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P R O B L E M S  IN T H E  ECONOMIC T H E O R Y  OF I N S U R A N C E  

KARL BOTCH 

I. INTRODUCTION 

I . I  More than ten years ago I wrote a paper  with the ti t le 
"The  Economic Theory  of Insurance"  [6]. I was not par t icular ly  
happy  about  tins paper, and [ do not think it con t r ibu ted  much 
to the deve lopment  of a sast i factory theory.  The paper  did however  
make m e - - a n d  f hol)e some r eade r s - - acu te ly  aware of the dif- 
ficulties and problems which must  he overcome before a proper  
theory  can be constructed.  These problems are still unsolved, so I 
have on the present  occassion chosen a more modest  title for a 
paper  on substant ia l ly  the same subject.  

1.2. Insurance  is an economic ac t iv i ty  of some importance,  and 
there is an obvious need for a theory  to explain and analyse the 
ac t iv i ty  in the insurance sector of the economy. During the last 
decade m a n y  economists seem to have felt the need, and to have 
taken it as a challenge. The results have been a fair amoun t  of 
research, and a number  of publications, which I shall not t r y  to 
review here. I t  m a y  however be useful to refer to three very  recent  
survey  articles by Fa rny  [IO], Fe r ry  [II]  and Rosa [I4], which give 
extensive bibliographies. The three articles seem to indicate tha t  
the economics of insurance is becoming a fashionable subject  of 
research. 

2. A FEW HISTORICAL NOTES 

2.I. Most economists have realised tha t  insurance is impor t an t  
and interesting, even if they  were unable  to develop an adequa te  
theory  for this par t icular  economic act ivi ty.  The classical paper  
by  Bernoulli  [3] contains several references to insurance problems, 
and Adam Smith 's  Ez5] remarks about  iusurance are often quoted.  
He observed tha t  the profi t  of insurance companies was modest ,  
compared  to the profits  made  by  organizing lotteries. This obser- 
vat ion implies that  the inclination to gamble in some way must  be 
stronger than the risk aversion in the economy as a whole. 

2.2. An early a t t emp t  at a sys temat ic  analysis of the problems 
which are central  in insurance is found in Bobm-Bawerk ' s  first 
book [4], actual ly  his thesis, or "Habi l i ta t ionsschr i f t " .  In this 
book he considers what  we today  would call "condi t ional  claims". 



2 BORCH 

If your property is stolen, you have the right to recover it, if the 
police should catch the thief. Bt6hm-Bawerk studied the value one 
should attach to such rights. It  is curious that it never seemed to 
occur to him that insurance companies, as a matter  of routine, 
would have to evaluate such rights. If he had seen the connection, 
BOhm-Bawerk might well have become the first student of the 
IBNR-problem. 

2.3. There were other Austrians who were intrigned by the 
problems in economic theory which were suggested by insurance. 
In a paper presented to the 6th International Congress of Actuaries 
in Vienna, Tauber I16] suggested that reinsurance premiums 
should be determined as equilibrium prices in a market where 
conditional claims (Anspri.iche) were bought and sold. Beyond 
presenting this idea, he did not contribute much to the develop- 
merit of an economic theory of insurance, apparently because he, 
like many actuaries of his generation, became too fascinated by 
his own mathematical manipulations. 

A more remarkable contribution was made by another Austrian 
Lindenbaum [I2], who argued that the theory of insurance must 
be based on the "supply of security" (Sicherheitsangebot) and the 
"demand for risk" (Risikennachfrage). The paper was however 
published in 1932, and we may assume that economists in the fol- 
lowing years were preoccupied with other problems. In any case, 
nobody seems to have followed up the ideas of Lindenbaum, and 
his paper is virtually forgotten. 

2.4. In America an at tempt  at developing a complete theory of 
insurance was made by Willett [17] at the beginning of this century. 
His book is in many ways remarkable, but it seems somehow out 
of touch with the contemporary economic theory, and this may 
be why it has not inspired other economists to continue Willett 's 
research. The same remarks can be applied to the book by Pfeffer 
[13], published 55 years later, which also seems to have had little 
influence on research in the two following decades. 

I t  is probably fair to say that the present interest in the eco- 
nomics of insurance springs from the theory of the economics of 
uncertainty which has been developed during the last twenty 
years. The pioneering work in this field is certainly Arrow's paper 
from 1952 [2]. This short elegant paper does really contain an 
economic theory of insurance as a special case. In the following 
sections we shall do little more than discussing this special case in 
some detail. 
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3. INSURANCE AND MARKET EQUILIBRIUM 

3.1. It is convenient to begin this section with a brief restate- 
ment of the classical theory of markets of pure exchange. 

We consider a market of m persons and n goods. In the initial 
situation person i holds an amount x~ of good j. Hence the initial 
allocation is described by a matrix {x~/}. The persons exchange 
goods among themselves, and arrive at a final allocation described 
by the matrix {y~}. 

If goods are neither produced nor destroyed during the ex- 
changes, the following "conservation" condition must be satisfied 

E x,j = yij for j = i, 2 . . . .  , n. (I) 
I , , l  ~ - t  

It is usually assumed that  all cxchanges have to take place at 
market prices, so that the market value of a person's holdings of 
goods does not change during the transactions. This assumption 
gives the condition 

pjxij = E pjy,j for i = I, 2 . . . .  , m  (2) 

where pj is the price of good j. 

The behavioral assumption leading to condition (2) is of course 
very restrictive. It rules out free bargaining and negotiations over 
the exchange of goods. 

Further it is usual to assume that  the preferences of person i 
can be represented by a utility function 

u d y ~  . . . .  , y ~ )  = u d y ~ . )  i = I ,  2 . . . . .  m .  (3) 

This assumption is not completely trivial. It  implies complete 
selfishness, in the sense that a person will only consider "his own 
row" when he evaluates an allocation matrix. 

3.2. With these assumptions, person i will maximize (3) subject 
to condition (2)--his "budget equation". This problem can be 
solved for ally n-tuple of prices. The conditions (I) must however 
also be satisfied, and this will make it possible to determine the 
prices. Hence under reasonable assumptions about the shape of the 
utility functions, we obtain a solution, consisting of a final al- 
location {y,j}, and an n-tuple of equilibrium prices. This solution is 
usually called "competitive equilibrium". The final allocation in 
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this solution is Parcto optimal, i.e. there exists no other  allocation 
{W~J} such tha t  

ud2~. ) > u~(y~.) 

with at least one strict  inequali ty.  

I t  is easy to see tha t  the set of Pare to  optimal allocations can 
be found by  maximizing 

nl  

E lelu~(yu) (4) 
I - I  

subject  to condition (I). Here  kl . . . . .  km are a rb i t ra ry  positive 
constants.  Since the n lax imand (4) is homogeneous in the k's, it 
follows that  the set of Parcto  optimal  allocations is a manifold of 
m-I dimensions. 

We get a single element in this set if we impose the behavioral  
assumptions behind the conditions (2), i.e. if we assume tha t  all 
exchanges have to take place at equil ibrium prices, and that  each 
person has to satisfy his budget  equation.  

3-3. If we want to adap t  this model to insurance, it is natural  
to assume that  in the initial s i tuation person i is exposed to a risk 
which can cause him a loss, rel)resented by a stochastic variable 
x,, with the distr ibution Fl(x). I t  is natural  to assume tha t  l:~(x,) 
is the marginal  distr ibution of a joint  probabi l i ty  distribution 

F(xt  . . . . .  Xm). 
If the a t t i tude  to risk of person i is represented by the uti l i ty 

function ut(x), his expected ut i l i ty  in the initial s i tuat ion will be 

u d -  x) dFdx ). 
0 

In some cases it is convenient  to replace this expression with 

ut(S, - -  x) dFt(x) 
o 

where S, is in terpre ted  as the "init ial  weal th"  of person i. 

In the model we have outlined, we can assume tha t  the m per- 
sons exchange risks among themselves.  There  is however  no 
natura l  units of risk, to which prices can be assigned, so it seems a 
li t t le artificial to analyse the si tuation as a classical marke t  of 
pure exchange. 
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3.4. I t  seems more natural  to assume tha t  the m persons in some 
way will negot ia te  their  way to some risk-sharing ar rangement .  
A general a r rangement  of this kind is defined by m functions 

y d x ,  + . . . .  + .r,,,) = y d x )  i = I .  2 . . . . .  m 

where yi(x) is the amount  to be cont r ibu ted  by person i, if the sum 
of individual losses is x. Since the model is closed so tha t  all losses 
have to be born by the group o[ m persons, we must  have 

..., > ( , ) =  x x~ = . .  (5) 
i ,  I ~ I 

I t  can be shown [5] tha t  the set of Pare to  opt imal  risk-sharing 
ar rangements  is given 1)3; the m-tuple  of functions yz(x) which 
satisfy the condition (5) and 

u ~ ( y ~ ( x ) )  = , ' e~ ,~(y , (x) )  i = ~. 2 . . . . .  ,~ .  (6) 

Here le~ = I, and k2 . . . . .  km arc a rb i t ra ry  positive constants .  
This result  is valid only if all ut i l i ty  functions are increasing and 
concave, i.e. if .u4(. ) > and '4 ' ( . )  < o. 

3.5. The y-functions which represent  Pare to  opt imal  arrange- 
ments  will usually have a complicated form. I t  can be shown [7] 
tha t  they  will be linear, i.e. 

y,(x)  = a~x + b~ 

only if the uti l i ty functions of all persons belong to one of the 

following three classes 

(i) ul(x) = (x - -  ct) = 

( i i )  us(x)  = l o g  ( x  - -  c i )  

(iii) u i ( x )  = I - -  e -= , z  

Posit ive linear t ransformat ions  of these functions will of course 
give the same results, since 2t(x) and w ( x ) =  A u ( x ) +  B,  with 
A > o represent  the same preference ordering over  any  set of 

probabi l i ty  distributions.  
Any of these three classes seems too narrow to give room for the 

different individual a t t i tudes  to risk which one would expect  to 
find in the real world. The classes (i) and (ii) imply tha t  all persons 
have the same basic a t t i tude  to risk. Differences in preferences are 
such tha t  they  can he explained by  differences in "initial  weal th" .  
Class (iii) gives room for differences in risk aversion, but  implies 
tha t  preferences are independent  of initial wealth. 
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3.6. In pract ice it does not  often happen tha t  a group of people 
negot ia te  a scheme for sharing risks, i.e. create their  own insurance 
arrangement .  The inst i tut ions in the real world which come closest 
to our model, m a y  be the P & I clubs, which can be seen as ra ther  
exclusive mutua l  insurance companies, created by  ship owners. 
The risk sharing in most  P & I clubs is vir tual ly  linear, and this 
m a y  for all pract ical  purposes be a Pare to  optimal  arrangement .  I t  
is not  unreasonable to assume tha t  members  of the club have 
similar preferences, and tha t  these preferences can be represented 
approx imate ly  by  ut i l i ty  functions in one of the three classes in the 
preceding paragraph.  

Most persons who want  to par t ic ipate  in a risk-sharing arrange- 
ment  will have  to go to an insurance company.  Usually the com- 
pany  will offer a fair, bu t  l imited choice of s tandard  insurance 
contracts ,  and people choose according to their  preferences. In 
this way  a risk-sharing ar rangement  is created between customers 
of the company,  and if the company  has share holders, they  will 
also par t ic ipate  in the arrangement .  Through exchange of rein- 
surance between companies, the a r rangement  can be ex tended  
until  it becomes vir tual ly  universal.  I t  seems however  unlikely tha t  
a risk-sharing a r rangement  built  up in this way should satisfy 
condit ions (5) and (6) in para  3.4 and be Pare to  optimal.  

3.7. These considerat ions lead us to our main point. Economic 
theory  gives us some informat ion about  the form of opt imal  risk- 
sharing ar rangements  in an idealized world represented by our 
model. The pract ical  question is then if it is possible to get reason- 
ably close to an op t imum through the existing f ramework of in- 
surance inst i tut ions.  If the risk-sharing ar rangements  which we 
observe in the real world seem far from any  opt imum,  we should 
examine if this necessarily nmst  be so. If the answer is in the 
negative,  we should s tudy  the possibility of reaching be t te r  ar- 
rangements  through inst i tut ional  changes, or changes in insurance 
practice.  

I do not  propose to answer such far-reaching questions in this 
paper. Ins tead  we shall examine some of the assumptions behind 
the theoret ical  results der ived in the preceding paragraphs.  

4. INSURANCE AND THE ASSUMPTIONS IN ECONOMIC THEORY 

4.1. In the classical marke t  model  it is fairly safe to assume tha t  
a person has a preference ordering over collections of goods, and tha t  
this ordering can be represented by  a ut i l i ty  function. When un- 
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ce r t a in ty  is int roduced,  it m a y  be sl ightly more  r isky to assume 
tha t  a person has a consis tent  preference ordering over  a set of 
p robab i l i ty  distr ibutions.  If  we m a k e  this assumpt ion ,  the  existence 
of a ut i l i ty  function follows, and  the object ive  of tile person will be to 
maximize  expec ted  uti l i ty.  I t  is, however ,  easy to cons t ruc t  s imple 
examples  which throw doubt  upon this assumpt ion .  

4.2. Consider a person with an initial wealth S, which includes 
an asset  wor th  A, which can be lost with a p robab i l i ty  p. Assume 
tha t  he can obtain  insurance against  the loss of the asset  in the  
following form : If  he pays  a p r e m i u m  k P  to an insurance company ,  
he will receive a compensa t ion  lea if the asset  is lost. His  p rob lem 
is then to de te rmine  the op t imal  value of k. 

For  an a rb i t r a ry  value of k, the expec ted  ut i l i ty  is 

U(k) = (i - -  ~) ¢~(S - -  kP)  + p u ( S  - -  k P  - -  A + k a ) .  

The first der iva t ive  is 

U'(k)  = - -  (i - -  p) P u ' ( S  - -  kP)  + p (A  - -  P)  u ' ( S  - -  k P  - -  

- - A  + k A )  

and  we find 

V ' ( I )  = {pA  - -  P }  u'(S - -  P) .  

I f  P----~,A, i.e. if the p remium is equal  to the expec ted  com- 
pensation,  we have U ' ( I )  = o. Norm a l l y  the p r e m i u m  is loaded, 

so tha t  we have  P > p A ,  and U ' ( i )  < o. 
I t  is easy to show tha t  U " ( k )  < o, p rov ided  tha t  u " ( x )  < o, i.e. 

if the person has risk aversion.  Hence,  if the p r e m i u m  is loaded,  
the person will not find it op t ima l  to take  full insurance cover. 

4.3. The  conclusion we have  reached above  seems to be con- 
t r ad ic ted  b y  observat ions .  A person m a y  decide not to insure some 
of his assets. If  however  he decides to take  insurance,  he will 
usual ly insure the asset for its full value. We would be surpr ised 
if we observed  tha t  a person del iberate ly  insured his house, car or 
baggage for, say  6o% of its value. 

Such observa t ions  f rom "househo ld"  insurance m a y  not  be 

conclusive. The  consmner  does not a lways behave  as ra t ional ly  as 
assumed  in economic theory.  " I m p u l s e  buy ing"  is a well known 
concept  in the theory  of marke t ing ,  even if it has no place in the  
model  which was out l ined in Section 3. I t  seems however  t ha t  we 
can observe  the  same effect in corpora t ions  where we mus t  as- 
sume tha t  insurance decisions are made  af ter  careful  considerations.  
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Fire insurance on industrial  plant is usually wri t ten for the full 
value. 

In ocean hull and hull interest  insurance we may  find arrange- 
ments  which seem to imply a deliberate under-insurance,  and 
hence may be consistent  with the theoret ical  results we have 
derived. These cases are however  difficult to judge, since the 
marke t  value of a ship may  bear little relation to the loss which 
the owner will suffer if the ship is lost. 

4.4. In the example  al)ove we a~sumed propor t ional i ty  between 
premium and compensat ion.  This may  be realistic, but  it is clearly 
an unnecessary restrict ion on the choice offered to the customer.  
As a more general example  consider a person exposed to a risk 
represented by  the probal)il i ty distr ibution F(x), and assume tha t  he 
by  paying an insurance premium P(y), will be ent i t led to a com- 
pensat ion y(x), if the loss amounts  to x. 

We shall fur ther  assume that  

P(y) = (I + X )  ~ y(x) dF(x). 
o 

This means tha t  the premium is proport ional  to the expected 
compensat ion,  with X as the loading factor. 

Let  S s tand  for the initial wealth of thc person considered. For  

a given functional  P(y), his problem is then to determine tim 
functioll y(x) which maximizes the expected ut i l i ty  

u(s - - e ( y )  - - x  + dF(x). 
o 

This problem was first formula ted  by  Arrow [I], who showed 
that  the solution is of the following form 

y(x) = o  f o r x < D  

y ( x ) = x - - D  f o r x  > D .  

Under  this contrac t  the insured will carry  all losses smaller than 
the deductible D, and all excesses will be completely covered by  the 
insurance company.  

4 . 5 - Ar row ' s  result appears  as a special case of the Pare to  
optimal  risk-sharing ar rangements  presented in para  3.4, if the 
insurance company  is risk neutral .  If the customer  has preferences 
represented by  the usual concave ut i l i ty  function u~(x), and if the 
company ' s  ut i l i ty  function is linear, i.e. 2t2(X) = ax + b, the 
opt imal  risk-sharing a r rangement  is given by the functions 
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y l ( x )  = x and y2(x)  = o  f o r x  < D 

and 

yt(x) = D  and y2(x) = x - - D  f o r x  > D .  

This result should have considerable interest.  [t shows tha t  a 
simple and f requent ly  used insurance contrac t  can bring about  a 
Pare to  optimal  arrangement .  Before jumping to conclusions we 
should however  scrutinize the two assuml)tions which led to this 
result. 

(i) Fi rs t ly  the a r rangement  will be illusory if the company  
should be unable to fulfill its obligations under  the contract .  
Hence the result is valid only if the supervision is so strict  
tha t  the probabi l i ty  of ruiu is negligible 

(ii) Secondly we aSSUlned that  the insurance company  was 
risk-neutral.  This cannot  be correct  if the company  is a 
cedent  in the reinsurance market .  Hence the result can be 
valid only for relat ively small risks, of the type tha t  the 
company  does not reinsure. 

I t  seems tha t  these two conditions often will be satisfied in the 
real world, and this immedia te ly  leads to at practical  question. Why  
do not insurance companies  offer a larger choice of deductibles in 
the insurance contracts  sold to the ordinary  households ? ]7or most  
kinds of simple p roper ty  insurance there should be no serious 
technical difficulties involved. The rat ing system would however  
become more COml)licated, and this would probably  make the 
whole risk-sharing a r rangement  more expensive to operate.  

4.6. In most  s i tuat ions covered by  liability insurance, there is 
theoret ical ly no limit to the loss which the prospect ive insurance 
buyer  can suffer. [n such cases the insurance contrac t  will however  
usually be drawn up so that  the c o m p a n y s  liability is limited. A 
similar procedure  is used for many  insurance contracts  covering 
medical expenses. 

This kind of insurance is not very  sat isfactory to the customer.  
It  leads to the complaint  tha t  the insurance is riot effective when 
it is most  needed. 

If a company  is re luctant  about  accepting unlimited l iab i l i ty - -  
against  a premium with proport ional  load ing- - the  company  
ev ident ly  has a posit ive risk aversion. This was exp l i a t l y  assumed 
away in the preceding paragral)h, so the argument  based on Pare to  
opt imal i ty  does no longer apply. I t  seems however  tha t  in many  
cases it should be possible to devise contracts  with unlimited 
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liability and non-proportional loading which would bring about a 
risk-sharing arrangement  closer to an opt imum than the existing 
methods can do. 

5' FINAL REMARKS 

5.1. In economic theory the model of a pure exchange market  
is generalized by bringing in production. The new elements in the 
generalized model are: 

(i) An initial endowment  of input factors, described by a 
matr ix  {w,h}. The interpretat ion is that  person i owns an 
amount  wl~ of input factor h. The input factors may  be 
labour or raw materials. 

(ii) An n-tuple of production facilities, described by production 
functions 

xj = f j  ( w , ,  w 2  . . . .  ) j = I ,  2 . . . . .  n ,  

which define how input factors can be t ransformed into 
consumer goods. 

I t  is usually assumed tha t  each production facility is operated 
so that  its profit is maximized. 

Each person will then sell a part,  or all of his endowment  to the 
production facilities. He will use the proceeds, and any profits he 
may receive from the production facilities, to buy  consumer goods. 

5.2. Tile model we have outlined leads to a l)roblem which can 
be solved. The solution will consist of: Equilibrium prices for all 
input factors and consumer goods, and of a matr ix  {xtj} describing 
the final allocation of consumer goods. 

Elements  of this model can certainly be applied to insurance, 
and the possibilities have been explored by a number of authors, 
i.a. Eisen [8] and F a r n y  [9], and thev have obtained a number  of 
potential ly useful results. 

I t  seems however, to me at least, that  insurance is essentially 
an exchange of risks, and tha t  it is artificial to apply the theory of 
production to the design of contracts for such exchanges. Never- 
theless the approach may  prove fruitful. Administrat ive costs are 
high in many insurance companies, and it is important  to find 
contract  forms which are inexpensive to issue, control and fulfill. 
This means of course tha t  managers of insurance companies, as 
managers in industry,  always will have to look for ways of reducing 
production costs. 
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R I S K  B E A R I N G  AND T H E  I N S U R A N C E  M A R K E T  

HANS .BuHLMANN AN]) HANS U. (.~ERFIER 

I. INTRODUCTION 

St imula ted  b y  Kar l  ]3orch's paper  [3] we have  tried to analyze  
the paper  wri t ten by  K. Arrow [I] ill I953. Cont ra ry  to Borch ' s  
opinion we have some doubt  whether  this work contains  a theory  
of insurance as a special case. Nevertheless,  it has inspired us to this 

note, which tries to develop a somewha t  lnore realistic model. As 
a m a t t e r  of fact,  our develoloment is more in the spirit  of ano ther  
paper  by Arrow I2]. \.Ve, however,  have chosen a more general 
setup,  and we believe tha t  our t r e a t m e n t  is also different.  

