GENETICS AND HEALTH INSURANCE

Angus Macdonald
Department of Actuarial Mathematics and Statistics and the Maxwell Institute for Mathematical Sciences
Heriot-Watt University, Edinburgh
www.maxwell.ac.uk
“I am not opposed to people knowing their predisposition to an illness. ... I do oppose insurance companies and others taking this into account when they are assessing premiums, the prospects of getting a mortgage and employment.”

(Dr Ian Gibson MP, Daily Mail, 12 October 2000)
Outline

• Review of genetics and insurance
• Genetics yesterday and tomorrow
• Actuarial modelling (1)
 – Epidemiology of multifactorial disorders
 – UK Biobank
 – A simulation study
• Actuarial modelling (2)
 – Breast cancer as a single-gene disorder
 – Breast cancer as a polymorphic disorder
Genetics (and Insurance) of Yesterday

- Family history of Mendelian disorders – clear genetics
- Family history of common diseases – unclear genetics
- DNA-based genetic tests – mid-1990s to now
- The “genetics and insurance debate”
 - unfair discrimination versus adverse selection
 - genetics = precise prediction?
 - argument from a few models e.g. Huntington’s disease
 - strong media focus
Single-Gene Disorders

Gene \rightarrow Disease
Outcomes – the UK as an Example

• Participants
 – Government (HoC, DoH, DTI)
 – Industry (Association of British Insurers)
 – Commissions (HGAC, HGC)
 – Academia (GIRC)

• Outcomes
 – List of “significant” disorders
 – Genetics and Insurance Committee (GAIC)
Moratoria

- Insurers will not ask someone to take a genetic test
- Insurers will not ask about results from research trials
- Insurers will not ask about existing predictive tests
 - Up to £500,000 of life insurance
 - Up to £300,000 of critical illness insurance
 - But only for approved genetic tests
- Use of family history not restricted (compare Sweden)
The Genetics and Insurance Committee (GAIC)

- Insurers may apply to GAIC to be allowed to use *specific* test results, above the limits in the moratorium.
- GAIC will assess:
 - The technical relevance of the test.
 - The clinical relevance of the test – does it predict outcomes?
 - The actuarial relevance of the test – is it material?
- So far, one application (Huntington’s, life insurance).
- Evidence of impact precedes use in underwriting – a precedent for insurance or a one-off?
Genetics of Tomorrow

- Genetics of common diseases
- Gene-gene, gene-environment interactions
- Whole-genome scans
- Genetic arrays
- Large-scale population studies
- Novel mechanisms (epigenetics, RNA interference)
- Genetic therapy
Multifactorial Disorders

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6

Disease

Smoking

Diet

Affluence
Genetics of Tomorrow

- Genetics of common diseases
- Gene-gene, gene-environment interactions
- Whole-genome scans
- Genetic arrays
- Large-scale population studies
- Novel mechanisms (epigenetics, RNA interference)
- Genetic therapy
UK Biobank

- Recruit 500,000 subjects age 40-69
- DNA samples from all subjects
- Lifestyle/medical details collected
- Follow up for 10 years
- Linkage to health records through personal doctor
- Linkage to cancer registries
- Linkage to death registries
UK Biobank

• UK Biobank only collects data
• Analysis is separate (not yet funded)
• Investigators apply to obtain UK Biobank data
• Most analyses will be case-control studies
UK Biobank

- UK Biobank only collects data
- Analysis is separate (not yet funded)
- Investigators apply to obtain UK Biobank data
- Most analyses will be case-control studies

- “Data from the project will not be accessible to the insurance industry or any other similar body” (UK Biobank draft protocol).
Case-Control Studies

• Method of analysing data retrospectively
• Hypothesis: some factor (e.g. genotype) is associated with some outcome (e.g. disease)
• Step 1: collect cases, \(a+c \) in total:
 – \(a \) have genotype G
 – \(c \) have genotype \(g \)
• Step 2: collect undiseased controls, \(b+d \) in total:
 – \(b \) have genotype G
 – \(d \) have genotype \(g \)
Odds Ratios

- Actuaries will only have access to published case-control studies which will report odds ratios.
- The odds of an event with probability P are $P/(1-P)$.
- The odds ratio of an event with probability Q with respect to an event with probability P is $P(1-Q)/Q(1-P)$.
- In the case-control study, ad/bc is an unbiased estimate of the odds ratio of disease, of genotype G compared with genotype g.
Actuarial Use of Odds Ratios

- Actuarial models are based on intensities or forces (or probabilities obtained from them)
- Given a baseline force or intensity (e.g. risk in general population) all we need are relative risks (e.g. for each genotype)
- If P and Q are small then the odds ratio approximates the relative risk
Simulating UK Biobank

