1)1(,0)0( == gg . Then the functional (6.1) satisfies the axioms (P1)-(P5) of a
measure of price.

Theorem 6.1 yields the first general rather elementary method to generate valuable
measures of price. Another attractive special case is the PH-transform principle studied by
Wang(1995a/95b/96a/96b), and a new "entropy" principle generated by the distortion
function )ln()( xxxxg ⋅⋅−= θ , which is related to the new measure of risk mentioned after
Theorem 5.1. Previously to the last examples had appeared the Dutch principle (see van
Heerwaarden(1991a/91b), van Heerwaarden and Kaas(1992), Kaas et al.(1994)) and a slight
generalization of it (see Hürlimann(1994/95a/95b)). A pricing principle from the Dutch
family satisfies (P1)-(P5) if, and only if, it is of the form

(6.2) [ ] [ ] [ ]( )[ ] 10, ≤≤−⋅+= + θθ XEXEXEXP ,

and is directly related with Teten's measure of risk (see Example 5.5). The Dutch family is a
special case of the class of so-called "quasi-mean value principles" considered recently by the
author. However, only sporadic members of this class define feasible measures of price,
satisfying (P1)-(P5), of which one may mention the interesting Example 11.1 in
Hürlimann(1997b).

A generalization of the class of distortion pricing principles is the class of Choquet
pricing principles in Chateauneuf et al.(1996), which is based on the theory of capacities and
non-additive measures (exposed in Denneberg(1994)), and breaks with the traditional
probabilitistic foundations of actuarial science and finance. Finally, let us mention that one
misses still feasible "measures of price" along the economic approach initiated by
Bühlmann(1980/84) (see the critical comments by Lemaire(1988)).

As follows from Section 5.2, there should be a close relationship between measures of
risk and price. Indeed, if  [ ]XP   is a measure of price preserving  sl≤ , then the safety loading
(insurance terminology) or risk premium (finance terminology) given by  [ ] [ ])( XEXP −
defines a measure of risk with respect to the stronger ordering of risk  =≤ ,sl . Reciprocally, not
every measure of risk  [ ]XR   with respect to  =≤ ,sl   yields a measure of price
[ ] [ ] [ ]XRXEXP ⋅+= θ   with respect to  sl≤ . The most straightforward counterexample is the

standard deviation principle  [ ] [ ] [ ]XVarXEXP ⋅+= θ , which does not preserve  st≤ , and a
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fortiori  sl≤ . Despite the lack of theoretical justification, this pricing principle is still
encountered in actuarial practice.

To conclude with a main message, an important merit of the formal approach based on
orderings and measures is the possibility to construct explicit measures of price, which take
into account non-neglible skewness and kurtosis effects. For example, the measure of risk
presented in Example 5.8 generates a pricing functional

(6.3) [ ] [ ] [ ] [ ]( ) [ ]( )[ ]+−⋅+−⋅+= XmXEXmXEXEXP βα ,

which for specific values of  0, ≥βα   and families of random variables (e.g. the Pareto
family) can be viewed as a measure of price with respect to the stop-loss ordering of risk.
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