2. ARROW'S MODEL (INTERPRETED FREELY) 

Arrow consMers an economy of exchange with C commodities 
(labelled c = I . . . . .  C) and a "wor ld"  tha t  will be in one of S dif- 
ferent  stales (s = I, . . . ,  S). The problem is to dis t r ibute  the total  
supl)ly of each c o m m o d i t y  c in s ta te  s among  I individuals in a 
Pa re to -op t ima l  fas[ ,on.  According to a s t anda rd  result  in economic 

equil ibrium theory  every  Pa re to -op t ima l  allocation can be realized 
by  a sys tem of per fec t ly  compet i t ive  markets .  The la t ter  means  
tha t  there are prices ~s~ (the price for a unit  of c o m m o d i t y  c if 
s ta te  s occurs) and  tha t  each individual  has a certain amoun t  of 
money,  which he then will spend to maximize  his own util i ty.  The 
beau ty  of this approach  lies in its s implici ty:  Each individual  has 

his own maximlzat iol l  problem (irrespective of the others). Thus it 
is enough to focus our a t ten t ion  on a particMar individual.  Let y 
denote  his spendable  money,  let Nee > o denote  the anaount of 
c o m m o d i t y  c cont ingent  to the occurrence of s ta te  s purchased,  and 
let V(x~, . . . . .  x sc )  denote  the " v a l u e "  (or utility) of this decision. 

Then the problem is to 

maximize  V(xn . . . . .  xsc )  
, s  C 

subject  to Z ,.., xs,/~,~ _< y. (i) 
, I ¢ I 

Arrow's  idea is to replace this ma rke t  by  a two stage marke t .  
Le t  qt > o, . . . ,  qs > o be a rb i t r a ry  numbers  with q, + . . .  + 
-5 qs = I. Here  qs is the price of a secur i ty  ("pol icy"  in insurance 
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terminology) of tyl)e s, which pays one mone ta ry  unit if s ta te  s 
occurs and nothulg otherwise. Le t  Pse be the price of commodi ty  
c when state  s has occurred. For  consistency set 

Psc = D,~dqs. (2) 

The two decisions are now: 

a) choice of lhe sec~trities. Buy Ys >_ o securities of type s(s = z ,  

. . . .  S) such that  E 3'sq.s .~ 3'. 
i 1 

b) Purchase of commodities after the state s has occurred. Let  xs~ 
denote  the amount  of commodi ty  c tha t  is purchased after  the s ta te  

s has occurred. \,Ve must  have E XaclSsc < Ys + v - -  Z 3'iqz. 
c I t ,  I 

Again, we make our decision in a) and b) to maximize the resulting 
utility. Obviously,  this two stage problem is equh, alent to the orig- 
inal problem (I), equivalence meaning that  the same commodi ty  
bundles can be bought with the same original money  anaount. 

From now on let us assume tha t  the function V is of the form 
(according to the axioms of vonNeumann-Morgenstern)  

V(x,~ . . . . .  x~'c) = ~: =, G ( x ~  . . . .  , x~c).  (3) 

Here r~s is the individual 's  subject ive p robab ih ty  for s ta te  s, and 
V s is the uti l i ty funct ion tha t  applies when s ta te  s occurs. Let  

Us(w) = max imum Vs(x.s, . . . . .  xsc) 
C 

subject  t o x s c > _ o ,  Z Xscpsc_<w. (4) 

Thus Us(w) is the ut i l i ty  of w monc ta ry  units m s ta te  s. With 
these defimtions and assumptions problem a) (optimal choice of 
the securities) can be isolated as follows: 

.s S 

maxim,ze X r:sUs(y + Y s - -  X Ytq~) 
m 1 t ~ l  

subject  to y~ > o, Z 3'W~ G 3'. (5) 
'l 1 

3- THE PROBLEMS OF OPTIMAL COVERAGE 

We shall stud), in detail the solutions of problems of tile type  (5). 
Our assumptions are as follows, a) The S uti l i ty functions Us(y) 
are twice differentiable,  such tha t  U~(y) > o and U~'(y) < o. Thus 
we assume that  the uti l i ty functions are risk adverse, b) ql -¢- . . .  
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+ q,s >_ I. If  Ps is the p robab i l i ty  tha t  the m a r k e t  assigns to s ta te  
s, cer ta in ly  qs >_ Ps. Summat ion  over  s yields the inequal i ty  above.  

If  qt + . . .  + qs  = i, (as in Arrows model) we can assume tha t  

Z, y,qt = y without  loss of genera l i ty  in (5). However ,  in the more  
i . 1  

interest ing case where qt -+ . •.  + qs  > I,  this is not t rue anymore .  
This suggests tha t  we distinguish the following two problems.  

Problem A 

For  a fixed z, o < z < y, maximize  N r~s Us(y  + Y s - - Z )  subject  
• 1 

to the cons t ra in ts  tha t  Ys >_ o and  N Ysq8 = z. 
# I 

Problem B 

Maximize ~ ~s Us(y  + ) ' s - -  Z, y,q,) subject  to Ys >_ o, and  
m 1 t 1 

-~, Y sq , __< Y. 
# l 

Thus  in Problem A the to ta l  a m o u n t  spent  for p remiums,  z, is 
prescribed,  while ill P rob lem B it is variable,  subject  only  to the 
upper  bound y. 

In ei ther  case the existence of an op t imal  solution is c lear '  The 
q u a n t i t y  to be max imized  is a cont inuous  funct ion of the decision 
var iables  yl, . . . ,  Ys,  which (in both  cases) va ry  over  a compac t  set. 

4- SOLUTION OF PROBLEM A. 

Theorem 2 

For  a n y  z(o < z < y) there is a unique vector  yL . . . . .  ~ s  sat-  
isfying 

(1) ~ Ysqs = z, Ys >_ o for all s 
• 1 

(ii) q8 u'8(y + - -  z) < K for all s, suoh t h a t  78 = o wh ,lever 

this inequal i ty  is strict .  

This vector ,  and  only this vector,  solves problem A. 

P r o o f  

For  z = o, the theorem is t r ivia l ly  true. Hence  assume z > o. 
To show the necessi ty  of condit ion (ii), consider a vector  y~ . . . . .  Ys  
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for which it is violated. "['hen there are indices s, t such that  Yt > O, 

3'8 >__ o and 
7"1; 8 

~-~ u',(y + y , -  ,) < --  u;(y + y s - - z ) .  (6) 
qt qs 

Then, by  increasing y~ and decreasing Yt (such tha t  the total 
pren~ium remains z) the expected ut i l i ty  could be increased. (Note 
tha t  for this par t  of the proof we did not need the assumption tha t  
the uti l i ty functions are risk averse.) 

The necessity (and the existence of an optimal  solution) show 
that  there is at least one vector  yl  . . . . .  3;s tha t  satisfies conditions 
(i) and (ii) above. Let  yt . . . . .  Y,s be any other  vector tha t  satisfies 
(i). First  using concaxqty from below of the function U,, and then 
(ii), we obtain the following es t imate:  

u,(y  + y~--~)  _< u . (y  + 7 ~ - - , )  + u;(y  + y , - - , )  • ( y . - - y , )  

_< O,(y + ~'~, - -  2) + K -q-* (y, -- .ys).  (7) 
"R 8 

Note tha t  the first inequal i ty  is strict unless y,  = y,. By sum- 
ming (7) over s we see tha t  

~, U,(y + y , -  ~) <_ s =, u,(y + ) , -  ~), (8) 
~. i i ,  ! 

with a strict i nequah ty  holding unless Y8 = Ys for all s. This 
completes the proof of Theorem I. 

5" S O L U T I O N  O F  P R O B L E M  B .  
s 

If £ q8 = I, solve Problem A with z = y. Otherwise, the fol- 
#,.! 

lowing result holds. 

Theorem 2 
.s 

Suppose tha t  X q, > I. Then Problem B has a unique solution, 
a , , l  8 

which we denote  by  ~/1 . . . . .  .YS. a) If X Ysqs = Y, it can be char- 
J " l  

acterized by  conditions (i) and (ii) in Theorem I with z = 3'. b) If 
5 

Z Ysqs < Y, it is the only vector  ~t . . . . .  .~s tha t  satisfies 
a, 1 

i) ~s >__ o for all s and 

for all s, such that  ~, = o whenever  the inequal i ty  is strict.  
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P r o o f  

a) If there is an optimal )~ . . . . .  Ys with Z, Ysqs < Y, it has to 
a ,1 

satisfy condition (ii) above. For, if it did not, there would either be 
an lrldex s such that  

'~- u;(y  + ~ , -  z y,q,) > z ~j u~(y  + ?j - -  z ),q,), (9) 
q 8  t ,  I ] 1 t I 

in which case the expected uti l i ty could be increased by increasing 
>";.s, or there would be an index s such that  ~s > o and the inequal i ty 
in (ii) is strict, in which case the expected ut i l i ty  could be increased 
by a reduction of Ys. (For the necessity of (ii) we again did not need 
the assumption tha t  the ut i l i ty functions are risk averse). 

b) Suppose now that  ~1 . . . . .  .~s is a vector that  satisfies con- 
ditions (i) and (ii) of part  b) in Theorem 2. Any other decision, say 
Vl . . . . .  Y s  (where X qsY8 = Y is also permissible), can be compared 

with it as follows: ;7or an 3, s, 

u~(y + y~-- ,)  ~ u,(y  + ~ - - ? )  + u;(y + ~ - - ? ) .  (y~-- ~'~ +~- -~)  

< U,(y + ,~.--  ?) + ~'- ( y . - -  ~,) z ~jU~(y + , '5--~)  + 
7"¢ 8 

+ u;(y + ~, - -  ~) • (? - -  ~), (~o) 

with the convenient notation 
both sides by ~s, and summing 

X r ~ , U d y + y ~ - - z )  <_ 
a t 

= E ~ iq i ,  z = 5Z Y~qt. Multiplying 
over s, w e  get 

e l 

Furthernlore,  this inequal i ty is strict unless Ys = ~s for all s, 
which shows the uniqueness of any optimal solution satisfying (ii). 

6 .  H o w  TO F I N D  T I l E  ~ O L U T I O N S .  

To film the solution of Problem A, first relabel the states such 
tha t  

1 7'L~ 7"ff S 
e-~ v i ( y - - z )  >- e~ u ; j y -  z) >_ ' -> --qs U ~ ( y -  z). (~2) 

Now we choose yl such tha t  

~__! U i ( y  + yl  - -  z) = y~ U ; ( y  - -  z). (~3) 
ql q~ 
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Then we increase yt and choose y2 such that  

7"~o '7~ 3 
re---5 U~(y + y, - -  z) = --= U; (y  .4- 3 ' 2 - - z )  = - -  U; (y  - -  z) (14) 
ql qe qa 

etc. Thus, gradually we increase the coverage, from left to right, 
until the total premium reaches the level z. Clearly, the resulting 
coverage will satisfy properties (i) and (ii) of Tlaeorem I. 

For the further discussion, let ~t . . . . .  ~ s  denote the optimal 
coverage if the premium equals z, hence 

,S 

U(z) = x = ,  u , ( y  + ~ , -  z) (*5) 
a , , i  

is the maximal  ut i l i ty at premium level z, and let K = K(z)  denote 
the tipper bound in (ii) of Theorem I. Finally, set 

Kv(z  ) = .X r~ s U~(y + 7s--z). (16) 
a ~ t  

Theorem 3 

U'(z) equals K ( z ) -  Kv(z)  and is a non-increasing function. 

Proo f  

Let z~, z2 be any  two numbers, and let ~t)  denote the optimal 
coverage for s tate  s if the total premium should be z~ (i = z, 2). 
Using the concavity from below of Us and property  (ii) in Theorem I, 
we find tha t  

u~(y + ~ ) - - ~ )  - -  UAy + ~ ' - - ~ , )  

_< u~(y + ~') - z~) • (~)  - -  ~ ')  + z, - ~) (17) 

< q~ t((z~)  • (~ ,(~)-- z, ( ,~  - -  u ~ ( y  + }~')  - -  =,) (~ - -  z~). 
i . / 8 8  ! " 

"71:8 

Multiply both sides by rcs, and summing over s, we obtain the 
inequal i ty 

U(z~.) - -  U(z~)  < (K(~) -- /Cdz~))  • (z~ - -  z,). (,8) 

By interchanging the roles of z, and 12, and inverting the sign, a 
lower bound is obtained for U(z=) - -  U(z,).  Finally,  assume z~ < z2. 

Then these two inequalities can be writ ten as follows. 

U(z~)- U(z,) 
K(z2) - -  Kv(z~) _< < K(z~) - -  Kv(z , ) .  (I9) 

Z2 - -  Z l  

Monotonicity of K ( z ) I  Kv(z)  is seen immediately from (I9), 
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and the rest of theorem 3 follows by taking the limit for z2 ~ zx. 
Now observe the following: Let  o < ~ < y be tile premium spent  in 

S 

the optimal  solution ~x, y2 . . . .  Ys of problem B (i.e. ~ = Z qs;,). 
m , 1  

For  this } problem A must  have the same solution as problem B 
and we conclude, tha t  the two bounds appearing in the char- 
acterization of the solutions must  be the same, hence 

K(}) = IG(~). 

On the other  hand theorem 3 leads to thc following 

Corollary 

If K(o) _< Kv(o) then ~ = o 
K(y) > Kv(y) then ~ = y 

otherwise let z satisfy 

K(z) = Kv(z) then z = z 

Based on this corollary and the monotonic i ty  of K ( z ) -  Kv(z), 
o < z < y one may  find ~ -~ o by  gradual ly  increasing the level z 
of premium spent  until K(z) - -  Kv(z) = o, or if this does not hap- 
pen for z < y, by  put t ing  ~ = y. 

Note 

I t  is sometimes more convenient ,  to follow the above procedure 

until  the quot ient  / ( ~  reaches I. To just i fy  this al ternat ive,  we 

K(z) . (t(~(z) ) 
also prove tha t  / ( ~  is nonincreasing \ - ~ -  nondecreasing for 

o ~ z < y .  

Proof 

Let  N = N(z) denote  the set of indices for which ~, = o. Then 

Kv(z ) = K(z) ( Z q,) + Z % U~(y--z) ,  (20) 
mEN e~N 

and therefore  

KAz) X =, U;(y - -  z) 

= ~ q" + "*~ K(z) (21) K(z) . , .  

Since K(z) <-- qs for s ~ N, this shows tha t  Kv(z)/K(z ) is 
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a nondecreasing function (the numerator in the last expression is a 
nondecreasing function, while K(z)  is nonincreasing). 

In the following the procedure for finding the optimum in prob- 
lem B is explicitly carried out for 

exponential utility (Section 7) 
quadratic utility (Section 8). 

7" EXPONENTIAL UTILITY 

L e t  U,(x) = I - - c ,  - ~ x ( z - y e * )  , U ' s ( x  ) = ¢xe "y'* e - ~ .  Y o u  m a y  i n t e r -  

pret y~ as the "need for money" in state s. Suppose then y suf- 
ficiently large, such that the following property holds for the 
optimum ~x, ~2 . . . .  y s  of problem B (according to theorem 2). 

for all s, with strict in- 
r:._f e ~ ,  e_g~, _< Z r~je ~v? e -~JI equali tyonlyallowedif  (22) 
qs t Ys ---- o. 

With the notation 

and 
~ = % e ~'vt (23) 

C,(y l ,  Y2 . . . .  Ys) - -  

(22) becomes 

qs 
s 

x; e -ev~ 
t , . t  

for all s, with strict in- 
equality only allowed if 
~ 8 = 0 .  

(24) 

(25) 

5 
Abbreviate ~ for Z qJYl. (25) may hold for z = o and then 

Jnl 
= o. Otherwise, increasing gradually the premium level z and 

adjusting yl,  y2 . . . .  Ys at each level z according to the solution of 
problem A, max C8 will monotonically decrease until it reaches I at 

s¢S 
z = ?. (See note after theorem 3.) Observe that in the exponential 
case the ordering 

C l ( y l ,  y2, - . .  YS) 2 C2(yl ,  y2 . . . .  YS) ~ ' ' '  ~ C s ( y l ,  y2 . . . .  YS) 

never changes during this process. 

Let then m be the number of states, which are insured in the 
optimal solution of B (number of variables ~s different from o 
in (25)). 
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From (2I) we have  

Ifv(~) = X =;e - ~ v , =  K('~) X qj + X =; 
j L ] = l  ] , ' , l J +  1 

and hence from the corol lary of theorem 3 

I = qJ + K ( ? )  , . . . .  rc 

1 o l  

i - - Z  qj 
I t , t  

S s<(~) x =; 
J m + I 

therefore  (recall I((~) ~;  = - -  e -=v. for s = I, 2, . . .  m) 
qs 

o~y s = log rot + log 
q, g(?) 

m 

log ~; + l o g ( I - -  V q j ) - - l o g  X ~2 

Am 

for s _< m. 

(26) 

The opti lnal  m is found as the first  index for which 

~ n + l  I - -  X qj , 
J , , t  '~m+t 

< I or equiva len t ly  log - -  + Am _< o 

J ,m+ l  

(27) 

I t  is easily checked, tha t  this condit ion also applies if m = o. 

Numer ica l  Examples  (113 all examples  the exponent  = = IO-2) 

F i r s t e x a m p l e  

S I 2 3 4 5 

y; I000 I00 50 I0 5 

% 0.i  0.2 0.3 0.2 0.2 

qs 0.3 0.3 0.3 0.3 0.3 
~ 2202-65 -544 0.495 o.221 o.21o 

- -  7342.16 1.813 1.65 0.737 0.7 
qs 
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m - i  

i - -  .._, qj i 0.7 
J - , 1  

6 

E r:~ 22o4.12 1.47o 

check  (27) 3.33 o.863 

H e n c e  only  s ta te  I is insured  a nd  f rom (26) .~, = 815.95 

qly ,  = 244.78. 

Second example 

I n s u r a n c e  becomes  " h o r r i b l y  expens ive"  for s = I,  o therwise  
same  as in first  example .  

s I 2 

y; I 0 0 O  I O O  

rrs o. I 0.2 

q8 ~r 0. 3 
roy 2202.65 

- -  22o2.65 
q8 

S 

X rc~ 2204.12 
) , , #  

check  (27) < 2- 

Hence  now no insurance  is b o u g h t  at  all! 

3 4 5 

50 lO 5 
0. 3 0.2 0.2 

0.3 0.3 0.3 
0.544 0.495 o.221 o.21o 

1.813 1.65 0.737 0.7 

Third example 

The  " i n s u r a n c e  n e e d "  is e l imina ted  in s t a t e  s = I,  o therwise  
still the  same  as before.  

s 2 3 4 5 I 

y ;  lOO 50 IO 5 o 
re, 0.2 o.3 0.2 0.2 o . I  

q, 0.3 0.3 0.3 0.3 0.3 
r~ 0.544 o.495 o.221 o.21o o . I  

- -  1.813 1.65 0.737 0.7 0.333 
qs 
check  (27) 1.155 1.126 o.555 

H e n c e  in su rance  on s = 2 a nd  3 Y2 = 31.17 q 2 ~  = 9.35 
~ = 21.75 qa~a = 6.52 
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In this section 

Us(x) = o 4 x -  y, ) - -  

g;(~) = ~ + y ; ' -  

8.  Q U A D R A T I C  U T I L I T Y  

X **~2 
- - Y s  -"x--y~" < a  

2 

The condit ion corresponding to (22) in Section 7 is then 

~ ( ~ + y ; * - - y - - ~ s + ~ q j ~ j )  < ~ + y ; ' - - y - - ~ + X q j ~ j  (28) 
q8 ! I 

for all s, with strict inequal i ty  only allowed if ) s  = o 

Abbrevia t ions  

Redefine 

I 

+ y;* - -  y = y~ and you obtain 

q, {y; - ?, + ~, qj~j) 
< I (29) y ' - - ~ + x q j ~ j  - 

I 

for all s, with strict inequal i ty  only allowed if ~, = o 

Observe tha t  as long as the numera to r  of the left side in (29) is 
positive, we are in the region where U~ is positive. The number ing 
of the sides is defined in decreasing order  of 

T~8 'Y8 
C s --  hence C~ ~ C2 ~ . . .  ~ C s (3o) 

These quanti t ies  are the inital values at yz = 3'2 . . . . .  T S  = 0 

of the funct ions 

7~ 8 
q-7 ( y ; -  y, + x ~jyj) 

Cs(Yl, Y2 . . . .  Ys)  - -  y* - -  y + X qjy~ (31) 

We again gradual ly  increase z = _, qjyj  and for each z adap t  
J 

yl ,  yo . . . .  Ys  according to the solution of problem A; max Cs will 
e~:S 

then again monotonical ly  decrease to I, but  unfor tuna te ly  the 
ordering of the Cs(y~, y 2 , . . .  Ys) (for those s which are not  yet  
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insured) may  change! So while it is clear tha t  insurance, if any, 
must  always be bought  on s = I, we must  if necessary t ry  several 
combinat ions of other states to find out the opt imum. 

N~mer ica l  E x a m p l e s  

First  example  

s z 2 3 4 5 

y~ lOOO 1oo 50 lO 5 

x s 0 . I  0 .2  O. 3 0 .2  0 .2  

qs 0.3 0.3 0.3 0.3 0.3 

C s 2.4r5 0.483 0.362 0.048 0.024 

y = 138  

We try to insure state number  I only. If  this does achieve an 
op t imum we must  have 

I I0OO - -  yt + o.3 y~ 
C~(y,, o, o . . . .  o) = - 

3 I38 - -  o. i  yt + 0.3 yl 

from which we find 

yt = 45o.77 

qo'~ = x35.23 

I t  remains to be checked whether  C8(yl, o, o . . . .  o) _< I :for 
s > _ 2  

2 IOO + 135.23 
C2(yl, o, o . . . .  o) --  --  o.69 

3 228.15 

3 50 + 135.23 
C3(yl, o, o, . . .  o) --  --  o.81 (has surpassed C2!) 

3 228.15 

As states 4 and 5 have the same probabilities and premiums as 

state 2 their C-values must  be lower than that  of state 2 also. 
This shows tha t  just  insuring state z with the above amounts  is 
optimal. 

