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PROBLEMS IN THE ECONOMIC THEORY OT INSURANCE
KAarL Borcu

I. INTRODUCTION

1.1 More than ten years ago I wrote a paper with the title
The Economic Theory of Insurance’ [6]. I was not particularly
happy about this paper, and I do not think it contributed much
to the development of a sastifactory theory. The paper did however
makc me—and [ hope some readers—acutely aware of the dif-
ficultics and problems which must be overcome before a proper
theory can be constructed. These problems are still unsolved, so I
have on the present occassion chosen a more modest title for a
paper on substantially the same subject.

e

1.2. Insurance is an cconomic activity of some importance, and
there is an obvious nced for a theory to explain and analyse the
activity in the insurance sector of the economy. During the last
decade many economists seem to have felt the need, and to have
taken it as a challenge. The results have been a fair amount of
research, and a number of publications, which I shall not try to
review here. It may however be useful to refer to three very recent
survey articles by Farny [10], Ferry [11] and Rosa [14], which give
extensive bibliographics. The three articles seem to indicate that
the economics of insurance is becoming a fashionable subject of
research.

2. A FEw HisToricaL NOTES

2.1. Most economists have realised that insurance is important
and interesting, even if they were unable to develop an adequate
theory for this particular economic activity. The classical paper
by Bernoulli [3] contains several references to insurance problems,
and Adam Smith’s [15] remarks about insurance are often quoted.
He observed that the profit of insurance companies was modcst,
compared to the profits made by organizing lotteries. This obser-
vation implies that the inclination to gamblc in some way must be
stronger than the risk aversion in the economy as a whole.

2.2. An early attempt at a systematic analysis of the problems
which are central in insurance is found in Bohm-Bawerk’s first
book [4], actually his thesis, or “Habilitationsschrift”., In this
book he considers what we today would call “conditional claims”.

I



2 BORCH

If your property is stolen, you have the right to recover it, if the
police should catch the thief. Bshm-Bawerk studied the value one
should attach to such rights. It is curious that it never secmed to
occur to him that insurance companies, as a matter of routine,
would have to cvaluate such rights. If he had seen the connection,
Bshm-Bawerk might well have become the first student of the
IBNR-problem.

2.3. There were other Austrians who were intrigned by the
problems in cconomic thecory which were suggested by insurance.
In a paper presented to the 6th International Congress of Actuaries
in Vienna, Tauber [16] suggested that rcinsurance premiums
should be determined as equilibrium prices in a market where
conditional claims (Anspriiche) were bought and sold. Beyond
presenting this idea, he did not contribute much to the develop-
ment of an economic theory of insurance, apparently because he,
like many actuaries of his generation, became too fascinated by
his own mathematical manipulations.

A more remarkable contribution was made by another Austrian
Lindenbaum [12], who argued that the theory of insurance must
be based on the “supply of security’ (Sicherheitsangebot) and the
“demand for risk’” (Risikennachfrage). The paper was however
published in 1932, and we may assume that economists in the fol-
lowing years were preoccupied with other problems. In any case,
nobody seems to have followed up the ideas of Lindenbaum, and
his paper is virtually forgotten.

2.4. In America an attempt at devcloping a complete theory of
insurance was made by Willett [17] at the beginning of this century.
His book is in many ways remarkable, but it scems somehow out
of touch with the contemporary cconomic theory, and this may
be why it has not inspired other economists to continue Willett’s
research. The same remarks can be applied to the book by Pfeffer
[13], published 55 years later, which also seems to have had little
influence on rescarch in the two following decades.

It is probably fair to say that the present interest in the eco-
nomics of insurance springs from the thcory of the economics of
uncertainty which has becn developed during the last twenty
years. The pioncering work in this field is certainly Arrow’s paper
from 1952 [2]. This short elegant paper does really contain an
economic theory of insurance as a special case. In the following
sections we shall do little more than discussing this special case in
some detail.
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3. INSURANCE AND MARKET EQUILIBRIUM

3.1. It is convenient to begin this section with a brief restate-
ment of the classical theory of markets of pure exchange.

We consider a market of s persons and # goods. In the initial
situation person ¢ holds an amount x4 of good 7. Hence the initial
allocation is described by a matrix {x4}. The persons exchange
goods among themselves, and arrive at a {inal allocation described
by the matrix {yy}.

If goods are neither produced nor destroyed during the ex-
changes, the following “‘conservation’ condition must be satisfied

Yoxy =X yy forj=1,2,...,n (1)
(XA t=1

1t is usually assumed that all exchanges have to take place at
market prices, so that the market value of a person’s holdings of
goods does not change during the transactions. This assumption
gives the condition

z ﬁ;xu =X ﬁjyij for ¢ = I,2,...,m (2)
1 FEEN

1=

where py is the price of good j.

The behavioral assumption leading to condition (2) is of course
very restrictive. It rules out free bargaining and negotiations over
the exchange of goods.

Further it is usual to assume that the preferences of person ¢
can be represented by a utility function

'lti(yn, ey yin) = 1(1(:}11.) 7 == I,2,...,m. (3)

This assumption is not completely trivial. It implics complete
selfishness, in the sensc that a person will only consider “his own
row’’ when he evaluates an allocation matrix.

3.2. With these assumptions, person ¢ will maximize (3) subject
to condition (2)—his ‘“‘budget equation’. This problem can be
solved for any n-tuple of prices. The conditions (1) must however
also be satisfied, and this will make it possible to dctermine the
prices. Hence under reasonable assumptions about the shape of the
utility functions, we obtain a solution, consisting of a final al-
location {yy}, and an n-tuple of equilibrium prices. This solution is
usually called “‘competitive equilibrium”. The final allocation in
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this solution is Parcto optimal, i.e. there exists no other allocation
{7y} such that

wg(Fg.) = 1g(vs.)

with at least one strict incquality.

It is easy to sce that thc set of Pareto optimal allocations can
be found by maximizing

m

> /?ﬂt:i(’y[.) (4)

i-1

subject to condition (1). Here #i, ..., &, arc arbitrary positive
constants. Since the maximand (4) is homogencous in the &’s, it
follows that the set of Parcto optimal allocations is a manifold of
-1 dimensions.

We get a single element in this sct if we impose the behavioral
assumptions behind the conditions (2), i.c. if we assume that all
exchanges have to take place at equilibrium prices, and that each
person has to satisfy his budget equation.

3.3. If we want to adapt this model to insurance, it is natural
to assume that in the initial situation person / is exposed to a risk
which can cause him a loss, represented by a stochastic variable
xg, with the distribution Iy(x). It is natural to assume that I7,(x;)
is the marginal distribution of a joint probability distribution
F(xy, ..., xn).

If the attitude to risk of person 7 is represented by the utility
function u;(x), his expected utility in the initial situation will be

} 1y(— x) dF i(x).

0

In some cases it is convenient to replace this expression with
f 11.1(51 — A,) [ZF[(A’)
0
where Sy is interpreted as the “initial wealth™ of person /.

In the model we have outlined, we can assume that the m per-
sons cxchange risks among themselves. There is however no
natural units of risk, to which prices can be assigned, so it seems a
little artificial to analyse the situation as a classical market of
pure exchange.
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3.4. It seems more natural to assume that the m persons in some
way will negotiate their way to some risk-sharing arrangement.
A general arrangement of this kind is defined by m functions

vilxr +, .o ) = (%) I=1,2,...,

where y;(x) is the amount to be contributed by person ¢, if the sum
of individual losses is x. Since the model is closed so that all losses
have to be born by the group of m persons, we must have

> W(:c) = X x; = X. (5)

It can be shown [5] that the set of Parcto optimal risk-sharing
arrangements is given by the m-tuple of functions yy(x) which
satisfy the condition (5) and

1,(y () = ki (v,(x)) 1=1,2, ..., " (6)

Here & = 1, and ke, ..., kyp arc arbitrary positive constants.
This result is valid only if all utility functions are increasing and
concave, i.e. if #;(.) >and u; (.) < o.

3.5. The y-functions which represent Pareto optimal arrange-
ments will usually have a complicated form. It can be shown (7]
that they will be linear, i.e.

yvi(x) = a + b,

only if the utility functions of all persons beclong to one of the
following three classes

() () = (x —c))*
(i) ui(x) = log (x — ¢y)

(iii) 2y(x) = 1 — e~ ™%,

Positive linear transformations of thesc functions will of course
give the same results, since #(x) and w(x) = Au(x) + B, with
A > o0 represent the same preference ordering over any set of
probability distributions.

Any of these three classes scems too narrow to give room for the
different individual attitudes to risk which one would expect to
find in the real world. The classes (i) and (ii) imply that all persons
have the same basic attitude to risk. Differences in preferences are
such that they can be explained by differences in “initial wealth™.
Class (iii) gives room for differences in risk aversion, but implics
that prefercnces arc independent of initial wealth.
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3.6. In practice it does not often happen that a group of people
negotiate a scheme for sharing risks, i.e. create their own insurance
arrangement. The institutions in the real world which come closest
to our model, may be the P & I clubs, which can be seen as rather
exclusive mutual insurance companies, created by ship owners.
The risk sharing in most P & I clubs is virtually linear, and this
may for all practical purposes be a Pareto optimal arrangement. It
is not unreasonable to assume that members of the club have
similar preferences, and that these preferences can be represented
approximately by utility functions in one of the three classes in the
preceding paragraph.

Most persons who want to participate in a risk-sharing arrange-
ment will have to go to an insurance company. Usually the com-
pany will offer a fair, but limited choice of standard insurance
contracts, and pcople choose according to their preferences. In
this way a risk-sharing arrangement is created between customers
of the company, and if the company has share holders, they will
also participate in the arrangement. Through exchange of rein-
surance between companies, the arrangement can be extended
until it becomes virtually universal. It seems however unlikely that
a risk-sharing arrangement built up in this way should satisfy
conditions (5) and (6) in para 3.4 and be Parcto optimal.

3.7. These considerations lcad us to our main point. Economic
theory gives us some information about the form of optimal risk-
sharing arrangements in an idealized world represented by our
model. The practical question is then if it is possible to get reason-
ably close to an optimum through the existing framework of in-
surance institutions. If the risk-sharing arrangements which we
observe in the real world seem far from any optimum, we should
examine if this nccessarily must be so. If the answer is in the
negative, we should study the possibility of reaching better ar-
rangements through institutional changes, or changes in insurance
practice.

I do not propose to answer such far-reaching questions in this
paper. Instead we shall examine some of the assumptions behind
the theoretical results derived in the preceding paragraphs.

4. INSURANCE AND THE ASSUMPTIONS IN EcoNoMic THEORY

4.1. In the classical market model it is fairly safe to assume that
a person has a preference ordering over collections of goods, and that
this ordering can be represented by a utility function. When un-



THE ECONOMIC THEORY OF INSURANCE 7

certainty is introduced, it may be slightly more risky to assume
that a person has a consistent preference ordering over a sct of
probability distributions. If we make this assumption, the existence
of a utility function follows, and the objective of the person will be to
maximize expected utility. It is, however, easy to construct simple
examples which throw doubt upon this assumption.

4.2. Consider a person with an initial wealth S, which includes
an asset worth A, which can be lost with a probability p. Assume
that he can obtain insurance against the loss of the asset in the
tollowing form: If he pays a premium kP to an insurance company,
he will receive a compensation 24 if the asset is lost. His problem
is then to determine the optimal value of Z.

Tor an arbitrary value of &, the expected utility is
Ulk) = (1 — p) u(S — kP) + pu(S — kP — A + kA).
The first derivative is
U'lk) = — (1 — p) Pu'(S — kP) + p(4 — Py 0'(S — kP —
— A + kA)

and we find
U'(x) = {pA — P} «'(S — P).

If P = pA4, ie. if the premium is equal to the expected com-
pensation, we have U'(1) = o. Normally the premium is loaded,
so that we have P > pA, and U'(1) < o.

It is easy to show that U’'(k) < o, provided that 2" (x) < o, i.e.
if the person has risk aversion. Hence, if the premium is loaded,
the person will not find it optimal to take full insurance cover.

4.3. The conclusion wec have reached above scems to be con-
tradicted by observations. A person may decide not to insure some
of his assets. If however he decides to take insurance, he will
usually insure the asset for its full valuc. We would be surprised
if we observed that a person deliberately insured his house, car or
baggage for, say 609, of its value.

Such observations from ‘“household” insurance may not be
conclusive. The consumer does not always behave as rationally as
assumed in economic theory. “Impulse buying” is a well known
concept in the theory of marketing, c¢ven if it has no place in the
model which was outlined in Scction 3. It seems however that we
can observe the same effect in corporations where we must as-
sume that insurance decisions are made after careful considerations.
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Fire insurance on industrial plant is usually written for the full
value.

In ocean hull and hull interest insurance we may find arrange-
ments which scem to imply a deliberate under-insurance, and
hence may be consistent with the theoretical results we have
derived. These cases are however difficult to judge, since the
market value of a ship may bear little rclation to the loss which
the owner will suffer if the ship is lost.

4.4. In the example above we assumed proportionality between
premium and compensation. This may be realistic, but it is clearly
an unnecessary restriction on the choice offered to the customer.
As a more general example consider a person exposed to a risk
represented by the probability distribution FF(x), and assume that he
by paying an insurance premium 2’(y), will be entitled to a com-
pensation y(x), if the loss amounts to x.

We shall further assume that

n

Ply) =@+ | y(x) dF(x).
This means that the premium is proportional to the expected
compensation, with A as the loading factor.
Let S stand for the initial wealth of the person considered. For
a given functional P(y), his problem is then to determine the
function y(x) which maximizes the expected utility

©

J (S = Py) —x + y(x)) dF (x).

This problem was first formulated by Arrow [1], who showed
that the solution is of the following form

y(x) = o0 for x < D
yx) =x—D forx > D.

Under this contract the insured will carry all losses smaller than
the deductible D, and all excesses will be completely covered by the
insurance company.

4.5. Arrow’s result appears as a special case of the Parcto
optimal risk-sharing arrangcments presented in para 3.4, if the
insurance company is risk neutral. If the customer has preferences
represented by the usual concave utility function #:(x), and if the
company’s utility function is linear, i.e. wa(x) = ax 4+ b, the
optimal risk-sharing arrangement is given by the functions
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vi{x) = x and y2(x) =o0 for x < D
and
yi(x) = D and ye(x) =x—D forx >D.

This result should have considcrable interest. It shows that a
simple and frequently used insurance contract can bring about a
Pareto optimal arrangement. Before jumping to conclusions we
should however scrutinize the two assumptions which led to this
result.

(i) Firstly the arrangement will be illusory if the company
should be unable to fulfill its obligations under the contract.
Hence the result is valid only if the supervision is so strict
that the probability of ruin is negligible

(i) Sccondly we assumed that the insurance company was
risk-necutral. This cannot be correct if the company is a
cedent in the reinsurance market. Hence the result can be
valid only for relatively small risks, of the type that the
company does not reinsure.

It seems that these two conditions often will be satisfied in the
real world, and this immediatcly leads to a practical question. Why
do not insurance companies offer a larger choice of deductibles in
the insurance contracts sold to the ordinary households? For most
kinds of simple property insurance there should be no serious
technical difficulties involved. The rating system would however
become more complicated, and this would probably make the
whole risk-sharing arrangement more cxpensive to operate.

4.6. In most situations covered by liability insurance, therc is
theoretically no limit to the loss which the prospective insurance
buyer can suffer. In such cases the insurance contract will however
usually be drawn up so that the company’s liability is limited. A
similar procedure is used for many insurance contracts covering
medical expenses.

This kind of insurance is not very satisfactory to the customer.
It leads to the complaint that the insurance is not effective when
it is most needed.

If a company is reluctant about accepting unlimited liability—
against a premium with proportional loading—the company
evidently has a positive risk aversion. This was explicitly assumed
away in the preceding paragraph, so the argument based on Parcto
optimality does no longer apply. 1t scems however that in many
cases it should bc possible to devise contracts with unlimited
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liability and non-proportional loading which would bring about a
risk-sharing arrangement closer to an optimum than the existing
methods can do.

5. FINAL REMARKS

5.1. In economic theory the model of a pure exchange market
is gencralized by bringing in production. The new clements in the
gencralized model arc:

(i) An initial endowment of input factors, described by a
matrix {w;,}. The interpretation is that person ¢ owns an
amount wg, of input factor & The input factors may be
labour or raw matenials.

(i1) An n-tuple of production facilities, described by production
functions

Xy = fj(wr, we, ...) j=1,2 ...,n,

which define how input factors can be transformed into
consumer goods.

It is usually assumed that each production facility is operated
so that its profit is maximized.

Each person will then sell a part, or all of his endowment to the
production facilities. He will use the procceds, and any profits he
may receive from the production facilities, to buy consumer goods.

5.2. The model we have outlined leads to a problem which can
be solved. The solution will consist of: Equilibrium prices for all
input factors and consumer goods, and of a matrix {xy} describing
the final allocation of consumer goods.

Elements of this model can certainly be applied to insurance,
and the possibilities have been explored by a number of authors,
i.a. Eisen [8] and Farny [g], and they have obtained a number of
potentially useful results.

It scems however, to me at least, that insurance is essentially
an exchange of risks, and that it is artificial to apply the theory of
production to the design of contracts for such exchanges. Never-
theless the approach may prove fruitful. Administrative costs are
high in many insurance companies, and it is important to find
contract forms which are inexpensive to issue, control and fulfill.
This mcans of coursc that managers of insurance companies, as
managers in industry, always will have to look for ways of reducing
production costs.
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RISK BEARING AND THE INSURANCE MARKET

Haxs BUnLyvany AND Hans U GERBER

I. INTRODUCTION

Stimulated by Karl Borch’s paper (3] we have tried to analyze
the paper written by K. Arrow [1] in 1953. Contrary to Borch’'s
opinion we have some doubt whether this work contains a theory
of insurance as a special case. Nevertheless, it has inspired us to this
note, which tries to develop a somewhat more realistic model. As
a matter of fact, our development is more in the spirit of another
paper by Arrow [2]. We, however, have chosen a more general
setup, and we believe that our treatment is also different.

2. ARROW’S MODEL (INTERPRETED T'REELY)

Arrow considers an economv of exchange with C commodities
(labelled ¢ = 1, ..., C) and a “world” that will be in one of S dif-
ferent states (s =1, ..., S). The problem is to distribute the total
supply of cach commodity ¢ in state s among I individuals in a
Pareto-optimal fashion. According to a standard result in economic
equilibrium theory every Parcto-optimal allocation can be realized
by a system of perfectly competitive markets. The latter means
that there are prices ps. (the price for a unit of commodity ¢ 1f
state s occurs) and that each individual has a certain amount of
money, which he then will spend to maximize his own utility. The
beauty of this approach lies in its simplicity: Each individual has
his own maximization problem (irrespective of the others). Thus it
is enough to focus our attention on a particular individual. T.ct y
denote his spendable money, let vy > o denote the amount of
commodily ¢ contingent to the occurrence of state s purchased, and
let V(xn, ..., xs¢) denote the “value” (or utility) of this decision.

Then the problem is to

maximize V{xn, ..., vse)
s [
subject to ¥ I g Pae < . (1)

c 1

Arrow’s idea is to replace this market by a two stage market.
Let ¢1 >0, ..., 95 >0 be arbitrary numbers with ¢ 4+ ... +
+ gs = 1. Here gy is the price of a security (“policy” in insurance
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terminology) of type s, which pays one monetary unit if state s
occurs and nothing otherwise. Let pg be the price of commodity
¢ when state s has occurred. For consistency set

Pse = ﬁsc/(/s- (2)

The two decisions are now:

a) choice of the securities. Buy vs > o sccuritics of type s{s =1,
., S)such that 2 ysgs < .

b) Purchase of comumodities aftcr the state s has occurred. Let xg,
denote the amount of commodity ¢ that is purchased after the state
,,.

S

s has occurred. We must have X xgpee <vs+v— 2 vy,

c 1 i1

Again, we make our decision in a) and b) to maximize the resulting
utility. Obviously, this two stage problem is equivalent to the orig-
inal problem (1), equivalence mcaning that the same commodity
bundles can be bought with the same original moncy amount.

FFrom now on let us assume that the function V is of the form
{according to the axioms of vonNcumann-Morgenstern)

V(.’\?u, A xsc) = X Ts Vs(xsl, ey xsc). (3)

Here =y is the individual’s subjective probability for state s, and
Vs is the utility function that applies when state s occurs. Let

Us(w) = maximum Vg(xg, ..., %s¢)
C
subject to x5 2= 0, L %gp Psc < W. (4)

€=l

Thus Us(w) is the utility of w monctary units in state s, With
these definitions and assumptions problem a) (optimal choice of
the securities) can be isolated as follows:

maximize L wsUs(y + v5 — Z y141)
1 {1

subject to vy = 0, X y,0; < v. (5)

i1

3. THrE ProsrLeEMS oF OpTiMAL COVERAGE

We shall study in detail the solutions of problems of the type (5).
Our assumptions are as follows. a) The S utility functions Us(y)
are twice differentiable, such that U,(y) > o and U, (y) < 0. Thus
we assume that the utility functions are risk adverse. b) g1 + ...
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+ gs = 1. If p5 15 the probability that the market assigns to state
s, certainly ¢gs > ps. Summation over s yields the inequality above.
If¢1 + ... 4+ ¢s = 1, (as in Arrows model) we can assume that

Z yiq: = y without loss of generality in (5). However, in the more
[
interesting case where g1 + ... 4 ¢s > I, this is not true anymorec.

This suggests that we distinguish the following two problems.

Problem A
For a fixed z, 0 <z <y, maximize Z ns Us(y + ys— z) subject

PR
~

to the constraints that v; > o and X v, = 2.

Problem B
Maximize £ m Us(y + ys— ¥ yiqs) subject to ys; > o, and

s 1

% ysqs X .

s 1

Thus in Problem A the total amount spent for premiums, 2, is
prescribed, while in Problem B it is variable, subject only to the
upper bound y.

In either case the existence of an optimal solution is clear: The
quantity to be maximized is a continuous function of the decision
variables y1, ..., ys, which (in both cases) vary over a compact set.

4. SOLUTION OF PROBLEM A,

Theorem 1
For any z(0 < z < ) there is a unique vector i, ..., ys sat-
isfying
&
(1) X Ysgs=2,9s > o0 foralls

T ’ -~ ~
(ii) _q_a Uy(y + y,— 2) < K for all s, such that y; = 0 whenever
8
this inequality is strict.

This vector, and only this vector, solves problem A,

Proof

For z = o, the theorem is trivially truc. Hence assume z > o.
To show the necessity of condition (ii), consider a vector yi, ..., ys
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for which it is violated. Then there are indices s, ¢ such that y, > o,
yg > 0 and

T, T,
- Ut(y + fvt—z) < = Us(y + ys T Z). (6)
s s
Then, by increasing v, and decreasing v¢ (such that the total
premium remains z) the expected utility could be increased. (Note
that for this part of the proof we did not nced the assumption that
the utility functions are risk averse.)
The necessity (and the existence of an optimal solution) show

that there is at least onc vector yy, ..., ¥ that satisfies conditions
(1) and (ii) above. Let y1, ..., ¥s be any other vector that satisfies

(). First using concavity from bclow of the function Us, and then
(ii), we obtain the following cstimate:

Us(y_" ys—Z) < Us(y —}-—:’;S——Z) + U.;'(,V +3"3_z) : (ys_.a;s)

~ . q ~
S Uy +5—2) + K * (y,— 3y). (7)

Note that the first incquality is strict unless y; = y,; By sum-
ming (7) over s we see that

T omUsly +vs—2) < I m Ug(y + ys—2), (8)

with a strict inequalhity holding unless ys = 95 for all s. This
completes the proof of Theorem 1.