- Model of health insurance contract (critical illness)
- Sub-model of common disease risk (heart attack)
- Model of gene-environment interaction
 - Population frequencies and relative risks
- Simulate UK Biobank recruitment phase
 - Allocate 500,000 persons to age, genotype and environment
- Simulate 500,000 lifetimes over 10 years
- We have UK Biobank!
A Simple Critical Illness Insurance Model

- Healthy
 - Heart Attack
 - Other CI
 - Dead
A Simple Heart Attack Model

Healthy \rightarrow \text{Heart Attack} \xrightarrow{\lambda_s} \text{Dead}

\text{Dead} \rightarrow \text{Dead}
Gene-Environment Interaction Model

- Beneficial genotype g and adverse genotype G
- Beneficial environment e and adverse environment E
- Four strata ge, Ge, gE, GE, for each sex
- 10% of population in each of G and E (independently)
- Table shows relative risks in each stratum, with respect to population heart attack risk

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>e</td>
<td>1.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Five UK Biobank Life Histories

<table>
<thead>
<tr>
<th>ID</th>
<th>Stratum</th>
<th>Sex</th>
<th>Age</th>
<th>Age at HA</th>
<th>Age at Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ge</td>
<td>M</td>
<td>41.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ge</td>
<td>M</td>
<td>58.74</td>
<td>63.89</td>
<td>63.94</td>
</tr>
<tr>
<td>3</td>
<td>ge</td>
<td>M</td>
<td>52.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ge</td>
<td>M</td>
<td>68.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ge</td>
<td>F</td>
<td>60.94</td>
<td>62.81</td>
<td></td>
</tr>
</tbody>
</table>
Model Epidemiologist and Model Actuary

• Our model epidemiologist obtains funding to do a case control study, and publishes odds ratios:
 – Each sex
 – Each stratum, with respect to stratum ge
 – 5-year age bands

• Our model actuary “extracts” relative risks from odds ratios and parameterises critical illness model
Results – Extra Premiums w.r.t. Stratum ge

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Age</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Term 15</td>
<td>Term 25</td>
</tr>
<tr>
<td>ge</td>
<td>45</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>8%</td>
<td>7%</td>
</tr>
<tr>
<td>Ge</td>
<td>45</td>
<td>21%</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>16%</td>
<td>14%</td>
</tr>
<tr>
<td>GE</td>
<td>45</td>
<td>31%</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>24%</td>
<td>21%</td>
</tr>
</tbody>
</table>
Reliability – GAIC’s Questions

• What would GAIC want to know?
• Does genotype + environment constitute an effective, predictive risk factor?
• Approach:
 – Fix environmental and genetic risk model
 – Simulate 500,000 life histories
 – Do case-control studies and calculate premiums
 – Repeat 1,000 times
Premium Ratings as a Proportion of Premium in Stratum ge
Case Control Study With 10,000 Cases
Case-Control Study With 1,000 Cases
Is Our Model Realistic?

- Only 2 genotypes
- Only 2 environmental factors
- Age and sex only other covariates
- Simple multiplicative interaction
- Epidemiologist hits on “correct” model
- Study population free of “noise” and dependencies
Conclusion: Will Biobank Be Relevant?

- UK Biobank can distinguish risk differentials of the order of +50% or more (as it was designed to do)
- Point estimates of these differentials can be used to find premium ratings
- But the distributions of these ratings may not be reliably distinct, in GAIC terms, unless very large numbers of cases are used.

Insurance in the Multifactorial World

• High-throughput genetic arrays will reveal much about complex genetic influences on biological processes – but this is not the same as disease.

• Understanding biological processes better will help to understand disease – but this is not the same as epidemiology.

• Epidemiology will emerge:
 – But it will not be highly predictive, as for single-gene disorders
 – And if subjected to GAIC-like criteria it might fail “reliability”.

Personalised Medicine – Here At Last?

- **Oncotype DX**: 21 gene screen test
 - Algorithm profiles breast cancer recurrence risk
 - Identifies value of chemotherapy
 - Cost $3,400
- Will be paid for by insurers covering 40% of US market
- Insurers’ costs will increase? (cost of tests)
- Insurers’ costs will decrease? (fewer ineffective treatments)

What Will the Press Think?

• The chain from genetic discovery to reliable underwriting is very long and getting longer:
 – Association of genes with disease
 – Understanding complex mechanisms
 – Gene-environment and other interactions
 – Epidemiological studies
 – Moratoria and GAIC-type approval processes

• But the press will not understand this.
• THIS is the actuarial research message.