Second example  

If  we change in the first example only qt :from o. 3 to I (insurance 
on the state insured in the first example becomes "horr ibly  ex- 
pensive"), then all initial C-values drop below I which means that  
no insurance should be bought.  
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Th i rd  example  

" I n s u r a n c e  n e e d "  in s t a t e  i is e l i m i n a t e d  (i.e. y~. = o). O t h e r -  

wise s a m e  as  f i rs t  e x a m p l e .  

s 2 3 4 5 1 

y~ I00  50 IO 5 0 

~ ,  0.2 0.3 0.2 0.2 O.I 

qs 0.3 0.3 0.3 0.3 0.3 

C s 1.75 1.32 o . I8  0.09 o 

y* = 38 

I t  is o b v i o u s  t h a t  s o m e  i n s u r a n c e  m u s t  be b o u g h t ,  c e r t a i n l y  on 

s = 2 a n d  p r o b a b l y  a lso  on s o m e  o t h e r  s t a t e s ,  s = 3 be ing  a v e r y  

l i k e l y  c a n d i d a t e .  
W e  t r y  to  f ind  an  o p t i m a l  so lu t ion ,  w h e r e  y2 a n d  ya a re  d i f f e r en t  

f rom zero  

2 I o o - -  y2 + 0.3(52 + ya) 
Co,(y2, ya, o, . . .  o )  - -  - ~  I 

3 3 8 -  o . 2 y 2 -  o.3ya + 0. 3 (y2 "+ ya) 
or 8 6 o - -  z 4 yo. + 3 ya = o  

5 o - - y a  + o.3(y2 + ya) 

C3(y2, ya, o, . . .  o) = 38 - -  o.2y2 - -  o.3ya + o.3(y2 + ya) -~ I 

o r  1 2 0 - - 7  ya + 2y2 ~ 0 

y2 = 69.35 ya = 36.96 

qey2 = 20.80 qaya = IZ.O9 t o t a l  p r e m i u m  31.89 

W e  m u s t  c h e c k  t h a t  C4(y2, ya, o, o, o) < I .  Th is  check  suff ices  s ince  

'7~ 8 7~4 
- -  < - -  for s = 5, I (C5 a n d  C1 will  t hen  a u t o m a t i c a l l y  be be low I).  
q8 - -  q4 

2 IO + 31.89 
C h e c k :  C4(y% ya, o, o, o) - -  = o.62, 

3 3 8 -  24.96 + 31.89 
which  p r o v e s  o p t i m a l i t y .  
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P A R E T O - O P T I M A L  R I S K  E X C H A N G E S  A N D  
R E L A T E D  D E C I S I O N  P R O B L E M S  

HANS U. GERBEI( 

I .  SUMMARY 

In var ious  b r an ch es  of apphed  m a t h e m a t i c s  the  p rob l e m anse~ of m a k n l g  
decis ions to reconcile c o n f h c t m g  cri teria.  One e x a m p l e  is the  c lassmal  
s ta t i s t i ca l  problem,  where  a type  i error c a n n o t  be a rb i t r a r i ly  reduced  
w i t h o u t  increas ing  the  prol)abfl l ty for a t ype  ~ error. A n o t h e r  example ,  
q m t e  f a m l h a r  to ac tua rms ,  ~s g r a d u a t i o n ,  where a c o m p r o m i s e  be tween  
s m o o t h n e s s  and  fit has to be reached  This  m o t w a t c s  the  concep t  of Pare to-  
op t ima l  demsions ,  which is ehscussed m set . tmn 2 There  is a s tmple  m e t h o d ,  
maxm~lz ing  a w m g h t e d  ave rage  of the  scores, to ob ta in  cer ta in  Pa re to -  
o p t m m l  decisions.  In ~ection 3 a condi t ion  Iq given,  which ~s sa t is f ied m 
m o s t  app[ ica tmns ,  t h a t  g u a r a n t e e s  t h a t  all the  Pa re to -op t ima l  decis ions 
can be found  b y  t lns  m e t h o d  Tins  is a p p h e d  m sect ion 4, where  the  p rob lem 
of risk e x c h a n g e  be tween  n i n su rance  COnlpames ~s considered.  The  original 
model  of ]3orch is generahzcd"  it  is a s s u m e d  t h a t  some  of the  c o m p a m e s  
are not  wi lhng  to c o n m b u t e  more  t h a n  'a cer ta in  f ixed a m o u n t  t ow a rds  
the  agg rega t e  loss of the  o the r  c o m p a n i e s  The  t heo re m in sect ion 4 gives 
a c h a r a c t e r J z a t m n  of all t he  P a r e t o - o p t m m l  risk e x c h a n g e s  Because of the  
res t r ic t ions ,  those  r isk e x c h a n g e s  do no t  j u s t  depend  on the c ombine d  su rp lu s  
(whmh would a m o u n t  to poohng)  in general ,  and  ~.an be found  by  an algo- 
r i t hm.  One  benef i t  of t ins  g e n e r a h z a t m n  of Bo rch ' s  T h e o r e m  is t h a t  two 
seeming ly  unre la t ed  resul ts  ( o p t m m l i t y  of a s top  loss con t rac t ,  and  o p t i m a h t y  
of cer ta in  d iv idend  fo rmu la s  in g roup  insurance)  follow f rom it as specml 
cases.  

2. EVALUATION OF DECISIONS UNDER CONFLICTING VIEW POINTS 

Often one is faced with the s i tuat ion  where  a decision has to be 
m a d e  in tile presence of several  criteria. Mathemat ica l ly ,  the prob- 

lem can be formulated  as fol lows.  
Let  D be the set of all possible  decisions.  We  are given n real- 

va lued funct ions  sl(d) . . . . .  s~(d), d ~ D. If d,, de e D and si(d,) > 
si(de), this means  that  decis ion dl is betler than (o1" at least as g o o d  
as) decision d2 with respect lo criterion i. Let 

.qd) = (s , (d)  . . . . .  s . ( d )  ), d ~ D (~) 

and 

S : { x / x =  s(d) for some  d ~ D }  (2) 

denote  the  range of the "score funct ion" s(") : D --+ R n. A decis ion 
d~ is said to be strictly better than a decis ion de, if sd& ) > st(do) 
for z, = I . . . . .  n, and if at least one of these  inequal i t ies  is strict, 
A decision d is called Pareto-opltmal, if there is not  a decision that 
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is s t r ic t ly  be t te r  than  d. If  R is any  subse t  of R n, a point  x ~ R is 
called a Pa re to -op t ima l  point  of R if the intersection of R with Qz = 

{y /y~  > x , ,  i = i . . . . .  n} consists only of the point  x. Thus  a deci- 
sion d is Pa re to -op t imal ,  if and only if s(d) is a Pa re to -op t ima l  point  
of S. 

Under  fairly general  condit ions (for example  if S is finite, or if S 
is a closed region tha t  is bounded  by  a plane whose normal  vector  
points  to the posi t ive 2n-tant)  one should obviously  chose a Pare to -  
op t imal  decision. However ,  we shall not discuss the question, w h i c h  

of the Pa re to -op t ima l  decisions should be chosen. 

E x a m p l e  r 

In a class of k s tudents  n quizzes were given during the term. Let  
st(d) denote  the score of s tudent  d in quiz i (i = I . . . . .  n, d = I . . . . .  

k). Who is the top s tuden t  of the class ? Thus  D = {I . . . . .  h}, and 

clearly the Pare to-opt i rna l  s tudents  (and only these) are candidates  
for this honor. 

E x a m p l e  2 

Consider tile following s tat is t ical  decision p rob lem:  Populat ion i 
has a p d f  f ( x ;  i) ,  i : I . . . . .  n. Given all observat ion ,  say X ,  the 
s ta t is t ic ian tries to name the under ly ing populat ion.  Thus  D con- 
sists of all " t e s t s "  (see [5] for example) .  I t  is convenient  to allow 
randomized  tests. Then a test  ~ is defined by ~ non-nega t ive  
funct ions pt(x) . . . . .  p n ( x )  with p t (x )  + . . .  + p n ( x )  = I for all x. 
This means  tha t  the s ta t is t ic ian,  having  observed X, will name 
popula t ion  i with p robab i l i t y  pt(X). Let  

sd~) = S p~(x)f(x; i) dx (3) 

be the p robab i l i ty  for a correct  guess if the observa t ion  originates 
from popula t ion  i, i = I . . . . .  n. Clearly, the s ta t is t ic ian wants  
to select a test  tha t  is Pa re to -op t imal .  

E x a m p l e  3 

Consider the W h i t t a k e r - H e n d e r s o n  Problem.  Given are m un- 
g r a d u a t e d  values,  say vl . . . . .  vm. A decision is the choice of m 
g radua t ed  values, u = (ul . . . . .  u~n). Thus  D = R m in this example .  

Let  

F ( u )  = "2 w d u ,  - -  v , )  °~ (4) 
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be a m e a s u r e  for  " f i t " ,  where  zoo, . . . ,  wm are  ce r ta in  weights ,  a n d  
let 

t l l  - • 

3'(u) = z (a~ud ~ (5) 
t 1 

be our  m e a s u r e  for  " s m o o t h n e s s " ,  where  z < m is s o m e  in teger ,  see 
[6]. H e r e  n = 2, sl(u) = - - . F ( u ) ,  s~(u) = - -  S(u),  a n d  we w a n t  to 
f ind  g r a d u a t e d  va lues  t h a t  are  P a r e t o - o p t i m a l  in th is  sense.  

T h e  m o s t  i m p o r t a n t  e x a m p l e  (at l eas t  as fa r  as this  p a p e r  is 
concerned)  will be d iscussed  in sec t ion  4. 

3. [-{OV,/ TO i~IND PARETo-OPTIMAL DECISIONS 

Cer ta in  P a r e t o - o p t i m a l  decis ions  can be found  by  the  fol lowing 
m e t h o d :  chose  n pos i t i ve  n u m b e r s  k~ . . . . .  k,,~ and  t r y  to m a x i m i z e  
the  l inear  c o m b i n a t i o n  

n 

E kisl(d), d ~ D. (6) 
I I 

For ,  if a decision cl has  the  p r o p e r t y  t h a t  t he re  are  pos i t i ve  con- 
s t a n t s  kl, . . . ,  kr~ such t h a t  

_< (7) 
t ,  i ~ .  1 

for  all d e D, it is o b v i o u s l y  P a r e t o - o p t i m a l .  

In  Example x a b o v e  this  m e t h o d  a m o u n t s  to ass ign ing  ce r ta in  
we igh t s  to the  n quizzes ,  a n d  (based  on this) to d e t e r m i n e  the  
s tuden t ( s )  wi th  t he  h ighes t  (weighted)  a v e r a g e  score. 

In  Example 2 let 

M(x) = nlax{k, f(k;  i)/i =: I . . . . .  n}, (8) 

a n d  let  ~ be a test ,  de sc r ibed  b y  pl(x)  . . . . .  Pn(x) '  such  t h a t  

p,(x) - -  o w h e n e v e r  k~f(x; i) < M(x),  (9) 

i = z . . . . .  n. T h u s  } cons is t s  of n a m i n g  the  p o p u l a t i o n  (ol- one of 
t he  popu la t i ons ) ,  for which  the  m a x i m u m  is a t t a i n e d  in f o r m u l a  (8). 

T h e n  if ~ is a n o t h e r  test ,  g iven  b y  p~(x) . . . . .  p,z(x), 

I [ , ,1  t ' ' l  

--< E I M(x)p,(x)  dx (IO) 
t ~ - t  

n 

= I M ( x ) d x  = X k~s~(~). 
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Hence  a test  8 of this form is Pare to-op t imal .  Note  tha t  t h e i n -  
equa l i ty  is str ict  unless 8 satisfies condit ion (9) too. 

In Example 3 the vector  g which minimizes &F(u) + k2S(u)) 
is found as the solution of a certain ma t r ix  equat ion,  see [6]. 

The question arises whether  all the Pa re to -op t ima l  decisions can 
be ob ta ined  by  this method.  In general,  the answer  is no. Consider 
E x a m p l e  i with a class of jus t  three s tudents .  Suppose the scores 

in 2 quizzes were (6, I) for s tudent  A, (3, 3) for s tudent  B, and ( I ,6 )  
for s tudent  C. Obviously,  all 3 s tudents  are Pare to -op t imal .  But  
only s tudents  A and C can be ob ta ined  by  the above  method.  

However ,  if S is a closed convex region, all the Pa re to -op t ima l  

points  and  decisions can be ob ta ined  by  this me thod :  if d is a 
P a r e t o - o p n m a l  decision, inequal i ty  (7) holds for all d e D, where 

(& . . . . .  k,,) is a vector  tha t  is perpendicular  to the (or a) plane 
tha t  is t angent  to S at  x = s(d). A convenient  way to verify con- 
vex i ty  of S is to show tha t  for any  two points  xo, x~ e S, the line 
segment  {x/x = rx, + ( I -  r)xo, o < r < ,} is conta ined in S. 
The va l id i ty  of this condit ion can be easily seen in Example 2: if 

80, 8t are  a n y  two tests,  def ine a test  ar (o < r < I), which consists  
of using 8z with p robab i l i ty  r and  ~o with p robabi l i ty  I - -  r. Then,  
by  the law of to ta l  p robab ih ty ,  

s~(a~) = rs , (a , )  + (1 - -  r)s~ (ao) ( I I )  

(i = 1 . . . .  , ~a). Hence  all the Pa re to -op t ima l  tests  are of the form 

(9), which is essential ly the content  of the le.mm~ of Neyman- 
Pearson, see [5] for example .  

Often it is possible to show the val id i ty  of the following condition 
(which m a y  hold even if S is not convex).  

Conditio~, C. For  any  two decisions do, d l e  D there is a family  
of decisions dr e D, o < r < I, such tha t  

s,(dr) >__ rsl(d,) + ( I -  r)s,(do) (12) 

for i = I . . . . .  ~z. 

If  S is closed and if Condition C is satisfied, all the Pa re to -op t ima l  
points  and decisions can be ob ta ined  by  the me thod  described at  

the beginning of this section:  Condit ion C implies tha t  the set of 
Pa re to -op t ima l  points  on S coincides with the set of Pa re to -op t ima l  
points  on the convex hull of S. In Example 3 the val id i ty  of Condi- 
tion C can be verified as follows. I f  u (°), u (~) are two vectors  of 
g r a d u a t e d  values 

Ct(i I (ulJ), . u(Jl/ . . . .  ,,, ,,./ = o , I ,  ( I 3 )  
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set  u (r) = m~ (~) -}- (z - - r ) , u  (°). Then  one uses the  i nequa l i t y  

(ra q- (I - -  r)b) e < ra 2 + (t - -  r)bL o < r < i, (14) 

which is val id for a n y  two nunlbers  a and  b, to show tha t  

F(~t (r)) < rF(u (')) + ( 1 -  r) lr(~t (°)) (15) 
and  

S(,., ('~) _< rS(~, ('1) + ( ~ -  r).S'(~(°)). (~6) 

Therefore ,  all the  P a r e t o - o p t l m a l  g r a d u a t e d  sets are  o b t a i n e d  
by  the  usual  W h l t t a k e l - H e n d e ) ' s o n  p rocedure ,  i.e., min imiz ing  

k,F(u) + kzS('u.). 

4. THE PROBLEM OF RISK EXCHANGE 

Consider  n insu rance  compan ie s  whose  surp lus  at  the  end  of the 
yea r  will be X~ . . . . .  Xn ,  r e spec twe ly .  These  are n r a n d o m  var iables  
with known jo int  d i s t r ibu t ion .  The  decis ion to be m a d e  is the  
selection of a risk exchange .  A risk exchange  is best  cha rac t e r i zed  
by  its effect on the d i s t r ibu t ion  of the  surp lus  a m o n g  the  ~t c o m p a -  

nies. In  this sense a risk exchange  is a r a n d o m  vec to r  

Y = ( Y ,  . . . . .  Y , , ) ,  (17)  

where Y, shou ld  be in ter l ) re ted as the modi f ied  surp lus  of c o m p a n y  i 
at  the  end  of the  year .  Since the  c o m b i n e d  surp lus  before  and  af te r  
the  e x c h a n g e  is the  same,  we m u s t  have  

Y~ + . . .  + Y,, = X ,  + . . .  + X,,. (I8) 

We w a n t  to  al low for the  poss ib i l i ty  t h a t  some  of the  c o m p a n i e s  
are no t  willing to l)ay m o r e  than  a cer ta in  a m o u n t  t o w a r d s  the  
losses of the  o the r  companies .  For  this pu rpose  assume n c o n s t a n t s  
ca . . . . .  c,, with o _Gci _< coo. Then  o n l y  risk exchanges  are  ad-  

missible for which 

Yi ~ X,  - -  c~, i = 1 . . . . .  n. (I9) 

We shall exc lude  the  case where  c~ . . . . .  c~ = o, because  in 
t h a t  case on ly  the  t r iv ia l  "exchange"  (no exchange)  is possible.  To 
summar i ze ,  a risk e x c h a n g e  is a r a n d o m  vec to r  of the  fo rm (17) t h a t  

satisfies cond i t ions  (18) a nd  (19) wi th  p r o b a b i l i t y  one. 
To eva lua t e  the  d i f ferent  risk exchanges ,  a s sume  ,n u t i l i ty  func-  

t ions u~(x) . . . .  , un(x), - -  coo < x < oo. Suppose  t h a t  these func t ions  
are  twice d i f ferent iable ,  wi th  

,,;(.) > o, .,','(~) < o. (20) 

For simplicity, we shall also assume that at most one of these 
u t i l i t y  functions is l inear and that all of the others have the prop- 
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e r t y  t h a t  the i r  d e r i v a t i v e  decreases  f rom co to o as the  a r g u m e n t  
increases  f rom - -  oo to co. T h e n  a p r o b l e m  of the  fo l lowing t y p e  
has a un ique  so lu t ion :  g iven  a n u m b e r  X and  pos i t ive  n u m b e r s  
te] . . . . .  kn, f ind  n u m b e r s  z, . . . . .  zn such t h a t  

a n d  

kd4(zt) is i n d e p e n d e n t  of i (21) 

b y  s e t t i ng  

def ine  

yc~ (y[r~ ~1 (28) = , . . . .  Yn ) , o  < r  < I ,  

y~r) = ry~t> + (I - - r ) Y ~  °~. (29) 

Since y(0) a n d  yO)  sa t i s fy  (18) a n d  (I9) ,  it fol lows t h a t  y(r)  
sa t is f ies  these  condi t ions .  T h u s  y(r)  is a r isk e x c h a n g e .  Since the  
func t ion  u, is c o n c a v e  f rom below,  

~q(y~r)) >__ r~ , (y~l ) )  + ( I -  r)ui(Y~°)). (30) 

zl + . . .  + zn = X. (22) 

This  so lu t ion  z = (zt . . . .  , z,~) has  a g e o m e t r i c  i n t e r p r e t a t i o n :  it 

c o r r e s p o n d s  to the  po in t  on the  su r face  

F z = {x : (x~ . . . . .  xn ) / x  , = 2q(t,), t, + . . .  + t n = X} (23) 

where  the  t a n g e n t i a l  p l ane  is p e r p e n d i c u l a r  to the  v e c t o r  (kt . . . . .  
k~,). In the  case  of e x p o n e n t i a l  u t i l i t y  func t ions ,  

u,(x) = c¢,(I - -  e x p ( - -  x/~,) ), (24) 

where  Xl > o, . . . ,  xn > o, this  p r o b l e m  can  be so lved  expl ic i t ly .  
One  f inds  t h a t  

n 

z¢ = ~X + ~ ( l o g  k ~ -  Y., ~1 log kj), (25) 
/ t 

where  {3, = o~d(xl + . . .  + xn). 

I t  is a s s u m e d  t h a t  c o m p a n y  i is on ly  i n t e r e s t e d  in the  e x p e c t e d  
u t i l i ty  of its own surplus ,  

s t (Y )  = E [ u d Y d ] ,  (26) 

i = I . . . .  , n. In  this sense  we are  faced  wi th  the  p r o b l e m  of f inding  
P a r e t o - o p t i m a l  r isk  exchanges .  L e t  us ve r i fy  t he  v a l i d i t y  of Condi-  
t ion C in this case. I f  y(o), y ( u  a re  a n y  two  risk exchanges ,  

y(J)  (y~J), v ( l h  j = o , i ,  (27) 
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T a k i n g  e x p e c t e d  va lues ,  we get  

s~(Y (r)) > rsl(Y 0)) + ( I -  r)s~(Y~°)), (31) 

which  shows  t h a t  Condi t ion  C holds. Obv ious ly ,  S is closed,  so to 
f ind the  P a r e t o - o p t i m a l  risk e x c h a n g e s  it is e n o u g h  to choose  
pos i t i ve  c o n s t a n t s  k~ . . . . .  kT~ and  to t r y  to m a x i m i z e  

k : , ( Y )  = ~Z k~E[u,(Y,)]. (32) 
t , , I  I i 

I n  this  p a r a g r a p h  we shall  c o n s t r u c t  a risk e x c h a n g e  Y a n d  then  
ve r i f y  t h a t  i t  m a x i m i z e s  (32). Le t  

I (") = { I  . . . . .  n } ,  f ( o )  = ~.  (33)  

W e  def ine  r a n d o m  vec to r s  

Z (m) = (Zi m) . . . . .  Z I? ) )  (34) 

a n d  index  sets  I (m) a n d  j o , ~  as follows. F o r  m = I,  2, . . . set  

Z{ m) = X ,  - -  c, if i E j o .  - ,) (35) 

a n d  choose  Z{ "~), i ~ I (m-t), such t h a t  

kd4 (Z~m)), i s I (m- t~ is i n d e p e n d e n t  of i (36) 

T h e n  

a n d  

a n d  

X z ~ m ) =  X X i +  Z % (37) 
,(~-,) ~(.,- , )  fi,.-,) 

I("') = { # z ? "  > x ,  - -  q }  

j(m) = {i/z~'~) _< x ~  - -  q ) .  

(38) 

(39) 

press ions  in (36), one  can show t h a t  

(iii) M (re+l) > M (m) 

(iv) ~:4 (zW) -< M("> 
(v) kd4 (Zi m)) < i (") impl ies  Zi m~ = . X ~ -  q. 

N o w  let  Y = (Y~ . . . . .  -Yn) be  the  l imi t  of Z(m), m - +  oo. (Note  

F r o m  th~s recurs ive  def in i t ion  it fol lows i m m e d i a t e l y  t h a t  

(i) I (m) c I °n-'), f(m) ~ j(m-~) 

(ii) I (m) is not  e m p t y .  