5. SOLUTION Oor PROBLEM B.

s

If ¥ gs= 1, solve Problem A with z = y. Otherwise, the fol-

lowing result holds.

Theorem 2

S

Suppose that X ¢, > 1. Then Problem B has a unique solution,
which we dellote'i;l3f Y1, ..., vg a) I EI Ysgs = ¥, it can be char-
acterized by conditions (i) and (ii) in l’l:llleorem 1 with z = 4. b) If

g‘.;sqs < v, it i1s the only vector }1, ..., Vs that satisfies

i) ¥s > o for all s and

TL' ) - i - As‘ , ~ "‘ ~
ii) éﬁ Uy + ¥s— £ yig) < 2 7 Usly + 9, — £ y49)
s i I U

for all s, such that y, = o whenever the inequality is strict.
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Proof
v with T }sqs < 4, it has to

[

a) If there is an optimal 3, ...
s 01

satisfy condition (ii) above. For, if it did not, there would either be
an idex s such that

7T ¥ S ~ cL
SU Y Eve) > 2 Uy + 3 — X g (9)
s 1 1 LI
in which case the expected utility could be increased by increasing
Vs, or there would be an index s such that 35 > o and the inequality
in (ii} is strict, in which case the expected utility could be increased
by a reduction of y;. (For the necessity of (ii) we again did not need
the assumption that the utility functions are risk averse).

b) Suppose now that yi, ..., ys is a vector that satisfics con-
ditions (i) and (ii) of part b) in Theorem 2. Any other decision, say
vi, ..., ¥s {where X g;y; = v is also permissible), can be compared

with it as follows: For any s,

Us(y + 9s—2) S Usly +3s—2) + Uy + ¥o—3) - (35— Vs +2—2)
, ~ o~ 7

SUly +¥— 2 + =

s

(vs —“R;s) z Tij;(," + “71—‘3) +
+ Uy +¥s—32) - (F—2),  (10)
with the convenient notation z = X yq4, 2 = ¥ v,q4. Multiplying
both sides by =, and summing over s, we get
Y om Usly +9s—2) < X m Ugly + s —2). (11)
Furthermore, this inequality is sirict unless y; = ys for all s,

which shows the uniqueness of any optimal solution satisfying (ii).

6. How 1O FIND THE SOLUTIONS.

To find the solution of Problem A, first relabel the states such
that

T b1 , .,
LUy —2) >~ Uplv—2z) > ...> = Ugly—2). (12)
71 q2 qs
Now we choose y: such that
T, Ta .,
— Uiy + yo—2) = - Usly —2). (13)

4 ds
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Then we increase y; and choose y: such that

T U’ o

ot ) = %

o Wy + vi—2) g
etc. Thus, gradually we increase the coverage, from left to right,
until the total premium rcaches the level z. Clearly, the resulting
coverage will satisfy properties (i) and (it) of Theorem 1.

For the further discussion, let ¥, ..., '373 denote the optimal
coverage if the premium equals z, hence

, Ty .,
Us(ly + y2—2) = q_3 Us(y —z) (14)

Ul) = £ =, Ugly + 3, —2) (15)

1s the maximal utility at premium level z, and let K = K(z) denote
the upper bound in (ii) of Theorem 1. Finally, set

[\,v(z) = X Ts Uls(y + ’)7_9-—2). (16)

81
Theorem 3

U'(z) equals K(2) — Ky(2) and is a non-increasing function.

Proof

Let z1, z2 be any two numbers, and let ¥ denotc the optimal
coverage for state s if the total premium should be z; (z = 1, 2).
Using the concavity from below of U;sand property (ii) in Theorem 1,
we find that

Ugly + ¥ —2) — Uly + 30 — )
S Ugly + 58 —2) - (37 — 9" + 5 — 2) (17)
9s .. ~ ~ . ~
< T Kg) - (FO— ) — Uy + 50 —2) - e —2).
§

Multiply both sides by w5, and summing over s, we obtain the

inequality
U(ze) — U(z) < (K(21) — Kyla1)) - (22— 21). (18)

By interchanging the roles of z; and z., and inverting the sign, a

lower bound is obtained for U(z:) — U(z). Finally, assume 21 < ze.

Then these two inequalities can be written as follows.
U(Zz) —_— U(Zl)

p—— < K{(z1) — Ky(21). (19)

]{(Zg) _— ](v(Zz) <

Monotonicity of K(z} — Ky(2) is seen immediately from (19),

2
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and the rest of theorem 3 follows by taking the limit for zs — 2.
Now observe the following: Let 0 < 7z < 9 be the premium spent in
5

the optimal solution ¥, Vs, ... y5 of problem B (i.e. 2 = X gsys).

a1

For this z problem A must have the same solution as problem B
and we conclude, that the two bounds appcaring in the char-
acterization of the solutions must be the same, hence

K(z) = Ky2).
On the other hand theorem 3 leads to the following

Corollary
If K(0) < Kyo) then z=o0
K(y) = Ky(y) then Z=1y
otherwise let z satisfy
K(z) = Ky(2) then Z=z

Based on this corollary and the monotonicity of K(z) — I{y(2),
o <z <y onc may find z # o by gradually increasing the level z
of premium spent until K(2) — K,(2) = o, or if this does not hap-
pen for z < y, by putting z = v.

Note
It is sometimes more convenient, to follow the above procedure
K(z
until the quotient K—((z)) reaches 1. To justify this alternative, we
v
| that K(z) L (K(2) d . ) ¢
also prove tha Ko(2) is nonincreasing (K(z) nondecreasing | for
o<z< .
Proof
Let N = N{z) denote the set of indices for which ys = 0. Then
K, (z) = K(2) ( fl 7,) + Z =, Uyly —2), (20)
wN EN
and therefore
K,(2) I w Uy — 2)
g = + &y 000000 . 21
K(2) ; 9s K(2) ( )
. Ty U;(y - Z) . .
Since ———>=—— < ¢, for s € N, this shows that K (2)/K(2) is

K(z)
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a nondecreasing function (the numerator in the last expression is a
nondecreasing function, while K(z) is nonincreasing).
In the following the procedure for finding the optimum in prob-
lem B is explicitly carried out for
exponential utility (Section 7)
quadratic utility (Section 8).

7. EXPONENTIAL UTILITY
Let U (x) = 1 — ¢ %@ ¥ U (x) = ae'?" ¢ *%. You may inter-
pret y; as the ‘“need for money” in state s. Suppose then y suf-
ficiently large, such that the following property holds for the
optimum %1, ¥z, ... ys of problem B (according to theorem 2).

for all s, with strict in-

T -~ ~ « -~ . .
L P ) el e equality only allowedif (22)
9s i } —0 .
s .
With the notation
ny = m, eY7 (23)
and
5 e,
Colyns Yor - 9g) = =2 (24)
’E n; e~ i
(22) becomes
for all s, with strict in-
Cs(y1, ya, ... ys) <1 | equality only allowed if (25)

ys=0.

S
Abbreviate z for Z g¢;5;. (25) may hold for z =0 and then
irt

Zz = 0. Otherwise, increasing gradually the premium level z and
adjusting y1, vz, . .. ys at each level z according to the solution of

problem A, max C; will monotonically decrease until it reaches 1 at
se8
z = 2. (See note after theorem 3.) Observe that in the exponential

case the ordering
Cilyi, y2, --- vs) = Ce{yy, vo, ... ¥s) = ... = Cs(y1, y2. ... V)

never changes during this process.

Let then s be the number of states, which arc insured in the
optimal solution of B (number of variables ¥, diffcrent from o

in (25)).
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From (21) we have

s ~ " S
Ny(z) = 2 mje ™ = K(Z) = G+ 2w
il J=1 Jeam+1
and hence from the corollary of theorem 3

.,, 1 N
I:qu—}—m*) = Ty

1: m4)

I— X g
—_— It
K(2) z i
Jom j
~. TC‘ -~
therefore (recall K(Z) = — ¢™ ¥« for s =1, 2, ... m)
8
. I
~ 8
Wa=log gl 8RS (26)

»
n A

T:S ~ < -
logq— +log(r— X ¢;) —log X m

8 Jj=1 ) m4l

Am

for s < m.

The optimal m 1s found as the first index for which

. I— X g »
Tcm +1 IR . Ttm +1
< 1 or equivalently log

5
Qm+l Z T - m+l

+ Ap <o (27)
] om+1

It is easily checked, that this condition also applies if m = o.
Numerical Examples (In all examples the exponent e = 1072)

First example

s 1 2 3 4 5

Vs 1000 100 50 10 5
T, 0.1 0.2 0.3 0.2 0.2
g5 0.3 0.3 0.3 0.3 0.3
T, 2202.65 .544 0.495 0.221 0.210
% 7342.16 1.813 1.65 0.737 0.7

§



RISK BEARING AND THE INSURANCE MARKET 27

1 — Xy 1 0.7
Je1

.; 7 2204.12 1.470

check {27) 3.33 0.863

Hence only state 1 is insured and from (26) 31 = 815.95
191 = 244.78.
Second example

Insurance becomes “‘horribly expensive’” for s = 1, otherwise
same as in first example.

$ T z 3 4 5
vy 1000 100 50 10 5

L 0.1 0.2 0.3 0.2 0.2
s I 0.3 0.3 0.3 0.3
o 2202.65 0.544 0.495 0.221 0.210
TE.

q—s 2202.65 1.813 1.65 0.737 0.7

8

IR ¢ 2204.12

Joa
check (27) < 1

Hence now #o insurance is bought at all!

Third example

The “insurance need’’ is eliminated in state s = 1, otherwise
still the same as before.

s 2 3 4 5 I

Vi 100 50 10 5 o)

T 0.2 0.3 0.2 0.2 0.1
g, 0.3 0.3 0.3 0.3 0.3
LN 0.544 0.495 0.221 0.210 0.1
gﬁ 1.813 1.65 0.737 0.7 0.333
8

check (27) 1.155 1.126 0.555

2 = 3L.17 a2z = 9.35
s = 21.75 Qa3 = 6.52

Hence insurance on s = 2and 3 ¥
y
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8. QuADRATIC UTILITY

In this section

The condition corresponding to (22) in Section 7 is then
T

ety —yv—Y +Zgy) <a+ % —y—F+ gy (29
i J

s
for all s, with strict inequality only allowed if ¥5 = o

Abbreviations

Redefine
o+ VT —y =y and you obtain

ch‘ x -~ -~
7 (¥s — ¥s + L q595)
: <1 (29)

yr— ?’ + = Qj-j\’j
]
for all s, with strict inequality only allowed if y5s = 0

Observe that as long as the numerator of the left side in (29) is
positive, we are in the region where U, is positive. The numbering
of the sides is defined in decreasing order of

*

y
Cs=—s_—s,henceC1>C2>...>Cs (30)

9s Ys
These quantitics are the inital valuesat vi = y2 = ... = yg =0

of the functions
TCS » ~
7 (¥s— s + Zq59)
Cs(¥1, Yoo - -+ V) =

T = 1
Y —y + Zqy; (31)

We again gradually increase z = X ¢g;y; and for each z adapt
i
v1i, ¥z, ... ¥g according to the solution of problem A; max Cg will

”®s

then again monotonically decrease to I, but unfortunately the
ordering of the Cy{y1, ¥z, -.. ¥s) (for those s which are not yet
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insured) may change! So while it is clear that insurance, if any,

must always be bought on s = 1, we must if necessary try several
combinations of other states to find out the optimum.

Numerical Examples

First example

§ I 2 3 4 5

Vs 1000 100 50 10 5

T 0.1 0.2 0.3 0.2 0.2 y* = 138
75 0.3 0.3 0.3 0.3 0.3

C, 2.415 0.483 0.362  0.048 o0.024

We try to insure state number 1 only. If this does achieve an
optimum we must have
1000 — y1 + 0.3 W1

I
Cl(yl.olo’"'°)=§138—o.1y1+0.3y1=I

from which we find

Y1 = 450.77
q1yr = 135.23
It remains to be checked whether Cyg(v1, 0,0, ...0) <1 for
s§s>2
Cz(y1,0,0, ...0) = g iO_Ozj_Sﬁ.IIBSS_-Z_s_ = 0.69
359 + 135.23

Cs(y1, 0,0, ...0) = = 0.81 (has surpassed Cz!)

3  228.15

As states 4 and 5 have the same probabilities and premiums as
state 2 their C-values must be lower than that of state 2 also.
This shows that just insuring state 1 with the above amounts is
optimal.

Second example

If we change in the first example only ¢: from 0.3 to 1 {insurance
on the state insured in the first example becomes “horribly ex-
pensive”}, then all initial C-values drop below 1 which means that
no insurance should be bought.
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Third example

“Insurance need’ in state T is eliminated (i.e. ¥y} = 0). Other-
wise same as first example,

s 2 3 4 5 I

¥y 100 50 10 5 0

T 0.2 0.3 0.2 0.2 0.1 vy =38
75 0.3 0.3 0.3 0.3 0.3

C, 1.75 1.32 0.18  0.09 0

It is obvious that some insurance must be bought, certainly on
s = 2 and probably also on some other states, s = 3 being a very
likely candidate.
We try to find an optimal solution, where y2 and vz are different
from zero
2 100 — ¥2 + 0.3(yz + vs)
Calyz, y3, 0, ... 0) = 3 38—0.2y2—0.3vs + 0.3 (yz + y3) !
or 860 — 1492+ 3ys = 0
50 — ys + 0.3(V2 + ¥a)
Ca(yz, ya,0, ... 0) = 38 —o0.2y2 — 0.3va + 0.3(v2 + ¥3) =
or 120 —7 ¥s + 2y2 = 0

ye = 69.35 v = 36.96
g2ve: = 20.80  qays = 11.09  total premium  31.89

We must check that Ca(ys, ys3, 0, 0,0) < 1. This check suffices since

T ™
q—s < q—d for s =15, 1 (Cs and C: will then automatically be below 1).
8 4

10 + 31.8g ot

2
Cl k: C ".Z, » 0, O) =7 -
hec a(y2, ya 0) 3 38 — 24.96 - 31.89

which proves optimality.
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PARETO-OPTIMAL RISK EXCHANGES AND
RELATED DECISION PROBLEMS

Hans U. GERBER

I. SUMMARY

In various branches of apphed mathematics the problem arnises of making
decisions to reconcile conflicting criteria. Onc example is the classical
statistical problem, where a type 1 error cannot be arbitranlty reduced
without increasing the probability for a type 2 error. Another c¢xample,
quite fanuliar to actuarics, 15 graduation, where a compromisc between
smoothness and it has to be reached This motivates the concept of Pareto-
optimal decisions, which 1s discussed 1 section 2 There s a suimple method,
maximizing a weighted average of the scores, to obtamn certain Parcto-
optimal decistons. In scction 3 a condition 1s given, which 15 satisficd n
most applications, that guarantees that all the Pareto-optimal decisions
can be found by this method This 1s applied 1n section 4, where the problem
of risk exchange betwecen n msurance companies 15 considered. The onginal
model of Borch is gencrahzed: it is assumed that some of the companices
arc not willing to contribute morc than ‘a certam fixed amount towards
the aggregate loss of the other companies The theoremn in section 4 gives
a charactenzation of all the Parclo-optimal risk exchanges Because of the
restrictions, these risk exchanges do not just depend on the combined surplus
(which would amount to pooling) in general, and can be found by an algo-
rithm. One benefit of this generalization of Boreh’s Theorem s that two
scemungly unrelated results (optimality of a stop loss contract, and optimahity
of certain dividend formulas in group insurance) follow from 1l as special
cascs.

2. EvaLuaTioN oF DEecisioNs UNDER CONFLICTING VIEw POINTS

Often one is faced with the situation where a decision has to be
made in the presence of several criteria. Mathematically, the prob-
lem can be formulated as follows.

Let D be the set of all possible decisions. We arc given #n real-
valued functions si(d), . . ., sa(d), d € D. If di, de € D and sy(d1) >
si(d=), this means that decision d, is betler than (or at least as good
as) decision d2 with respect to critevion i. Let

s(d) = (si(d), .. ., sn(d)), deD (1)
and

S = {x/x = s(d) for some d € D} (2)
denote the range of the ‘‘score function” s(*): D — R7. A decision
dy is said to be stricily better than a decision de, if si(di) = si(de)

for + = 1, ..., u, and if at least one of these inequalities is strict.
A decision d is called Pareto-optisnal, if there is not a decision that
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is strictly better than d. If R is any subset of K®, a point x € R is
called a Parcto-optimal point of R if the intersection of R with @, =
{/]vi. = x4, ¢ = 1,..., n} consists only of the point x. Thus a deci-
sion d is Pareto-optimal, if and only if s(d) is a Pareto-optimal point
of S.

Under fairly general conditions (for example if S is finite, or if S
is a closed region that is bounded by a plane whose normal vector
points to the positive 2#-tant) one should obviously chose a Pareto-
optimal decision. However, we shall not discuss the question, which
of the Pareto-optimal decisions should be chosen.

LExample 1

In a class of % students » quizzes were given during the term. Let
si(d) denote the score of studentdinquizi (f =1,...,n,d =1, ...,
k). Who is the top student of the class? Thus D = {1, ..., £}, and
clearly the Pareto-optimal students (and only these) are candidates
for this honor.

Example 2

Consider the following statistical decision problem: Population ¢
has a pdf f(x; %), i = 1, ..., n. Given an observation, say X, the
statistician tries to name the underlying population. Thus D con-
sists of all “tests” (see [5] for example). It is convenient to allow
randomized tests. Then a test 3 is defined by n non-negative
functions pi(x), . . ., pa(x) With pi(x) + ... 4+ pa(x) = 1 for all x.
This means that the statistician, having observed X, will name
population 7 with probability $4(X). Let

si(8) = [ pulx)f(x;7) dx (3)
be the probability for a correct guess if the observation originates
from population ¢, 1 = 1, ..., n. Clearly, the statistician wants

to select a test that is Pareto-optimal.

LExample 3

Consider the Whittaker-Henderson Problem. Given are m un-
graduated values, say w1, ..., vm. A decision is the choice of m
graduated values, # = (u1, . . ., uy). Thus D = R™ in this example.
Let

F(u) = 2 wi(teg — vg)? (4)

LI |
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be a measure for “fit"”’, where w,, . .., wy, are certain weights, and
let

Sty = T (Ao (5)

T

be our measure for “‘smoothness’’, where z < m is somc integer, sce
[(6]. Here n = 2, s1(1) = — I'(u}, sz(u) = — S(u), and we want to
find graduated values that are Pareto-optimal in this scnse.
The most important example (at least as far as this paper is
concerned) will be discussed in scction 4.
3. How 1o FinD PARETO-OPTIMAL DECISIONS

Certain Pareto-optimal decisions can be found by the following
method: chose n positive numbers k1 ,. . ., b, and try to maximize
the lincar combination

z kisi(d), deD. (6)

For, if a decision d has the property that there are positive con-
stants Ay, ..., bk, such that

2 kisi(d) < X kisy(d) (7)
[ i
for all d € D, it is obviously Pareto-optimal.

In Example 1 above this method amounts to assigning certain
weights to the n quizzes, and (based on this) to determine the
student(s) with the highest (weighted) average score.

In Example 2 let
M(x) = max{kf(k; i)fi =1,..., n}, (8)
and let § be a test, described by %1(;»’), Ce %n(x), such that
i)t(x) == 0 whenever kyf(x; 1) < M(x), (9)
1=1,...#n Thus 3 consists of naming the population (or onc of
the populations), [or which the maximurmn is attainedin formula (8).

Then if 3 is another test, given by pi(x), . . ., Palx),

g? Rysi(8) = i [ kapa(x) [ (x; 0) dx

< B ] Mxpux) dx (10)
= [ M(x) dv = 5 kisi(3).

te1
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Hence a test 8 of this form is Pareto-optimal. Note that the in-
equality is strict unless § satisfies condition (g) too.

In Example 3 the vector # which minimizes kiF (1) + k2S(u))
is found as the solution of a certain matrix equation, see [6].

The question arises whether all the Pareto-optimal decisions can
be obtained by this method. In general, the answer is no. Consider
Example 1 with a class of just three students. Suppose the scores
in 2 quizzes were (0, 1) for student 4, (3, 3) for student B, and (1, 6)
for student C. Obviously, all 3 students are Parcto-optimal. But
only students 4 and C can be obtained by thc above method.

However, if S is a closed convex region, all the Parcto-optimal
points and decisions can be obtained by this method: if d is a
Pareto-optimal decision, inequality (7) holds for all 4 € D, where
(k1, ..., ky) is a vector that is perpendicular to the (or a) plane
that 1s tangent to S at x = s(d). A convenicnt way to verily con-
vexily of S is to show that for any two points xs, x1 € S, the line
segment {x/x = rx1 + (I —7)xo, 0 < 7 < 1} is contained in S.
The validity of this condition can be casily seen in Example 2: if
3o, 81 are any two tests, define a test 8, (0 < » < 1), which consists
of using 3: with probability » and 3¢ with probability 1 — 7. Then,
by the law of total probability,

Su(8y) = rs1(81) + (T — 7)s; (80) (11)

( =1, ..., 1n). Hence all the Pareto-optimal tests are of the form
(9), which is essentially the content of the lemma of Neyman-
Pearson, sce [5] for example.

Often it is possible to show the validity of the following condition
(which may hold even if S is not convex).

Condition C. Tor any two decisions do, di € D there is a family
of decisions dy € D, 0 << # < 1, such that

sildy) > rsildy) + (1 — r)sildo) (12)

fori=1,... n

¥

If S is closed and if Condition C is satisficd, all the Pareto-optimal
points and decisions can be obtained by the method described at
the beginning of this section: Condition C implies that the set of
Parcto-optimal points on S coincides with the set of Pareto-optimal
points on the convex hull of S. In Example 3 the validity of Condi-
tion C can be verified as follows. If 2%, 4 are two vectors of
graduated values

= (), 11.(1)),] = 0,1, (13)

m
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set " = ru' 4+ (1 — r)u'®. Then one uses the inequality

(ra + (1 —r)b)r <rat 4 (1 —1)b2 0 < ¥ < 1, (14)
which is valid for any two numbers a and b, to show that
Fa) <rF@a") + (1 — nFu?) (15)
and
Sy < rSuMy 4+ (1 — ) Sy, (16)

Therefore, all the Pareto-optimal graduated sets are obtained
by the usual Whittakci-Henderson procedure, i.c., minimizing
Rl (1) 4+ RaS(u).

4. THe ProOBLEM OF RISK [EXCHANGE

Consider n insurance companics whose surplus at the end of the
year will be Xy, . . ., Xy, respectively. These are #» random variables
with known joint distribution. The dccision to be made is the
sclection of a risk exchange. A risk exchange is best characterized
by its effect on the distribution of the surplus among the # compa-
nies. In this sensc a risk exchange is a random vector

Y = (Yi,..., Y, (17)

where Y should be interpreted as the modified surplus of company 7
at the end of the year. Since the combined surplus before and after
the exchange i1s the same, we must have

Y1—|—...-|—Y”=/\,1+...—|—/\’7,. (18)

We want to allow for the possibility that some of the companies
are not willing to pay more than a certain amount towards the
losses of the other companies. FFor this purpose assume #n constants
¢, ..., ¢y with 0 < ¢; < . Then only risk exchanges arc ad-
missible for which

Yi> N, —c¢, i =1,... i (19)

We shall exclude the casc where ¢ = ... = ¢ = 0, because in
that case only the trivial “exchange’ (no exchange) is possible. To
summarize, a risk exchange is a random vector of the form (17) that
satisfies conditions (18) and (1g) with probabilily one.