F u r t h e r m o r e ,  if M (m) d e n o t e s  the  c o m m o n  va luc  of the  ex-  
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tha t  this limit is obta ined af ter  finitely m an y  steps; as a ma t t e r  of 

fact, .~ -- Z{~).) Observe that  Y is a risk exchange and has the 
following proper ty :  

Property B 

Let M = max{k,~,~ ( # , ) / i  = ~ . . . . .  n}. Then k,"~(Y0 < ~V[ 
implies tha t  ~'~ = X t - -  Q. 

We shall now compare  Y with an a rb i t ra ry  risk exchange Y = 
(Y1 . . . . .  Y . )  as follows: since the function ud" ) is concave from 

below, and since k tu ; (Y  0 < M implies tha t  Yl --> Yt, 

@'~(Yd -< ~ '~( '~)  + @'; (~) (Y~ - -  Y~) 

_< k¢,.¢(Yi) + M • ( Y l -  f"*)" (4 °) 

Thus 

and 

n 

X k ,u , (Y , )  __< X kc t i (Y l )  (41) 
t I I 1 

Ji 

Z k,E[l~l(Yd] < X k,E['u,(£zd]. (42) 
t 1 i t 

Fur thermore ,  the last inequal i ty  is strict unless Y = ~" (almost 
surely). Our findings can be summarized as follows. 

Theorem 

a) & y e n  /,', > o . . . . .  k,  > o, there is exact ly  one risk exchange 
tha t  satisfies P rope r ty  B. b) A risk exchange is Pare to-opt imal  if 
and only if it is of this form. 

Special  cases 

I) If ct . . . . .  cn = coo, this result reduces to the classical 
Theorem of Borch, see [2J, F3], oi" [41. 

2) Consider the case, where Ul(X) = x, Cl = oo, u2(x) = u(x) 
(strictly concave from below), and c2 = P > o. We find tha t  the 
Pare to-opt imal  risk exchanges are of the form 

X~ + P  if X2 > 0~ 
Y~ = (43) 

X1 + P - - ( c ~ - - X 2 )  ifX-. < c~ 

X o -  P if X2 > 

0 { - - P  if X2 < 0~ 
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where  the p a r a m e t e r  ~, sa t i s fy ing  the  e q u a t i o n  kt = k2u' ( e -  P) ,  
p Iays  the  role of a deduct ib le .  This  resul t  (@timality of a st@loss 
contract) is due  to Arrow,  see [i]. 

3) Consider  the  case, where  ,u.~(x) = x, cl = o, q.~2(x) = ~t(x) 
(s t r ic t ly  concave  f rom below), a nd  c2 = oo. T h u s  Y~ = Xz  4- D, 
Y2 = Xo - -  D, where  D > o is a dividend p a y a b l e  f rom c o m p a n y  2 
to c o m p a n y  I. \,Ve f ind t h a t  P a r e t o - o p t i m a l  d iv idends  are  of the  
form 

b = (45) 
o if Xe  < ¢~ 

This  resul t  has  been f o u n d  in [7] in connec t ion  wi th  d i v i d e n d  
fo rmulas  in g r o u p  insurance.  
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National Technical University, Athens 

I. INTRODUCTION AND SUMMARY 

This pape r  presents  a no rma t ive  model  for the sequential  re- 
insurance and  d iv idend -paymen t  prohlenl of the Insurance  Coral)any 
(I.C.). Opt imal  s t ra tegies  are found in closed form for a class of 
u t i l i ty  functions.  In  some sense the model  s tudied can be viewed 
as an adap t a t i on  of H a k a n s s o n ' s  i nves tmen t - consumpt ion  model 
of the individual  [3] or a general izat ion of Fr isque ' s  model  for the 
dynamic  m a n a g e m e n t  of an I.C. [2]. 

In  Section 2 the model  is fo rmula ted  as a d i sa  ete t ime dynamic  
p r o g r a m m i n g  problem.  The  object ive  of the I.C. is assumed to be 
max imiza t ion  of the  expec ted  ut i l i ty  of the d iv idend s t reams  prod 
to s tock/pol icy-holders  (s/p-holders). The initial reserves level is 

a s sumed  to be known. The  p remiums  to be collected in each 
period for selling policies are known in advance .  The  losses due to 
claims f rom policy-holders  are r andom variables  independent  f rom 
period to period. In  each period the I.C. mus t  decide on the port ion 
of the reserves to be pa id  as d ividends  and on the  form and  level 
of re insurance with  a reinsurer  tha t  quotes  prices for any  contract .  

Opt imal  s t rategies  in closed form are found in Section 3 when 
the  ut i l i ty  funct ion of the I.C. is given by  the discounted sum of 
one-per iod utilities of dividends;  and  when the one-per iod utilities 
belong to the  l inear r isk- tolerance class, which is given by:  (Ia) 
~(x) = (ax + b)C+l/a(c + I ) ;  ax + b > o ,  ac < o. (Ib) u(x) = 

log(ax + b)" ax + b > o. ( I I )  u(x) = - - e - ' ~ ;  y > o. 
The  results of Section 3 are discussed and  in te rpre ted  in Section 4. 

The  op t imal  dividend p a y m e n t s  are found to he linear in the 
reserves level" while the op t imal  reinsurance t r e a t y  t r ans fo rms  
the reserves level (as a funct ion of the  losses) in such a way tha t  
its form is independent  of the prere insurance  to ta l  weal th  of the 
I.C. I t  only  depends  on the I .C. 's  u t i l i ty  function,  the prices quoted 

* This study is based Oll my Ph.D. thesis submitted to the I 'mverslty of 
Catifornia, Berkeley (1975). 1 am grateful to Professor W. S. Jewell (Chair- 
man) as well as to Professors Nds Hakansson and David Gale for many 
helpful comments and criticisms. 
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by the reinsurer and the probabi l i ty  densi ty  funct ion of the prere- 

insurance losses. 
Finally, in Section 5 we discuss a generalization to include 

expendi tures  for promotion of sales and an extension to multipli-  
cative utilities. 

2. FORMULATION OF THE MODEL 

2.I. The description of the Insurance Company 

The I.C. is faced with a N-period problem. The periods are num- 
bered backwards,  thus the in terval  (t, t - - I )  is the t th period. 
We will use the following nota t ion:  

Pt" premiums collected by  selling policies during period t. Th ey  
are assumed to be collected at the end of the period for 
siml)licity and they  are known in advance.  

~,t:  claims paid to policy-holders during period t - - a  random 
variable which takes values on the internal  Xt  and whose 
value will be denoted  by  xt. For simplicity it is a s su m ed th a t  
claims are paid at the end of the period and are independent  
from period to period. 

Ct: dividends paid to s/p-holders at s tar t  of period t (decision 
variable). 

Rt : level of reserves at s tar t  of period t before dividends are paid. 
qpt(x): probabi l i ty  densi ty  function of the r.v. ~t. 

2.2. The utility fitnction of the I.C. 

We will assume tha t  the ut i l i ty  funct ion of the I.C. over  possible 
s treams of dividends C = C~v . . . . . .  C1, Co is given by  one of the 
three forms '  * 

(S) Discounted Sum" 

U(C) = z < < 
/ I , - o  

(MP) Multiplicative Posi t ive:  

u(c) = l] > o  
k , , o  

(MN) Multiplicative Negative" 
N 

U(C) = - -  1I [ - -  u(Cu_ k)] ; u( . )  < o 
I . o  

* For justification and discussion of these forms see [4], [5]. 
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In each case the object ive of the I.C. is to maximize the expected 
value of U(C). 

In the following we will concent ra te  oll the form (S). The forms 
(MP) and (MN) are briefly discussed in Section 5. For  rnore details 
the in teres ted reader  is referred to [6]. 

2.3 Rei~zsuranca 

\,Ve assume tha t  in each period t there is a reinsurer who accepts 
any  risk for the appropr ia te  premium. The way he quotes premium 
is the following. 

For  any  claims random variable ~,t (value denoted  by xtuXt) 
whose probabi l i ty  distr ibution lie knows, the reinsurer assigns a 
price function. P~,(xt) > o such tha t  the premiurn for assuming a 
cont rac t  Zt(~t), which promises to pay to the ccdent  $ Zt(xt) at the 
end of period t depending on the outcome xt of the random variable 
~t, is given by:  

~,[z~(~.~)] ~ f Zdx)P¢,(x)dx (~) 
21." t 

As a marginal case consider the contract Zt(x) = I ;  F x s X t  
which pays $z to the cedent at the end of period t under any event. 
The t)remium or present  value of Sz asked by  the reinsurer is 

PtEI] -~ J" P~,(x)dx ~ nt < I (2) 
X I 

I - -  1T t 

In other  words, - -  is the interest  ra te  for period t. 
7~t 

The descript ion of the reinsurance process above implies tha t :  

I) There  are no t ransact ion costs in reinsuring. 
2) Borrowing and lending rates are the same. 
3) Reinsurance contracts  have a span of one period. Tha t  is at 

the end of each period when the risks realize (the value of ~ i~ 
observed) the contracts  are fulfilled and then cease to exist. 

In the fol lo~ing we will denote  by  Pt(x) the price funct ion of 
the claims r.v. ~t of period t to avoid the complexi ty  of the notat ion 
.P~,(xt). 

2.4 Dynamic Programming for.mulat~on 
At the s tar t  of period t the I.C.'s reserves level is R~. I t  immedi-  

a te ly  pays dividends Ct thus remnaining with Rt - -  Ct which by  the 
end of the period grow to (Rt - -  Ct)/rct where 

~t ~ f Pd.~)dx (3) 
X I 
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At the end of the period the I.C. collects I)remiums Pt and 
pays claims x (the value of ~t) and thus, if it conducted  no rein- 
surance, the reserves level for the next  period ( t - - I )  would be 

17 t - -  C t 
R~-l(x) = - - - - -  -F P~- -  x. With reinsurance, however,  the I.C. 

rb 
sells to the reinsurer R~.~(.r) and buys Rt_t (x  ) ,~o tha t  the budget  
constra int  

f R,_,(x)P,(.~) = j" [~,--c,=, + ¢,,--.] &(.)d.~ 
X l .V I 

(4) 

is satisfied. 

i t  will be useful to denote  tile p r emmm demanded  by tile re- 
insurer for assuming tile risk ~t 1)3' 

p, = f x P , ( x ) d ~  (5) 
A t 

Now let 

f t(Rt): the naaximum expected u t ih ty  for a /-period problem with 
initial reserves level Rc 

Then the problem ol an 1.C., whose ut i l i ty  function is of t he fo rm 
(S) above, can be wri t ten as a D31namic Programming  problem: 

fdRt )  = max {u(C,) -F ocE[ft-l(Rt-t(~t))]}; o < ¢g < 1: (6) 
Co, 1~ z 

subject  to the budget  constra int  (4) and with bounda ry  condition, 

fo(Ro) -= ,u,(Ro) (7) 

3. CLOSED FORM SOLUTIONS 

The D.P. problem formula ted  by  (4), (6) and (7) cannot  in general 
be solved analytically.  In this section we will find closed form 
solutions to the problem when we addi t ional ly  assume tha t  the 
one-period ut i l i ty  funct ion of the 1.C. belongs to tile Linear  Risk- 
Tolerance (LRT) class. 

~"(-9 . 
The quan t i t y  ,u'(x) is known as the absolute risk aversion 

~'  (x) . 
index (Pra t t  [7]). The i n v e r s e , -  ',."(x---) is known as the r isk-toleranre 

index. Tile L R T  class is then defined as the solutions to the equat ion 

,,¢ (x) as  + b 
, , ,"(xi  - g (8) 
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where g, a, b reals and u"(x) < o and u'(x) > o. 

I t  can be shown tha t  the solutions to (8) are 

(ax + b) c ~t 
'/t(X) = a ( c  + I)  ; c ~ - -  I ,  aX -@ b > O, ac < o 

I 
u(x) = - l o g ( a x  + b); ax + b > o ,  a > o  

I 
it(X) = ~ (I - - e - ' l ' x )  " - CO < X < + OO, ~ > O 

I t  will be useful later  to split class [a into:  

a > o ,  c < - - I  -->u(-) < o  

a > o , - - I  < c  < o - ->u ( . )  > o  

a < o ,  c > o  - + u ( . )  < o  

Theorem Ia (Model Ia) 

Oa) 

(Ib) 

(ll) 

(Ia2) 
(Ia~) 

(II) 

(i2) 

(is; 

(14) 

(i5) 
t?t- trot bet b mt 1 

. _ _ _ . ,  _ [ 
R t - l ( ~ t )  - -  At-1 ~1/¢ AtRt + Bt + a [gt(~t)J 

b Bt_ 1 

+ aAt_ 1 -4t_1 

as long as the initial reserves Rt satisfy the condit ion:  

a(AtRt + Bt) + b > o 

where 

~t t 
D t = I + D t _ l  o l tc ,  D t  ~ I 

I 
At = ~ ,  o _< At < I 

I.C. to 

If u(x) belong to class (Ia) then tile solution to the t-period prob- 
lem as described by  (6) subject  to (4) and (7) is unique and is 
given by 

ft(Rt) = Dtu(AtRt -F Bt) (9) 

The optimal  dividend s t ra tegy is 

C~ = AtR t + 13 t (ZO) 

The optimal  reinsurance s t ra tegy  t ransforms the wealth of the 
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c a n  be calculated recursively s tar t ing with 

Do= r, A o =  I, Bo = o 

and 

j mt ~ L~dx ) ]  Pdx)dx (~6) 
X t 

Proof: The proof is incluctive showing the result to be valid for a 
1-period problem and then proving the induct ion step from t - -  I 
to t. 

One period problem (t = I) 

The DP  relation (6) becomes for t = I 

fi(R,) = max {u(Cl) + eE[u(Ro(~,))]} (17) 
C, ,  Ro 

subject  to (4) which for t - - - - I  becomes, 

I Rt(x)Pl(x)dx = R, - -  Ci + p,n~ - -  pt (IS) 
.r 1 

Fix. C,. To maximize the second term in (I7) subject  to (18) 
according to the calculus of variat ion R~(.) must  be chosen so tha t  

~,'(R;(x)~(x) = xp~(x)  (~9) 

where X is to be de te rmined  by subst i tu t ing in (18). 

Using the fact tha t  ,,,(.) belongs to class Ia we soh, e (19) to find 
)t/c "" ttc I _ b R~(x) = - -  - (20) 

a k ~(x)J a 

Upon subst i tu t ion of (20) in (18) we find 

x ' / c =  - -  R L - - C ~  + p t n l - - p ~  + - ~  (21) 
'Jl/~l a. 

with 01, mj defined in (5) and (16) respectively.  

Subst i tu t ing (20) and (21) in (17) we obtain after  some algebra: 

f , (R , )=~axu(C,)  + a ( c + I )  ~ R , - - C t + p t n , - - p , + ~ n t ] ]  t 

(22) 

where we have used the ident i ty :  

r E t \ - ~ /  l ~ J k-~-~J P~(x)dx ~ m, (23) 
X1 
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The second term in the RHS of (22} is strictly concave as long as 

a(Ri - -  Ct + plrcl - -  pl) + b T~I ) 0 (24) 

while the first term, u(C1), is strictly concave as long as 

a C , + b  > 0  (25) 

Differentiat ing the max imand  in (22) w.r.t .  Ct and equating to 
zero we obtain the unique optimal dividend s t ra tegy 

C; : A,R~ + B~ (26) 

with At, B1 as defined in (14) and (I5). 

Eurther,  when Ct is given by (26) the conditions (24) and (25) 
are equivalent and thus the only condition required is 

a(A~R~ + B1) + b > o (27) 

Finally,  subst i tut ing (26) in (22) we obtain 

fl(R~) = Dtu(A LI~L + B~) 

which is in the desired form. 

The t-period problem 

We assume that  the theorem holds for a ( t -  I)-period prob- 
lem and we show tha t  it holds for a t-period problem. The argu- 
ments are similar and we will thus be rather brief (a more detailed 
proof can be found in [6~). 

We first fix Ct and we find that  the optimal post-reinsurance 
wealth R~_ l({t) must  satisfy 

x ''° [P(,x)] ~'~ b_ _ B~_~ (28) 
RL'(x)- a A , _ ~  t~-~J - -  aA, , A,_~ 

where 

X I/c I I t3t-l Xt bx t  ] 
- =  - tR'  - -  c ,  + #,~, - -  p, + ~ ;~ + ~ ~ T h  (29) aA t- t mt 

Substi tut ion of (28), (29) in (6) yields 

) c~D~_lmt [aA~_, ( 
R t - - C t  + ptr~t--pt + ft(Rt) = max u(Ct) + a(c + I) t m~ 

Ct 

A ~_~.,-----G + aA ~_~/J i (30) 

Differentiat ing the maximnand w.r.t. Ct and sett ing equal to zero 
we find the unique optimal dividend: 

C~ = A t R  t + B t (3I) 
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as long as Rt ~s such that  

a(AtRt + Bt) + b > o (32) 

Final ly subst i tut ing (31) in (29) and using the definitions of At, 13t 
in (14) and (15) we obtain (II) and the Theorem is proved. 

Remark: If for a t-period problena the initial reserves R~ are such 
that  a(AtRt + Bt) + b > o and the optimal strategies (io) and 
(II) are followed, then at the start  of period t - - i  the reserves 
Rt-~ will again satisfy a(At_~ Rt..L + BL_~) + b > o To see this 
we only need to observe (II). This means that  follo~ing the op- 
timal strategies for a t-period problem we are guaranteed tha t  
we will be able to reapply them for a t - -  I period ploblem with 
no further conditions. 

Theorem Ib (Model [b) 

If u(x) belongs to class (Ib) then the solution to the t-period 
problem as described by (6) subject to (4) and (7) is unique and 
is given by 

ft(Rt) = l)tu(AtRt + Bt) + Et (33) 

The optimal dividend s t ra tegy is 

C~ = AiR t -4- B~ (34) 

"['he optimal reinsurance s t ra tegy transforms the wealth of the 
I.C. to 

* AtRt + 13 t + At (35) R t - ' ( ~ t ) -  At-I  Pt(¢t) aAt- ,  -1 

as long as the initial reserves Rt satisfy the condition: 

a(Atl¢t -4- Bt) -t- b > o (36) 

where 

D r :  I + o~Dt-,, Dt ~ I (37) 

I 
At - -  Dr' o _ < A t  < I (38) 

• t  1 b r : t  
6', = A,  p, + + .4T-, (39) 

o~ 

Et = - Dt-L[log~ + qt] + ~ E t - ,  (40) 
( t  
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can be calculated recursively s tar t ing with 

D o =  I, A o - -  I, 13o=o, E o = o  

and 

(41 ) 

[ qt ~-= E log \Pt(~e)/]  (42) 

Proof: is similar to that  of Theorem ia  and is deleted. For more 
details see [6]. 

Remark I" Except (33), (4o), (42) all the results of Theorem lb can 
follow from Theorem Ia by lett ing c - > - -  I and mt > z. 

Remark 2" The Remark at the end of Theorem Ia again holds as it 
can be checked by observing (35). 

Theorem I I  (Model II) 

If u(x) belongs to class ([I) then the solution to the /-period 
problem as described by (6) subject to (4) and (7) is unique and is 
given by 

ft(Rt) = Dtu(AtRt + Bt) + Et (43) 

The optimal dividencl s t ra tegy is 

C~ = A i R  t -F B t (44) 

The ol)tnnal reinsurance s t ra tegy transformb the wealth of the 
I.C. to 

I .B t  i l o g s  I [Pt(~,)~ 
1 - -  - - -  + - -  log i - -  i \  %(~) / 

l i t -  ( ~ t )  - -  At .t [-AtR-t + Bt] .fit-i yA t - t  "(At I 

(45) 

w h e r e  

Dt = i + r~tDt-1, D l >__ I (46) 

[ 
.4~ = Di'  o_< At _< I (47) 

"/r~t - ] w t  ~t  ] 
- -  - -  rot + l o g s  (48) 13t = :  A, p,rct 0¢ + At-] yAt - i  ":At-L 

DI-1 
E ,  - -  (~ - -  ~,)  + ~.E, .L ( # D  

Y 
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can be calcula ted recursively s ta r t ing  with 

D o  = I, A o = I ,  13o = o ,  E o  = o 

and 

X t 

Proof: Similar  to tha t  of Theorem In. An outline of the proof 
appears  in [6]. 

4. INTERPRETATION OF TIIE OPTIMAL STRATEGIES 

4. t The dividend strategy 

In all Models the op t imal  d iv idend s t r a t egy  is linear m the 
reserves level at the s ta r t  of the period. In our formula t ion  the 
dividends were not restr ic ted to be positive. Negat ive  dividends 
would, of course, mean tha t  the s/p-holders agree tha t  an increase 

in the reserves now is desirable for be t te r  profi ts  in the future. If, 
however,  we insist tha t  d ividends should be non-negat ive  we can 
easily achieve it 1) 3, restr ic t ing to Models IaL, In,e, tb  with - -  b/a > o. 
In the case of Model l I ,  a sufficient condit ion to guaran tee  the non- 
nega t iv i ty  of dividends for a N-per iod  problem is A N R N  + BN > 0 

Pt(x) 
and c~ > ~t(x) " xsXt,  I = N . . . . .  I. This can be seen by  looking 

at  (45). A necessary condit ion for the la t te r  is o~ >: =t for all t. 

4.2 The reznsurance strategy 

\Ve can in terpre t  \~t(~-ti] as n ,unit of post-reinsurance rishv 

asset for Model In. The name is suggested by observing  ( n )  since 

q~t([t) / is tile only q u a n t i t y  which is a function of tile ou tcome 

of the r andom var iable  I t  and  its form is independent  of the initial 

weal th  of the I.C. In this sense, mt can be in te rpre ted  as the cost of 
a ~.tnit of post-reinsurance risky asset. Similarly,  in Model l b  (35) 

the unit  of pos t - re insurance  r isky asset is P iT t )  and  its cost is I. 

In Model [ I  (45) the unit  of r isky asset  is log ~ and  its cost is wt. 

17n Models Ia,  Ib  the a m o u n t  of r isky asset  increases l inear ly 
with the initial reserves level, while in Model I I  the a m o u n t  of r isky 
asset is fixed independent  of the reserves level. 
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Pt(x) 
If q ~  is non-decreasing in x then the post-rcmsurancc wealth 

of the I.C. is non-increasing in .v in all 51odels. This of course means 
tha t  tile I.C. part icipates posit ively in the risk. Tha t  is, the larger 
the claims .~ paid to the policy-holders, the less the wealth of the 

I)t(X) 
I.C. af ter  reinsurance. \Ve c ~ t n  think of q~t(x) as the loadi~gfactor. 

An increasing loading factor  then means that  the reinsurer asks 
for a greater  loading to a cert if icate that  guarantees  final reserves 
of $i to the cedent  when the clain~s x paid to the policy-holders 
are large than when they are small. 

Fur ther ,  in Models [a and lb the post-reinsurance wealth Rt- ~(~) 

lower bound 

• ( x )  

\ 
x 

Models lal, la 2 

_ B t 

aA t A t 

R t (x) Rt (x) 
- 2 - -  5- 

?..*: 
r bound 

[ 
Model  I a  3 

lower bound 

t(x) 

~ x  

b B t 

aA t A t 

a ( x )  

~ X  

Model Ib Model II 

F i g u r e  ~. T h e  post-reinsul '~UlCC w e a l t h  A't(x) as  a f u n c t i o n  of t h e  c l a i m s  x. 



OPTIMAL REINSURANCE AND DIVIDEND PAYMENT STRATEGIE.g 4,5 

of tile I.C. satisfies the condition a(At-det  ,(~t) q- Bt-,)  q- b > o .  
This condition inaposes upper or lower bounds on Rt -l(~t) depending 
on the sign of a which is negative for Model laa and positive for 
Models [at, la2 and lb (see Figure i). 

The negat ivi ty  of a makes Class laa the only one with an in- 
creasing risk-aversion index (Classes Ial, 1a.% Ib have decreasing 
while Class I1 has a constant  risk-aversion index). Thus Class Iaa 
(to which also the quadrat ic  uti l i ty function belongs) must be ap- 
plied with caution as it is doubtful  whether it has meaning in real 
life (for a discussion of this point see Arrow Lx]). 

5. GENERALIZATIONS - EXTENSIONS 

(a) All Models can be easily extended to an infinite horizon by 
simply lett ing the number of periods N tend to infinity. The 
optimal strategie~ remain qual i ta t ively the same. 

(b) All Models can be generalized to include a decision on ex- 
penditures to promote sales if we assume tha t  the sales volume is a 
concave function of the money spent. The optimal dividend and 
reinsurance strategms remain essentially the same. This is in- 
tuit ively expected by observing that  the quan t i ty  Pt (prenaiums 
collected from policy-holders) appears only in the constant  Bt and 
not in At. or Dt. or Et. 

(c) Multiplicative Utilities. If instead of the form (S) we assume 
tha t  the I.C.'s ut i l i ty  over dividend streams is given by (MN) or 
(MP) (Section e.z) we can again find closed form solutmns but only 
when (MN) is coupled with the Class Ia~ of ut i l i ty  functions or 
(MP) with Class Ia.,. The results are similar in nature with those of 
Section 3. Again the optimal dividend s t ra tegy is linear in the 
leserves while the form of the post-reinsurance wealth of the I .e .  is 
independent of its initial wealth. I t  only depends on the price func- 
tion, the probabihty densi ty function of the claims, the one-period 
uti l i ty function of the I.C. and the number  of periods remaining. 

These extensions-generalizations are t reated in detail in [6]. 
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FROM AGGREGATE CLAIMS DISTI{IBUTION "1"() 
PROBABILITY OF RUIN 

HILARY L. SEAL, 

Ecole Polytecluuque F6d~rale de l.ausanne 

I NTROD UCTION 

When the distribution of the number of claims in an interval of 
time of length t is mixed Poisson and the moments of the inde- 
pendent distribution of individual claim amounts are known, the 
moments of the distribution of aggregate claims through el)och l 
can be calculated (O. Lundberg, 194o, ch. V[). Several approxmla- 
tions to the corresponding distribution function, .F(., t), are 
available (see, e.g., Seal, t969, ch. 2) and, in particular, a simple 
gamma (Pearson Type IIl) based on the first three moments has 
proved definitely superior to the widely accepted "Normal Power" 
approximation (Seal, z976 ). Briefly, 

I ~+zV~ 
F(t + I b, + 14) 

where the P-notation for the incomplete gamma ratio is now 
standard and ~, a function of t, is to be found from 

4 4 
2 3 ~ 2 

the kappas being the cumulants of F( . ,  t). An excellent table of 
the incomplete gamma ratio is that  of Khamis (1965). 

The problem that is solved in this paper is the production of an 
approxilnation to U(w, t), the probability of non-ruin in an interval 
of time of length t, by using the above mentioned gamma ap- 
proximation to F( . ,  t). 

THE P R O B A B I L I T Y  O F  N O N - R U I N  I N  A PERIOD OF LENGTH T 

In Seal (1974) it was shown that when the distribution of the 
number of claims in an arbitrary interval of time is generated by 
a stationary point process the probability of non-ruin in an in- 
terval which the insurance company enters with a risk-reserve of 
w and operates throughout with a risk-premium loading of -q, is 
U(w, l) given by 

t 

U(w, ~) = F(w + r~t, l) -- =~ I U(o, ~) f ( w  + r:,l -- .r, l -- .r) d.~ (2) 
o 
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where rtt is the risk-loaded pure premium rate and f ( . ,  t) is the 
densi ty corresponding to F( . ,  t). This is the formula which we will 
use for our numerical  approximat ions.  

The only s ta t ionary  point  processes tha t  have been utilized by 
actuaries in practical  applications are those that  lead to ordinary 
or mixed Poisson distr ibutions (0. Lundberg,  l.c.) and in these 
circumstances the Prabhu-Benes-Tak~.cs formula (Seal, I974) 

U(o, ~) = ~,~ [ F(y, t) ay (3) 

m a y  be used to produce the first factor  in the integrand of (2). 

APPLICATION OF RELATION (I) 

Considering (I) as applied to (2) we note tha t  if the distr ibution 
of the numher  of claims is Poisson with mean t and the densi ty  of 
individual claim amounts ,  b(.), has mean 

= I S0 tha t  ~ = I + Q, F ( w  + I +--~. t, t) ~ P(~ ,  ~. + z 

where 

4 ×~ 4(@@ 4lP.~ =_ ~(t) - , - 
×~ ( 0 ~ )  ~ -  p~ 

p-. and p ,  being the second and third moments  about  zero of the 
b( . )-distribution of indiviclual claim amounts  (Seal, 1969, 2.41 ). In  
order to evaluate  z we have 

t + z l / 2~_=  t + z l / ( 0 2 )  = w + (I + -~)t 

so tha t  

z = (w + -,~t) ( O o J -  Y~- 

Fur ther ,  by differentiat ion of (t) with respect to z, 

+ e x p [ -  + (4) 

where 

and, when T + z]/×~_ = w + (I + ~) .~, 

z = ( w + ~ ) ( ~ p 2 ) -  ~-' o < ~ < t  
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Finally, by (3), 

I (~+~)T 
g ( o ,  ,1 - (~ + ~),: ,,f f ( y , - : )  dy 

l / ~  ~,tv~ 
- f F(~  + z I/G, . )  dz 

(~ + "~)': _:f~,v P(o~, o~ + z l/~) dz by (~) 

f P(o~, u) du 
(~ + "~)~. ~_,v~,~.~ 

( I  -I- "q)"r~ ol x~-lc-Xd": 
Ct --  T [~ 

I ct ~ nvi3 

o 

I 

- -  (~ - -  ~ )  P(~ ,  ~ - -  ,~)  + ~ P ( ~  + z, ~ - -  -~)] (5) 

where 

= I/[~TE) a n d  ~ = ~( , ) .  

A remarkable feature of the approximation (I) is that  only the 
first three moments of the distribution of individual claim anaounts 
are involved. If, therefore, a two-parameter distribution is success- 
fully fitted to the observational distribution of claim amounts by 
means of the mean and variance it implies that the appropriateness 
of the chosen functional form has been deterlnined by the ap- 
proximate equivalence of the third moments of the observational 
and theoretical distributions of individual claims. For example, if 



5 ° SEAL 

the gamma distr ibution ( johnson & Kotz,  I97O, ch. 17) were 
f i t ted the third central  momen t  (or cumulant)  would necessarily 
be twice the variance. 

Now only two functional  forms for b(.), the densi ty function of 
individual claim amounts ,  result in explicit  results for F(x, t) when 
the distr ibution of the nurnber of claims in an interval  of length t is 
Poisson with mean t (Seal, 1969, p. 3 z, referring to Hadwiger,  
1942 ). These are the gamma and the inverse Gaussian distr ibutions 
and it would be convenient  to use one or other  of these forms for 
b(.) so tha t  direct checks may  be made of our numerical  approx-  
imations using (I). 

THE INVERSE GAUSSIAN DISTRIBUTION 

According to Seal (1969 , p. 30) by  far the greatest  number  of 
graduat ions  of observed individual claim amounts  have been based 
on the lognormal distr ibution,  namely  where the logari thm of the 
claim amount  (the la t ter  possibly increased or decreased by some 
constant)  has a Normal  distr ibution.  

On the other  hand the inverse Gaussian densi ty  (Tweedie, 1957) 

[ 1 b(x) = \2~xa /  exp - -  x > 0 ,  g. > 0 ,  X > 0  (6) 
2 g}x J 

which has the distr ibution function 

x 

as shown by Shuster  (1968) (but misprinted in Johnson & Kotz,  
197o ), where O(-) is the s tandardized Normal  distr ibution function, 
can be made  to s ta r t  at  the same claim amount  (which we take as 
the origin) as the lognormal and be given the same mean ~ and 
variance ~3/X. Although the inverse  Gaussian has never  been used 
to gradua te  a set of individual  claim amounts  it may  produce 
near ly  the same yt-value as tha t  possessed by  the corresponding 
lognormal distr ibution and would then lead to al)proximately the 
same distr ibution of aggregate claims as l)rovided by (I). 

When individual  claims are dis t r ibuted according to the inverse 
Gaussian, 

f(x,  t) = e- t  ~ \2=xa/ e x p  - -  2M2£ - ]  (8) 
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where A = k2X and M = kp., and from (6) and (7) 

F ( x , l )  = e - t  + e '. ~ ¢ " el--~-- + e.~AIM 
J, I 

I - -  (1) X " .M- -~- I (9) 

We mention tha t  13(s), the Laplace transform of (6), is given by 

' + - 7 - /  I 

C HOIC E  OF P A R A M E T E R S  

Upwards of 5 ° actual individual claim distributions have been 
f i t ted by the lognormal (Seal, 1969, p. 30). The Tl-values for 45 
of these were calculated *, using the formulas provided by .Johnson 
& Kotz (197o) applicable to the constants of the linear transform, 
and compared with the corresponding yl 's calculated for (6) using 
the calculated mean and variance. 60% of the y, pairs were ap- 
l)roximately equal implying tha t  tile lognormal and inverse Gaus- 
sian distributions would produce nearly the same value for (I). 
A m o n g  tile 27 distributions was Cannella's (1963) costs of 124, 279 
"specia l ty"  pharmaceutical  prescriptions in tile province of Rome 
during 196o. Tile two yl 's were '355 and "354, respectively, but  the 
mean and variance of the distribution were s ta ted to be 786.4 and 
28o582.o 9 after lognormal fitting. Unfor tuna te ly  this mean and 
variance produce yl 's  of 2.326 and 2.o21, respectively, for the 
lognormal and inverse Gaussian indicating that ,  in fact, tile lat ter  
distr ibution is not in this case a very good approximation to the 
lognormal. This error of Cannella was not discovered until  too late 
and we had already chosen p. = I and X = (786.4)~/28o582.o9 = 
2.2o408 for the inverse Gaussian. In order to apply this to (1) we 
have (Tweedie, loc. cir.) po = p 2 +  ~ Z ) - l =  1.4537o4 and ~bz = 
p.z + 3pAX -t + 3p.sX -"- = 2.978654 so that  ~(t) = 1.384993 t. 

R E S U L T S  

The following Table compares the results obtained for f ( I o  + 
t, t) by (4) and (8) and for F(IO + t, t) by (I) and (9). In the first 
set of comparisons the gamma approximation is only in error by  a 
few units in tile fifth decimal place. In tile second set the galnma 

* I t  is n o t  a h v a y s  e a s y  to  d e c i d e  w h e t h e r  a n  a u t h o r  is u s i n g  n a t u r a l  or  
c o m m o n  l o g a r i t h m s  for  h i s  t r a n s f o r m .  
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a p l ) r o x i m a t i o n  is neve r  more  in error  t h a n  by  two un i t s  in the  

fou r th  dec imal  place. These  are ve ry  good resul ts .  

TABLE I 

Values of f ( Io  + t, t), F(.ro + t, t) and U(zo, t) 

t f ( l o  k t, t) F ( m  + t, t) 

(4) (8) (t) (9) 

I .oooo4 .00003 .99996 -99997 
2 .ooo19 .oooi6 .99978 .99983 
3 .ooo49 .ooo45 .99937 .99945 
4 .00095 .00090 .99866 .99879 
5 .00154 .00150 .99764 ~077~ 

6 .00226 .00222 .9963 .9965 
7 .00305 -00303 -9947 .9948 
8 .oo39o .00390 9927 .992t) 
9 .OO479 .00479 .99o6 .99o8 

to .00569 .00570 .9882 .9884 

tl  .00658 .00661 .9857 .9858 
i2 .00747 .00750 .9830 .983 t 
t 3 .00833 .00837 .98Ol .9803 
14 .oo916 .00921 .9772 .9774 
15 .00997 .OLOO2 9742 .9744 

16 .01074 .01o79 .9711 9713 
~7 01147 .01153 .9680 .9682 
18 .o12I 7 .oI223 .9649 .965I 
19 .01283 .0t289 .9618 .9619 
2o .o1346 .o1352 .9586 .9588 

21 .or4o6 .o1411 .9554 .9556 
22 .o1462 oi467 .9523 .9524 
23 .o1515 .0152o .9491 .9493 
24 .o1564 .o157o .9460 .9462 
25 .01611 .ol6T 7 .0420 .943 t 

U(io, t) 
metholl 

(1) [0 (5) of 1974 
paper 

• 9999 i.oooo 
9997 t.oooo 
999t .9993 
998o .9981 
9964 -9964 

9943 .9943 
99~6 .9915 

.q884 .9883 
9847 .9846 

.0807 .9804 

0702 -9750 
.9715 .971J 
.9665 .966o 
.9613 .96o 7 
• 9559 .9552 

• 95o3 .9495 
.9447 -9438 
• 9369 .938o 
• 9331 .9321 
.9273 .9262 

.9214 .9202 
9155 .9143 

• qo97 .9083 
.9038 .9024 
.8980 .8965 

The  a p p r o x i m a t e  va lues  of f ,  F a n d  U(o, t) (by re la t ion  (5)) were 

t h e n  i n se r t ed  in to  (2) with w = IO a n d  .q = o us ing  r epea t ed  

S impson  at  u n i t  s teps  in t for the  va lue  of tile in tegra l .  \~qmn t was 

odd  the  las t  th ree  pane l s  were a p p r o x i m a t e d  b y  the  t h ree -e igh ths  

ru le ;  U(o, I) was o b t a i n e d  b y  the  t rapezoida l .  There  is no " exac t "  
resul t  for U( io ,  t) b u t  the  Lap lace  t r a n s f o r m  invers ion  m e t h o d s  

descr ibed  in Seal (1974) were used to p roduce  resul t s  s u p p o s e d l y  

correct  to th ree  decimals .  These,  t oge the r  wi th  our  new approx -  

i m a t i o n s  a p p e a r  in the  las t  two colurl lns  of the  Table .  The  new 

m e t h o d  appea r s  to be p r o d u c i n g  va lues  of U ( i o ,  t) " n e a r l y "  cor- 

rect  to th ree  decimals .  
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CONCLUSION 

The proposed new approximation to U(w, l) using the gamma 
approximation to F(x, t) produces reasonably accurate results. Is 
it easy to apply ? The writer confessed in his 1974 paper that steps 
in t at greater intervals than unity tended to harm the efficiency of 
the approximation to the integral in (2). For example, by using 
steps of five instead of umty in (2) we obtained, with the new ap- 
proximations, the following values which are barely correct to two 

U(Io, t) 
t Uni t  steps QutJ~quemuai 

(Table I) steps 

.5 .996 .994 
1o .981 • 977 
I 5 • 956 947 
2o .927 918 
z 5 .898 .887 

decimals. Nevertheless this may be considered sufficient if a 
computer is not being used and desk calculations are the order of 
the day. 
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L A R G E S T  CLAIMS R E I N S U R A N C E  (LCR). 
A QUICK M E T H O D  TO CALCULATE L C R - R I S K  R A T E S  

FROM EXCESS OF LOSS R I S K  RA TES  

G .  B E N  I C F A N I ) E R  

S w i t z e r l a n d  

Let us denote  by E ( x )  the pure risk premimn of an unl imited 
excess cover with the retent ion x and by  H(x)  and re(x) tile cor- 
responding expected f requency and severity.  

We thus have E ( x )  = H(x) • re(x). 

H ( x )  is a non-increasing function of x and for practical  purposes 
we can assume that  it is decreasing; H ' ( x ) <  o. The equat ion 
H ( x )  = n has then only one solution x,~, where n is a fixed integer. 

Let  En denote  the risk premium for a reinsurance covering the 
n largest claims from the bot tom.  

Let  us define E ~  = n x  n -F E ( x , )  -= n(x~, + m(x~2 )). In tu i t ive ly  
we feel tha t  E;, is a good approximat ion  for E~,. 

We shall first show that  when the claims size distr ibution is 
Pare to  and the number  of claims is Poisson distr ibuted,  E;, is a 
good approxi lnat ion for E,,, being slightly on the safe side. We 
fur ther  include a proof given by G. Ottaviani  tha t  the inequal i ty  
E~, < E;t ahvays holds. 

In the Pare to  case we have 

H ( x )  = t ( ~  - F ( x ) )  = t • .v " 

where the Poisson paramete r  t s tands for the expected number  of 
claims in excess of I (equal to a sui tably chosen moneta ry  unit) and 

x 
. ,(.) - 

0 ~ - - I "  

The re tent ion xn over which we expect  9l clamls should satisfy 

n = H ( x n )  = t . xn  -= 

which gives 

OF 

t - -  n ' x~l 

TM 
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According to 13. Berliner [2] we have, when the number  of claims 
is Poisson dis t r ibuted 

p'  i -  
t 

where 
t 

Pt(n) = J'e - ~ .  u"- '  du. 
o 

Replacing the incomplete  Gamma function 
arr ive at 

P, 1) 3, £ = F we 

- - I  P(n) " p ~* + * -  

which formula was given by H. Ammete r  a l ready in 1964 [I]. 
Obviously E~z < E.,~ 

In all cases when t is large compared  to ~,, we have 

EE,a (,n, 0¢; l) very  close to i. 

If in a practical s i tuat ion l is too small we can ahvays increase t 
by decreasing the mone ta ry  unit, in other  words by  enlarging to 
the left the range of the Pareto  distribution.  

Insert ing l = nx.'=, as deduced above,  in E n, we obtain 

E ~  : ill lice • XTt " - -  . = - - I  P(n) r n + ~ - -  

However  

o¢ ~ P(n + I) 
- -  X n • 

-- I ~-- I P(n) 

Thus we have 

'n t/=. £(n, + I - -~ )  En 
E;, - P(n  + I) 
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Tabula t ion  of 

B E N K T A N D E R  

n ~ - - - 2  ~ - - - 2 .  5 ~ = 3  

I o.886 o.894 o.9o 3 

2 o.94o o.943 o.948 
3 o.959 o.961 o.964 
4 o.969 o.971 o 973 
5 o.975 o.976 o.978 

IO 0.988 0.988 0.989 

"File figures i l lustrate 

that the approximat ion  is good, 
that the approximat ion  is on the safe side, 
and that the approximat ion  is ra ther  mvar ian t  to variat ions of the 

pa ramete r  alpha within the given interval.  

The  safety margin in the app rox ima t ion - -E ; ,  replacing /~',,--is 
roughly of the form constant /n.  

This is i l lustrated below for alpha = 2.5 

E:-7 " "  E;, 
l /  

i o.894 o . i i  
2 o.943 o . I I  
3 o.961 o. i2 
4 o.971 o.I2 
5 0.976 o.12 

IO o.988 o.12 

We have thus shown tha t  in the Pareto  case 

En 
<7 - i  

and 

Eu < ~ n  < E ~ ,  = nx n + E ( x n )  = nx n + n 
X n 

o c - - I  

$ Z X l t  • - -  o~  • E(.~?i). o c - - I  
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Thus  
./3" ,~ 

E ( x , ; )  ~ '  ~'" 

This means that  the LCR risk premiunl is approx imate ly  equal 
to alpha times the risk premium of an X L  cover with a retent ion 
chosen in such a way that  the expected number  of claims is equal 
to the number  of LCR-claims protected.  

In the Poisson-Pmeto  case E;z gives a handy  and fmrly good 
approximatmn of E~. The reader is invited to examine other  claims 
size distr ibutions F(x) which are of importance in the practice.  

Most such distr ibutions will for all .~: > xo have m"(x) < o. We 
believe tha t  ~J('(x) < o will guarantee  that  E~, will be a good ap- 
proximat ion  of E n with E;~ > ET~. 

We now give a proof by G. Ot taviani  tha t  the inequal i ty  E~z < 
E;, is vahd  for any .~* and for a rb i t ra ry  distr ibution functions of the 
number  of claims and of the claim size. 

We do not even need the condit ion of section 2 tha t  the equation 
H(x) = n has only one solution since the proof will be valid for 
any  Xn, such that  H(x , )  = n. 

Let  s denote  the total number  of claims which occur and N = 
min (s, n). We thus allow for the possibility that  less than n claims 
O c c u r .  

Let  X,, be the set consisting of thc iV largest claims. 

Le t  
~(x , , )  = E ( N )  

, , (X, , )  < ',, ( I )  

Let  t,(X,,) = E,,/v(X~,) be the expected value of a claim in the 
set X~. 

Analoguesly we denote  by X;, the set consisting ol all claims 
exceeding x,,  the expected number  of claims exceeding x~ 1) 3 , 
,,(X;,) and the expected value of a claim in the set X;, by a(X;,). 

and 

\Ve thus have 

Let  

. , ( x ' , )  = ,~ (2) 

w(A~,)  = x,, + .re(x,,). 