To evaluate the different risk exchanges, assume # utility func-

tions u1(x), . . ., un(x), — 0 < & << o0. Suppose that these functions
are twice differentiable, with
y(x) >0, ] (x) < o. (20)

For simplicity, we shall also assume that at most one of these
utility functions is hinear and that all of the others have the prop-
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erty that their derivative decreases from oo to o as the argument
increases from — oo to o0. Then a problem of the following type
has a unique solution: given a number A and positive numbers

ki, ..., kyp, find numbers z,, . .., 2z, such that
kyu;(z;) is independent of 4 (21)
and
2L+ .. 2= A (22)
This solution z = (21, . . ., 2,) has a geometric interpretation: it

corresponds to the point on the surface
F,={x=(%,...x) =)t +. ...+, =1 (23)

where the tangential plane is perpendicular to the vector (&, . . .
ka). In the case of exponential utility functions,

w(x) = aalx — exp(— xfa) ), (24)
where x1 >0, ..., x4 > o0, this problem can be solved explicitly.
One finds that

2] = Bf)‘ 4 cxi(log ki — B;‘ lOg kj), (25)
Jj 1

where By = oyf(x1 4 . . . + x4).

It is assumed that company 7 is only interested in the expected
utility of its own surplus,

soY) = E[as(Y9)], (26)

i =1, ... n In this sense we are faced with the problem of finding
Pareto-optimal risk exchanges. Let us verify the validity of Condi-
tion C in this case. If Y@ Y are any two risk exchanges,

YO = (YP, .., YY), j=or1, (27)
define
YO = (Y, .., YD), 0<r <1, (28)
by setting
Ygr) — 7Y§1) + (1 —7) Ygo)_ (29)

Since Y@ and YV satisfy (18) and (19), it follows that Y
satisfies thesc conditions, Thus Y is a risk exchange. Since the
function 4 s concave from below,

w(Y{?) 2, (YP) + (x — n)u(Y0). (30)
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Taking expected values, we get
sy(Y ) = 7s5,(YD) + (1 —7)s(Y”), (31)

which shows that Condition C holds. Obviously, S is closed, so to
find the Parcto-optimal risk exchanges it is enough to choose

positive constants £y, . . ., &y and to try to maximize
B kisi(Y) = E kE[u(Y4)]. (32)

o o

In this paragraph we shall construct a risk exchange ¥ and then
verify that it maximizes (32). Let

[ ={1... 0}, JO=e (33)
We define random vectors
2 = (2m, , Zm) (54)
and index sets 1) and J) as follows. For m = 1, 2, ... sct
2 = X, — ¢, ifi e Jon-D (35)
and choose Z{™), 1 e I ‘™~Y such that
kg (Z9™), 4 € T0~1 s independent of 4 (36)
and
S Zm= % X+ T o (37)
fm=1) Am=1) =1
Then
I = {4]Z{™ > X; — ¢} (38)
and
Jm = {g)z{™ < X;— ¢}, (39)

From this recursive definition it follows immediately that
(i) Jom) ](m—l)' ](m) ) ](m-l)
(i) 7 is not empty.

Furthermore, if M) dcnotes the common value of the ex-
pressions in (36), onc can show that

(i) MmD > pim)
(iv) kg (ZW) < M™)
(v) Ry (Z™) < M™ implies Z{™ = X, —¢,.

Now let Y = (Y1, ..., Yy) be the limit of Z0", m — oo. (Note
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that this limit is obtained after finitely many steps; as a matter of
fact, Y = Zm ) Obscrve that Y is a risk exchange and has the
[ollowing property:

Property B

Let M = max{ku; (Y)fi = 1, ..., n}. Then /\*[u;(i’i) < M
implies that Y, = X, —¢,.

We shall now compare Y with an arbitrary visk exchange Y =
(Yh, ..., Yy as follows: since the function #4(*) is concave from
below, and since kpi(Y,) < M implies that Y, > Y,

kat (YY) < kye(Y ) 4 kaey (Y) - (Y, — V)
< kan(Yy) + M - (Y, — Yy, (40)

Thus
Y, kyg(Yy) < {L kate(Y ) (41)
= 1
and
S k(Y] < S BE[(Y )] (42)

Furthermore, the last inequality is strict unless ¥ = Y {almost
surely). Our findings can be summarized as follows.

Theoren

a) Given k; >0, ..., k, >0, there is exactly one risk exchange
that satisfies Property B. b) A risk exchange is Pareto-optimal if
and only if it is of this form.

Special cases

1) If et = ... = ¢, = o0, this result reduces to the classical
Theorem of Borch, see [2], [3], or [4].
2) Consider the case, where ni(x) = x, c1 = o0, ua(x) = u(x)

(strictly concave from below), and ce = P > o. We find that the
Pareto-optimal risk exchanges are of the form

-~ X1+ P HXNe 2>

Yi= o (43)
‘\1—}—P-—(a——.X2) if Ao < «

~ .Xg—-P if‘X2_>_OL

o— P if Xe < «
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where the parameter o, satisfying the equation k1 = kott’ (@ — P),
plays the role of a deductible. This result (optimality of a stoploss
contract) is due to Arrow, sce [I].

3) Consider the case, where u:(x) = %, c1 = 0, ue(x) = u(x)
(strictly concave from below), and ¢z = . Thus Y1 = X, + D,
Y: = Xo— D, where D > 0 is a dividend payable from company 2
to company 1. We {ind that Pareto-optimal dividends arc of the
form

Ao—a if Xoe >a

D = (45)
0 if Xo < a

This result has been found in [7] in connection with dividend
formulas in group insurance.
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OPTIMAL REINSURANCE AND
DIVIDEND PAYMENT STRATEGIES*

PANTELIS M. PECHLIVANIDES
National Technical University, Athens

I. INTRODUCTION AND SUMMARY

This paper presents a normative model for the sequential re-
insurance and dividend-payment problem of the Insurance Company
(I.C.). Optimal strategies arc found in closed form for a class of
utility functions. In some sense the model studied can be viewed
as an adaptation of Hakansson’s investment-consumption model
of the individual [3] or a generalization of Frisque’s model for the
dynamic management of an I.C. [2].

In Section 2 the model is formulated as a discicte time dynamic
programming problem. The objective of the 1.C. is assumed to be
maximization of the expected utility of the dividend streams paid
to stock/policy-holders (s/p-holders). The initial rescrves level is
assumed to be known. The premiums to be collected in each
period for selling policies are known in advance. The losses due to
claims from policy-holders are random variables independent from
period to period. In each period the I.C. must decide on the portion
of the reserves to be paid as dividends and on the form and level
of reinsurance with a reinsurer that quotes prices for any contract.

Optimal strategies in closed form arc found in Section 3 when
the utility function of the I.C. is given by the discounted sum of
one-period utilities of dividends; and when the one-period utilities
belong to the lincar risk-tolerance class, which is given by: (Ia)
u(x) = (ax + byta(c + 1); ax + b >o0, ac < o. (Ib) u(x) =
log(ax + b); ax +b > o. (IT) u(x) = — e~ Y%, v > 0.

The results of Section 3 are discussed and interpreted in Section 4.
The optimal dividend paymecnts are found to be linear in the
reserves level; while the optimal reinsurance treaty transforms
the reserves level (as a function of the losses) in such a way that
its form is independent of the prercinsurance total wealth of the
I.C. It only depends on the I.C.’s utility function, the prices quoted

* This study is bascd on my Ph.D. thesis submitted to the Umiversity of
California, Berkeley (1975). I am grateful to Professor W. S. Jewell (Chair-
man) as well as to Professors Nils Hakansson and David Gale for many
helpful comments and criticisms.
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by the reinsurer and the probability density function of the prere-
insurance losscs.

Finally, in Section 5 we discuss a generalization to includec
expenditures for promotion of sales and an extension to multipli-
cative utilities.

2. FORMULATION OF THE MODEL
2.1. The description of the Insurance Company

The I.C. is faced with a N-period problem. The periods are num-
bered backwards, thus the interval (4, t— 1) is the {7 period.
We will use the following notation:

Pi: premiums collected by selling policies during period ¢. They
are assumed to be collected at the end of the period for
simplicity and they arc known in advance.

e claims paid to policy-holders during pcriod { — a random
variable which takes values on the internal X, and whose
value will be denoted by x,. For simplicity it is assumed that
claims arc paid at the end of the period and are independent
from period to period.

C,: dividends paid to s/p-holders at start of period ¢ (decision
variable).
Ry: level of rescrves at start of period £ before dividends are paid.

¢i(¥): probability density function of the r.v. &,.

2.2. The wtility function of the 1.C.

We will assume that the utility function of the I.C. over possible
streams of dividends C =Cu, .. .., C1, Co is given by one of the
three forms: *

(S) Discounted Sum:

UC)= Z a*u(Cn-k);0 < a < I

Ao

(MP) Multiplicative Positive:

UlC) = ﬁ w(Cwn-g); u(.) >0

koo
(MN) Multiplicative Negative:

U(C) = — I [—a(Cx-]; #(.) < o

* For justification and discussion of these forms see [4], [5].
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In each case the objective of the I.C. is to maximize the expected
value of U(C).

In the following we will concentrate on the form (S). The forms
(MP) and (MN) are briefly discussed in Section 5. FFor more details
the interested reader is referred to [6].

2.3 Reinsurance

We assume that in each period ¢ there is a reinsurer who accepts
any risk for the appropriate premium. The way he quotes premium
is the following.

For any claims random variable &; (value denoted by xeX))
whose probability distribution he knows, the reinsurer assigns a
price funciion. Pg(x;) > o such that the premium for assuming a
contract Zy(g,), which promisecs to pay to the cedent § Zy(x) at the
end of period ¢ depending on the outcome x; of the random variable
£, is given by:

PUZJE)] = [ Zu(x)Pe(x)dx (1)

As a marginal casc consider the contract Zy(x) = 1; FxeX,
which pays $1 to the cedent at the end of period ¢ under any cvent.
The premium or present value of $1 asked by the reinsurer is

P1] = [ Py(s)dy = m < 1 (2)

Xy

I— Ty

In other words, 1s the interest rate for period ¢.

T
The description of the reinsurance process above implics that:

1) There are no transaction costs in reinsuring.

2) Borrowing and lending rates arc the same.

3} Reinsurance contracts have a span of one period. That is at
the end of cach period when the risks realize (the value of £ is
observed) the contracts are fulfilled and then cease to exist.
In the following we will denote by Py(x) the price function of

the claims r.v. &; of period £ to avoid the complexity of the notation

Pe ().

2.4 Dymnamic Programming formulation
At the start of period ¢ the I.C.’s reserves level is R;. It immedi-
ately pays dividends C; thus remaining with R; — C; which by the
end of the period grow to (&, — Cy)/m; where
m = [ Pyx)dx (3)
X
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At the end of the period the I.C. collects premiums ¢ and
pays claims x (the value of &) and thus, if it conducted no rein-
surance, the reserves level for the next period (t— 1) would be

R,—C, . .
RS (%) = - T + p, — x. With reinsurance, however, the L.C.
sells to the reinlsurer R} (v) and buys R,_,(x) so that the budget
constraint

[ Ry 1(3)Py(x) == j [Rt;gf + 7%_46] Py(x)dx (4)

is satisfied.

It will be useful to denote the premium demanded by the re-
msurer for assuming the risk %; by

pe == [ xPy(x)dx (5)
Now let

fi(Ry): the maximum expected untility for a ¢-period problem with
initial reserves level Ry

Then the problem ol an 1.C., whose utility function 1s of theform
(S) above, can be written as a Dynamic Programming problem:

[i(Ry) = max {'LL(C;) -+ OLE[fg_l(Rg_L(E,[))]}; o<<u<TI (6)

subject to the budget constraint (4) and with boundary condition,
Jo(RRo) = u(Ro) ()

3. CLOSED FORM SOLUTIONS
The D.P. problem formulated by (4), (6) and {7) cannot in general
be solved analytically. In this section we will find closed form
solutions to the problem when we additionally assume that the
one-period utility function of the 1.C. belongs to the Linear Risk-
Tolerance (LRT) class.

u"(x
The quantity — ﬁ is known as the absolute risk aversion
: s w () . .
index (Pratt [7]). Theinverse, — m 1s known as the risk-toleranre

index. The LRT class is then defined as the solutions to the equation
1 (%) ax 4+ b
w'(x) g

(8)




38 PECHLIVANIDES

where g, a, b reals and #"'(x) < o and #'(x) > o.

It can be shown that the solutions to (8) are

(ax + b)e*t
1(x) = ba(c_-}—_I) e F —1,ax + b >0, <0 (La)
1
u(x) = ;log(a,\c +b);ax 4+ b >0,a >0 (Ib)
I
H(x):;};(1—8"71);—CO<.¥<+OO,Y >0 ()

It will be useful later to split class {a into:
a>0, ¢ <—1 —u(-)<<o
a>0—1<c<o—=u{-)>0 (Iaz)
a<<o, ¢ >0 — (") <0 (Tas)
Theoremn la (Model Ia)

If u(x) belong to class (Ia) then the solution to the ¢-period prob-
lem as described by (6) subject to (4) and (7) is unique and is
given by

Je(Ri) = Dyn(ARe -+ By) (9)
The optimal dividend strategy is
C; = A,R, + B, (10)

The optimal reinsurance strategy transforms the wealth of the
I.C. to

* I ) b pt(at) e
Rioa@)= g i [AR+ B+ 0] |2
b B, ,

— —_— II
Ly il el G

as long as the inttial reserves It; satisfy the condition:

alARy + By) +b >0 (12)
where
i,
DL=I+D¢_1 _a_llc’DtZI (13)
I
AL=E,OSAt<,I (14)

5 p [ Bioim by b my ]
¢ = A¢ |pere —pe + Ao aA; 1_ﬂa1/6‘4t—1
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can be calculated recursively starting with
Do=1, Ao =1,Bo=0

and

Wy == J [i:g;]llc Py(x)dx (10)

Proof: The proof is inductive showing the result to be valid for a
1-period problem and then proving the induction step from ¢t —1
to L.
One period problem (¢ = 1)
The DP relation (6) becomes for ¢ =1
SilRy) = max {u(Cy) + aE[u(Ro(E:))]} (17)

1y RO
subject to (4) which for ¢ = 1 becomes,
J Ri(x)Pi(x)dx = Ry — C1 + p1im1 —p1 (18)

Fix. Ci. To maximize the second term in (17) subject to (18)
according to the calculus of variation Rj(-) must be chosen so that

o (R(x) (%) = AP\(%) (19)
where A is to be determined by substituting in (18).

Using the fact that «(-) belongs to class Ia we solve (19} to find

) He [Pl(x)] ve

Ry(x) = — |- — = 20
W=7 lom (20)
Upon substitution of (20) in (18) we find
a b
Wwe = — \Ry—C, + 1)1751 — pL + - m (ZI)
7 a

with py, m; defined in (5) and (16) respectively.

Substituting (20) and (21) in (17) we obtain after some algebra:

2 5 c oy _[i<]) b )]‘Hl%
Ji( 1)=rcrlla')‘(”( 0) +a(C+I) o \1——CL+751711—p1+;7t1

(22)
where we have used the identity:

R ™

X,
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The second term in the RHS of (22) is strictly concave as longas
a(Ri — Cy + p1mm1 — p1) +bm >0 (24)
while the first term, 14(C,), is strictly concave as long as
aCi+b >0 (25)
Differentiating the maximand in {22} w.r.t. C, and equating to
zero we obtain the unique optimal dividend strategy
Cr:A]Rl +B1 (26)
with 4., B1 as defined in (14) and (15).
Ifurther, when Ci is given by (26) the conditions (24) and (25)
are cquivalent and thus the only condition required is

alA;R, + B) +b >0 (27)

Finally, substituting (26) in {22) we obtain
fl(Rl) = Dlu(A 11\)1 —|— Bl)

which is in the desired form.

The t-period problem

We assume that the theorem holds for a (¢ — 1)-period prob-
lem and we show that it holds for a ¢{-period problem. The argu-
ments are similar and we will thus be rather brief (a more detailed
proof can be found in [6]).

We first fix C; and we find that the optimal post-reinsurance
wealth R}_,(€,) must satisfy

_7{”6 [P(ﬁ)]”c b By,
_“Az—l @, (%)

R;_(x) (28)

o ad, | T Al_l-

where

Al/e 1 Biowmy bmy
= —- |Rt—Cy~+ pemi—ps + 1o + (29)
Ag-1 WYy

aAd;_ m; ady_1
Substitution of (28), (29) in (6) yields

aDy_1my [dAt-l
a{c + 1)

St(Ry) = max Eu(Q) + (Rz — Cy + P — ot +

c, me

By 1wy b )]“1?

A1y ad;_ ) (30)

Differentiating the maximand w.r.t. C; and setting equal to zero
we find the unique optimal dividend:

C, = A,R,+ B, (31)
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as long as Ry 1s such that
a(ARy + By) + b >0 (32)

Finally substituting (31) in (29) and using the definitions of 44, B,
in (14) and (15) we obtain (11) and the Theorem is proved.

Remark: If for a t-period problem the initial reserves R; are such
that a{A;R; + By) -+ b >0 and the optimal strategies (10} and
(11) are followed, then at the start of period {— 1 the reserves
Ry will again satisfy a(d,-1 Ry + Bioi) + b >0 To sce this
we only nced to observe (11). This means that following the op-
timal strategies for a ¢-period problem we are guaranteed that
we will be able to reapply them for a ¢t —- 1 period problem with
no further conditions.

Theorem Ib (Model Ib)

If u(x) belongs to class (Ib) then the solution to the ¢-period
problem as described by (6) subject to (4) and (7) is unique and
is given by

fg(l\);) = /)gl,{l(flgRg -}- Bg) -+ EL (33)
The optimal dividend strategy is
Ci = AR, + B, (34)

The optimal reinsurance strategy transforms the wealth of the
IC. to

o b\ ,(&,) b B,
RY. = <A R B ) — T — Ce—
Yt l(at) A[_1 [l 4 + t + a Pt(‘it) a‘4L—I Azq (35)
as long as the initial reserves Ry satis{ly the condition:
a(ARy + By) +b >o0 (36)
where
D=1+ a1, D21 (37)
1
Ag:]‘j;.OSALSI (38)
B A [ Bt 1 O T [v4 b]
t = Ay | P — o0 + Az_xm-!— A da (39)

o
E¢=;Dt—1[loga+q&]+°‘}zt—' (40)
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can be calculated recursively starting with
Do=1, Ay=1, Bo=o0, Ev =0 (41)

0= E [log @i((z)))] (42)

Proof: is similar to that of Theorem la and is deleted. For more
details see [6].

and

Remark 1: Except (33), (40), (42) all the results of Theorem Tb can
follow from Theorem Ia by letting ¢ - — 1 and ¢ —~ 1.

Remark 2: The Remark at the end of Theorem la again holds as it
can be checked by observing (35).

Theorem Il (Model I1)

If u(x) belongs to class (II) then the solution to the {-period
problem as described by (6) subject to (4) and (7) is unique and is
given by

SilRe) = D[4 Ry + By) + E; (43)
The optimal dividend strategy is
Ci = AR, -+ B, (44)

The optimal reinsurance strategy transforms the wealth of the
1.C. to

I B, log « I (Pt(it)>
Ry (&) = -~ -[d,K, +B,] - ; -+ - ogl——=
el t) Azwl' £ 1 At-l YAt-L YAt 1 & CPL(Q)
(45)
wherce
Diy=14mDy, Dy=1 (46)
I
,‘ltz ]—);,OS A[SI (47)
; [ By wy T | ] 8
3 = A, f)zm”“Pt‘F;lT_]TCt‘*— AT A 0g & (48)
Dy .
E, = (0 —my) + ok (49)

Y
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can be calculated recursively starting with
Do:I, An=1, BUIO, Eo=o0

and Py(w)

= I log ( )Mx) dx (50)

Proof: Similar to that of Thecorem Ta. An outline of the proof
appears in [6].

Pel(%)

4. INTERPRETATION OF THE OPTIMAL STRATEGIES

4.1 The dividend strategy

In all Models the optimal dividend strategy is linear in the
reserves level at the start of the period. In our formulation the
dividends were not restricted to be positive. Negative dividends
would, of coursc, mean that the s/p-holders agree that an increasc
in the reserves now is desirable for better profits in the future. If,
however, we insist that dividends should be non-negative we can
easily achieve 1t by restricting to Models Iay, 1ag, Ib with —b/a > o.
In the case of Model 11, a sufficient condition to guarantee the non-
negativity of dividends for a N-period problem is AyRy 4+ By > 0
i)
o)

at (43). A necessary condition for the latter is « > w, for all /.

and o« > cxeXy, £ =N, ..., 1. This can bhe seen by looking

4.2 The retnsurance stralegy

: Py(gi\ " : . :
We can interpret | —= as a unil of post-retnsuvance risky

Pu(&1)

asset for Model la. The name is suggested by observing (11) since
(Pt(at)

Pe(&s)
of the random variable &; and its form is independent of the initial
wealth of the I.C. In this sense, m, can be interpreted as the cost of
a unit of post-reimsurance visky asset. Similarly, in Model 1b (35)

tfe
) is the only quantity which is a function of the outcome

: : . 9l : :
the unit of post-reinsurance risky asset is p_(g—) and its cost is 1.
NSt

Py(Er)
Pe(Er)

In Models Ia, Ib thce amount of risky asset increases lincarly
with the initial reserves level, while in Model I1 the amount of risky
assct is fixed independent of the reserves level.

In Model I (45) the unit of risky asset is log and its cost is w;.
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Pux) o
CP-(‘V)_ 1s non-decreasing in x then the post-reinsurance wealth
e
of the I.C. is non-incrcasing in v in all Models. This of course means
that the 1.C. participates positively in the risk. That is, the larger
the claims x paid to the policy-holders, the less the wealth of the
Pt(x
L.C. after reinsurance. We can think of (P ) as Lhe loading factor.
£l
An increasing loading factor then means that the reinsurer asks
for a greater loading to a certificate that guarantees final reserves
of §1 to the cedent when the claims x paid to the policy-holders
are large than when they are simall.
Further, in Models [a and Ib the post-reinsurance wealth Ry 1(&;)

Rt (x) Rt: (x)

'y L g b B,

—l e -
\ upper bound

R T T S —.

1
lower bound {R b

B
i -4
ah, A
Models Ial, Ia2 Model 183
R:(x) Rt(x)
p-3 A

N
\' x \r
lower bound \
L.
aAt AC
Model Ib Model I

Figure 1. The post-reinsurance wealth R, (x) as a function of the claims x.
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of the L[.C. satisfies the condition a(A;- 1Ry (&) + Bi-1) + b > o.
This condition imposes upper or lower bounds on R, .1(Z;) depending
on the sign of a which is negative for Model las and positive for
Models la, laz and 1b (sec Figure 1).

The negativity of ¢ makes Class lag the only one with an in-
creasing risk-aversion index (Classes lai, las, Ib have dccreasing
while Class I1 has a constant risk-aversion index). Thus Class Ias
(to which also the quadratic utility function belongs) must be ap-
plied with caution as it is doubtful whether it has meaning in real
life (for a discussion of this point see Arrow [1]).