Y~= X.~X~  
z , ,  : ( x , ,  . - . . .v ;~)  - -  x ; ,  
z ; ,  : ( x , ,  ~ x ; , )  - -  x , ,  
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v(Yn), ~(Y,,), ,J(Zu), ~(Z,,). v(Z'n), I*(Z;,) arc def ined analoguesly  to 
v(Xn) and  ~(Xn). F rom the above defini t ion it follows direct ly  
t ha t  

F(Zi) < .v,, and  (3) 

~,(z~) > .,-,,. (4) 

Thus  

and  

E,, = ,,(X~) • F(X~) = ' , (Yd F ( Y d  + ,,(Zd i.L(Z~) (5) 

E;,  = ,,(X;) • F (X; )  = ,,(Y;) F(Y, )  + ,,(z',)t4z;). (6) 

From (I) and  (2) it follows t h a t  

' , (Y0 + ,,(z,) = ~(x,)  < ,, = ~(x; )  = ' , (Y0 + ~(z;). 

Thus  
,J(Z 0 < v(Z~). (7) 

From (3) and  (4) it follows tha t  

~ ( z 0  < ~(z'o (8) 

and from (7) and  (8) 

, , ( z , ) .  v.(z,) < ,,(z;) ~(z~). (9) 

Adding u(Yd - F(Yd to both sides of (9) and using (5) and (6) 
leads to 

E n < E~, q.e.d. 
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T H E  E F F I C I E N C Y  OF A B O N U S - M A L U S  SYSTEM 

NELSON DE PI¢IL 

13elgmm 

A BST l~ ACT 

The concep t  efhcmncy of a bonus-malus  sys tem wins defined, appa ren t l y  
in a lo ta l ly  di f ferent  way, consecu twe ty  by  l .o imaran ta  (I972) and l .emmre 
(r975, t976). In this paper  we s t a r t  with a more general model t h a t  leads us 
to a defhmtlon of efficmncy tha t  conta ins  both earhcr  ones as specml cases 
F u r t h e r  we in t roduce  the  d e h m t i o n  of eff iciency over  a finite p lann ing  
horizon and consLdcr the effmmncy not only  for a single risk bu t  also for the 
ent i re  r~sk group As a consequence  of our approach  we can also generahze 
the concepts  excess p r c m m m  and centra l  value as they  were in t roduced by 
l.Olmaran t;i 

z. THe: BONUS-MAI.US SYSTEM AS MARKOV CHAIN 

The basis of a fair tar if icat ion in insurance,  in our case moto rca r  

insurance,  consists in the fact  tha t  each policyholder  is charged a 
p remium tha t  is propor t iona[  to the  risk tha t  he ac tua l ly  represents .  
This risk is de tc rmined  by  a grea t  num ber  of risk factors. Some of 
them,  such as type  and use of the car, can be taken into considera-  
tmn a priori for the rat i f icat ion and they enable  us to split  up the 
heterogeneous col lect ivi ty  of risks into a n u m b e r  of risk groups 

which have  a more homogeneous  risk s t ructure .  Other  factors  
cannot  be taken into account  a priori since they are too difficult 
to observe,  or for social and  psychological  reasons, or just  because 
one doesn ' t  know all the factors which influence the risk. Due to 
these factors there will still be accident  proneness differentials  
within a risk group. In  the course of t ime these differentials  will be 
reflected by  the individual  claim experience of the risk. Therefore  
one can bring into account  a posteriori  the earher  neglected risk 
factors  by means  of an individual exper ience ra t ing method ,  such 
as a bonus-malus  sys tem.  

From a point  of t ime t = o wc consider such a risk group in 
which the tar if icat ion is based on a bonus-malus  sys tem tha t  is 
de te rmined  1)y the following factors.  
- -  The length of an insurance period is i, which means  nothing 

else than  tha t  the length of a period is chooscn as unit of time. 

The  n u m b e r  of classes is n. 

- -  The  p remium which a risk of c l a s s j  has to pay  at the m o m e n t  l 
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to be insured for the 1,eriod [1, t + z [is b,(j); j ~ [z . . . . .  n.}, t 
0, I ,  1 • , . ~ ,  

- -  The initial class in which a risk is placed at t = o is tile class s. 

- -  The  t ransi t ion rules are given in the form of probabi l i t ies  hi(k)" 
i , j  z{I . . . . .  u}, k a{o, I . . . .  }; where tij(k) = I if a risk of class i 

moves  to class j when k claims have  occurred in the pas t  period, 
and  ltj(k) = o if such a ' r i sk  goes to a class different from j. In 
order tha t  the t ransi t ion rules be complete  and free of contra-  
dictions we mus t  h a v e '  for each (i, k) there is one and just  o n e j  
so that / is(k)  =- I. 

\Ve assume tha t  the accident  proneness of a risk of the considered 
risk group can be repl-esented by  a risk p a r a m e t e r  X, which is tile 
claim f requency  of the risk, i.e. the expec ted  n u m b e r  of claims 
per period for tha t  risk• The value of tile risk p a r a m e t e r  is regarded 
as a realization of a r andom var iable  A, whose dis tr ibut ion function 
U(X) represents  tile risk s t ruc ture  of tile group. We take  tha t  the 
value of tile risk p a r a m e t e r  is independent  of time. Fu r the r  we 
assume tha t  for a given risk 7, the random var iables  which give the 
n u m b e r  of claims for tile successive periods arc lnutual ly  indepen-  
dent  and  identical ly d is t r ibuted  with common probabi l i ty  dis tr ibu-  
tion ~bk(k), which depends explici tely and uniquely oil the t)ara - 
mete r  X. 

These assumpt ions  pernli t  us to describe the evohlt ion of a given 
risk through tile honus-mahis  sys tem by  a Markov chain with 
cons tan t  t ransi t ion matr ix .  The 1)robability ,(t) y o  (k) tha t  a risk k 
which is in tile class i will be in tile class j ! periods later,  is given 
by the rectirsion formula  

i p~s(x) = x p,.(x)~j(/e) (~.a) 
t o 

/ (t) % (k)=  z /~r(X) t'~-~ 1)(x) ~ =  2, 3 . . . .  (r.lD 
• i 

2. THE EFFICIENCY Of A BOXUS-MaLUS 5YSTES~ 

One notices tha t  eacl~ coun t ry  and in some countries even each 
insurance c o m p a n y  has its own t)onus-malus system. However  all 
this sys tems  have  the same 1)urpose, viz. to come to a fair tariff- 
cat ion by adjus t ing  the p remiums  of each individual  policyholder  as 
good as possible to the risk tha t  he ac tua l ly  represents.  To measure  
how good a sys tem fulfils this requi rement  the concept  efficiency 
is in t roduced 
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\Ve denote  by X:(X) a random variable tha t  gives the discounted 
value of all premiums that  will be paid by a risk k in the time inter- 
v a l  [0, ~[, ~'g{I, '2 . . . .  }. 

T h e s e  p r e m i u n l s  are  t he  ones p a i d  a t  t h e  n l o m e n t s  o, x , . . . ,  ~. - -  I ; 

where the premiunl at a lnoment  l equals bt(j) if the risk is in class j 
at the n loment  t, and is zero if the risk has by that  t ime left the 
system. The expectat ion E[X~(X)] of the discounted value of these 
premium payments ,  which is determined by the used bonus-malus 
system, can be called the bonus-real.us premium for a risk k in 
io, z [ .  B y  Y:(X) we denote  a random variable tha t  gives the dis- 
counted value of all claim costs of a lqsk X in [o, z [ .  The expectat ion 
E[Y~(X)] of the discounted vahic of these claim costs ret)resents the 
risk premz,um for a risk X in [o, v [. 

To verify how good the prenaium of a certain policy holder 
corresponds with the risk tha t  he represents we measure the sensi- 
bility of the bonus-malus l)remium I) 3 , changing risk premium. 

d,E[Y¢(X) ]  . 
Therefore  we compare  a relative variat ion E[Y,(X)] in the risk 

d~[x,(x)] 
prenlltlrll with the relative variat ion E[X.~(X)] in the bonus-mahls 

premium tha t  it implies. By  definition we call efficiency of a bonus- 

• malus syslem for a risk X in [o, "r[ the ratio of these two quant i t ies  

dE[X~(x)] 
E [ X , ( z ) ]  d l , ,  E [ X ~ ( x ) ]  

<.(x) - - (2) 
dE[Y:(X)] d In E[Y:(Z)] 

ELY&)] 
Tim efficiency in [0, v[ is thus the elasticity of the bonus-malus 

premmln in [o, c[ with respect to the risk premium in [o, ~[. P u t  
into words this means tha t  for a risk X a variat ion of I %  in the 
expectat ion of the discounted clairn costs in [o, ,r[ causes a variat ion 
of G(X)% in the expecta t ion of the discounted premium payments  in 
[o, < .  

\Vhen we take in (2) the limit for ,r---- co we get the efficiency in 
[o, co [, viz. 

e(x) = Um ~ ( x )  (3) 

A first analysis of the definition of efficiency enables us to make 
the following observat ions 

A reasonable bonus-malus system got to have a separat ion effect, 
so tha t  in an averagc sense good risks pay lower premiums than 
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bad ones. This means tha t  the relat ive var ia t ions  in bonus-nlalus 
and risk l~remiunl got to have  tile same sign, so tha t  for each (X, "r) 
holds e~(X) >_ o. 

The hmi tcase  of a bonus-nlalus sys tem ill which the honus-malus  
t~remium in [o, .:[ remains  the same for each risk, corresponds with 
e~(X) = o for each X. "fhis case shows up during the first period when 
each risk is in the initial class, so tha t  we have  el(X) = o for each X. 

The ideal case m which for each risk and for each in terval  the 

bonus-malus  p r em i um  equals the risk p remium corresponds with 
e:(),) = z for each (X, .r). In par t icu lar  e(X) = I corresponds with an 
a sympto t i ca l  correct tar i f icat ion for a risk X. The condit ions of an 
1deal sys tem can in general  never  be met.  

In pract ice  a relat ive increase in the risk p r e m m m  wd.1 general ly  
cause a smaller  relat ive increase in the bonus-malus  premium,  

which means  tha t  the good risks have  to pay  for the bad  ones. 
In general  e:(X) will thus lie between the values zero and  one. 
Theoret ical ly  we can have  e,(X) > z but  such a case of overeff iciency 
in which an increase in the expec ta t ion  of the claim costs is more 
than  compensa t ed  by the increase of the exl)ectat ion of the p remium 

p a y m e n t s  is rare ly  found. 

Because of : 

E[X,(X)] > o , E[Y,(X)] --> o for X --> o (4) 

E[X~(X)] bounded,  E[Y:(X)] ->  co for X ~ co 

We have  in general  tha t  for each v: 

lim e,(X) = o and  lim e,(X) = o (5) 

Geometr ica l ly  the def in i t ion-formula  (2) can be in te rpre ted  in the 
following way 

ELY,(X)] dE[XdX)] tg~ 
e , ( x ) -  E[X,(X)] dE[Y,(X)] --  (6) 

So far tile efficiency was defined for a risk with given and known 
risk p a r a m e t e r  X. The  assumpt ion  t ha t  the risk p a r a m e t e r  is known 
is useful for the deve lopmen t  of the theory  but  is never  fulfilled 
in practice.  On the other  hand the dis t r ibut ion funct ion of the risk 
pa ramete r ,  viz. the s t ruc ture  function U(X), is more likely known, 
so tha t  it is na tura l  to define the efficiency over  the considered risk 
group. We call efficiency oJa bonus-mal,ts system over a given risk 
group in [o, -r[ the expression" 

e, = I e,(X) dU(X) (7) 
A 
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E[X,(X)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

f S• 

S • 

ff 
pl 

E[Y=(X)] 

and we get for v ~ co'  

= I e,(x) dU(X) (S) 
A 

This averaged efficiency over the risk group enables us to com- 
pare the different bonus-malus systems in an objective way. 

Fur the r  we notice that  in our definition of efficiency we could 

also take into account  the so called "bonus-hunger  effect" (cfr. 
Lemaire). This can be done by changing the definition of X,(X) 

and Y:(X) in an appropria te  way. 
Finally we remark that  our concept of efficiency is not only 

valid for bonus-malus systems but can be applied to other ext)crience 

rat ing systems. 

3- CALCULATION OF THE E F F I C I E N C Y  UNDER I ) I F I r E R E N T  ASSUMP- 

TIONS CONCERNING THE R i S K  PROCESS. 

3.I. We consider a risk X which is placed in class s at  t = o and 
assume that  at the end of each period, this risk call rather take an 
insurance for the next period or leave the system. 13 3, wt(X) we 
denote the probabi l i ty  that  the risk X is insured for the period 
It, t + r [. We take that  a risk X which left the system cannot  re- 
enter it, so tha t  Wo(X) = I > wl(X) > w=(X) > . . . .  Fur the r  we 
suppose that  the average cost of a claim is independent  of the 
number  of claims and we denote by Ct(X) the average cost of a 
claim for a risk X in the period [t, t + I [. Finally we denote I)3: 

13 ~ I a discount factor. 
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Under these assumpt ions  we get for tim bonus-malus  p remium of 
a risk X in [o, v [" 

E[X,(X)] = .E ~tzvt(X) Z p~}) (X) bt(j)with p(s~ ) = 8,, (O) 
t tl ] I 

and we have for the risk prelnium 

E[Y,(x)] = z x ~t+~wdx ) c,(x) 
l 0 

(lO) 

Using these formulae the efficiency can in principle be calculated.  
However ,  addit ional  assumpt ions  concerning the earlier ment ioned  

e lements  of the risk process seem desirable in order to come to a 
more manageab le  expression. 

3.2. We suppose now tha t  for each period [l, 1 + I [, both  the 
probabi l i t ies  wdX ) and the average  claim costs Ct(X) are the same 
for all risks of the considered risk group, this is tha t  they  are in- 

dependent  of the p a r a m e t e r  X. 

Under  these assumpt ions  formula  (2) is reduced to 

dEEX~(X)3 X 
~,(X)-  E[x , (x) ]  dx (1~) 

More explicit ly we have 

dX bt(J) 
(x) .... ' ' 6: "~ :-72( 

X 
t , , n  / i 

( i2)  

-- ~ L--Z-- #~-')(x) + p,~(x) 
• i 

We remark  tha t  in the case tha t  the n m n b e r  of claims is Poisson 
dis t r ibuted fornmla  (13.a) becomes 

dPo(X) e -~ 
dx - -  ~ i  %(k  + ~ ) - - t o ( k ) ]  (141 

/~ , ,  tl 

m 

dX 
¢ 

dZ 

d6(t - t) 1 rrJ  (X). (i3.b) 
J dZ 

where the der iva t ives  are de te rmined  by  tile recursion formula  

i dP~ (~) 2 dP3(X! 
, o dX If(k) (I3.a) 
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3.3. Moreover we make  an assumption concerning the evolut ion 
in t ime of the premiums bt(j)  and the probabili t ies w t. We assume 
tha t  the premium of each class will increase with the same per- 
centage for each period, this is bt(j)  = ~tbj with bj = bo(j) the value 
of the premium of class j at constant  price and ~. > I the price 
index of premiums.  Fu r the r  we assume tha t  the p robab i l i ty  to 
leave the system at the end of a certain period is independent  of 
the considered period and equals p, this means  w t = ( I - - p ) t  
where p~[o, i] is the rate  of exit. We shall pu t  0 = } ~ ( 1 - - 9 ) ,  
in which we take that  0 < I what  is satisfied in pract ical  cases. 

Final ly  we suppose tha t  the Markov chain which is associated 
to the bonus-malus system is regular. Then the limit probabili t ies 

aj(X) liln (t) = Psj (X) (I5) 

exist and are independent  of the initial class. Th ey  are uniquely  
defined by the system of equat ions 

aj(X) = Z a,(X) p,j(X) (16.a) 
t , , 1  

n 

aj(X) = I (I6.b) 
1 = 1  

Under  these assumptions equat ion (9) is reduced to 

E [X,(x)? = X 0 ~ ~ p ~ ( x ) b j  (17) 
t ,  o 1 , , 1  

and if we pu t  

we get 

E [x , (x ) ]  = 

We remark  tha t  

n 

b(x) = x aj(x) bj ( i8)  
t , , l  

~ - - t  n 

gs , : - l (X)  = Z 01 Z r~(t) ~ . j  (x) - -  aj(z)] bj (I9) 
t . o  t . , x  

I - - 0  ~ 
b(x) + g., ~_,(x) 

-~b(x) + g., ,_,(x) 

0 < I (20.a)  

0 = I (20 .b)  

E[X,(X)] I o 0 < I (2I.a) 

,_+® -r aj(X) bj 0 = I (2I.b) 
t -  
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so tha t  b(X) represents  

per period in the case 

for a risk X the limit value of the premium 
I 

0 = z. (e.g. a = ~ , p  = o). 

The  first t e rm in (20) is the discounted expectat ion of the premium 
paymen t s  in [0, -r [ for a risk X in the case tha t  the premium to be 
insured for the period It, t + I [ equals b(X)a t, irrespecUve of the 
class in which the risk is placed at the moment  t. The second term 

gs,~_~(X) represents  the discounted expectat ion of the ext ra  
premium (positive or negative) tha t  has to be paid in [0, "r [, since 
the premium tha t  a risk X has to pay  to be insured for the period 
[t, t + I [ isn ' t  b(X)a t bu t  bj0~ t, with j the class in xvhich the risk is 
placed at the momen t  t. This correction term depends on the initial 
class s and gs, ~- ~(X) is called the excess premium of the class s for 
a risk X in [0, "r [. The advantage  of the int roduct ion of the excess 
premiums lies in the fact tha t  they  simplify to a great  ex ten t  tim 
calculation of E[X,(X)] and thus of e~(X). I t  is easy to ver i fy  tha t  for 
the excess premiums the following recursion formula is valid 

g,,o(X) = bt - -  b(X) (22.a) 

tt  

g,,,(X) = b, - -  b(X) + 0 E p0(X) gj,~_l(X) -r = I, 2 . . . .  (22.b) 

so tha t  it is no longer necessary to calculate ~ l(Z) from (19), 
b S , T  - 

which would require the pre l iminary computa t ion  of all appearing 

8J" 

Fur the r  we have  tha t  for each (X, "r) the following relation hold. 
n 

X a,(X) g,,,(X) = 0 "r = o, I . . . .  (23) 

According to (II)  and (2o) we get then for the efficiency in [o, "r[ 

e & )  = 

ab(x) ag, ._ l  (x) 
(i  - -  0") + ( i -  0) ax 

X (I - -  0 ") b(X) + ( I - -  0) gs,~_~(X) 0 < I (24.a) 

ab(x) 
-r + dX 

X 0 = I (24.b) b(x) + g , , ,_ l (x)  

where b(X) can be calculated from (I6) and (I8), while gs.~_l(X)is 
given by  (22) in which (23) is useful for control  purposes. 
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n 

The derivative dX -- ~ bj can be computed from the 
] ' ' I  

system of equations obtained by derivating (16) 

dx - 2,.it dx p~j(x)+a~(x) dX 1 

{ 2  da'(x) dX -- o 
] - , 1  

whereby the der ivat ive  of p,j(X) is given by (I3.a) or (14). 

(25.a) 

(25.b) 

Final ly the derivative of gs,,-t(X) is determined by the recursion 
formula 

dg~, o(X) db(x) 
- -  (26.a) 

dX dX 

rig,.#/ rib(x/ dg , (x/] 
& - & + o gj.,_dx) + p~(x) ~ 

L dx 
t - I  

= I, 2 . . . .  (26.b) 

and the controlling equations (23) become 

L dX g,,,(X) + a,(X) = o • = o, I , . . .  (27) 
f . , l  

To calculate the efficiency in [o, co [, we first extend the concept 
excess premium to [o, co 

t t  

gs(X) lim gs., (X) £ 0 ~ N (t) = = [P*I (X) - -  aj(X)] bj (28) 
T'-"-~" ~ l , , 0  J ,  t 

Since the 2dt) rs~ (X) converge geometrically fast to the limit proba- 
bilities aj(X) the series (28) is absolute convergent.  When we take in 
(22.b) and (23) the limit for "r-+ co we get the following system of 
equations for the excess premiums in [o, co [ of the different classes 

n 

I g,(X) = b, - -  b(X) + 0 X p,~(X) gj(X) (29.a) 
J - I  

£ a,(X) g,(X) = o (29.b) 
t , , l  

We remark that ,  in this system of n + I equations in n unknown,  
for 0 < I the equation (29.b) is a consequence of the relations (29.a), 
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while for 0 = I (29.b) is independent  of (29.a) but  in this case we 
have tha t  the relations (29.a) are linear dependent .  

In an appendix we shall prove tha t  the g,(X) are determined in an 
unique way by  the system (29). 

For  the efficiency in [o, oo [ we have now 

db(x) age(X) 
ax + (~ - -  0) d---~- 

X - -  0 < I (3o.a) ~(x) = b(x) + ( ~ -  o)g~(x) 

x db(x) 
0 ---- I (3o.b) 

b(x) dx 

in which gs(X) can be calculated from (29), while its der ivat ive is 
de termined  in an unique way (cfr. appendix) by  the system of 
equat ions 

age(X) ab(x) 
dX dx + 0 2 gj(X) + p~j(x) dx 1 

t '  1 

2 eg,(x)] I. dx g~(X)+ at(x) dx .i = °  

(3I.a) 

(3I.b) 

So we find as a special case (3o.b) the definit ion of efficiency 
given by  Loimaranta .  

4. THE CENTRAL VALUE 

We consider the equat ion 

E[X,(X)] = E[Y,(X)] (32) 

which expresses the equal i ty  between the bonus-malus premium 
and the risk premium for a risk X in [o, -~ [. Because of the relations 
(4) equat ion (32) has at least one solution ~ .  We call a solution 
X,* of (32) a central value of the bonus-malus system in [o, -r [ .  

We assume now tha t  wt(X) and Cdx ) are independent  of X and we 
shall show tha t  the central  value in [o, -r [ is unique if e,(X) < I 
for all X. 