5. GENERALIZATIONS - EXTENSIONS

(a) All Modecls can be easily cxtended to an infinite horizon by
simply letting the number of periods N tend to infinity. The
optimal strategies remain qualitatively the same.

(b) All Modecls can be gencralized to include a decision on ex-
penditurcs to promote sales if we assume that the sales volume is a
concave function of the money spent. The optimal dividend and
reinsurance strategles remain essentially the same. This is in-
tuitively expected by observing that the quantity p; (premiums
collected from policy-holders) appears only in the constant B; and
not in A, or D, or E,.

(c) Multiplicative Utilities. If instead of the form (S) we assume
that the I1.C.’s utility over dividend streams is given by (MN) or
(M P) (Section 2.2) we can again find closed form solutions but only
when (MN) is coupled with the Class Iai of utility functions or
(M P) with Class Iaz. The results are similar in nature with those of
Scction 3. Again the optimal dividend strategy is linear in the
1eserves while the form of the post-reinsurance wealth of the 1.C. is
independent of its initial wealth. It only depends on the price func-
tion, the probability density function of the claims, the one-period
utility function of the I.C. and the number of periods remaining.

These extensions-generalizations are treated in detail in [6].

REFERENCES

[1] Arkow, K., 10971 [Essays in the Theory of Risk Bearing, North-Holland

[2] FrisQUE, A, 1974 “Dynamic Model of Insurance Company’s Manage-
ment,”” ASTIN, Vol 8, part 1

[3] Hakansson, N, 1970 “‘Optimal Investment and Consumption Strate-
gies under Risk for a Class of Utility Functions,” Lconometrica, Vol. 38,
No. 5

4] Kooprmans, ., 1960. “‘Stationary Ordinal Utility and Impatience,”
Econometrica, Vol 28, No 2.



(7]

PECHLIVANIDES

MEvER, IR . 1969. “On the Reclationship Among the Utility of Asscts,
the Utility of Consumption and Investment Strategy,” Proceedings of
the sth [nternational Conference of Operations Research
PicaLivanipes, P, 1975 “‘Remsurance Market Mechanisms and
Dividend Strategies for an Insurance Company,” Ph.D. Thesis published
as an Operations Research Center Report, ORC 75-17, University of
Califorma, Berkeley

Pratt, J, 1964 ""Rusk Aversion i the Small and in the Targe.” Fcono-
metrica, Vol 32, No. 1-2



FROM AGGREGATE CLATMS DISTRIBUTION TO
PROBABILITY OF RUIN

HiLary L. SEAL,

Ecole Polytechnique Fédérale de Lausanne

INTRODUCTION

When the distribution of the number of claims in an interval of
time of length ¢ is mixed Poisson and the moments of the inde-
pendent distribution of individual claim amounts are known, the
moments of the distribution of aggregate claims through epoch ¢
can be calculated (O. Lundberg, 1940, ch. VI1). Several approxima-
tions to the corresponding distribution function, F(-,{), are
available (see, e.g., Seal, 1969, ch. 2) and, in particular, a simple
gamma (Pearson Type III) based on the first three moments has
proved definitely superior to the widely accepted “Normal Power”
approximation (Seal, 1976). Briefly,

1 a+iVa

F(t + 2V, ) & T e =Pt A (1)

[

where the P-notation for the incomplete gamma ratio is now
standard and «, a function of ¢, is to be found from

4 4

%= "9,°3
%3 (% Y

L
the kappas being the cumulants of F(-,#). An excellent table of
the incomplete gamma ratio is that of Khamis (1965).

The problem that is solved in this paper is the production of an
approximation to U(w, ), the probability of non-ruin in an interval
of time of length ¢, by using the above mentioned gamma ap-
proximation to F(-, ¢).

THE PROBABILITY OF NON-RUIN IN A PERrIOD OF LENGTH T

In Seal (1974) it was shown that when the distribution of the
number of claims in an arbitrary interval of time is generated by
a stationary point process the probability of non-ruin in an in-
terval which the insurance company enters with a risk-reserve of
w and operates throughout with a risk-premium loading of =, is
U(w, t) given by

U(w,t) =F(w + mt, t) —m _II‘U(O,T)f(w—f— mt—x,t—)dr  (2)
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where i is the risk-loaded pure premium rate and f(-, {) is the
density corresponding to IF(-, ). This is the formula which we will
use for our numerical approximations.

The only stationary point processes that have been utilized by
actuarics in practical applications are those that lead to ordinary
or mixed Poisson distributions (0. Lundberg, /.c.) and in these
circumstances the Prabhu-Benes-Takdcs formula (Seal, 1974)

) Y]

Ulo,t) = — [ I(y, ) dy (3)

Ttll N

may be used to produce the first factor in the integrand of (2).

APPLICATION OF RELATION (I)

Considering (1) as applied to (2) we note that if the distribution
of the number of claims is Poisson with mean ¢ and the density of
imdividual claim amounts, &(-), has mean

w=1sothatm =1+ 7, Flw+ 1 + q-1,t) ~ Pla, o + zVa1)
where
4%y 4(tp)”  4tph
k3 {tps)" 15
p2 and Ha being the second and third moments about zero of the

b(-)-distribution of individual claim amounts (Seal, 1969, 2.41). In
order to evaluate z we have

4 2V =t + 2V/(tpe) = w0 + (1 + )t

so that
2= (w -+ ) (tp2) %

Further, by differentiation of (1) with respect to z,

o+ Vo, 7) ~ ?fa—) expl—a—zVal (@ + 2" (4)

where

4

pa

and, when t + zl/;:; =w+ (1 +17)7,

p= } (o/%s)

=W+ (tp) h o<t <!
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Finally, by (3),

I (+7)*
Ulo, 1) = (I——}— ) "f F(v, ) dy
l/;‘:’ nt/‘/;:f /_ p
= (1 -+ 1)t —-./Ji;?c: (t + 2}/%e, 1) d2
®2 a<lVag ~
Ve g Tt e by
9 a+ eV (@)
a+67f d
I (N
= (I + ’))TB -J\ﬂ F(O’.) J'--"“ e Tdx
I a+nth a-=p u et s
T (T ) Bl § J = { an J # e
I atnTf ]
= L+ ) =Bl(a) [ [ (o + P — x) %' %dx +
_ “]_Tﬁ (a—TB‘_‘x) xu—le-xdx]
=TT s [(« + 77B)P(a, & + 9rB) — o Plot + I, o + n7B)
— (& —B) Pla, « — w8) + o Pla + 1, 0 —<B)]  (5)
where

B = IW and o = af7).

A remarkable feature of the approximation (1) is that only the
first three moments of the distribution of individual claim amounts
are involved. If, therefore, a two-parametier distribution is success-
fully fitted to the observational distribution of claim amounts by
means of the mean and variance it implies that the appropriateness
of the chosen functional form has been determined by the ap-
proximatc equivalence of the third moments of the observational
and theoretical distributions of individual claims. For example, if

4
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the gamma distribution (Johnson & Kotz, 1970, ch. 17) were
fitted the third central moment (or cumulant) would necessarily
be twice the variance.

Now only two functional forms for b(-), the density function of
individual claim amounts, result in explicit results for I(x, t} when
the distribution of the number of claims in an interval of length ¢ is
Poisson with mean ¢ (Seal, 1969, p. 31, referring to Hadwiger,
1942). These are the gamma and the inverse Gaussian distributions
and it would be convenicent to use one or other of these forms for
b(.) so that direct checks may be made of our numerical approx-
imations using ().

THE INVERSE GAUSSIAN DISTRIBUTION

According to Seal (1969, p. 30) by far the greatest number of
graduations of observed individual claim amounts have been based
on the lognormal distribution, namely where the logarithm of the
claim amount (the latter possibly increased or decreased by some
constant) has a Normal distribution.

On the other hand the inverse Gaussian density (Tweedie, 1957)

b(x)=< A )%exp [——l(x—_——ﬁ]x>o, w>0,A>0 (6)

2mx? 2 uix

which has the distribution function

B(x) = ® <‘/§ . :i—— I) P %1—(1) (V%

as shown by Shuster (1968) (but misprinted in Johnson & Kotz,
1970}, where @(-) is the standardized Normal distribution function,
can bc made to start at the same claim amount (which we take as
the origin) as the lognormal and be given the same mean p and
variance p?fA. Although the Inverse Gaussian has never been used
to graduate a set of individual claim amounts it may produce
nearly the same yi-value as that possessed by the corresponding
lognormal distribution and would then lead to approximately the
same distribution of aggregate claims as provided by (1).

x )
T I)\ (7)

When individual claims are distributed according to the inverse
Gaussian,

©

Al A \% A(x — M)2
ry = X ) oo [ "am | @

kol
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where A = %k2x and M = kp, and from (6) and (7)

I -1 ! \ [ (VK * _) 2A/M
(x,5y =e¢ ! + ¢ 'Zk! (] MY + e¥

ol 6

We mention that f(s), the Laplace transform of (6), is given by

A 25\ 2)
in Bs) = l: ;I — <I + ?) \ (z0)

CHOICE OF PARAMETERS

Upwards of 50 actual individual claim distributions have been
fitted by the lognormal (Seal, 1969, p. 30). The yi-values for 45
of these were calculated *, using the {formulas provided by Johnson
& Kotz (1970) applicable to the constants of the lincar transform,
and compared with the corresponding yi's calculated for (6) using
the calculated mcan and variance. 60%, of the yi pairs werc ap-
proximately equal implying that the lognormal and inverse Gaus-
sian distributions would produce nearly the same value for (1).
Among the 27 distributions was Cannella’s (1963) costs of 124, 279
“specialty”” pharmaceutical prescriptions in the province of Rome
during 1g60. The two yi's were - 355 and - 354, respectively, but the
mean and variance of the distribution were stated to be 786.4 and
280582.09 after lognormal fitting. Unfortunately this mean and
variance produce yi's of 2.326 and 2.021, respectively, for the
lognormal and inverse Gaussian indicating that, in fact, the latter
distribution is not in this case a very good approximation to the
lognormal. This error of Cannella was not discovered until too late
and we had alrcady chosen p = 1 and a = (786.4)2/280582.09 =
2.20408 for the inverse Gaussian. In order to apply this to (1) we
have (Tweedie, loc. cit.) pa = u2 4 pdh~! = 1.453704 and ps =
w3 3uAt 4+ 3pSA-2 = 2.978654 so that a(f) = 1.384993 2.

REsuLTs
The following Table compares the results obtained for f(10 -+
t, t) by (4) and (8) and for F(1o + ¢, ¢) by (1) and (9). In the first
set of comparisons the gamma approximation is only in error by a
few units in the fifth decimal place. In the second set the gamma

* It is not always casy to decide whether an author 1s using natural or
common logarithms for his transform.
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approximation is never more in error than by two units in the
fourth decimal place. These arc very good results.

TABLE 1

Values of f(ro + ¢, &), IF(z0 + ¢, t) and U(zxo0, 1)

¢ f(io + £, ¢) F(o + £, ¢) Ul(ro, t)
method
(4) (8) (1) (9) (1) to(s)  of 1974
paper
1 .00004 .00003 .09990 -09997 L9999 I.OO;;
2 .00019 .00016 .99Q78 .y9933 L9997 1.0000
3 - 00049 -00045 -99937 99945 19991 <9993
4 .00095 .00090 .90866 L9987 .9980 .998T1
5 .00154 .00150 .99704 49774 909064 .9904
0 .00226 .00222 L9903 L0905 L9043 .9943
7 .00305 .00303 .9947 .9948 L9910 .9915
8 .00390 .00390 9927 .9929 L9884 .9883
9 .00479 .00479 .9go6 .gyo8 9847 .08406
10 .00569 .00570 .9882 .9884 .9807 .9804
1L .000658 .006061 L9857 0858 9702 .9759
12 .00747 .00750 .9830 L9831 L9715 L9711
13 .00333 .00837 .9801 .9803 .9065 .9660
14 .00910 .00921 L9772 9774 .9013 .9607
15 -00997 -01002 9742 19744 9559 9552
16 01074 -01079 9711 9713 -9503 <9495
17 01147 .01153 .9680 .9632 0447 .0438
18 .0I1217 .01223 .9649 .9651 .9369 .g380
19 .01283 .01289 .9618 .9619 .9331 .9321
20 .01346 .01352 .9586 .9588 .9273 .9262
21 .01406 L0411 .0554 0550 L9214 .9202
22 .01462 01467 .9523 .9524 9155 .0I43
23 01515 .01520 .9491 .0493 .9097 .9083
24 .01564 .01570 .9460 .9462 .9038 .Q024
25 01611 .01617 L0420 L9431 .8980 .8965

The approximate values of f, I' and U(o, ¢) (by relation (5)) were
then inserted into (2) with w = 10 and 4 = o using repeated
Simpson at unit steps in ¢ for the value of the integral. When £ was
odd the last three panels were approximated by the threc-eighths
rule; U{o, 1) was obtained by the trapczoidal. There is no “exact”
result for U(ro, #) but the Laplace transform inversion methods
described in Seal (1974) were used to produce results supposedly
correct to three decimals. These, together with our new approx-
imations appear in the last two columns of the Table. The new
method appears to be producing values of U(1o, #) “ncarly” cor-
rect to three decimals.
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CONCLUSION

The proposed new approximation to U(w,{) using the gamma
approximation to I(x, {) produces rcasonably accurate results. Is
it casy to apply ? The writer confessed in his 1974 paper that steps
in ¢ at greater intervals than unity tended to harm the efficiency of
the approximation to the integral in (2). For example, by using
steps of five instead of unity in (2) we obtained, with the new ap-
proximations, the following values which are barely correct to two

U(1o0, t)
¢ Unit steps  Quinguenal
{Table 1) steps
3 -996 -994
Lo .981 977
15 -956 947
20 .927 918
25 .8g8 .887

decimals. Nevertheless this may be considered sufficient if a
computer is not being usced and desk calculations are the order of
the day.
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LARGEST CLAIMS REINSURANCE (LCR).
A QUICK METHOD TO CALCULATE LCR-RISK RATES
FFROM EXCESS OF LOSS RISK RATES

(;. BENKTANDER

Switzerland

Let us denote by E(x) the pure risk premium of an unlimited
excess cover with the retention x and by H(x) and m(x) the cor-
responding expected frequency and severity.

We thus have E(x) = H(x) - m(x).

H(x) is a non-increasing function of x and for practical purposes
we can assume that it is decreasing; H’'(x) < o. The equation
H(x) = n has then only one solution x,, where # is a fixed integer.

Let E, denote the risk premium for a reinsurance covering the
# largest claims from the bottom.

Let us define E, = ny, + E(x,) == n(x, + m(x,)). Intuitively
we feel that E), is a good approximation for £,,.

We shall first show that when the claims size distribution is
Pareto and the number of claims is Poisson distributed, E;, 1S a
good approximation for E,, being slightly on the safe side. We
further include a proof given by G. Ottaviani that the inequality
E, < E, always holds.

In the Parcto case wc have
Hx)y=11--I'(x)) =t -x *
where the Poisson parameter ¢ stands for the expected number of
claims in excess of 1 (equal to a suitably chosen monetary unit) and

X

m(x) = w1

The retention x, over which we expect # claims should satisfy
n = H(xn) =1 - xn_a

which gives

or
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According to B. Berliner [2] we have, when the number of claims
is Poisson distributed

E —”“g - r(' ﬂ
nr rg) VT«
where

Pyn) = [e % - u""' du.

Replacing the incomplete Gamma function [, by I' =1 we
arrive at

X ® 1 I
E, =t . - et M o
oL

«—1 [(n)

which formula was given by H. Ammecter already in 1964 [I].
Obwviously E, < E,
In all cases when ¢ is large compared to #n, we have

Ey

L

(n,0;¢) very close to I.
n

If in a practical situation ¢ is too small we can always increasc ¢

by decreasing the monetary unit, in other words by enlarging to
the left the range of the Parcto distribution.

Inserting ¢ = nxj;, as deduced above, in En, we obtain

E,=n"" . x i ! T‘(n—{-x E)
" "a—1 P(n) al’
However
, o o I'(n+1)
E, =n{x, +mx,)) =n-x, 1 =Y 3 Ty
Thus we have
. 1
~ ptle o Tl 4+ 1— -
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Tabulation of
£,
Eﬂ

n a=2 o=2.75 o =3

1 0.886 0.894  0.903
2 0940 0.943  0.948
3 0.959g 0.g61  0.964
4 0969 0971 0973
5 0975  0.976  0.978

10 0.988 0.988  0.989
The figures illustrate

that the approximation is good,

that the approximation is on the safe side,

and that the approximation is rather ivariant to variations of the
parameter alpha within the given interval.

The safety margin in the approximation—E;, replacing £,—is
roughly of the form constant/n.

This is illustrated below for alpha = 2.5

n j;—zl no- EL"_; Ln
E'n E‘H
I 0.894 0.11
2 0.943 0.11
3 0.961 0.12
4 0.971 0.12
5 0.970 0.12
10 0.988 0.12

We have thus shown that in the Pareto casc

and

E, <E, <E, = nx, + E(x,) = nxy N « =

* E
= nx, - — —— = a- Ex,).
gy T o ( 11)
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Thus
E,
Elxy)

~ .

This means that the LCR risk premium is approximately equal
to alpha times the risk premium of an XL cover with a retention
chosen in such a way that the expected number of claims is equal
to the number of LCR-claims protected.

In the Poisson-Paieto case E gives a handy and fairly good
approximation of E,. The reader is invited to examine other claims
size distributions I'(x) which are of importance in the practice.

Most such distributions will for all x > xo have m''(x) < 0. We
believe that m''(x) < o will guarantee that E, will be a good ap-
proximation of £, with £, > E,.

We now give a proof by G. Ottaviani that the inequality £, <
E’, is vahd for any # and for arbitrary distribution functions of the
number of claims and of the claim size.

We do not even nced the condition of section 2 that the equation
H{x) = » has only one solution since the proofl will be valid for
any Xy, such that H(x,) = ».

Let s denote the total number of claims which occur and N =
min (s, #). We thus allow for the possibility that less than s claims
occur.

Let Xy, be the set consisting of the NV largest claims.

Let
w(Xy) = E(N)
wW(Xq) <n (1)

Let p(Xy) = Eufv(Xy) be the expected value of a claim in the
set X,,.

Analoguesly we dcnote by X, the set consisting ot all claims
exceeding x,, the expected number of claims exceeding x, by

i

v(A7,) and the expected valuc of a claim in the set X, by p(X,).

We thus have

WX ) =mn (2)
and
w(Ay) = ¥, + m(x,)
Let Yy= X)~ "Yl‘n
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W(Y,), w(Y,), v(Z,), w(Z,). v(Z,), w(Z,) arc defined analoguesly to
v(X,) and wu(XN,). From the above definition it follows directly
that

w(Zy) < xyand (3)
w(Zy) > x,,. (4)
Thus
£y =v(Xy) - w(Xo) = v(Yq) u(Ye) + v(Z4) w(Zy) (5)
and
By = (X)) - w(Xg) = v(Yy) w(Yy) + (7)) w(Z)). (6)

From (1) and (2) it follows that
W(Yy) 4 v(Zy) = v(Xy) < mo=v(X) = oY) + v(Zy).

Thus
W(Zy) < (Zy). (7)

From (3) and (4) it follows that
u(Z;) < w2y (8)

and from (7) and (8)
W2)) - wlZ) < A7) w(Zy), (0)

Adding w(Y;) . w(Y:) to both sides of (9) and using (5) and (6)
leads to

E,<E, qed

n
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THE ETFTICIENCY OF A BONUS-MALUS SYSTEM

NeLsoN DE Prin
Belgium

ABSTRACT

The concept efticiency of a bonus-malus system was defined, apparently
m a totally chifferent way, consecutively by Loimaranta (1972) and Lemaire
(r9735, 1976). In this paper we start with a more general model that leads us
to a defimition of efficiency that contains both carlicr ones as special cases
Further we introduce the defimtion of efficiency over a finite planning
horizon and consider the efficiency not only for a single risk but also for the
cntire risk group As a consequence of our approach we can also gencralize
the coneepts excess premium and central value as they were imtroduced by
Loimaranta

I. TuE BoNus-MaLUs SYSTEM AS MARKOV CHAIX

The basis of a fair tarification in insurance, in our case motorcar
imsurance, consists in the fact that cach policyholder is charged a
premium that is proportional to the risk that he actually represents.
This risk is determined by a great number of risk factors. Some of
them, such as type and use of the car, can be taken into considera-
tion a priori for the tarification and they enable us to split up the
heterogeneous collectivity of risks into a number of risk groups
which have a morc homogencous risk structure. Other factors
cannot be taken into account a priori since they are too difficult
to observe, or for social and psychological reasons, or just because
one doesn’t know all the factors which influence the risk. Due to
thesc factors there will still be accident pronencss differentials
within a risk group. In the course of time these differentials will be
reflected by the individual claim experience of the risk. Therefore
one can bring into account a postecriori the carher neglected risk
factors by means of an individual experience rating method, such
as a bonus-malus system.

From a point of time ¢ = 0 we consider such a risk group in
which the tarification is based on a bonus-malus system that is
determined by the following factors.

— The length of an insurance period is 1, which mcans nothing
else than that the length of a period is chooscn as unit of time.

— The number of classes is n.

-— The premium which a risk of class j has to pay at the moment ¢
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to be insured for the period [4, ¢ + 1 Ms bi(f); je {1, ..., n}hte
{o,1,...1.
—— The initial class in which a risk is placed at ¢ = 0 15 the class s.

— The transition rules are given in the form of probabilities Lk
Lje{r, ..., n} kefo, 1,. .. }; where t3(k) = 1if a risk of class 2
moves to class 7 when £ claims have occurred in the past period,
and {;;(k) = o if such a-rick goes to a class different from 4. In
order that the transition rules be complete and free of contra-
dictions we must have: for cach (7, k) there is one and just one j
so that {; (k) = 1.

We assume that the accident proneness of a risk of the considered
risk group can be represented by a risk parameter A, which is the
claim frequency of the risk, i.c. the expected number of claims
per period for that risk. The value of the risk parameter is regarded
as a realization of a random variable A, whose distribution function
U(x) represents the risk structurc of the group. We take that the
value of the risk parameter is independent of time. Further we
assume that for a given risk 2 the random variables which give the
number of claims for the successive periods arc mutually indepen-
dent and identically distributed with common probability distribu-
tion pg(r), which depends explicitely and uniquely on the para-
meter A

Thesc assumptions permit us to describe the evolution of a given
risk through the bonus-malus system by a Markov chain with
constant transition matrix. The probability 75%) (A) that a risk a
which is in the class 7 will be in the class 7 £ periods later, is given
by the recursion formula

I4

\ Pl =  p0) £y(h) (r.2)
/%”0\) = T $,0) U t=2,3 ... (r.h)

2. THE EFFICIENCY OF A BoNUs-MALUS SYSTEM

Onc notices that cach country and in some countrics even cach
insurance company has its own bonus-malus system. Howcever all
this systems have the same purpose, viz. to come to a fair tarifi-
cation by adjusting the premiums of each individual policyholder as
good as possible to the risk that he actually represents. To measure
how good a system fulfils this requirement the concept efficiency
is introduced
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We denote by X_(x) a random variable that gives the discounted
value of all premiums that will be paid by a risk & in the time inter-
val [o, t[, 7e{1, 2, .. .}.