From ( I I )  We have 

dln E [X,(X)] = e,(X) dlnX 
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which  gives  if we i n t e g r a t e  wi th  X~ as in i t ia l  va lue  
k 

= E[X,(X,)]  e . 

where  

x_* 
r * ~ [ x , ( x : ) ]  = e [Y , ( ;C) ]  = g E [ y , ( x ) ]  

so t h a t  

I i '  [t-e'(X)l atnz E[Y,(X)] e X < X.~ (33.a) 
E[X,(x)]  = ~ 

( E[Y, (X) . ]  e - z~ {t-e,(x)l at,,), X > X,* (33.b) 

I f  e,(X) < I for  all X we h a v e  t h u s  t h a t  X~ is un ique  a n d  t h a t  

> 
E[X,(X)] ~ E[Y,(X)] if X -~> X.* 

N o w  we m a k e  some  a s s u m p t i o n s  t h a t  will p e r m i t  us to r ewr i t e  
e q u a t i o n  (32) in an easier  form.  As in sec t ion  3.3- we a s s u m e  t h a t  
bt( j )  = odb~, wt  = ( I - - p ) t  a n d  0 < I,  where  0 =  ~ ( I - - p ) .  
F u r t h e r  we a s s u m e  t h a t  the  evo lu t ion  in t i m e  of the  a v e r a g e  c la im 

cost  can be g iven  in the  f o r m  Ct(X) = y tC ,  w i t h  C = Co the  a v e r a g e  
cost  a t  c o n s t a n t  p r ice  a n d  ¥ > I the  pr ice  index  of c la ims.  H e r e b y  
we p u t  ¢ - -  t3y (I - - p )  a n d  t a k e  t h a t  ~ < i .  T h e  cen t r a l  va lue  in 
[o, z [, X;, is t hen  the  so lu t ion  of the  e q u a t i o n  

' T - - I  " C - - 1  

b(x) Z 0 t + g~,,_~(x) = xC Z ~ (35) 

bs 
I n  p a r t i c u l a r  w e  h a v e  t h a t  X~ - -  C " 

We call c en t r a l  va lue  in [o, oo [ 

X* = lira X~ (36) 
T - - - + ~  

a n d  we d i s t ingu ish  the  fo l lowing cases.  In  t he  case  0 < I ,  ~ < I 
we h a v e  f rom (35) t h a t  X* is the  so lu t ion  of the  e q u a t i o n  

b(X) XC 
+ g,(X) - -  (37) I - - 0  I - - ~  

F o r  0 = I ,  ¢ < I we h a v e  t h a t  X* ~ oo, whi le  for  0 < I ,  ~ = 
i ho lds  X* --> o. F i n a l l y  in the  case  0 = , = I we o b t a i n  t h a t  X* is 
the  so lu t ion  of 

b(X) = ZC (38) 
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The solution of this last  equat ion corresponds with the concept  
cent ra l  value as in t roduced  by  Lo imaran ta .  

5. APPENDIX 

We shall p rove  tha t  the  sys tems  (29) and  (3I) of n + I equat ions  
in n unknown have  an unique solution. 

5.1. We m a k e  use of the following two lemmas,  in which o 
denotes  the zero m a t r i x  and  I the unit  mat r ix .  

Lemma i 

I f  Q is a square  m a t r i x  and  Q~ tends  to 0 as k tends to infinity,  
then 

det ( I -  Q) -~ o 

and ( I -  (2) = : + Q + + . . . .  x 
k , . o  

Proof  

see e.g. K e m e n y  and  Snell p. 22. 

Lemma 2 

If  to the x- th  row (column) of the blocks of a par t ioned  ma t r ix  

Q we add the  y- th  row (column) mul t ip l ied on tile left (right) by  a 
rec tangula r  m a t r i x  R of the  corresponding dimensions,  then ttle 
rank  of Q remains  unchanged  under  this t r ans fo rmat ion  and,  if Q 
is a square  mat r ix ,  the de t e rminan t  of Q is also unchanged.  

Proof  

see e.g. G a n t m a c h e r  p. 45. 

We in t roduce the following m a t r i x  nota t ions  

A : I x n m a t r i x  with e lements  ai(k) 
B : n × I m a t r i x  wi th  e lements  bt 

G : n × I m a t r i x  wi th  e lements  g,(k) 
P : n × ,Jr m a t r i x  wi th  e lements  psi(X) 
E : n x I m a t r i x  with all e lements  equal  to I 
D = b(X) E : n x I m a t r i x  wi th  all e lements  equal to b(X) 

M = E A  : n × n m a t r i x  whose rows are all identical  and  equal  
to A 
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According to (I5), (16) and (18) we have then 

lira P e  = M 
/C'-'+o 

A P  = A, AE  = i 

AB = b(X) 

5.2. We now prove that  the system (29) has an unique solution. 
In mat r ix  nota t ions  this sys tem 1)ecomes 

t ( O P -  I)G = D -  B (39) 
t A G = o  

The necessary and sufficient condit ions for an unique solution are 

rank [ O P ~ I ]  = n ,  det [OPA-- I  D ~ B ]  

According to lemma 2 we have  

= 0 (4 0) 

following t ransformat ions"  

= det [ 0 ( P - - o M ) - - I  

= det  [0 PT, , o B] 
D r a b  

- - A  [ 0 ( P - - M ) - - / ~ - ~  ( D - - B )  

= - - A  [0(P - -  M) - -  /~ -~ (D - -  B). det  [0(P - -  M) - -  I] 

We have now 

- -  A [ 0 ( P - -  M) - - / ] - ~  = A [ I - -  0 ( P - - M ) ] - t  

= A E [ 0 ( P - - M ) ]  k 

rank 1 =rank [0,P ;, ,] 
where we have subst racted from the first row the last row multi-  
plied on the left by  0E. Since for each power q holds M q = M we 
have (P - -  M) k = .P~ - -  M. F rom lira ,P~ = M it follows then tha t  

lira [ 0 ( P - - M ) ]  t~ = 0 for each 0 < I and we have  tha t  
k'-¢'~ 

det [ 0 ( P -  M ) -  [] ~ o according to lemma I. This shows tha t  
the coeff icient-matr ix has rank n. 

To prove tha t  the de te rminan t  in (4 o ) is zero we make  the 
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= A [ I  4- Z 0~ ( P Z - - M ) ]  
k '  1 

= A + ~ Ok A ( P ~ - - M )  
k , 1  

= A  

with A ( D -  B) = o, which comple tes  the proof. 

5.3. For  the sys t em (31 ) we have  

I ( O P - - I ) G '  = D ' - -  OP'G 
i AG' = - - A ' G  

where a quote  indicates der ivat ion with respect  to X. 

( 4 1 )  

The necessary and  sufficient condit ions for an unique solution are 

- O P - -  I]  "OP- -  I D' - -  OP'G] 
r ank  j = n, det  / = o (4 2 ) 

A a - - A ' C  J 

The first condit ion is the  same as in section 5.2. and  is thus 
satisfied. For  the  second condit ion we obtain  af ter  some t ransfor-  
mat ions  

- O P - - I  D ' - - O P ' G  
det 

A - -  A'G 

= { - - A ' G - - A [ O ( P - - M )  - - I ]  -1 I D ' - -  OP'G + OEA'G]}. 
det  [0(P -- M) -- l] 

The proof follows now from 

--A'C + AD'-- OAP'C + OA'C = --A'C + AD' + OA'PC 

= A '  [ ( 0 P  - -  Z)C + B] 

---- A ' D  ---- o. 
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ON A FORM OF A U T O M O B I L E  L I A B I L I T Y  I N S U R A N C E  
W I T H  A P R E P A I D  DISCOUNT 

RICCARDO OTTAVIANI 

I. Recent ly  two types of insurance t)olicy covering automobile  
liability* have become available. With  tiffs kind of policy, tile 
insured pa r t y  receives a prepaid discount on the annual  p remium;  
however, he must  make an addit ional  p a y m e n t  to the insurer on 
first report  of an accident.  

\¥e shall examine only one of these two types of pohcy,  since the 
second is very  similar to the first. 

On st ipulat ion of the contract ,  the insured pa r ty  pays a premium 
equal to 78 percent  of tha t  cur ren t ly  in force for complete coverage, 
depending on the various limits. However ,  at the same t ime at 
which the insured reports  his first accident m the course of the year  
(and only in this ease), he must  make an addit ional  p a y m e n t  equal 
to 35 percent  of the premium due in the case of complete coverage. 
This addit ional  payment ,  considered as a deposit, is repaid to the 
insured pa r t y  if the accident  has no follow up within four nmnths ,  
however, it m a y  be requested again by the insurer if the case is 
subsequent ly  reopened and leads to pa3qnent of damages. This ad- 
ditional p a y m e n t  will thus become a par t  of the t)remium only in 
the case of p a y m e n t  of damages for the first accident reported.  

Ill this way, the premium paid by the insured is equal to 78 
percent  or to 113 percent  of the current  premium, depending on 
whether  or not the insured reports accidents. 

2. ge t  us consider an insurance policy for complete  coverage, 
except ing limits, and let us assume that  

P = insurance premium 
M = quota  necessary to cover  purchase and adnamistrat ive ex- 

penses and profits 
S = pure l)remium, i e., the quota  necessary to cover accident 

t)ayments.  

Therefore,  p remmm P can be expressed as P = a4 + S. 
In I taly,  if the insurance premium is equal to ioo, the par t  cover- 

mg pure prenaium S is equal to 75 ]ire. 

* In I ta ly  termed R.C.A, o r " R e s p o n s a b i l i t g  CivHe Auto"  
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On this basis let us now analyze the prepaid discount policy and 
the integration of the premium at first report of an accident. 

We shall indicate by 

q : the probability that the insured has no accident during the in- 
surance period 

p~: the probability that the insured has at least one accident but 
reports none 

p2: the probability that  the insured has at least one reported 
accident. 

Obviously q + pl + p2 = I. 

\Ve shall further indmate by: 

S~ the average cost of unreported accidents for each insured party 
$2 the average cost of reported accidents for each insured party. 

Therefore 

• 5 l + 5 " 2  = 5 = 7 5 .  

We note that the accidents leading to average accident $1 are 
not only those whose probability is pl, but also some cases included 
in probability po, because the insured party might not report a 
first accident and subsequently report another more serious accident. 

We shall indicate by 3¢1 the margin for expenses and profits 
relative to the prepaid discount policy. This can be expressed by: 

i) .l.lt = 78 (p, -¢- q) + II.3p2 - -  .% 

and thus, considering that 

$2 = 75 - -  Sl 

we have 

2) 3'I1 = 3 + 35P- ° + 51. 

I f  we overlook the differences in expenses between a normal pol icy 
and a prepaid discount one (in fact, in the former consideration 
must be given to possibly greater administ rat ive costs due to con- 
sidering all accidents and in the lat ter  to the possibly greater ad- 
min is t rat ive costs due to considering the double payment of the 
premium), from a technical point  of view, an insurer wil l  benefit 
by offering a prepaid discount pol icy rather than a complete cover- 
age pohcy if the margin for expenses and prof i t  of the discounted 
policy is greater than the margin for a complete coverage policy, 
i .e., if 

M~ >~ M = .25. 
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Let  us now determine the value of M~ based on A.N.I.A.* sta- 
tistics for automobile  accidents. 

In  order  to determine margin Mt  it is necessary to make several 
hypotheses  concerning the behavior  of the insured parties in tile 
presence of accidents tha t  may  or m a y  not be reported.  In fact, 
probabilit ies p, and p= depend on the insured pa r ty ' s  greater  or 
lesser inclination to report  minor accidents. 

Let  us calculate this margin on the basis of the following 
hypotheses .  

a) All insured parties s t ipulate  prepaid discount policies and 
report  all accidents regardless of their  amount .  In this case, prob- 
abili ty p2 will be equal to the probabi l i ty  tha t  the insured has at 
least one accident,  and this probabi l i ty  will be slightly less than 
the f requency of accidents (in fact, soine insured parties m ay  cause 
and report  several accidents during the period considered). 

This frequency,  on the basis of A.N.I.A. automobile  statistics, 

was equal to 33.35~/o in 1972 and 32.37~/o in 1973. 
These values include sett led and unset t led accident cases over  

the year, and thus include also accident  cases tha t  m ay  prove to 
have no follow up in subsequent  years. 

Value S, is equal to zero, since, for the hypotheses  made, all ac- 
cidents are reported.  

Then the margin for expenses and insurer 's  profits, on the basis 
of hypothesis  (a) and relative to 1973 data,  is 

Mt ~ 3 + 35 • o.3237 = z4.33 

which proves to be less than margin M = 25 which the insurer ob- 
tains in the case of a normal policy. 

Hence the insurer, on the basis of these hypotheses  and from a 
technical point  of view, would have no interest  in offering prepaid 
discount policies. 

b) Le t  us now hypothes ize  tha t  all insured part ies  s t ipulate  
prepaid discount policies, but  tha t  they report  accidents only if 
they have already repor ted  at least one other  previous accident,  or, 
if not, if the first accident represents a presumable value greater  
than  7o,ooo lire, which value, being exclusive of the technical ex- 
penses of verif ication and set t lement ,  would become approx imate ly  
Ioo,ooo lire should the insurer have to pay  damages. 

In  this case, p2 will prove to be slightly less than  the f requency 

* A.N I.A.: Associazione Nazionale tra le Imprese Assmuratrici (National 
Association of Insurance Cnmpamcs) 
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of accidents greater or equal to IOO,OOO lire, which, on the basis of 
A.N.I.A. statistics, proved to be 26.o1% in 1972 and 28.63% in 

1973. 
Average cost $1 of unreported accidents, i.e., of those accidents 

causing damages of less than IOO,OOO not preceded by accidents 
causing damages greater than or equal to 1oo,ooo lire, is obviously 
slightly less (the difference can be overlooked) than the average 
cost of accidents having a value of less than 1oo,ooo lire. This 
average cost, on the basis of A.N.I.A. statistics, for each 75 lire of 
pure premium, was equal to 16.69 life in 1972 and 15.1I lire in i973. 

In this case, on the basis of A.N.I.A. statistics for 1973, margin 
3,[j for the insurer will be 

Mt ~ 3 + 35 - -  o.2863 + 15.11 = 28.13. 

Consequently, the insurer might benefit technically be offering 
t)rel)aid discount policies, since it is probable that Mt >/ M = 25. 

The insured having the possibility of choosing between complete 
coverage pohcies and prepaid discount policies, we note that those 
who select the latter are those who expect to have fewer accidents 
than the majority of automobile drivers, i.e., those for whom prob- 
ability p2 should be lower than the probability deduced from the 
A.N.I.A. statistics. 

It is obvious that in this case margin I14~ obtained by the company 
is still lower than that which it would obtain if all insured parties 
held prepaid discount policies. 

We note moreover that, if all insured parties decide to report ac- 
cidents having a value of less than the additional payment, which 
is 35% of the premium, then the hypotheses for case (b) refer only 
to those insured parties who pay a premium for the entire insurance 
coverage greater than 2oo,ooo lire, and this group includes only a 
minority of insured parties. 

Unfortunately, it has not been possH)le to study cases of the type 
given in hypotheses (b) where the limit of 7o,0oo lire for unreported 
accidents is lowered. In fact, in the A.N.I.A. statistics of accident 
uumber by value, the first class considered is that of accidents hav- 
ing a value of up to 1oo,ooo life. 

The considerations set forth so far refer to a case in which all 
the insurance companies offer exclusively the conditional discount 
policy in place of the normal policy. We can note that, should all 
the companies offer a choice between a conditional discount policy 
and a normal policy, there would be a selection of the insured parties 
choosing the discount policy. 
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These insured parties would obviously be those who expected to 
gain by this type of policy, i.e., those who expect to cause on an 
average fewer accidents in tile course of tile year  than the major i ty  
of atttomobile drivers. Consequently, for these drivers, the value of 
probability/5~ of having at least one reported accident is less than  
corresponding value pe for the major i ty  of the insured. From this, 
subst i tut ing in (2) value p~ for value P2, we obtain a margin 

Moreover, with the transfer of the "good"  insured parties from 
a normal policy to a discounted policy, there is a prior selection of 
the insured who continue to use a normal policy ; and therefore pure 
premium S may  not be sufficient to cover the accidents of the 
normal policies, and thus margin /15 would have to be lowered as 
well. 

111 a case where a single COl-npany (or a limited number  of 
companies) offered the conditional discount policy as an al ternative 
to the normal policy, while the conditions we have just described 
for a case where all companies offered both types of policy would 
still hold, we cart note that  there would be a request for discount 
policies also on the part  of "good"  insured parties who previously 
held normal policies with other companies; and thus the company 
(or companies) offering the prepaid discount policy would show an 
increase in business. 



TESTING GOODNESS-OF-FIT OF AN ESTIMATED 
RUN-OFF TRIANGLE 

G. C. TAYLOR 
S y d n e y ,  A u s t r a l i a  

I .  T H E  R U N - O F F  T R I A N G L E  - -  ACTUAL AND E X P E C T E D  

By the term achtal ru~-off t, ria~,gle we shall mean the two-way 
tabulation~according to year of origin and year of payment--of  
claims paid to date, which has the following form: 

D e v e l o p m e n t  Y e a r  

Year of 
o r i g i n  o I 2 k 

o C o o  C o l  C o 2  . • . C o k  

I C l o  C l l  C l - .  • • • 

k Cko 

where Ctj is the amount paid during development year j in respect 
of claims whose year of origin is i. 

The information relating to the area below and/or to the right of 
this triangle is unknown since it represents the future development 
of various cohorts of claims. 

Now in seeking to use this triangle as a basis for projection of 
claims in future development years for each of the years of origin 
o, i, 2, etc., we must recognise that the entries C~j in the above 
triangle, being random variables, contain random deviations from 
their expected values ~xV. It is the corresponding triangle of these 
expected values in which we are interested, and which shall be 
called the expecled re,x-off triangle. 

Explicitly, it is: 

~loo ~ol [[.to2 . • g.ok 

i 
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2. T H E  REQUIREMENT OF A TEST OF GOODNESS-OF-FIT. 

One method of projecting future claims is to identify some internal 
structure within the expected run-off triangle and hence extra- 
polate outside it. In this respect, a commonly made assumption is 
the following: 

A ssumpt io~ z 

In the absence of any disturbing influences, e.g. clamls cost 
inflation, changing rate of growth of volume of business etc., the 
distribution of expected claim delays remains constant over 
varying 3;ears of origin. 

We can represent this assuml)tion symbolically. If R,j is the 
observed proportion of all claim payments in respect of year of 
origin i made in development year j after removal of the "disturbing 
influences" referred to above, then E(Ri j )  = rj independent of i. 
Examples of estimation procedures based on this assumption can 
be found in Beard (1974) and Taylor (I977). 

Naturally, ~f a model based on Assumption I is to be used for 
projection of future claims, it is necessary to check at some stage 
that this model accords with experience (i.e. that the expected 
run-off triangle based on the model accords with the actual run-off 
model) within statisticaUy reasonable limits. Hence the need for a 
test of goodness-of-fit. 

Suppose that the "disturbing influences" in the triangle have 
been determined so that it is possible to remove them from the data. 
Let C~ be the result of adjusting C,j for removal of these influences. 
Then, according to Assumption z, 

= c ; r j ,  

where C~ denotes total claims (some still to be paid) in respect of 
year of origin i after removal of disturbing influences. 

Estimation procedures based on Assumption I will produce 
estimates ;~ of V-~, where ~ = C i ?j and ;j is an estimate of rj. 
I t  is then necessary to apply a significance test to the deviations 

One tempting possibility is to set up a contingency table con- 
taining the cells as displayed below : 
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3" A CONTINGENCY "FABLE TEST ? 

(o,o) (o,,)  (o, 2) (o,k) [ ( o , k + )  

(1, O) (I, I) (I,  2) . . • (I ,  k - -  I) I (I,  (k - -  I) + )  
i 

(2, o) (2, , )  (2, 2) , . (2, ( k -  2) +)  

(k. o) (k, o + )  

Here the (i, ( k - - i )  +)  cell relates to data for year of origin i 
and development years h -  i + I, k -  i + 2, etc. combined. The 
standard chi-square test might then be applied to this table as in 
the theorem in Section 3o. 3 of Cram6r (1946, 426-7). 

There are, however, sevoral points to be noted in connection 
with this suggestion. 

Firstly, the triangle of previous sections has been augmented with 
extra cells to form a square. This has t)een done in conformity with 
the theorem quoted above which requires that for a given year of 
origin, the probability of a randomly chosen unit of claim paylnent 
being found in some cell of the table should be unity. This aug- 
mentation of the mangle can cause difficulties because data may 
not be available in respect of the extra cells. This point receives 
further comment in the later section dealing with numerical 
examples. 

Secondly, and more importantly, it is implicit in the theorem 
quoted above (see both the statement of it on P. 427 and the proof 
on P. 429) that the marginal distribution of each C~ is binomial. 
In the present circumstances this is not true and, in fact, is suf- 
ficiently untrue to have important consequences for the contingency 
table test, as will be dealt with in the next section. 

Thirdly, an examination of the theorem stated by Cram6r reveals 
that the chi-square test is strictly applicable only when the ex- 
pected cell frequencies have been determined by the modified 7,." 
minimum method of estimation. When this method has not in fact 
been used, some consideration should be devoted to the closeness 
of this and the method actually used. For example, the "separation 
method" used by Taylor (I977) is not ahvays equivalent to the 
modified Z 2 minimum method, but is, as shown in Section 6 of that 
paper, identical in certain cases to the maximum likelihood method 
which, as pointed out by Cram6r (1946, 426), is in turn equivalent 
to the modified Z 2 minimum method. 
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4. MODIFICATION OF THE STANDARD CIII-SQUARE TEST OF A 

CONTINGENCY TABLE. 

The most  impor tan t  of the objections raised against  the s tandard  
chi-square test is the second which concerns the marginal  dis- 
t r ibut ions of the individual  cell frequencies. As noted there, the 
s tandard  test requires that  the (i, j) - cell f requency be binomial.  
The paranleters  of this binomial distr ibution would be C; and rp 
and hence the variance would be 

v 0 = C ~ r  1 ( I - r ; )  = V - ~ ( I - - r j )  

As also noted in the previous section, the distr ibution of C~ 
will not be binomial in fact. In order to a l )proximate  its correct  
form we make two fur ther  assumptions.  

A ss'lt$~zpll'o~ 2 

The number  of claims pertaining to the (i, j)  - cell is a s ta t ionary  
Poisson variable. 