These premiums arc the ones paid at the momentso, 1,...,v—1I;
where the premium at a moment ¢ equals by(7) if the risk is in class j
at the moment ¢, and s zero if the nisk has by that time left the
system. The expectation E[N_(A)] of the discounted value of these
premium payments, which is determined by the used bonus-malus
system, can be called the bonus-malus premium for a risk h in
[0, [ . By Y_ () we denote a random variable that gives the dis-
counted value of all claim costs of a nisk X in [o, 7[ . The expectation
ETY _(3)] of the discounted valuc of thesc claim costs represents the
risk premaum for a risk k in {o, 1.

To verify how good the premium of a certain policy holder
corresponds with the risk that he represents we measure the sensi-
bility of the bonus-malus premium by changing risk premium.
) : . dETY (V] :
lherefore we compare a rclative variation —z 77— in the risk

ETY. ()]
dLTX (3]
E[X.()]
premium that it implics. By definition we call ¢fficiency of a bonus-
malus system for a visk X 1n [o, [ the ratio of these two quantities

premium with the relative variation in the bonus-malus

AELX ()]
O EX()] din E[XE(A)j
“0 = ZEv ] = aie EY.0)) 2
ELY,00]

The efficiency in [0, | is thus the elasticity of the bonus-malus
premium in [0, <[ with respect to the risk premium in [o, <[ . Put
into words this means that for a risk » a variation of 1%, in the
expectation of the discounted claim costs in [0, [ causes a variation
of e.(3)% 1n the expectation of the discounted premium payments in
[0, <[ .

When we take in (2} the limit for t -—~ co we get the efficiency n
[0, o [, viz.

e(h) = lim ¢_() (3)

A first analysis of the definition of efficiency enables us to make
the {ollowing observations

A reasonable bonus-malus system got to have a separation effect,
so that in an average sense good risks pay lower premiums than
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bad oncs. This means that the relative variations in bonus-malus
and risk premium got to have the same sign, so that for each (A, 1)
holds e.(A) > o.

The limitcase of a bonus-malus system in which the bonus-malus
premium in {0, <[ remnains the same for each risk, corresponds with
e.{\) = o for each ). This case shows up during the first period when
cach risk is in the initial class, so that we have ¢1(A) = o for each 1.

The ideal case in which for cach risk and for each interval the
bonus-malus premium cquals the risk premium corresponds with
e.(A) = 1 for cach {, 7). In particular ¢(A) = 1 corresponds with an
asymptotical correct tarification for a risk A The conditions of an
1deal system can in general never be met.

In practice a relative increase in the risk premum will generally
causc a smaller relative increase in the bonus-malus premium,
which means that the good risks have to pay for the bad ones.
In gencral e (x) will thus lie between the values zero and one.
Theoretically we can have e (A) > 1 but such a case of overefficiency
in which an increase in the expectation of the claim costs is more
than compensated by the increase of the expectation of the premium
payments is rarely found.

Because of:
EIX (A)] >o0 , E[Y.(2\)]— o forx—o0 (4)
E[X.(A)] bounded, E[Y_{2)] — o0 for A — a0

We have 1 gencral that for each =:
lime_(A) = o and lime () = o (5)

A—0 ’—>=n

Geometrically the definition-formula (2} can be interpreted in the
following way

X E{Y.(W)) dE[X.(N)] L

[ = > = —

W) = EIX.00) V.00 T e

(6)

So far the efficiency was defined for a risk with given and known
risk parameter A. The assumption that the risk parameter is known
is useful for the development of the thcory but is never fulfilled
in practice. On the other hand the distribution function of the risk
parameter, viz. the structure function U(), i1s more likely known,
so that it is natural to define the efficiency over the considered risk
group. We call e¢fficiency of a bonus-inalus system over a given risk
group in [0, [ the expression:

e = [ e() dUR (7)

A
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and we get for v — o0

¢ = [ e(N) dUR) 8)

A

This averaged efficiency over the risk group enables us to com-
parc the different bonus-malus systems in an objective way.

Further we notice that in our definition of efficiency we could
also take into account the so called “bonus-hunger effect” (cfr.
Lemaire). This can be done by changing the definition of X_(3)
and Y_(A} in an appropriate way.

Finally we remark that our concept of efficiency is not only
valid for bonus-malus systems but can be applied to other experience
rating systems.

3. CALCULATION OF THE [EFFICIENCY UNDER DIFFERENT ASSUMP-
TIONS CONCERNING THE RISk Procrss.

3.1. We consider a risk A which is placed in class s at = 0 and
assume that at the end of each period this risk can either take an
insurance for the next period or lcave the system. By w3} we
denote the probability that the risk A is insured for thc period
[¢, ¢t + 1 [. We take that a risk A which left the system cannot re-
enter it, so that wo(A) = 1 = wi(r) = wa(x) = .... Further we
suppose that the average cost of a claim is independent of the
number of claims and we denote by C,(A) the average cost of a
claim for a risk » in the period [¢, ¢ 4+ 1[. Finally we denote by
B < 1 a discount factor.
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Under these assumptions we get for the bonus-malus premium of
a risk »in [o, =:

E[X. (W] = X Bho,(») Z pii (1) b,(7) with g0 =8, (9)

[l

and we have for the risk premium

ETY.00] = % T 8 %aw,0) C,(0) (10)
-

Using these formulae the efficiency can in principle be calculated.
However, additional assumptions concerning the earlier mentioned
elements of the risk process seem desirable in order to come to a
more manageable expression.

3.2. We suppose now that for each period [, £ 4+ 1 [, both the
probabilities w,(2) and the average claim costs C,(2) are the same
for all risks of the considered nisk group, this is that they arc in-
dependent of the parameter A.

Under these assumptlions formula (2) is reduced to
dE[X (x)]
e.(A) = 11

More explicitly we have

(t)
Z L dﬁdx bl

where the derivatives are determined by the recursion formula

Cdpyn) N dp)
(‘T?T - Z A k) (13.2)

k o

(

dpi d r() 1 (-1 ()
(¢$)=Z[@ W’H+M)¢ﬂ ](mw

ro1

We remark that in the case that the number of claims is Poisson
distributed formula (13.2) becomes
7\1&?

d A i\ 5
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3.3. Moreover we make an assumption concerning the evolution
in time of the premiums &,(7) and the probabilities w,. We assume
that the premium of each class will increase with the same per-
centage for cach period, this is b,(j) = a’b; with b; = by(7) the value
of the premium of class j at constant price and o > 1 the price
index of premiums. IFurther we assume that the probability to
leave the system at the end of a certain period is independent of
the considered period and equals g, this means w, = (1 — p)*
where pefo, 1] is the rate of exit. We shall put 6 = Lo (I — p),
in which we take that 6 << 1 what is satisfied in practical cascs.

Finally we suppose that the Markov chain which 1s associated
to the bonus-malus system is regular. Then the limit probabilities

%) = lim pg0) (15)

exist and are independent of the initial class. They are uniquely
defined by the system of equations

n

Swm=zmmmm (16.a)
( S a0) =1 (16.b)
J=1
Under these assumptions equation (g) is reduced to
E(X,0] = T 68 5 580) b, (x7)
t. 0 FERRY
and if we put
b = Z a;(0) b (x8)
fora
g5, 10 = T 0° Z [pY(N) — a;,(0)] b, (r9)
t .0 jor1
we get
T —0°
] — b(A) + g, <-1(A) b <1 (20.a)
E[X. (W] =
TO() + g, <1 (M) =1 (20.b)

We remark that
g 0 6 <1 (21.a)
. E[XN)]
Iim —————— =
o T 2 > 41(7\) bj 0=1 (ZI.b)
i
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so that &(A) represents for a risk A the limit value of the premium

I
per period in the case § = 1. (e.g. « = E, p = 0).

The first term in (20) is the discounted expectation of the premium
payments in [0, T [ for a risk A in the case that the premium to be
insured for the period [¢, ¢ + 1{ equals &(})a?, irrespective of the
class in which the risk is placed at the moment ¢. The second term
gs, --1(2) tepresents the discounted expectation of the extra
premium (positive or negative) that has to be paid in [o, = [, since
the premium that a risk A has to pay to be insured for the period
(¢, ¢t 4+ 1 [ isn’t b(A)«t but byut, with 7 the class in which the risk is
placed at the moment £. This correction term depends on the initial
class s and g, ._1(3) is called the excess premium of the class s for
a rvisk A in [0, = [. The advantage of the introduction of the excess
premiums lies in the fact that they simplify to a great extent the
calculation of E[X_(3)] and thus of e_(A). It is easy to verify that for
the excess premiums the following recursion formula is valid

guo(h) = by — b(n) (22.a)
gi<(N) = b, —b(p) + ﬂé Py g 1)) T=1,2,... (22b)

so that it 1s no longer neccssary to calculate g, ._,(A) from (19),
which would require the preliminary computation of all appearing

(¢)
7531 .

Further we have that for each (A, 1) the following relation hold

5 a4 g MN=0 r=o01,... (23)

According to (11) and (20) we get then for the efficiency in [o, 7
., @0 dgs, =1 (V)
(T — 07) o + (1 —8) oy

TR T PR R

ab(p)  dge .. .(d)
T T a
TOA) + g.-1(2)

where b(A) can be calculated from (16) and (18), while g, ._,(3) is
given by (22) in which (23) is useful for control purposes.

T

0=1 (24.b)
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n

db(n) ;w day(n)

The derivative =

b; can be computed from the

ar )
system of equations obtained by derivating (16)
das() O [daid) dpyy(2)
o Z [T Pyl) +el) =5~ (25-2)
"_1 daj(l)
< A o =0 (25.b)

whereby the derivative of pg(2) is given by (13.a) or (14).

Finally the derivative of g; . _,(A) is determined by the recursion
formula

/ dgi, o) db(n)
T T T Tan (26.2)
dg, (1) db(n) O [dpy () dgy . 1(\)
{dx =— T 2 [ :x 811N + py() jdx ]
\ T=1,2,... (26.b)

and the controlling equations (23) become

\ [ da dg; (A
Z.»[Zi)(\)gf-f()‘)_*_al()‘) '%(‘—)]=O T=0,I,... (27)

o1

To calculate the cfficiency in [o, co[, we first extend the concept
excess premium to [0, co [

G = limg, () = T 0 T (BH0) —a]y  (28)
T—rm 110 i

Since the p{¥ (A) converge geometrically fast to the limit proba-
bilities a;(») the series (28) is absolute convergent. When we take in
(22.b) and (23) the limit for v —+ o0 we get the following system of
equations for the excess premiums in [o, oo [ of the different classes

gam=m—mw+eimmwm (29.2)

|5 a ity = o (29:)

We remark that, in this system of # 4 1 equations in # unknown,
for B < 1 the equation (29.b) is a consequence of the relations (29.a),
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while for § = 1 (29.b) is independent of (2g.a) but in this casc we
have that the relations (zg.a) are linear dependent.

In an appendix we shall prove that the g;(3) are determined in an
unique way by the system (29).

For the efficiency in [0, co [ we have now

% + (x —6) dg;ix)
0y = W T 0 em 0=t od)
2 C—i@ 0=1 (30.b)
o) an

in which gs(A) can be calculated from (29), while its derivative is
determined in an unique way (cfr. appendix) by the system of
equations

des(h ab(n S [dpyn dg; (A
) W re ) [ﬁ;’i)gjmmm %j—i)] (31.2)

an ar

i1

= [day(n dgi(n
O gy + ity ] = 0 (31.b)

So we find as a special case (30.b) the definition of efficiency
given by Loimaranta.

4. THE CENTRAL VALUE

We consider the equation

E[X.(N] = ETY.(N)] (32)

which expresses the cquality between the bonus-malus premium
and the risk premium for a risk A in [o, = [. Because of the relations
(4) equation (32) has at least one solution A;. We call a solution
Ar of (32) a central value of the bonus-malus systemn in [0, T[ .

We assume now that w,(2) and C4(3) are independent of » and we
shall show that the central value in [o, = [ 1s unique if ¢.(3) < 1
for all a.

From (11) we have

din E [X,(N] = e,() dnk
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which gives if we integrate with A} as initial value

A
E[X.(\)]=E[X. (2] e 3 €00 dim

where
7 L * )\:
E[X.(:)]) = E[Y.(\)] = + E[Y-(]
so that
e .
SE[YT(X)] h e S M CEXY
EX(N] = .
(E[Y,(m o I aear (33
If e.(2) << 1 for all x we have thus that 2% is unique and that

EXMZ EY.0)  itaSa

Now we make some assumptions that will permit us to rewrite
equation (32) in an easier form. As in section 3.3. we assume that
bi(g) = atby, wy = (1 —p)t and 6 < 1, where 0 = Ba (1 —p).
Further we assume that the evolution in time of the average claim
cost can be given in the form Cy(d) = y¢C, with C = C,q the average
cost at constant price and vy > 1 the price index of claims. Hereby
we put ¢ == By (I —p) and take that e < 1. The central value in
(o, [, A%, is then the solution of the equation

b() T 6 + gy a(h) =2C X ¢ (35)
t=0 t=0
In particular we have that A = Es
We call central value in o, o0 [
A" = lim Al (36)

and we distinguish the following cases. In the case 6 < 1, ¢ < 1
we have from (35) that A" is the solution of the equation

b(n) AC

I— 0 + gs()‘) = (37)

I—z¢

For 6 =1, ¢ < 1 we have that A* — oo, while for § < 1, ¢ =
I holds A* — o. Finally in the case 6 = ¢ = 1 we obtain that A* is
the solution of

() = AC (38)
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The solution of this last equation corresponds with the concept
central value as introduced by Loimaranta.

5. APPENDIX

We shall prove that the systems (2g) and (31) of # + I cquations
in # unknown have an unique solution.

5.1. We make use of the following two lemmas, in which o
denotes the zero matrix and I the unit matrix.

Lemma 1

If Q is a square matrix and Q% tends to 0 as k tends to infinity,
then

det (I —Q) #o0

©

and(/—Q)-1 =TI+ Q+Q24...= X QF

koo

Proof

see e.g. Kemeny and Snell p. 22.

Lemma 2

If to the x-th row (column) of the blocks of a partioned matrix
Q we add the y-th row (column) multiplied on the left (right) by a
rectangular matrix R of the corresponding dimensions, then the
rank of @ remains unchanged under this transformation and, if Q
is a square matrix, the determinant of Q is also unchanged.

Proof

see e.g. Gantmacher p. 45.

We introduce the following matrix notations

: I X » matrix with clements a4(3)

: # X I matrix with elements b;

:# X I matrix with elements g;(A)

:# X 1 matrix with elements py;(3)

:# X ¥ matrix with all elements equal to 1

= b(\) E : n X 1 matrix with all elements cqual to 6(2)

= EA :n X » matrix whose rows arc all identical and equal

Romwowna

-
o
NS
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According to (r5), (16) and (18) we have then

lim Pt =M

ke

AP = A, AE =1
AB = b()

5.2. We now prove that the system (29) has an unique solution.
In matrix notations this system becomes

{ (6P —1)G =D —B (39)
{AG =0
The necessary and sufficient conditions for an unique solution are
6P — I 0P —I1 D—B
rank = n, det =0 (40)
A4 ] A 0
According to lemma 2 we have
0P — 1 0P —M)—1
rank = rank
A ] 4

where we havc substracted from the first row the last row multi-
plied on the left by OF. Since for each power ¢ holds M? = M we
have (P — M)¥ = P¥ — M. From lim P¥ = M it follows then that

k=
lim [6(P — M))* = O for cach 0 < 1 and we have that

k—ro

det [0(P — M) — [] 5% o according to lemma 1. This shows that
the cocfficient-matrix has rank #.

To prove that the determinant in (40) is zero we make the
following transformations:

6P—I1 D-—B O(P—M)—I D—B]
det = det
A 0 A o |
0P —M)—1 D—B
= det
0 — AP —M)—1I]-1(D—B)]

=—A[{0(P—M)—I-1(D—B). det[8(P — M) —I]
We have now
— AP —M)—Ir=A[I—6(P—M)]

3

— AX [0(P — M)k

k=0
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— A[I + £ 8k (P¥ — M)
rd

— A4+ T 68 APF— M)
ko

=4
with 4(D — B) = o, which completes the proof.

5.3. For the system (31) we have
{ (6P — )G’ = D' — OP'G (41)

| 4G' = — AG

where a quote indicates derivation with respect to .

The necessary and sufficient conditions for an unique solution are
6P — 1 bP—1 D' —0OP'G
rank = n, det =0 (42)
4 A —AG

The first condition is the samec as in section 5.2. and is thus
satisfied. For the second condition we obtain after some transfor-
mations

0P —I D' —OPG
det
A — A'G
= {— A'G — A[B(P — M) — I]-1 [D' — OP'G + OEA'G]} .
det [0(P — M) —I]

The proof follows now from

—A'G+H AD' — BAP'G 4+ 0A'G = — A'G + AD’' + 0A'PG
= A'[(6P — I)G + B]
= A'D = o.
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ON A FORM OF AUTOMOBILE LIABILITY INSURANCE
WITH A PREPAID DISCOUNT

Riccarpo OTTAVIANI

1. Recently two types of insurance policy covering automobile
liability* have become available. With this kind of policy, the
insured party rcceives a prepaid discount on the annual premium;
however, he must make an additional payment to the insurer on
first report of an accident.

We shall examine only onc of these two types of policy, since the
second is very similar to the first.

On stipulation of the contract, the insured party pays a premium
equal to 78 percent of that currently in force for complete coverage,
depending on the various limits. However, at the same time at
which the insured reports his first accident in the course of the year
(and only in this case), he must make an additional payment equal
to 35 percent of the premium due in the case of complete coverage.
This additional payment, considered as a deposit, is repaid to the
insurcd party if the accident has no follow up within four months,
however, it may be requested again by the insurer if the case is
subscquently reopened and leads to payment of damages. This ad-
ditional payment will thus become a part of the premium only in
the case of payment of damages for the first accident reported.

In this way, the premium paid by the insured is cqual to 78
percent or to 113 percent of the current premium, depending on
whether or not the insured reports accidents.

2. Let us consider an insurance policy for complete coverage,
excepting limits, and let us assumc that

P = insurance premium

M = quota nccessary to cover purchase and administrative ex-
penses and profits

S = pure premium, ie., the quota necessary to cover accident
payments.

Therefore, premium P can be expressed as P = M 4 S.
In Italy, if the insurance premium is equal to 100, the part cover-
ing pure premium S is equal to 75 lire.

* In [taly termed R.C.A, or ““Responsabilita Civile Auto”
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On this basis let us now analyzc the prepaid discount policy and
the integration of the premium at first report of an accident.

We shall indicate by

g : the probability that the insured has no accident during the in-
surance period

p1: the probability that the insured has at lcast one accident but
reports nonc

p2: the probability that the insured has at least one reported
accident.

Obviously g + p1 + p2 —= 1.
We shall further indicate by':

51 the average cost of unreported accidents for cach insured party
S: the average cost of reported accidents for each insured party.

Therefore
St S = 8§ =795,

We note that the accidents leading to average accident Sy are
not only those whose probability is p1, but also some cases included
in probability ps, because the insured party might not report a
first accident and subsequently report another more serious accident.

We shall indicate by M. the margin for cxpenses and profits
relative to the prepaid discount policy. This can be expressed by:

1) M1 =78 (p1 -+ q) + 113p2 — S
and thus, considering that
Se = 75 — 8,
we have

2) My = 3 + 35p2 + Si.

If we overlook the differences in expenses between a normal policy
and a prepaid discount one (in fact, in the former consideration
must be given to possibly greater administrative costs due to con-
sidering all accidents and in the latter to the possibly greater ad-
ministrative costs duc to considering the double payment of the
premium), from a technical point of view, an insurer will benefit
by offering a prepaid discount policy rather than a complete cover-
age policy if the margin for expenses and profit of the discounted
policy is greater than the margin for a complete coverage policy,
e, if

My > M = 25,
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Tet us now determine the value of M based on AN.I.A.* sta-
tistics for automobile accidents.

In order to determine margin M it is necessary to make scveral
hypotheses concerning the behavior of the insured parties in the
presence of accidents that may or may not be reported. In fact,
probabilities p1 and p= depend on the insured party’s greater or
lesser inclination to report minor accidents.

Let us calculate this margin on the basis of the following
hypotheses.

a) All insured parties stipulate prepaid discount policics and
report all accidents regardless of their amount. In this case, prob-
ability ps2 will be equal to the probability that the insured has at
least one accident, and this probability will be slightly less than
the frequency of accidents (in fact, some insured partics may cause
and report several accidents during the period considered).

This frequency, on the basis of A.N.LLA. automobile statistics,
was cqual to 33.35% in 1972 and 32.379%, in 1973.

These values include settled and unseitled accident cases over
the year, and thus include also accident cases that may prove to
have no follow up in subscquent years.

Value S is cqual to zero, since, for the hypotheses made, all ac-
cidents are reported.

Then the margin for expenses and insurcr's profits, on the basis
of hypothesis (a) and relative to 1973 data, 1s

My < 3+ 3503237 = 14.33

which proves to be less than margin A/ = 25 which the insurer ob-
tains in the case of a normal policy.

Hence the insurer, on the basis of these hypotheses and from a
technical point of view, would have no interest in offering prepaid
discount policies.

b) Let us now hypothesize that all insured parties stipulatc
prepaid discount policies, but that they report accidents only if
they have already reported at least one other previous accident, or,
if not, if the first accident represents a presumable valuc greater
than 70,000 lire, which value, being exclusive of the technical ex-
penses of verification and scttlement, would become approximately
100,000 lire should the insurer have to pay damages.

In this casc, p2 will prove to be slightly less than the frequency

* ANITA.: Associazione Nazionale tra le Imprese Assicuratrici (National
Association of Insurance Companics)
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of accidents greater or cqual to 100,000 lire, which, on the basis of
AN.T.A. statistics, proved to be 26.019%, in 1972 and 28.63%, in
1973.

Average cost S1 of unrcported accidents, i.e., of those accidents
causing damages of less than 100,000 not preceded by accidents
causing damages greater than or cqual to 100,000 lire, is obviously
slightly less (the difference can be overlooked) than the average
cost of accidents having a value of less than 100,000 lire. This
average cost, on the basis of A.N.I.A. statistics, for each 75 lire of
pure premium, was equal to 16.69 lire in 1972 and 15.11 lire in 1973.

In this case, on the basis of A.N.1.A. statistics for 1973, margin
M, for the insurcr will be

My <3 4+ 35 — 0.2863 + 15.11 = 28.13.

Consequently, the insurcr might benefit technically be offering
prepaic discount policics, since it is probable that M, =2 M = z5.

The insured having the possibility of choosing between complete
coverage policies and prepaid discount policies, we note that those
who select the latter arc those who expect to have fewer accidents
than the majority of automobile drivers, i.e., those for whom prob-
ability p. should be lower than the probability deduced from the
A.N.I.A. statistics.

It is obvious that in this case margin 1 obtained by the company
15 still lower than that which it would obtain if all insured parties
held prepaid discount policics.

We note moreover that, if all insured partics decide to report ac-
cidents having a value of less than the additional payment, which
is 359, of the premium, then the hypotheses for case (b) refer only
to those insured parties who pay a premium for the entire insurance
coverage greater than 200,000 lire, and this group includes only a
minority of insured partics.

Unfortunately, it has not been possible to study cases of the type
given in hypotheses (b) where the limit of 70,000 lire for unreported
accidents is lowered. In fact, in the A.N.I.A. statistics of accident
number by value, the first class considered 1s that of accidents hav-
ing a value of up to 100,000 lire.

The considerations set forth so far refer to a case in which all
the insurance companies offer exclusively the conditional discount
policy in place of the normal policy. We can note that, should all
the companies offer a choice between a conditional discount policy
and a normal policy, there would be a selection of the insured parties
choosing the discount policy.
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These insured parties would obviously be those who expected to
gain by this type of policy, i.e., those who expect to causc on an
average fewer accidents in the course of the ycar than the majority
of automobile drivers. Consequently, for these drivers, the value of
probability pg of having at least one reported accident is less than
corresponding value p, for the majority of the insured. From this,
substituting in (2) valuc p; for valuc p,, we obtain a margin
M < M,.

Moreover, with the transfer of the “good’ insured partics from
a normal policy to a discounted policy, there is a prior selection of
the insured who continue to use a normal policy; and therefore purc
premium S may not be sufficient to cover the accidents of the
normal policies, and thus margin M would have to be lowered as
well.

In a case where a singlec company (or a limited number of
companies) offered the conditional discount policy as an alternative
to the normal policy, while the conditions we have just described
for a case where all companies offered both types of policy wounld
still hold, we can note that there would be a request for discount
policies also on the part of “good” insurcd partics who previously
held normal policies with other companies; and thus the company
{or companies) offering the prepaid discount policy would show an
increase in business.



TESTING GOODNESS-OF-FIT OF AN ESTIMATED
RUN-OFF TRIANGLE

G. C. TAYLOR
Sydney, Australia
1. THe RUN-OFF TRIANGLE — ACTUAL AND EXPECTED
By the term actual run-off triangle we shall mean the two-way
tabulation—according to year of origin and year of payment—of
claims paid to date, which has the following form:
Development Year

Year of
origin o I 2 . . . k

o]

where Cy; is the amount paid during development year 7 in respect
of claims whose year of origin is 7.

The information relating to the area below andfor to the right of
this triangle is unknown since it represents the futurc development
of various cohorts of claims.

Now in secking to use this triangle as a basis for projection of
claims in future development years for cach of the years of origin
o, I, 2, ctc., we must recognise that the entries Cy; in the above
triangle, being random variables, contain random dcviations from
their expected values py. It is the corresponding triangle of these
expected values in which we are interested, and which shall be
called the expected run-off triangle.

Explicitly, it is:
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2. THE REQUIREMENT OF A TEST OF GOODNESS-OF-FIT,

One method of projecting future claims is to identify some internal
structure within the expected run-off triangle and hence extra-
polate outside it. In this respect, a commonly made assumption is
the following:

Assusption 1

In the absence of any disturbing influcnces, e.g. claims cost
inflation, changing rate of growth of volume of business etc., the
distribution of expected claim delays remains constant over
varying years of origin.

We can represent this assumption symbolically. If Ry is the
observed proportion of all claim payments in respect of year of
origin + made in development year 7 after removal of the “disturbing
influences” referred to above, then E(Ry) = #; independent of 4.
Examples of estimation procedures based on this assumption can
be found in Beard {1974) and Taylor (xg77).

Naturally, 1f a model based on Assumption 1 is to be used for
projection of future claims, it is necessary to check at some stage
that this model accords with experience (i.e. that the expected
run-off triangle bascd on the model accords with the actual run-off
model) within statistically reasonable limits. Hence the nced for a
test of goodness-of-fit.

Suppose that the ““disturbing influences” in the triangle have
been determined so that it is possible to remove them from the data.
Let Cy be the result of adjusting Cy; for removal of these influences.
Then, according to Assumption I,

wy(= E(Cy)) = Cir,

where C; denotes total claims (some still to be paid) in respect of
year of origin ¢ after removal of disturbing influences.

Estimation procedures based on Assumption 1 will produce
estimates gy of wy, where gy = C;7; and 7, is an cstimate of 7.
It is then necessary to apply a significance test to the deviations
(Cy— i)

One tempting possibility is to sct up a contingency table con-
taining the cells as displayed below:
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3. A CONTINGENCY TABLE TEST?

(o, 0) (o, 1) (0, 2) . . . (o, &) l (0. & +)
(1, o) (1, 1) (1, 2) N (1, k¥ — 1) (x, (A — 1) +)
(2, o) (2, 1) (2, 2) .o (2, (A —2) +)

(#, 0) (k, 0 +)

Here the (7, (R — ) +) cell relates to data for year of origin ¢
and development years A —7 + 1, £ — ¢ + 2, etc. combined. The
standard chi-square test might then be applicd to this table as in
the thcorem in Section 30.3 of Cramér (1946, 426-7).

Therc are, however, several points to be noted in connection
with this suggestion.

Tirstly, the triangle of previous sections has been augmented with
extra cells to form a square. This has been done in conformity with
the theorem quoted above which requires that for a given year of
origin, the probability of a randomly choscn unit of claim payment
being found in somec cell of the table should be unity. This aug-
mentation of the triangle can cause difficulties because data may
not be available in respect of the extra cells. This point receives
further comment in the later section dealing with numerical
examples,

Secondly, and more importantly, it is implicit in the thecorem
quoted above (see both the statement of it on P. 427 and the proof
on P. 429) that the marginal distribution of each C;, is binomial.
In the present circumstances this is not true and, in fact, is suf-
ficiently untrue to have important consequences for the contingency
table test, as will be dealt with in the next section.

Thirdly, an examination of the theorem stated by Cramér reveals
that the chi-square test is strictly applicable only when the ex-
pected cell frequencies have been determined by the modified 2
minimum method of estimation. When this method has not in fact
been used, some consideration should be devoted to the closeness
of this and the method actually used. FFor example, the “‘separation
method” used by Taylor (1977) i1s not always equivalent to the
modified 32 minimum method, but is, as shown in Section 6 of that
paper, identical in certain cascs to the maximum likelihood method
which, as pointed out by Cramér (1946, 426), is in turn equivalent
to the modified 2 minimum method.
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4. MODIFICATION OF THE STANDARD CHI-SQUARE TEST OF A
CONTINGENCY TABLE.

The most important of the objections raised against the standard
chi-square test is the second which concerns the marginal dis-
tributions of the individual cell frequencies. As noted there, the
standard test requires that the (7, j) - cell frequency be binomial.
The parameters of this binomial distribution would be C; and 7,,
and hence the variance would be

vy =Ciry (1 —7p) = py (1 —7y) (1)

As also noted in the previous section, the distribution of C;f
will not be binomial in fact. In order to approximate its correct
form we make two further assumptions.

Assumption 2

The number of claims pertaining to the (7, 7) - cell is a stationary
Poisson variable.

Assumption 3

The sizes of the individual claims pertaining to the (z, 7) - cell
arc 1. i. d. random variables.

It follows from these two assumptions that C;y is a compound
Poisson variable with variance: .

o
oy = g X = (2)
Ly
where ay;, as; are the first and second moments (about the origin)
respectively of individual claim size in development year 7.

Tt is now cvident that in those cases where p.,’U is not too small the
compound Poisson distribution of Cy; and the binomial distribution
with the same mecan and variance (1) will be rather similar except
that the former will have a variance greater than that of the latter
by a factor of

Sy _ __%w

Thus, if the standard chi-square statistic,

Z (Cy—uy) /vy

all celly
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is replaced by:

= X (Cy—py) vyl oyuy
all cells
= sy () (cp— "
all colls a’2j

then ¥2 can be assumed to have an approximate chi-square dis-
tribution with an appropriate number of degrees of freedom.
Suppose that it is desired that a significance test be applied to the

Null Hypothesis: r; = 7; for each j.
Then it follows from (4) and the hypothesis that

PR ) N T )

all ceily Xzy

is a chi-square statistic and can be tested as such for significance.

5. APPLYING THE MODIFIED TEST IN PRACTICE.

All quantities appearing in statistic (5) are immediately available
with the exception of the ratio («ij/ag;). If the investigation is being
carried out by an individual company in respect of its own ex-
perience, then this ratio can be estimated by means of a cost-band
analysis of claims.

On the other hand, if the test is being applied by a supervisory
authority, it is unlikely that any cost-band information will be
available for estimation of (wis/ee;). The authority will however
have returns from each company and may, therefore, consider ways
of estimating the ratio from this data.

The slender evidence to which the author had access (a con-
fidential report) suggested that oaijjaz; was nof independent of
company, but that, for a given class of insurance, the coefficient of
variation, w; = azj/afj, varied comparatively little between dif-
ferent companies. This suggests estimating w; by %y, based on data
from all companies and replacing %2 by the alternative statistic:

D
I

- ng —=—2 (6)

S mray R
2 Cﬁ_(“'ﬂ] A I
By

all cells

where #4; is the expected number of claims paid in development
year j of year of origin 7, and 714 estimates ny.
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The difficulty now is, of course, the estimation of ;. For this
purpose, let

7, denote the valuc of 7, in the ¢-th company (for a particular
class of insurance);

Cy, denote the random variable Cy in the £-th company;

C;., denote the constant C; in the A-th company.

Let us suppose that, for fixed j, the 74, are realizations of a random
variable with mean p; and variance z;. Suppose also that Cy g, and
Ci sk, are stochastically independent whenever (i1, k1) 5 (2, k2).

Then it is not difficuit to show that, for each, 7,

Var [Cijt [Cid = Er,, (Var [Céﬂ [Cee | 70l
+ Var,, [E [Cyy | iy | 7]
= E, [w;7y] + Var,, 7).
ie.
Var [C;jt / C;.‘] — Var [r,,] )
E[7}) :

Zl’)j =

A reasonable estimate 0y of w; can be obtained by replacing each
of the three terms on the right of (7) by an estimator. The first
term of the numerator can be estimated from the sample variance
of the ratios (Cy, [ Cy.,) for fixed j. However, the other two terms
present difficulties, since the corresponding sample statistics depend
upon the observed values of 75, for companies other than the one
to which the significance test is being applied. These 74 are neither
known nor the subject of our hypothesis.

The simplest way out of the difficulty appears to be as follows:

1. Use some method which is known to be generally fairly reliable
to obtain an estimate of 7y for cach 7 and ¢.

2. Use these estimates to calculate the sample statistics cor-
responding to the quantities appearing in (7).

3. Use these sample statistics to obtain an estimate of w; as
already described.

A second practical difficulty arises from the appearance of the
quantities C; in our formulas. These quantities, being total pay-
ments after run-off has been completed, are of course unknown for
any cohorts not fully developed.

However, this situation is not quite as serious as it might at first
appear. Let us consider the impact of the C; on each of the terms
of (6) in turn.
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Firstly,

, ~

E(Cv—p.
7

W) =C[ER; —X7)]

J !
= o, (8)
since both summations yield unity. Thus,

k=4
’

Coth-n+ — by g-ns = — = (Cy— by 9)

;¢

and so the terms [(Cy — tiy) / pyy)® are all fully determincd.

Secondly, the term Cj., appears in z?/j (see (7)). Here it is possible
to use equation (8) again and obtain

Crr=XCy, = S uy, (10)
i i

Finally the value #4 can be estimated by #y, the actual number of
claims pertaining to the (¢, 7) - cell.

All of the terms appearing in (6) are now determined.

6. A PRAcCTICAL SIMPLIFICATION OF THE TEST STATISTIC.

The procedure outlined in the previous section for estimating
wy 1s complicated and involves lengthy computations. Morcover,
no idea of the stability of the estimate of ws has been obtained.

However, experience indicates that, even in the relatively stable
class of business such as privatc motor insurance, w; tends to be
rarely less than unity. These occasions on which it is < 1 are
usually just those on which #; is relatively large. The result of this
1s that usually (always ?) we have

I—7y

I. II
o < ()

combining (5) and (11) we see that

. Co— By~
< Z i,\—ﬂ] Ty, (12)

all cells
and so deduce that treating the right side of (12) as a chi-square
statistic amounts to applying a somewhat too stringent test to the
hypothesis. The overstringency is not too great, at least for motor
portfolios, as typical values of the factor (1 — #;) / w; appear to lie
in the range 0.3 to 0.7.

7. A NUMERICAL EXAMPLE.

Let us apply the simplified test developed in Section 6 to the
run-off triangle dealt with in Example 1 of Taylor (1977). The
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actual triangle with each Cy; divided by 10-# x numbers of claims
for year of origin 7, is:

50.4 28.2 90 438
58.0 29.2 9.7

59.5 33.2
66.2

Multiplying by claim numbers to obtain the Cy gives:

2481 1387 441 237
2899 1463 485

3126 1744

3538

The calculations in Taylor (1975) yield the following C'ﬁ’s:

2481 1217 374 180
2533 1239 368

2648 1323

2684

and the following array of gy's:

2480 1223 368 179

234

2522 1244 374 420
2647 1306 833
26095 2178

There is a certain degree of arbitrarinessin the values of {; ;5_;,
which were not determined by Taylor (1975). These will not affect
the result materially, however.

Finally the triangle of ﬁﬂ’s is:

30034 13309 960
30678 12974 1216

393

31461 15417 1783
31386 22045
From these figures we readily obtain:
Cy—pyl® -
—ij—,\—“ﬁ] 1y = 6.25.
Hy

all cells

Now a value of 6.25 for yj3 is not significant at the 5%, level and
50, recalling that the true y3 statistic would be appreciably less than
6.25, we should have no hesitation in accepting that the model
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produced by the separation technique and leading to the above
@;j’s is quite plausible statistically.
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AN INVESTIGATION OF THE USE OF WEIGHTED
AVERAGES IN THE ESTIMATION OF THE MEAN OF
A LONG-TAILED CLAIM SIZE DISTRIBUTION

G. C. TAvyLOR
Sydney, Australia.

ABSTRACT

The paper discusses the problem of cstimating the mean of a long-tailed
claim size distribution when the investigator’s knowledge of the distribution
is only vague

Onc method of dealing with tlis problem, the method developed by
Johnson and Hey, is examined and found to produce strongly biased esti-
mators

The situation in which a sufficient statistic (but nothing clse) for the claim
size distribution 1s known is cxamined, and an approximately unbiased
estimator developed This estimator is substantially more efficient than the
arithmetic mean 1n some cases. It appecars to be quite successful when the
sufficient statistic is recal-valued. It is of limited use when the sufficient
statistic is vector-valued.

T. Tue ProsBLEM 0rF LONG-TAILED CLAIM Sizrp DISTRIBUTIONS

Tor the purposes of this paper we can take a long-tailed distri-
bution to be one whose density converges to zero less rapidly than
the simple exponential family. Such distributions occur relatively
frequently in the field of nonlife insurance. They are particularly
prevalent among the distributions of individual claim sizes in
respect of fire policies and Hability policies.

Since the mean of a distribution is one of its most important
propertics—and indeed in the context of claim size distributions,
usually the most important property—it is necessary that one have
as reliable a method as possible for the estimation of this parameter.

In nonlife insurance this estimating problem can prove quite
troublesome, because of the fact that standard statistical tech-
niques arc of limited applicability. This statement deserves some
explanation particularly as the majority of this paper is concerned
with methods which lie outside the scope of “standard’” methods.

The statistician faced with the problem of estimating the mean
of a long-tailed (or any other) distribution would begin by defining
the family of likelihoods which are admissible as a representation
of the distribution under consideration. He would then select
estimates of the unknown parameters according to some opti-
mization criterion, e.g. maximum likelihood, minimum-variance
unbiasedness, etc.
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The difficulty for the actuary involved with nonlife insurance
arises at the very first stage, i.e. in deciding the admissible likelihood
functions. In practice, he may have only the vaguest notion of the
shape of the distribution. FFor example, he may be prepared to as-
sert that it is within the exponential family of likelihoods. The
exponential family is an extremely large one, so that although the
requirement of delimiting the admissible likelihoods has been
satisfied technically, the practical benefit of this stage of the
procedure is doubtful.

It is basically for this reason that alternative methods of ap-
proaching the estimation of mean claim size are necessary. Of
course, one can estimate this parameter with the sample mean.
This has the advantage of ensuring unbiasedness, but, as is well-
known, the sample mean {from some long-tailed distributions has
rather a large variance. Since unbiasedness and small variance arc
properties which one would usuvally like an cstimator to possess
simultaneously, the need for considering estimators other than the
samplc mean is immediate.

2. THE Jounson-HEy METHOD OF WEIGHTED AVERAGES

Hey (1970), concerned by the disturbance to the sample mean of
claim sizes resulting from a few but substantial large claims, sug-
gested that the difficulty might be alleviated by using a wesghted
average of the sample claim sizes, the weights tending to decreasc
with increasing claim size. This suggestion was followed up by
Johnson and Hey (1972).

To state this in mathematical terms, they were concerned that
the sample mean claim size, though an unbiased estimator of the
true mean, had too large a variance. Their sclution was to cstimate
the truc mean claim size s by means of the statistic:

M = (2 S(Cdjm) X G, (1)

where

Cy, Cs, ..., C, are the sample values of claim size;

S(+) is a weight function which is nondecreasing but whose
first derivative is nonincreasing;

G is a “‘grossing-up factor” which is so chosen that

M is an unbiased cstimate of 7.
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3. PURPOSE OF THEE PAPER
The purposc of the present paper 1s three-fold:

(i) to indicatc certain dangers arising from use of the Johnson-
Hey (J-H) method;
(i) to poinl out that there are sound theorctical reasons for
introducing the transformation S;
(1) to investigatc ways other than the J-H method of producing
an estimate of s from the statistics Cy, ..., Cy.

4. SoME COMMENTS ON THE JOHNSON-HEY METHOD

It is clear from a briefl scrutiny of formula (1) that the prob-
lematic {actor is G. Hey himself (1970, p. 81) noted that “'we have
no knowledge of the sensitivity of the grossing-up factor’”. Other
difficulties arising from the manner in which G is estimated are
mentioned by Johnson and Hey (1972, pp. 227-8).

In this section, however, we shall ignore thesc difficulties by
assuming that, for a single given m, it is possible to choose G
exactly correctly. We shall see that difficulties still arisc in the use
of estimator M.

Let us deal with nonzero claims only and assume that thcir
sizes arc sampled from a lognormal distribution. Lt is to be cm-
phasised that this particular distribution has been chosen for
illustrative purposecs only, though, as Hey (1970, pp. 62-3) and
others remark, it is not far from the truth for some classes of motor
Insurance.

Thus, we assumec that Ci, Co, ..., C, is a random sample in
which each log C; has a normal distribution with mean p and
variance o2 Then, as in well-known (sce ¢ g. Kendall and Stuart,

1961, p. 68),

m = E[Cq] = exp{p + } o2} (2)
Also u
E[X log Cifn] = p. (3)

Thus, if we choose S(-) as log (-), then it follows from (1), (2)
and (3) that, for M to be unbiascd, it is necessary that

G =ptexpip+ Lo (4)

A difficulty arises here due to the fact that G is dependent (often
quite strongly) on w and o2 This means that, if G is appropriate to
some particular v and o2, it may notl be appropriate to some other
choice of these parameters. This is the rcason for the phenomenon
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noted by Johnson and Hey (1972, p. 228) that G appears to vary
between different risk categories.

In order to appreciate the extent of the difficulty, it is necessary
to understand that the J-H method provides that G be calculated
from the aggregation of data from all risk categories in such a way
that the estimate of w2 for the risk category of an individual chosen
at randowm from the whole porifolio is unbiased. Note that, despite
this type of unbiasedness, the resulting estimators may be biased in
respect of cach separate risk category, and the bias will of course be
worse for the more extreme categories.

A number of simulations were carried out to illustrate this point
and some of the results are given in Tables 1 and 2. The sampling
distribution for claim size was taken to be lognormal with para-
meters p and o2, though, as is fairly obvious, the point being il-
lustrated here is valid for other distributions tco. This was con-
firmed by other simulations whose results are not reproduced here.
The portfolio was assumed to consist of five different risk cate-
gories. In cach case S(-) was taken as log (-).

TABLE 1
Risk True Mean Arithmetic Mean J-H estimatc
Cate- c?  expiy + jo®} *sample sample sample sample sample sample
gory SIZC = 10 S. = 50 5, = 250 5. '~ I0 S.:=50 S - 250
1 4.000 T 20 [$19] 94 99 99 128 128 3o
2 4.250 I.IO 122 127 123 120 137 136 38
3 4.500 T 00 148 139 146 149 I44 144 146
4 4.625 095 164 164 102 165 148 149 T50
5  4.750 0.90 181 188 179 183 154 152 154
sample size 1 cach risk category
TABLE 2
Risk True Mean Arithmetic Mean J-H estimate
Cate- p 6t oxpip + 1o} *sample sample sample sample sample sample
gory S1Zz¢ = 10 § == 50 §. =:250 S§.= [0 § = 50 S. = 250
1 4.48 100 145 149 147 147 151 149 148
2 4.49 1.00 147 147 147 148 150 149 148
3 4.50 1 00 148 157 150 143 153 149 149
4 4.51 100 150 152 150 151 152 149 149
5 4.52 100 151 152 151 151 I51 150 149

i sample s1ze 1 cach risk category

The main effect of the J-A method appears clearly in Table 1
where it can be scen that, although the true mean varies over risk
categories by a factor of 1.82, the J-H estimates vary by a factor of
the order of only 1.2 approximately. Generally, the J-H estimates
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for the various risk categories are “‘squashed together’, with high-
risk categories underestimated and low-risk categories overesti-
mated.

This “squashedness” of the f-H cstimates has obvious impli-
cations for tariff-splitting.

The same phenomenon becomes apparent upon a scrutiny of
Johnson and Hey’s own results presented on p. 227 of their paper.
However, it is not quite so obvious there because their simulated
portfolio is rather like that represented in Table 2 of this paper, i.e.
risk categories are all quite close together.

Thus, as the portfolio becomes more homogeneous, so is the bias
in the J-H method reduced. But then so also is the need for rec-
ognizing different risk categories. Regrettably, we must conclude
that the /-H mcthod attains reasonable effectiveness only when it
15 least nceded.

5. THEORETICAL JUSTIFICATION FOR WEIGHTED AVERAGE

Let us consider the family of likelihoods, dependent upon some
parameter 0, which have the form:

71 ) = c(0) hx) exp L % (0) ). (5

This is the so-called exponential famaly of likelihoods. 1t is very
rich in the scnse that, for most of our practically occurring dis-
tributions, we can find a member of the family which will serve as a
good approximation.

Moreover, the exponcntial family has a number of attractive
properties which make it relatively easy to work with. In particular
(see e.g. Ferguson (1967, pp. 125-37)):

1. The statistic T = ( Z a(Xy), ..., Z tp(Xy)) is a sufficient
$i01 L EXRY

statistic, i.e. contains just as much information as docs the
whole vector of observations X3, ..., X4 in a sample of size #.

2. The likelihood of I is also a member of the exponential
tamily, with the same ny's as in f(x | 6).

3. Under rather weak conditions which will usually be met by an
insurance portfolio, it is possible to conclude that, if g(7) is
an unbiased estimator of a function of 0, then it has the smal-
lest variance among all unbiased estimators.

Since the object of Johnson and Hey's quest was stability of the
estimator, Property 3 is particularly suggestive, although it must
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be mentioned that this property does not preclude the existence of
movre stable but biased estimators.

Now if a claim size distribution is a member of the exponential
family, then, by Property 1,

"

T={( 32 u(Cy, ..., T t(Cy))
[XED ) 11
is a sufficient statistic. We thus have in Property 3 a theoretical
justification for basing our estimate of 0 on the average (or, cqui-
valently, the sum) of transformed claim sizes. Trurthcermore, the
transformation to be used is by no means arbitrary, but is deter-
mined by (5).

The uscfulness of this observation is scen fully when viewed
against the background of the actuary’s vague knowledge of the
shape of the distribution, as described in Section 1. If the situation
is slightly better than described there and the actuary is willing
to assert that p =1 and #4(.) = log (.), then from this none too
definitive assertion, we may deduce that 6 should be cstimated by

some function of 2 log Cs.
i1

6. AN EXAMPLE OF THE USE OF TRANSFORMED CLAIM SIZES

Suppose that C has a lognormal distribution with parameter
b = (u, o?), then

S(C10) = (2w a C) -+ exp [— (log C — w)¥/20%]
— o(8) h(C) exp [m(0) 4(C) + m2(6) t2(C)],
c(0) = (Y/zm o)~ exp [— w207,
(

(C) =C-1,
m(0) = ufe?, 4(C) = log C,
ma{f) = —— 1/202, £:(C) = (log C)2

Thus we lose no information from our claim size observations if
we reduce them to the two values,

. T e r 2 .

1,:;;LlogCi and 12:7—L(logCt)“——1[.

+ 1 LI

o~

It is not immediately clear how an unbiascd estimator is to be
constructed from 7'y and 7°=. However, in the casc of the lognormal
distribution, it was shown by Tinncy (194r) that an unbiased
estimator of E[C] is

exp (1) glb T2), (6)
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where

n—T1 x° (n—1)2 x3

1;-{—125+(7L+I) ("1'*‘?;)_3*!

For large u, g(x) docs not differ by too much from e%, so that (6)
becomes approximately:

g)=1+x+ (7)

{ lT Coptm exp [} T3] (8)

This is approximately unbiased, and so, by Property 3 above,
has small variance.

We have thus constructed an unbiased estimator with small
variance in terms of transformed claim size, where the trans-
formation 1s:

C ~www— (log C, (log C)2).

7. FURTHER DEVELOPMENT OF THE USE OF TRANSFORMED CLAIM
S1ZES

It is apparent that the method used in the previous section for
estimating E[C] when C is lognormally distributed differs con-
siderably from the J-H method. It was also pointed out that the
methods used there lead to minimum-variance unbiased estimators.

Unfortunately, however, the actuary may not be in a position
to make as strong an assertion as that claim size is lognormally
distributed. Possibly the strongest assertion he can make with any
confidence is that claim sizes, after some prescribed transformation
(e.g. log) are roughly exponentially distributed. This really amounts
to asserting something like the order of convergence of the prob-
ability density of claim size.

Under these circumstances, it is natural-to scek some extension
of the method used in Section 6. This aim is pursued in this section,
but it should be stated at the outset that the success achieved in
this direction is limited, and perhaps the main result emerging
from the study is that, when knowledge of the claim size distri-
bution is as vague as above, the simple arithmctic mean is sur-
prisingly efficient.

Let us suppose that the sample of claim sizes, C1, Ce, ..., Cy, is
drawn from a distribution belonging to the exponential family with
21 a one-to-one transform. Henceforth we denote # by just £. The
statistic,

% 4Cy), (9)

101
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is a minimum-variance unbiased estimator of E[¢(C)], by Propertics
2z and 3 given in Section 5. It is thercfore reasonable to assume
that the statistic {—1(T,), after approximate correction for bias
will provide an estimator of E{C] of relatively small variance.

Let us write

w = E[t{C)], o= Var[}C)].
From Section 2,

m = E[C].

Now, we know that

E[t"'(T\)) = Elt7*(6(C))] = m. (x0)
We therefore need to estimate the difference,

E[t=Y(Ta)] — E[t-Y(T1)],

occasioned by increase of sample size from 1 to ». This change
represents the bias in £-1(7,) as an cstimator of m.

Let us now write 7, for the standardized version of T, i.c.
Tn -7
Yy

Let the d.f. of 7, be expanded in an Edgeworth series,

Z-n:

Z co® (),
k o

where, as usual, ® &) is the A-th derivative of the standard normal
d.f. Then
Et"Y (T = £ B EW[ 1 n"%eZ, + v, (11)

where E®*) [function of Z;] denoles the expected value of the
argument on the assumption that Z, has '‘distribution function”
(RCN

Now, if D denotes the differentiation operator, repeated in-
tegration by parts gives
E® [V (gtn-"cly)]=n"k2 (—a)k E©) [Dkt-1(n+n-"cZ,)], (12)
under obvious regularity conditions on the functions ¢-t, Di-t,
Dz2-1) etc.

Thus, by (11) and (12),

Et Y T,)] = X cPn k2 (—G)*EO Dk (y + n % 6Z))). (13)

koo
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It is apparent from (10) and (13} that
EHT,)) = m— I (—o)F {cLE® (DR (4 + 02)]
— n~E2R EO[DR Yy + 1% 62)]},

where the subscripts on Z have been suppressed since they are
made irrclevant by the distributional assumptions implied by
E ) Hence an unbiased cstimator of m is

U, =t (1) + I (—o)* {eh E® [Dk" (4 + o2)]

n
k-0

— k2 ¢ EO (D (4 + n ez}, (14)

Now it 1s known that

no__ o n no__ 1, no_. -1
cn_I,cl_cz_o,%——u-n/“yl,c‘i_-.}in Ye

where y1 and y: are the coefficients of skewness and excess re-
spectively of T, Morcover,

yi63 = [(3,

yogt = Ky,

where K; is the j-th camulant of £(C).

Using these facts, we can simplify (14) somewhat to give:
Un = 1-1(Ty)
F{EO 171 (n + 02)] — E® [t (5 + 0% 02)]}
+ L K3{EO [D¥%-1t (n + ¢Z)] —n 2 EO [D3~1 (4 -+ n~-"6Z)]}
+ L K{EO D41 (g + 6Z)]—n"3EO [Di~1 (n+n-*%eZ)]}
+ ...

Since we do not have true values of y, o, K3 and Ka, we replace
them by estimates. The obvious choices are (see Cramer, 1946,

352)

S V n
= , 0= a2
n 7 n_1%
2

~ n

il

Ky = i [(n + 1) a_; — 3(n —- I)],
(n~—1) (n—2) (n—3) as

where a, is the v-th sample central moment of ¢(C).
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Thus we finally adopt as our estimator of » the statistic:
==Y (T )
F{EO [Ty +32)) -~ E@ [t (T, +n %57)])
+ }}]E's{E(O) [D3%-1(Ty + 67Z)] —n-2E©@ [D3t -\ (T +n % 6Z)]}
+ % Kq {EO DY YTy + 6Z)]— n-3EW@ D) (T, + n-"%5Z)]}
+ ... (15)

Tt is of course apparent that  is not in general unbiased. How-
cver, the inclusion of the corrcctive terms should remove the
majority of the bias which would be present if 1-1(T,) alone were
taken as estimator of .

8. NUMERICAL RESULTS

Although the development of s as an estimator of # began with
considerations which rested on sound theory (see Section 5), a
number of subsequent approximations have led to the position in
which the bias and stability of s arc not entirely clear. For this
reason, a number of simulations were carried out in order to com-
pare the estimator s with the simple arithmetic mean for bias and
stability. The most informative results are summarized in Tables
3 and 4 below.

In Table 3 the sampling distrnibution for claim size was taken to
be log-Laplacian, 1.e. log C{= L, say) was taken to have a likelihood
function, dependent upon parameter &, equal to

Veexp[—£RIL1], —ow <L < oo
TABLE 3
Risk 4 True Mean Arithmetic Mean n
Cate- k2f(R2— 1) sample  sample sample sample sample  saiuple
gory *S1ze — 10 S1ZC = 50 S17€ =: 250 Size — 10 SiZC = 50 Size — 250
I LIO 5.8 23(4.2) 3.7(401) 40(27.5) 6.3(884) 3.5(102) 3.3(18)
2 1.30 2.4 2.0(46.8) 22(17) =2.4{14) 5 1(679) _> 2(1 4) 2.2(0.2)
3 I 49 1 8 1.7(1.8) 18(10) 18001) 2.1(r0.3) 1.8(0.8) 1 7(0.1)
4 170 (s 1509) 16(03) 15002 17(39) 1.6(02) 1.5(c.02)
5 1 89 1.4 1.4(0.3) 1.4(0o71) 1.4(0.02) 1.5(0.5) 14(0.3) T1.4(0.0T1)

*samplc size in cach risk category

In Table 4, the sampling distribution was taken to be lognormal
as in Tables 1 and 2. As in Tables 1 and 2, the portfolio is assumed
to consist of five risk categories, and #(-) is taken to be log (.).
The figures for “arithmetic mean” and s are simulated values of
these estimators. The figures in parcntheses are the corresponding
simulated values of the variances of the estimates.
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TABLE 4
True Mcan Arithmetic Mean n

" a?  explp it} sample sample sample sample sample
*s1ze =10  SIze = §0 size =250 size=1I10 Size=50

4 000 I 20 99 94(1800}  9g{550) 100(110) 98(2200) 101(630)
4.250 1 10 122 127(3100) 123(700) 120{100) 135(5100) 12.4(750
4 500 1 00 1438 139(3200) 146(750) 149(160) 143(4100) 147(800
4 025 ©95 164 164(5600) 162(740) 1065(150) 173(10000) 163(780
4.750 © 9o 181 188(5900) 179(870) 183(r40) 195(9600) 181(930

sample size in ecach risk category

9. CONCLUSIONS

The theme of the paper has been the estimation of mean claim
size in the light of only vague information about the claim size
distribution. When this inlormation includes knowledge of a suf-
ficient statistic, it is tempting to base the estimator on this statistic.

One such estimator is provided by the Johnson-Hey method, but
Section 4, and particularly Table 1 therein, reveals that there are
quite common situations in which this estimator gives poor results.

The estimator # developed in Section 7 attempts to improve on
the J-H method. Indeed, Table 3 indicates that for some long-
tailed claim size distributions, this estimator is largely unbiased
and achicves a significant reduction in variance as compared with
a simple arithmetic mecan. The longer the tail, the larger is the
reduction in variance.

The usefulness of 7 as an cstimator is limited, however, as is
evidenced by Table 4 wherc the variance of 7 is slightly greater
than the variance of the arithmetic mean. The reason for this is,
presumably, that the sufficient statistic for the distribution involved
here is an ordered pair rather than a single real value (as in the casc
of Table 3), and in such a case the transformation (g) makes only
partial use of our knowledge of the sufficient statistic.

Perhaps the estimator # can be refined to make fuller use of the
sufficient statistic?

Perhaps also the main conclusion to be drawn from this investiga-
tion is that, in the possession of only the vague knowledge outlined
in Section 1, it is often very difficult to improve upon the simple
arithmetic mean as an estimator of mean claim size.
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size = 250

100(110)
121{110)
149(160)
165(150)
183(140)
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PARAMETER ESTIMATION IN CREDIBILITY
THEORY

Fr. DE VYLDER

University of Louvain, Belgium

ABSTRACT.

The problem of distribution-free parameler estimation in recent credibility
theory is discussed in the papers [1], [3] and [4] of the bibliography. Here,
we consider a multiclass model with regression assumiption. In that case,
already treated by Ch. Hachemeister, {3], tlus author obtains an unsym-
metrical matrix as an estimator of a covariance matrix. Of course, for
practical use, this matnx 1s symmetrized in the obvious way. We show that
this procedure can be avoided and that a lot of symunetrical unbiased
estimators can be obtained at once.

By particularisations Lo the 1-rank model, we find the estimators given
by Buhlmann and Straub, [1], {4).

In the multirank case, a generalization of the minimumvariance principle
(minimization of the tracc of the covariance matrix) leads to an optimal
estimator of the mecan regression vector. A noteworthy conclusion of our
discussion is that there is no difference at all between the various credibility
formulae (the inhomogenous formula, the homogencous forinula, the mean-
free formula) if the mean regression vector is estimated optimally.

Finally we show that it must not be hoped to find, in a large sct of un-
biased cstimators of the covariance matrix, one estimator furnishung,
always, a semidefinite positive estimate

1. THE MULTICLASS MODEL WITH REGRESSION ASSUMPTION.
1.1. Description of the model
We consider the array of observable random variables

1X1 2Xy ... g X L. X
0. Y. COAEY. CRA Y. €

]Xg 2X3 ng PN ]ch

WXe o Xe ... ng . ¢
In the notation ;X (j=1,2,...,k;s=1,2,...,1), the left index
7 is the class index, the right index s 1s the year index. FFor example
75X might be the claim rate of treaty 7 in year s in a reinsurer’s
portfolio, but other interprctations arc possible. The column

3X = (X1, jXs, . . ., $X), will be called the class 5. To ;X is associa
ted the structurc variable ;0. We abbreviate:

0 = (10, 20, ..., Q).
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The numbers k& (number of classes) and ¢ (number of observation
years) are fixed. As variable class-indices we usc ¢, j =1, 2, ... &
and as variable time indices », s =1, 2, .. ., {.

Before we specify the assumptions relating the observable and
structure variables, we make somc general remarks about the
matrix notation used throughout the text. A  matrix is onc with

H
m 1ows and n columns. Then . is the dfmcnlsion of the matrix.
Rows, columns, scalars are particular matrices. The dimension ; is
also denoted more simply by 1. Some relations are completed by
the dimensions of the displayed matrices. The same symbol (without
indices) is used for a matrix and for its elements (with indices).
The inferior right index is the row-index. The superior right index
is the column-index. Matrix rules are applied to indices written on

the vight only.

The following assumptions are made.
(1) Independence of classes: 1.X, =X, ..., zX are independent.
(ify  In each class, irrelevancy of other parameter values than that
one of the given class: For each class-index 7 and function

fC),
E(fX)(0) = E(/(;X)/,9).

(iii) Independenceof parameters: 19, 20, . . ., O arc independent.
(iv) Equidistribution of the parameters 10, 20, .. ., ;0.
(v)  There exist functions ps(.) satisfying

E(iXsfj) = HS(J®)~

(The assumption is in the fact that ps(.) does not depend
on 4.)

(vi) There exist symmetrical dcfinite positive { matrices ju and
a scalar function ¢2( . ) satisfying

COV(X,, ;1 X,1,0) = o*(,0) s.

(vii) Regression assumption: For cach g, the ; column u(;0) of
elements ps(;0), can be written as
u(0) = ¥B(;0),
! gl
1 t g

where y is a known ¢ matrix and (. ) a ; vector of clements
Bp(-). It is assumed morcover that y 1s of rank g and that
g <t
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I.2. Special assumptions

Occasionally, (vi), (vit) will be specified in the following manner.

(BS): jv is a diagonal matrix with diagonal elements
spu, Tspz - spe

(BS1): (BS) is true and moreover, y is the t columny = (1,1, .. .,
1)’. (Of course, then f(.) is a scalar function.)

The case (BS) is introduced in Biithlmann and Straub, [1] and is
further used in Hachemeister [4]. In [1], the number ;p; is the
premium volume underlying treaty 5 in year s in a reinsurer’'s
portfolio. In [4], each class is related to an American state and jps
is a number of claims in state j in the observation period s.

Assumption (BS1) is a stationarity in time assumption, since
then pe(.) does not depend on s.

In the sequel we assume (i) to (vii). The matrices ju, ¥ are supposed
to be known. Assumptions (BS), (BS1) are mentioned explicitly
if they are used.

1.3. Swmmary of credibilily theory results

The following credibility approximations to the vector B(;0)
arc known.
— The inhomogencous approximation ([3], (5], [2])

jé = (T —32) b + 52 4B.
1 g 1 + g 1
g g g g g

— The homogencous approximation ([3], [2])
B = (1—y2) b S+ 2B
= 5 eIt gy

— The homogeneous mean-free approximation ({s], [2])
J{é = (1 —y2) B + 2 1{3-

g L g
14 g l7+90

i

In these formulae:

1

H

Qe
-
e R
1

—
NV

Q.—Bj Q@ N
—_—
'Q“\<
-
Y
1
-
RS
i
2
~,
en D, 9R §
L
N
i
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—1
B = (&;2)7 2,5,
] {
1 _ g g 1
y“( y) g g
S=XbatpzB|Ebalyzb
i i
— g 9 g 1 g 9 gl
1 19 g g 1 g g9

and further:
1) bis the ; vector of elements
by = E (Bp(;0)), independent of 7.

2) 4d is the & matrix of elements
A = ECOV (X, ;X ],0) = E(c*(,0)) o = s* s,
where

s* = E(¢°(,0)), independent of ;.

3) a is the § matrix of clements
ad = COV(B,(;0), B,(;0)), independent of j.

1.4. Problem
Our problem is to find unbiased estimators for 4, 2, a. For brevity,
these quantities will be called, respectively, the mean veclor, the
variance, the covariance matrix.
2. FIXED-CLASS ESTIMATORS.

In this section we consider a fixed class ;X and we make infer-
ences based only on the variables in that class.

2.1. Estimation of the mean vector

2.1.1. T heorem

TFor the estimator

b= ) e X, () (1)

we have
E(5/,0) = B(;0), (2)
E(sb) = b. (3)

Demonstration. Follows from the fact that

E(1X[;0) = u(;0) = y8(;0)
and the definition of 5.
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2.1.2. Remark. The arguments in favor of the estimator 13 are the
same as those justifying the identically constructed estimator
in multivariate regression theory. We shall not repeat them here,
but we note however that such an estimator can be obtained as
well by least-squares theory as under normal assumptions.

It is seen that jl; is 4B defined in 1.3.

2.2. Estimation of the variance
2.2.I. Lemma

For any symmetrical { matrix 7:

EGX 7 1X[10) = o2(;0)tr(r 19) + 1/ (;0) 7u(40).

Demonstration. We have, dropping everywhere the fixed class-
index j,
E(X7X|0) = Z ¥ E(X, X,/0)

Trs
— £ 28| E(X, X,/0) — E(X,[0) E(X,/0)] + X 72 E(X,/0)E(X,/6)
rs rs

= 5 71 COV (X,, X,/0) + X 1,(0) 7% ,(0)
Trs

rs

= o%(0) = 7ol + u'(0) 7u(O)

rs
= o%(©) r(rv) + &(0) 7(0).
2.2.2. Theorem

For the estimator

I ~ ~

18 = BN — ) ot X — ysb), (4)
S
we have
E($2/,8) = 0*(;0), (5)
E(;$2) = s? (6)
Demonstration

We drop everywhere the class-index 7. Using (1), we have, after
obvious simplifications:

t—g) 2=XrX,

where

r = vt —omiy(yumiy) iy,
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Therefore
tr(r) = (1) — (o= 2y(y'v"13) " 1y)
= 1(1°) — trly'v=19(y'01y) ")
= r(1°) —ir(1°) =t —g,

where 1°, 1°° are respectively the ¢ and the ¢ unit matrix.

Also,

w'(0) ru(©) = 1'(©) r8(O) = o,
since 7y = 0. Therefore (5) follows from the lemma. Then (6) is
evident from the definition of s2.

2.3. Relation for the covariance malrix

2.3.1. Remark

The covariance matrix @ cannot be estimated from observations
in one class. However, the following relation (8) is the first step
in the construction of unbiased estimators for a. Observe that, as
is indicated, the relations (7), (8) arc § matrix relations.

2.3.2. Theorem
E((h —b) (b — 0)1,0) = o*;0) (v o ') +
+ (B(O) — &) (B(O) - ), (), (7)
E((p—1b) (p— b)) = (' p7'0)"* + . (3). ®)
Demonstration
We drop everywhere j. First we prove:
E(XX'[0) = 62(0) v + 3(0)8'(0)y" (0)
Indeecd, the § element of the first member of (g) is
E(X,X,/0) = COV(X,, X,/0) + E(X,/0) E(X,)/0)
= o%O) + 1, (0) 1,(0).

So we have (g) since the last cxpression is the { element of the
matrix

c(0) v + w(O)u' () — 52(0) v -+ YB(O)B'(O) .
By (1): 55’ — (y'v-19)-1y'v 1 XX v 1y(y'o-1y) 1.
By an application of E(./0), using (9):
E(bb'/0) = 62(0) (y'v-'y) "t + B(0) B'(O). (10)
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I'rom (2) and the rclation
(b—b) (b—b) = bb' — bb' — bb' + bb’
it follows that

E((b—10) (b—b)|0) = E(bV'[©) — bB'(O) — B(O) b’ -+ bb".

Combining this relation with (10), we have (7). Then (8) follows.

3. GLOBAL KESTIMATORS.

Here we use the statistical material of all the classes.
3-1. Estimation of the mean veclor
3.1.1. Theorem

Whatever be the § matrices jn satisfying & ym = 1, the vector

!

b= X 47T ]I) (II)
J
1 =

g 1
g 9

<

is an unbiased estimator of b.

Demsonstralion
Use (3).

3.1.2. Natural estimnator

In the {BS) case, the cstimator

b= X 3P jb, (12)

where the scalars ;¢ arc defined by

7P = X yps/E ops, (13)

will be called the nafural estimator of b. The natural estimator is a
particular ecstimator (11) obtained by taking [or ;= the diagonal
matrix with cach diagonal clement equal to ;. The numbers jp
will be called the natural weights. The matrices ym in (r1) can be
considered as generalized weights.

The natural estimator b is used (at least implicitly) in Buhlmann
and Straub, [1], in the (BS1) case.



106 DE VYLDER

3.2. Estimation of the variance

3.2.1. Theorem

Whatever be the scalar weights jp satisfyving Z jp = 1,
)

§2 = 2yp 82 (14)
1
is an unbiased estimator of s2.
Demonstralion
Use (6).

3.2.2. Nalural and unweighted estimators
In the (BS) case, the estimator
§ =L yp 4 (15)
7

will be called the nalural estimator of s2.
In the general case, the estimator
@ XS (16)
2= - j 2 1
k i
will be called the unweighted estimator of s2.

The unweighted estimator is considered in Biihimann and Straub,
[1] in the (BS1) case and also in Hachemeister, [3] in the more generat
(BS) case.

3.3. Estimation of the covariance matrix

3.3.1. Theorem
Let y# be weights satisfving yh = 5k, 2 gk = 1 and set jub =
if
Zyk. Let §2 be an unbiased estimator of s2. Then the § matrix 4

i
defined by the relation

3 ik (b — b) (b —sb) =
if
2(L— B yk) d + 282X (k- — uk) (Viv=1y)-1, (), (17)
i i

is an unbiased estimator of a.

Demonstration

(b —58) (10 — )" = (&b — 1) — (b —8)) (b — ) — (b — b))’ =
(tb—0) (b —10)" + (06— ) ;b6 —b)" — (b —b) (;b —b)" —

~ ~

(36 — ) (b —b)".
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Therefore, by the assumption of independence of classes, by
(3), (8), writing momentarily sw for s (v' q-1y)-1:

B(E gk (b —b) (b — b)) =
‘Zi. yh{pe + a) + E; yk (juo + a) — 2 2; gk 3y (1w + a) =
2a(r— Zgk) -+ 2 2:4 (1gh — uk)pw.
I'rom this the theorem is clear.
3.3.2. Natural estimator

In the (BS) case, let & = 4p jp. Then d defined by (17) will be
called the natural estimalor of a, for the given §2, cven if the latter
estimator 1s not the natural onec.

If b is the natural estimator (12) of b, then
ip g8 (b —3b) (16 — 40)" =
vy

S p (b - b b — b b — b ) =

iy

|8}

~

28 p b —2bb =25 p(sh—0b) (b— b
t 1
So the natural estimator 4 results from the relation
X2p (b —b) b—0b) =
(T—2 ) d 4 FZ px—p) (v @ ') (©), (18)
i 1{

where 1; is the natural estimator (12) of 4.
3.4. The (BSI) case
3.4.1. Notations

Here we consider the (BS1) casc and use the notations
P2 = Egps, spx = Lypr = D sps.
. ] fs

Then the natural weights are jp = j;pz/xpsx.

We use the abbreviations

! J’Ps alpy2s Z iPs \
Fa WY

NE = — X4, EXE = N E = 7
vpy

Py Py
’ ] )
3.4.2. Estimation of the mean

Now 4b, b are scalars denoted by s, . By particularisation
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of the general results we have gt = ;X g and the natural mean
cquals # = gN\g.

3.4.3. Estimation of the variance
The g-th class variance estimator is, by particularisation of (4):

I
;= T B (X o X )R (19)

The unweighted estimator is

§2 = I jps (3Ns — X g)% (20)

"(t—dl) ie

This 15 the estimator considered in Bithlmann and Straub, [1].

3.4.4. Estimmation of a
The natural estimator 4, a scalar in this case, results from the
relation
(1 —Xp%) d = X p(4NEg -~ gXg)? — (k — 1) /Py, (21)

obtained from (18). The Biihlmann and Straub, [1] estimator a
results from the relation

2 iPs ) . M—1
Y b)) a = D P G A 5
(1 - P S pe (15 -—— gXeE) 5 $ (22)

}ox

By the identity
X gps (X s— eXp)? = X ps(3Xs-— ;X p)* + X jpe (X £XE) 23
fs is )
it is secn that @ = a if §2 is the unweighted cstimator (20).

4. OprivaL EstivMATIiON OF THE MEAN REGREssION VECTOR

1.1. Optimal estimator

An estimator € in a sct I ol vector cstimators shall be called
optimal 1n E if the trace of the covariance matrix of € is minimal,
in comparison with the traces defined similarly for the other ele-
ments m E. If E is a sct of scalar estimators, the principle invoked
15 that of minimum-variance.

We leave the question of an optimal @ or §2 unsettled. We con-
sider, here, the casc of an optimal lA)givcn by (11). We prove that the
optimal sequence (1w, am, ..., g} IS the sequence (12, 22, . . ., §2)
of credibility matrices (sce 1.3), except for the constant pre-factor
()~
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4.2. Lemana

Let ym, g, . . ., i be definite positive svmmetrical § matrices.
Let 1%, 0%, ..., ¥ be variable g matrices. Then the minimum of
the trace

(S x gn gx'y, (24)

subject to the constraint X ,x = 1, is reached for
i
= Egm )ty (j=1

.2, ... k).

Demonstration
If yxis fixed and if v is an arbitrary § vector, we have

v (s gmax’) y = (¥ i xX)pn(y' 4x)" >0

since ¢ is definite positive. Therefore 4% gm 44" is semidefinite
positive and has a nonncgative trace. Thus, (24) is > o. It is a
quadratic form in the kg® variables 4. I we eliminate ¢” variables
by the constraints £;v = 1, we have a quadratic polynomial in
(k— 1)g? independent variables that is never negative. Such a
function is minimum for finite values of the variables. (See, for
example, the lemma 2.5 in De Vylder, [2]). Now we shall apply
Lagrange’s method and we shall find a unique extremum. FFrom
the preceding discussion it follows that this extremum must be the
minimum.

We introduce the g* Lagrange multipliers 2% corresponding 1o thce
constraints

Y ol =58
1
We minnmize
L=trEwmpx)—2 5 1l
' o3
= = 2t mf—2 I 8l
wafiy 1afd
We must have
I oL v ot .
0 = ;: b_;_v;', = 2 ;% jmy——lp,

or, in matrix form,
GY g = A,
Then, successively,

X = A 1, I = X,x = A2, k= (Z gm-1)1,
7 J 7 J 7
i
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and (z5). Note that the existence of the inverse matrix of Zym~*
results from the assumptions.
4.3. Lemma

The covariance matrix of 5 given by (11), 1s
N sty e ty) T e (7)- (20)

Demonstration

From (8) and from the independence of classes:
E((Sem b -— b) (Sym 40 — b)) =
E(Zim (ib — b) (Eye(jb — b)) =
X g E((sb —b) (b — b))y’ B4y =

i)

Zogm (s2(y' g ly) -t 4 a) 4m’.

i

4.4. Theorem
The optimal estimator b in the class of estimators (11) 18
b= X () bz b, (27)
J I

where the 52 arc the credibility matrices defined in 1.3.

Demonstration
From the definition of ;z follows thc relation
(' d=y) +a =zt a,
Then, since

sy’ jurty) Tt = (y ;A 1y) "L
the theorem follows from the lemma’s.

4.5. Corollary
If b is estimated optlmally, there is no difference between the
credibility approximations jB 1B ;B to P(;0) given in 1.3.

4.6. Remarks
It seems that we are in a circular situation if we try to usc the

optimal I;, since this b depends on @ and that Eis needed in, for
cxample, the natural estimator 4 of a.
However, this anomaly is only apparent, since the flrst member of

(18) can be written without b. In other words, in (18) b must be the
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natural estimator and not the oplimal one. It is not excluded,
however, that (18) can bc optimized in some way by a method of
successive approximations, using successively improved b ’s and,
eventually, redefinitions of the numbers ;p;.

5. NON-NEGATIVITY CONSIDERATIONS

The covariance matrix a is semidefinite positive. In particular,
in the (BS1) case the number a is non-negative. It is known that
the estimator @ can provide ncgative values. In such cases, Biihl-
mann and Straub, [1] estimate @ by o.

A similar method can be used if a is a matrix. Ior example,
suppose that «° is an estimate of @ and that 4° is not semidefinite
positive. Then make a° diagonal by an orthogonal transformation.
Replace the negative diagonal clements (i.c. the negativecharacter-
istic values) by o and apply the inverse orthogonal transformation.

If all diagonal elements of a° are positive and if a° is not semi-
definite posilive the following method can also be used. Multiply
all non-diagonal elements of &° by the same number x. Then if x
decreases from 1 to o the matrix becomes neccssarily semidefinite
positive. Keep the largest possible x.

Of course, a justification of these methods is difficult to find.
Moreover, the estimators redefined in such a way are no longer
unbiased. But it must be kept in mind that it is preferable to have
an estimate that might be bad, than no estimate at all. And also
that the application of credibility formulae with wrong parameters
introduces unfairnesses in the different classes, but that these
counterbalance each other, at least if b is estimated correctly.

Finally, let we go back to the general formula (17) and let we
consider the following question. Is a rcasonable general choice of
the weights ;& and sp (in §2) possible in such a way that theresulting
& always is semidefinite positive? The answer i1s negative. Indeed,
let we consider the (BS1) case with each yps = 1. Then our general
hypothetical rule for fixing the weights must lead to equal weights
40 since we start from a symmetrical situation. For the same reason,
we must have

gk = o (1 #7), uk =P

for some a and P. Since we must have Ik = 1, there is one in-
dependent parameter, say o, left. But an inspection of (17) shows
that this parameter simplifies in that relation. So we may take o =
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8.

Then 4 is the natural estimator, given by (21). The particular

case & = 2, { = 2 shows that & < o for the values

[T

(¥

3

X1 =1, X, = I,

, Q.X‘g = 0.

1Xz2=0
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CONTRIBUTION A L'ETUDE DU COUT DES SINISTRES
AUTOMOBILES

P. PicarD

Paris

SUMMARY
A Contrvibulion to the Study of Automobile claims amounis

After having o look at the results obtained by adjustment of automobile
claims amounts distribution, we rescarch how the number and the time-
configuration of past claims condition the claims law of probability.

We have statistics about a group of 471 ooo cars which was followed for
three ycars: 1970, 1971 and rg72. We use mathematical technics and among
multi-dimensional analysis, we usc factorial analysis of correspondance
(AF C) A F.C. permits us o show the link which exists between the claim
amount of the third ycar and the number of claims during the two years
before. A quantitative analysis of the corporal claims shows that, of the
frequency of corporal claims during the third year growihs up in function
of the number of past claims, the expected corporal claims amount of the
third year decrcases as the square of the material claims number during the
two first ycars

I. PosiTION MATHEMATIQUE

La notion de processus de risque est désormais bien connue des
actuaires. On ne rappellera donc ici que les définitions et propriétés
utiles pour la suile des calculs.

Soit S; la somme des montants des sinistres pendant la période
de temps (0, 2). Sy cst une variable aléatoire dépendant du temps,
c’est un processus aléatoire que I'on décompose en:

— la probabilité P7 (¢, s) pour que le nombre de sinistres passe de
n a m pendant la période de temps (¢, s);

-— la fonction Iy(x/v), probabilité pour que S; soit inféricur a v
sachant qu’a l'instant précédent ¢, il était égal & x et sachant
quc ¢ est 'abscisse d'un saut du processus (un sinistre).

Cette fonction IFy(xfy) est 'objet de cette étude. On a:
F,(x/y) = Prob [S, < 9/S,_.= x et ¢ = abscisse d'un sinistre]
soit en posantz = y — x (montant du sinistre & I'instant )
Fy(2) = Prob [AS; < 2/t = abscissc d'un sinistre]

ou AS; est 'accroissement de S, & 'instant £.
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II. AjusTEMENTS DE Lois

Il.1. Précautions & prendre pour analyser des codits de sinistres
antomobiles

La base statistique est un ensemble de sinistres survenus au
cours d'un certain laps de temps & un groupe de véhicules bien
défini. Mais pour analyser ces chiffres, des précautions doivent étre
prises:

— Si Von observe des sinistres récents, beaucoup d’entre eux ne
sont réglés que partiellement ct la partie évaluée est pcu précise.
Pour avoir une meilleurc connaissance des coiits, il faudra
attendre le moment ol la proportion des dossiers restant en
¢valuation est faible.

— Dans une étude de ce type, surtout si la période d’observation
est longue, on est amené A comparcr des sommes A des instants
différents et, donc, se pose le probléme du choix (ou de la con-
struction) du type d’actualisation.

11.2. Résultats obtenus

Monsieur Marcel Henry a montré que la fonction y, nombre de
sinistres supérieurs a une garantie %, pouvait étre représentée d’'une
fagon assez satisfaisante par la fonction de Galton-MacAlister:

~ 2

I T
= - et dzavecz=alogx + b
Y V211 _'rm g+

Il apparait toutefois nécessaire de donner a a deux valeurs
différentes, I’une pour les x inférieurs & un certain montant, 'autre
pour des valeurs de x plus élevées (le nombre de gros sinistres
décroit trés rapidement).

On obtient des résultats comparables avec la formule de Pareto:
b
Logy=alogx+b ou y= pore

qui a I'avantage de¢ conduire A des calculs plus simples. Mais, comme
dans la loi proposée par Monsieur Marcel Henry, on doit ajuster
plusicurs courbes suivant I'importance des sinistres.

Monsicur B. Almer a proposé d’ajuster la distribution des sinistres
par un trindme exponentiel:

W(x) = n(@,Bic7%% 4 aBac™?7 + a,Pic” P

aveca, +a, +a; =1
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Plus récemment, Monsieur Gaudibert, dans une thése présentée
devant I'Institut des Actuaires Franc¢ais a ajusté, pour les gros
sinistres, une fonction du type:

A

y = xa ebﬂi

ITI. LiaisoNs DES RESULTATS DES ANNEES SUCCESSIVES

II1.1. Rappel des résultats obtenus pour les fréquences des sinistres

P. Depoid, dans son ouvrage “Applications de la statistique aux
Assurances”, fait apparaitre la liaison entre les fréquences d’années
successives de mémes assurés. Monsieur Delaporte a formalisé le

GRAPHIQUE I

Stnisters Materiels et Corporels
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2éme Année.
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GRAPHIQUE 2
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Indice de Fréquence Corporelle de 36me Année cn Fonction des Resultats
Materiels de rére ¢t 28me Année

probléme. Monsieur M. Brichler a proposé une formule remar-
quablement simple:

I+ x
f"/z:F—I——{‘—nF

ol F est la fréquence d’ensemble et x le nombre de sinistres pendant
n années.

Cette formule a ensuite ¢té améliorée dans des travaux effectuds a
I’Association générale des Sociétés d’Assurance contre les Accidents.

Pour illustrer cc phénoméne, on se reportera au graphique n° 1
obtenu avec la “‘Statistique commune” de 1970, 1971 et 1972.
On a porté, en ordonnée, un indice de fréquence: 100 = ensemble
de la population pour 'annéc considérée ct, en abscisse: le nombre
de sinistres survenus dans les deux années précédentes. Le graphique
n® z montre laccroissement du risque corporel en fonction du
nombre de sinistres matériels passés.
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111.2. Liaisons enire les vésullats des anndes précédentes et le codt
moyen des sinistres automobiles

Sur le graphique n° 3, on porte en abscisse, le nombre de sinistres

des deux premieres années et, cn ordonnée, un indice du cofit

moyen des sinistres de troisieme année. La décroissance du colt

moven en fonction de la gravité des antécédents est nctte. En effet,

pour 3 sinistres en deux ans, le colit moyen est diminué de 25%.

GRAPHIQUE 3

Sinistres Materiels & Corporels
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111.3. Choix d’une méthode de recherche

Le but de la présente ¢tude est de rechercher comment le nombre
et la configuration temporclle des sinistres passés conditionnent la
distribution des coiiis des sinistres de derniere année.
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La statistique classique permet d’ajuster une loi de probabilité
de forme analytigue donnée aux résultats empiriques. Pour étudier
la liaison temporelle dans le coiit des sinistres automobiles, il est
intéressant dc se détacher d'une hypothése de loi: les “analyses
multidimensionnées’” et, plus particuliérement, 1’ “Analyse fac-
torielle des correspondances™ (A.F.C.) choisie dans cette étude le
permettent.

1V. Axavvse FactorieLLE DEs CORRESPONDANCES (A.F.C.)
IV.1. Théorie

Cette analyse cst généralement utilisée dans I’étude des tableaux
de contingence, mais, par extension, cette méthode s’applique a
tout tableau rectangulaire de nombres positifs ou nuls.

Soit pi; 'élément de la ligne ¢ ct de la colonne j. On note:
fiu =Pyl T by pr = Z by, py = Z py
(] 3 ]

h=2fi=ZfyetZfp=2f;=1
] i i ]

f; = fylfi = 1’11/1%?]‘3 = ffj/fj = i’u/ﬁj

On associe & l'individu i (4 la ligne ), la loi conditionnelle sur J:
{Ff o S et = f1, muni de la masse f; ot Jmax = card (J).

De méme, a I'élément 4, on associe:

{A, ..., flmax} = /% muni de la masse f; ou Imax = card [I].

On a alors les deux nuages:

N(I) = {f} de masse f;/i € I} ¢ IR, muni de la métrique du »* de
centre f;:

Jmax

&6 = ff—f 1= !? (3 — 19l

N(J) = {/} de masse filj € J} C IR; muni de la métrique du %* de
centre f;.

Le meilleur espace de dimension & représentant N(I) est engendré
par k vecteurs orthonormés de Ry {(ei)1 ... (ex)s}, auquel cor-
respondent les opérateurs de projection (facteurs): ¢ ... ¢, ap-
partenant & IRY = (IR;)* qui sont les vecteurs propres de # 0 ¢
{m est la métrique et s est la forme quadratique d’inertie) correspon-
dant aux k& plus grandes valeurs propres: A¢i), ..., A@x).
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Le nuage N(I) est approximé par sa projection sur la variété
précédente, & l'individu ¢ on associe ses coordonnées: G(z, 1), ...,
G(Z, k), et on a avec le niéme facteur:

Jmax

Gz, n) = (fJ) = 2 ¢ij L b, ¢i

De méme pour N(f), a 7 on associe:
F(4,1) ... F(5, k)
avec
== V;‘(Gﬁn) ¢'Zz
et

Jmax

G, n) = Lr],n THVN$,)

Jmax
G, n) = Z F(j, n) Py/Py Vi(dn)
Fro
IV.2. Propriétes
L’analyse factorielle des correspondance donne un réle identique
aux individus et aux caractéres (Symétrie parfaite).
L’analyse des correspondances satisfait le principe d'équivalence
distributionnelle.
IV.3. Organisation des données

Pour examiner la distribution des cofits des sinistres, on est con-
duit A discrétiser. Les abscisses des classes de colit sont les suivantes:

Classes de cotit des sinistres automobiles

No ABSCISSES No. ABSCISSES
Cor Moins de 150 ¥ C 16 5000 F. 4 10000 F.
N —f4 C 17 10000 F. 4 15000 F.
C oz 150 F & 200 F. ¢ ¢ 48 15000 F. 4 20000 F.
Co3 200 IF, a 300 I7.
C o4 300 I' & 400 F. § C 19 20000 I". 4 30000 F.
Cos 400 I' a s00 I'. § C 20 30000 FF. & 40000 F.
C o6 500 I7. & 6oo F. § C 21 40000 F. & 50000 F.
C o7 6oo F a 700 F. -
C o8 700 T. & Soo F. § €22 50 000 F. & 100 000 F.
C o9 800 F. & 900 T. C 23 T00 000 1: A 150000 F
C1o goo F. a4 roooF. || €24 150 000 I7. & 200 coo F.
Cri 1000 F.A 1 500F. . s -
C 12 1500 . 4 2000 F. C 25 200 000 I, & 500 ooo F.
Ci13 zoooF.a 3000l §C26 Plus de 500 ooo F.
C 14 3000 F.a 4o000F.
Ci1s 4000 F. & 5000F.
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Pour chaque configuration de sinistres durant les trois années
consécutives observées, on note la distribution des coiits des
sinistres de troisi¢tme année. C'est-a-dire que:

— pour tout triplet n® 7(a, b,¢) avec 0 <a <3 o0o<b <3 et
I <c <3, on ales nombres Py des sinistres de la classe de
cofit noj.

COKNFIGURATIONS TrANCHES DE CouTs

tére 28me 3éme

No annéeannécannée Cor Coz .... Cj3 .... CN
1 o] o t Pu P[:: PR PU P1N
1 a b 4 Pt} sz Py 1){‘\7
M 3 3 3 Parr Pare oo Pay ... Py
M := 48 configurations N = 20 classes

REMARQUES: On a retenu comme nombre maximun de sinistres
par an, le nombre trois, afin de posséder dans chaque cas un nombre
d’observations suffisant pour I’analyse.

V. ANALYSES DES RESULTATS

Les taux d’inertie des axes factoriels sont {aibles. Cependant, les
plans des axes 1 ¢t 2 ct des axes I et 3 posscdent des parts d'inertie
suffisantes pour permettre une interprétation.

Pour améliorer la commodité de lecture des graphiques en cas de
points superposés, on imprime un identificateur d’autant plus noir
que la multiplicité est grandec.

Les configurations 331 et 133 se distinguent particuliércment et
rendent linterprétation du restc des nuages difficile. Les figures
n® 4 et n® 5 représentent les projections des nuages sur les plans
(1, 2) et (1, 3) aprés suppression de points 331 et 133 (sans modifica-
tion des actes factoriels).

L’étude du plan (1, 3), figurc n® 5, permet de mettre en évidence
un effet Guttman, c’est-a-dirc que I'on peunt disposer le tableau de



L'ETUDE DU COCT DES SINISTRES AUTOMOBILES I21
(GRAPHIQUE 4
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données, par permutation des lignes ct des colonnes, sous une forme
bloc-diagonale et donc il existe un classement des types de con-
Sfrguration qui induit un classement des colits des sinistres de 3éme
année. Cette remarque prouve U'existence d’un conditionnement de
la distribution des coflits par les antécédents.

L’explication des liaisons entre les configurations et les cofits des
sinistres se déduit de I'interprétation des premiers axes factoriels.
Il est pratique d’examiner successivement les projections des nuages
I et des nuages J (graphiques n® 6 ct no 7).

Sur le graphique n? 6, on repére les configurations par les figures
suivantes:

Nombre de sinistres Figures
en deux ans
O i oo
S O
2 A
S AV

L’analyse des groupements ainsi obtenus permet de montrer que
I’axe horizontal classe les configurations par leurs nombres de
sinistres dans les deux premiéres années. On remarque que le
nombre de sinistres de 3¢me année ne semble pas avoir d’influence
sur la distribution des cofits.

La forme triangulaire du graphique n® 7 est caractéristique
d’éléments classés naturellement (tranches de coiit). Pour linter-
prétation, on doit prendre soin de se bascr principalement sur les
éléments ayant un poids important (population importante). A cette
condition, on remarque le phénoméne de classement sur l'axe
horizontal suivant les cotits (cout élevé a gauche, moyen et faible
a droite). La distinction entre tranches de coiit moyen et tranches
de colit faible peut étre observée sur I'axe vertical.

Cette étude permet de mettre en évidence la liaison entre les
survenances des sinistres passés et le colt des sinistres présents.

La distribution des cotits des sinistres de 3eme année est d’autant
plus biaisée vers les classes inférieures que le nombre de sinistres
pendant les deux premiéres années est important.

VI. ETUDES QUANTITATIVES

La mesure du phénoméne observé réclamerait une période
d’observation plus longue, car on constate que la sélection des
assurés par leurs survenances est moins rapide vis-a-vis des cofts
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que vis-a-vis des fréquences. Cependant, sur trois ans, l'influence est
particulierement nette sur les tranches élevées de cofits, ¢’est-a-dire
sur les sinistres corporels.

On a vu (graphique n® 2) que la fréquence corporelle croit rapi-
dement en fonction des antécédents. On va montrer que le codit
moyen corporel décroit en fonction du nombre de sinistres passés.

Le graphique n? 8 montre que le colit moyen corporel de 3éme
année décroit en fonction du nombre de sinistres matériels des deux
années précédentes. On remarque que si I'assuré n’a aucun sinistre
matériel pendant deux ans, son colit moyen corporel est supérieur
d’environ 59, au colit moyen corporel de ’ensemble.

GRAPHIQUE 8

Indice du cofit moyen
corporel de 3tmo année

Indico du cofit
moyon corporcl
de 3tme année
en fonction du
nombre do ai-
nistres paté-
riels des deux
promi¢res
annéea

GaR
_1ET

T

Hombre de sinistrec
matériels on 2 ana

La haissc du coit moyen corporel de 3éme année est propor-
tionnelle au carré du nombre de sinistres matériels des deux pre-
micres années,

Nombre de sinistres Baisse du coiit moyen
matériels en deux ans Nz corporel
1 I 5%
2 4 20 %,
3 9 45 %
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VII. CONCLUSION

L’analyse factorielle des correspondances appliquée dans cette
étude permet de mettre en évidence lc conditionnement de la
distribution des cofits des sinistres de derniére année par le nombre
de sinistres passés. La probabilité d’un sinistre de colt élevé
diminue trés rapidement lorsque le nombre d’antécédents
augmentent.

La probabilité de survenance d’un sinistre corporel est d’autant
plus forte que le nombre de sinistres passés est important. Cepen-
dant, I'étude quantitative a permis de mesurer la décroissance de
gravité des sinistres corporels. Le colit moyen corporel de troisiéme
année semble étre une fonction quadratique décroissante du nombre
de sinistres matériels des deux années précédentes.
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