Assumpdon 3 
The sizes of the individual  claims per ta ining to the (i, j) - cell 

are i. i. d. random variables. 
I t  follows from these two assumptions tha t  C~ is a compound  

Poisson variable with var iance:  

2 g21 ~0 = a~ X -- (2) 
~zj 

where c~tj, e2j are the first and second moments  (about  the origin) 
respectively of individual  claim size in deve lopment  year  j .  

I t  is now evident  tha t  in those cases where tx~ is not  too small the 
compound  Poisson distr ibution of C~ and the binomial  distr ibution 
with the same mean and variance (I) will be ra ther  similar except  
tha t  the former will have  a variance greater  than  tha t  of the la t te r  
by  a factor  of 

2 
e_.g _ ~2j 

- ( 3 )  vo ~.tj(z - -  rj) 

Thus, if tile s tandard  chi-square statistic, 

all ¢ttl# 
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is replaced by: 

Z 'a ~_ s ( %  - ~i~) ~ vo / ~. ~, 
all  celia 

( I ,  ,o = X ( I - - r j )  e'j ( C g - - ~ 0 ) " / V . ~ ,  (4) 
art  c~u, \ ~ 2 ~ 1  

then Z 2 can be assumed to have an approximate chi-square dis- 
tribution with an appropriate number of degrees of freedom. 

Suppose that it is desired that a significance test be applied to the 

Null  Hypothesis : rj = ~j for each j. 

Then it follows from (4) and the hypothesis that 

( / '  ~ =  x ( ~ - - ; j )  ~J ( c ~ - ; ~ ) ~ / ; ~  (5) 
art ceUs \O~2J/ 

is a chi-square.statistic and can be tested as such for significance. 

5' APPLYING THE MODIFIED TEST IN PRACTICE. 

All quantities appearing in statistic (5) are immediately available 
with the exception of the ratio (~11/e~j). If the investigation is being 
carried out by an individual company in respect of its own ex- 
perience, then this ratio can be estimated by means of a cost-band 
analysis of claims. 

On the other hand, if the test is being applied by a supervisory 
authority, it is unlikely that  any cost-band information will be 
available for estimation of (eL~/e2j). The authority will however 
have returns from each company and may, therefore, consider ways 
of estimating the ratio from this data. 

The slender evidence to which the author had access (a con- 
fidential report) suggested that  eu/~2j was not independent of 
company, but that, for a given class of insurance, the coefficient of 
variation, wj = c~2j/c~j, varied comparatively little between dif- 
ferent companies. This suggests estimating wj by ~ ,  based on data 
from all companies and replacing ~2 by the alternative statistic: 

a l l  cell# 

(6) 

where nt; is the expected number of claims paid in development 
year j of year of origin i, and ~tj estimates nij. 
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The difficulty now is, of course, the estinaation of wj. For  this 
purpose, let 

rlt denote the value of rj in the t-th company (for a part icular  
class of insurance); 
C~e denote the random variable C~ in the t-th company;  
C~.e denote the constant  C; in the h-th company.  

Let  us suppose that ,  for fixed j,  the rjt are realizations of a random 
variable with mean Pl and variance z~. Suppose also tha t  C,j~, and 
C4jk ' are stochastically independent  whenever (i~, kx) ~ (i2, k2). 

Then it is not difficult to show that ,  for each i, j ,  

Var [C~t / C;.t] = .Er, ' [Var EC~, / C;.t [ rje]] 
+ Varrv [E [C~t / Ci.e i r u]] 

= Er, , [ws r~t] + Varr,, [rje]. 
i.e. 

A reasonable estimate wj of wj can be obtained by replacing each 
of the three terms on the right of (7) by an estimator.  The first 
term of the numerator  can be est imated from the sample variance 

t 

of the ratios (C~t/C,.t) for fixed j. However, the other two terms 
present difficulties, since the corresponding sample statistics depend 
upon the observed values of rjt for companies other t han  the one 
to which the significance test  is being applied. These rjt are neither 
known nor the subject of our hypothesis.  

The simplest way out of the difficulty appears to be as follows: 

I. Use some method which is known to be generally fairly reliable 
to obtain an est imate of rjt for each j and t. 

2. Use these estimates to calculate the sample statistics cor- 
responding to the quantit ies appearing in (7). 

3. Use these sample statistics to obtain an est imate of wj as 
already described. 

A second practical difficulty arises from the appearance of the 
quantit ies C~ in our formulas. These quantit ies,  being total  pay- 
ments  after run-off has been completed, are of course unknown for 
any  cohorts not fully developed. 

However, this si tuation is not quite as serious as it might  at  first 
appear. Let  us consider the impact  of the Cf on each of the terms 
of (6) in turn. 
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Firstly, 

I ./ I 

= o,  (8) 

since both summations  yield unity.  Thus, 
k - i  

C' , , (k_ , )+ - -~ ; , (k_ , )  + = - -  E ( C ~ - - ~ ) ,  (9) 
9 o 

a n d  so t h e  t e r m s  [ ( Q  - -  I ^ '  F/,/] are all fu l l y  determined.  

Secondly, the term C~. e appears in wj (see (7)). Here it is possible 
to use equation (8) again and obtain 

A t  

C~.e = z C~e = z ~o," (Io) 
t t 

Final ly the value ntj can be est imated by  ~lj, the acl,ztal ~ntmber o f  
c la ims pertaining to the (i, j )  - cell. 

All of the terms appearing in (6) are now determined. 

6. A PRACTICAL SIMPLIFICATION OF THE TEST STATIS'rlC. 

The procedure outlined in the previous section for est imating 
w~ is complicated and involves lengthy  computations.  Moreover, 
no idea of the stabil i ty of the est imate of wj has been obtained. 

However, experience indicates that ,  even in the relatively stable 
class of business such as private motor insurance, wj tends to be 
rarely less than  unity.  These occasions on which it is < I are 
usually just  those on which r./is relatively large. The result of this 
is tha t  usually (always ?) we have 

I -- f l  
- -  < I .  ( I I )  

wj 

combining (5) and  (zI) we see tha t  

[ (I2)  
a l l  cellm 

and so deduce tha t  t reat ing the right side of (I2) as a chi-square 
statistic amounts  to applying a somewhat  too stringent test to the 
hypothesis.  The overstr ingency is not too great, at least for motor 
portfolios, as typical  values of the :factor (I - -  rj) / wj appear to lie 
in the range o.3 to o. 7. 

7. A NUMERICAL EXAMPLE. 

Let us apply the simplified test developed in Section 6 to the 
run-off triangle dealt  with in Example  I of Taylor (I977). The 
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actual triangle with each Cij divided by IO- u x 
for year of origin i, is: 

50.4 28.2 9.0 4.8 
58.0 29.2 9.7 
59.5 33.2 
66.2 

numbers of claims 

30034 13309 96o 393 
30678 12974 1216 ] 
31461 15417 I 1783 
31386 ] 22045 

Finally the triangle of ~o's is: 

From these figures we readily obtain: 

al l  celtm 

Now a value of 6.25 for Z~ is not significant at the 5% level and 
so, recalling that  the true X~ statistic would be appreciably less than 
6.25 , we should have no hesitation in accepting that  the model 

] 164 
458 

Multiplying by claim numbers to obtain the Ci I gives: 

2481 1387 441 237 
2899 1463 485 
3126 1744 
3538 

The calculationsin Taylor(z975 ) yield the following C~'s: 

2481 1217 374 18o 
2533 1239 368 
2648 1323 
2684 

and the following array of ~ ' s :  

2480 1223 368 179 I 234 
2522 1244 374 I 420 
2647 13o6 ] 833 
2695 ] 2178 

There is a certain degree of arbitrariness in the values of ~c(a-o,  
which were not determined by Taylor (1975). These will not affect 
the result materially, however. 
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produced by the separation technique and leading to the above 
~ ' s  is quite plausible statistically. 
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AN INVESTIGATION OF T H E  USE OF W E I G H T E D  
AVERAGES IN T H E  ESTIMATION OF T H E  MEAN OF 

A LONG-TAILED CLAIM SIZE DISTRIBUTION 

G. C. TAYLOR 

Sydney, Australia. 

ABSTRACT 

Tile paper  discusses the  p rob lem of e s t ima t ing  the  mean of a long-tai led 
claim size d is t r ibu t ion  when the inves t iga tor ' s  knowledge of the  d is t r ibu t ion  
is only vague 

One method of deahng with this problem, the method developed by 
Jolmson and Hey, is examined and found to produce strongly biased esti- 
nlators  

The s i tua t ion  in which a su fhc ien t  s ta t is t ic  (but  no th ing  else) for the  claim 
size d is t r ibu t ion  is known is examined ,  and an a p p r o x i m a t e l y  unbiased  
es t imator  developed This es t imator  is subs tan t i a l ly  more efficient t h a n  the  
a r i thmet ic  mean in some cases. I t  appears  to be qui te  successful when  the  
su fhc ien t  s ta t is t ic  is real-valued.  I t  is of hmi t ed  use when the  suff icient  
s ta t i s t ic  is vector-valued.  

I .  THE PROBLEM OF LONG-TAILED CLAIM SIZE DISTRIBUTIONS 

For the purposes of this paper we can take a lo~zg-tailed distri- 
bulion to be one whose density converges to zero less rapidly than 
the simple exponential family. Such distributions occur relatively 
frequently in the field of nonlife insurance. They are particularly 
prevalent among the distributions of individual claim sizes in 
respect of fire policies and liability policies. 

Since the mean of a distribution is one of its most important  
propert ies--and indeed in the context of claim size distributions, 
usually the most important  p roper ty- - i t  is necessary that  one have 
as reliable a method as possible for the estimation of this parameter. 

In nonlife insurance this estimating problem can prove quite 
troublesome, because of the fact that standard statistical tech- 
niques are of limited applicability. This s tatement deserves some 
explanation particularly as the majority of this paper is concerned 
with methods which lie outside the scope of "s tandard"  methods. 

The statistician faced with the problem of estimating the mean 
of a long-tailed (or any other) distribution would begin by defining 
the family of likelihoods which are admissible as a representation 
of the distribution under consideration. He would then select 
estimates of the unknown parameters according to some opti- 
mization criterion, e.g. maximum likelihood, minimum-variance 
unbiasedness, etc. 
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The difficulty for the actuary involved with nonlife insurance 
arises at the very first stage, i.e. in deciding the admissible likelihood 
functions. In practice, he may have only the vaguest notion of the 
shape of the distribution. For example, he may be prepared to as- 
sert that it is within the exponential family of likelihoods. The 
exponential family is an extremely large one, so that although the 
requirement of delimiting the admissible likelihoods has been 
satisfied technically, the practical benefit of this stage of the 
procedure is doubtful. 

It  is basically for this reason that alternative methods of ap- 
proaching the estimation of mean claim size are necessary. Of 
course, one can estimate this parameter with the sample mean. 
This has the advantage of ensuring unbiasedness, but, as is well- 
known, the sample mean from some long-tailed distributions has 
rather a large variance. Since unbiasedness and small variance are 
properties which one would usually like an estinaator to possess 
simultaneously, the need for considering estimators other than the 
sample mean is immediate. 

2. TIlE JOIINSON-t-IEY 1V[ETHOD OF WEIGHTED AVERAGES 

Hey (I97O), concerned by the disturbance to the sample mean of 
claim sizes resulting from a few but substantial large claims, sug- 
gested that the difficulty might be alleviated by using a weighted  

average of the sample claim sizes, the weights tending to decrease 
with increasing claim size. This suggestion was followed up by 
Jolmson and Hey (1972). 

To state this in mathematical terms, they were concerned that 
the sample mean claim size, though an unbiased estimator of the 
true mean, had too large a variance. Their solution was to estimate 
the true mean claim size m by means of the statistic: 

n 

71/I . = ( ~.~ S ( C i ) / J l . )  X G, (I) 
i I 

where 

C1, C.o . . . .  , C.,~ are the sample values of claim size: 
S(.) is a weight function which is nondccreasing but whose 
first derivative is nonincreasing; 
G is a "grossing-up factor" which is so chosen that 
M is an unbiased estimate of m. 
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3. PURPOSE OF THE PAPER 

The purpose of the present  paper  ~s three-fold:  

(i) to indicate certain dangers arising from use of the Johnson-  
He y  ( I -H)  method;  

(ii) to point  out tha t  there are sound theoretical  reasons for 
introducing the t ransformat ion S; 

(iii) to invest igate  ways other  than the J - H  method  of producing 
an est imate of m from the statistics Ct, . • . ,  C~. 

4. SOME COMMENTS ON TIIE JOHNSON-HEY METHOI) 

It  is clear from a brief scrut iny of fo lmula  (I) tha t  the 1)rob- 
lematic factor is G. Hey  himself 097  o, p. 8I) noted tha t  "we have 
no knowledge of the sensi t ivi ty of the grossing-up factor" .  Other  
difficulties arising from the manner  in which G is es t imated arc, 
ment ioned by Johnson and Hey (1972, pp. 227-8 ). 

In this section, however,  we shall ignore these difficulties by 
assuming that ,  for a single given m, it is possible to choose G 
exact ly  correctly.  We shall see that  difficulties still arise in the use 
of es t imator  M. 

Let  us deal with nonzero claims only and assume that  their 
sizes are sampled from a lognormal distribution.  It is to be em- 
phasised that  this part icular  distr ibution has been chosen for 
i l lustrat ive purposes only, though,  as Hey  (197o, pp. 62-3) and 
others remark,  it is not far from the t ru th  for some classes of motor  
insurance. 

Thus,  we assume that  C~, C % . . . ,  C~ is a random saml)le in 
which each log Ci has a normal distr ibution with mean ~ and 
variance ~2. Then, as in well-known (see e g. Kendall  and Stuar t ,  
I96I,  p. 68), 

m = E[Ci] = exp {g. + ~ c~}. (2) 
Also n 

E[ Z log Cd,~] = ~. (3) 
i .  I 

Thus, if we choose S( . )  as log (.), then it follows from (I), (2) 
and (3) that ,  for sl:/" to be unbiased, it is necessary that  

= ~- ,  exp {~ + ~ ~}. (4) 

A difficulty arises here due to tile fact tha t  G is dependent  (often 
quite strongly) on ~ and ~ .  This means that ,  if G is appropr ia te  to 
some par t icular  p. and ~2, it may  not be appropr ia te  to softie o ther  
choice of these parameters .  This is the reason for the l)henomcnon 
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R i s k  
Care -  V c2 exp{tz + .,.,2} * s a m p l e  s a m p l e  s a m p l e  s a m p l e  
g o r y  s ize  =- i o s .  = 5 ° s. = 250 s. -- i o  

1 4.000 t 2o 99 94 99 99 I28  
2 4 .250  1 . i o  122 t27 123 t 2o  t37  
3 4.500 I o o  t48 t39  I46  ~49 144 
4 4.625 o 9 5  164 I64  ~62 t65  148 
5 4.75 o o.9o I8L ~88 t 7 9  I83 154 

* s a m p l e  s ize  m e a c h  r i s k  c a t e g o r y  

noted by Johnson and Hey  (1972, p. 228) tha t  G appears to vary  
between different risk categories. 

In order to appreciate  the ex ten t  of the difficulty, it is necessary 
to unders tand  tha t  the f -H  method  provides tha t  G be calculated 
from the aggregation of data from all risk categories in such a way 
that  the est imate  of m for the risk ca tegory of an individual chosen 
at random from the whole portfolio is unbiased. Note  that ,  despite 
this type  of unbiasedness, the resulting est imators  may  be biased in 
respect of each separate  risk category,  and the bias will of course be 
worse for the more ex t reme categories. 

A number  of simulations were carried out  to i l lustrate this point  
and some of the results are given in Tables i and 2. The sampling 
distr ibution for claim size was taken to be lognormal with para- 
meters ~ and ~2, though,  as is fairly obvious, the point  being il- 
lus t ra ted here is valid for o ther  distr ibutions too. This was con- 
f i rmed by other  simulations whose results are not reproduced here. 
The portfolio was assumed to consist of five different risk cate- 
gories. In each case S( . )  was taken as log (-). 

T A B L E  I 

T r u e  M e a n  A r i t h m e t i c  M e a n  ,]-H e s t i m a t e  

T r u e  M e a n  R i s k  
C a t e -  
g o r y  

1 

2 
4.48 ] o o  145 
4-49 l . oo  I47  

3 4.5 ° I o o  I48 
4 4-5 t I o o  ~ 50 
5 4.52 I o o  t 51 

, s a m p l e  ~tze m e a c h  r i s k  

s a m p l e  s a m p l e  
s. -= 5 ° s - 250 

z28 r3o 
136 r38 
I44  146 
I49  15o 
I52 154 

T A B L E  2 

A r i t h m e t m  M e a n  J-ft e s t m l a t e  

~ae} * s a m p l e  s a m p l e  s a m p l e  s a m p l e  s a m p l e  s a m p l e  

s tze  = ] o  s = 5 ° s. - :  250 s. = [o s = 5 ° s. = 250 

149 ~47 I47 15] I49 I48  
147 147 I48  15o 149 I48  
I57  t5o  148 I53  149 I49  
152 z5o 151 152 i 4 9  z49 
152 I 5 [  I5 l  15I 150 149 

c a t e g o r y  

The main effect of the J-H method  appears clearly in Table z 
where it can be seen that ,  a l though the t rue mean varies over risk 
categories by a factor  of z.82, the f -H  estimates va ry  by  a factor of 
the order  of only z.2 approximate ly .  Generally, the J '-H est imates 
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for the various risk categories are "squashed together" ,  with high- 
risk categories underest imated and low-risk categories overesti- 
mated.  

This "squashedness"  of the J-H estimates has obvious impli- 
cations for tariff-splitting. 

The same phenomenon becomes apparent  upon a scrutiny of 
Johnson and Hey 's  own results presented on p. 227 of their paper. 
However, it is not quite so obvious there because their simulated 
portfolio is rather  like tha t  represented in Table 2 of this paper, i.e. 
risk categories are all quite close together. 

Thus, as the portfolio becomes more homogeneous, so is the bias 
in the J - H  method reduced. But  then so also is the need for rec- 
ognizing different risk categories. Regret tably,  we must  conclude 
tha t  the .f-H method  at ta ins  reasonable effecti,.,eness only when it 
is least needed. 

5. THEORETICAl. JUSTIFICATION FOR WEIGHTED AVERAGE 

Let  us consider the family of likelihoods, dependent  upon some 
parameter  0, which have the form: 

f(x I 0) = c(0) exp [ X  j(0) tj(x)]. (5) 
} .I 

This is the so-called exponential family of likelihoods. I t  is very 
rich in the sense that ,  for most of our practically occurring dis- 
tributions, we can find a member  of the family which will serve as a 
good approximation.  

Moreover, the exponential  family has a number  of a t t ract ive  
properties which make it relatively easy to work with. In part icular  
(see e.g. Ferguson (I967, pp. 125-37)): 

n 11 

I. The statistic T = ( X gi(X d . . . . .  X tp(X¢))is a sufficient 
I i , . 1  t i - , l  

statistic, i.e. contains just  as much information as does the 
whole vector of observations X~ . . . .  , Xn in a sample of size n. 

2. The likelihood of .T is also a member  of the exponential  
family, with the same nl 's as in f(x I 0). 

3- Under rather  weak conditions which will usually be met  by an 
insurance portfolio, it is possible to conclude that ,  if g(T) is 
an unbiased est imator of a function of 0, then it has the smal- 
lest variance among all unbiased estimators. 

Since the object of Johnson and Hey 's  quest was stabil i ty of the 
estimator,  Proper ty  3 is part icular ly suggestive, al though it must  
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be ment ioned tha t  this p roper ty  does not preclude the existence of 
more stable but biased estimators.  

Now if a claim size distr ibution is a member  of the exponent ia l  
family, then, by P rope r ty  1, 

n I, 

T = (  z h(Cd . . . . .  x 6(cd)  
~ o l  I , I  

is a sufficient statistic. We thus have in P rope r ty  3 a theoretical  
justification for basing our es t imate  of 0 on the average (or, equi- 
valently,  the sum) of transformed claim sizes. Fur thermore ,  the 
t ransformat ion to be used is by  no means arbi t rary ,  but  is deter- 
mined by (5). 

The usefulness of this observat ion is seen fully when viewed 
against the background of the ac tuary ' s  vague knowledge of the 
shape of the distribution,  as described in Section I. If the si tuat ion 
is slightly be t te r  than described there  and the ac tuary  is willing 
to assert tha t  p = I and h( . )  = log (.), thcn from this none too 
definitive assertion, we may deduce that  0 should be es t imated by  

n 

some function of E log Cl. 
l 1 

6. AN EXAMPLE OF THE USE OF TRANSFORMED CLAIM SIZES 

Suppose tha t  C has a lognormal distr ibution with parameter  
0 = (a, a2), then 

f ( C  I o) = ( V~7 ~ c)  , exp [ - -  (log C - -  ~)~/2.~] 

= c(O) h(C) exp [~t(O) It(C) + ~2(0) &(C)], 

C ( 0 )  = ( l/2"l ' l: ~ )  - 1  exp [ - -  ~212~2], 

h(C) = C- , .  
~.(0) = ~1~. t,(C) = log C. 

~2(0) = - -  z/2a,, h(C) = ( l o g  C) .. 

Thus we lose no information from our claim size observations if 
we reduce them to the two values, 

I .I. " 
2", --  E log C~ and 2"~ -- E (log C~) °" - -  .T~. 

I t  is not immedia te ly  clear how an unbiased es t imator  is to be 
const ructed  from Tt and Te. However ,  in the case of the lognormal 
distr ibution,  it was shown by F inney  (1941 ) tha t  an unbiased 
es t imator  of E[C] is 

cxp (T,) g(~ T=), (6) 
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where 

n- I x2 (n -- i)2 x~ 

~(x)= ~ +x+ ~ + ~ 2! + (.p~ + ~ ) (~ + 3) 3! + .... (7) 

For large ,n,, g(x) does not differ by too much from e z, so that (6) 
becomes apwoximately : 

n 

{ l-t Cd~/- exp [~ 7"0]. (8) 
'i-I 

This is approximately unbiased, and so, by Propcrty 3 above, 
has small variance. 

We have thus constructed an unbiased est imator with small 
variance in terms of t ransformed claim size, where the trans- 
formation is : 

c ~ , -~ ,~  (log c ,  (log c)~). 

7- FURTHER I)EVELOPMENT OF THE USE OF TRANSFORMED CLAIM 

SIZES 

I t  is apparent  tha t  the method  used in the previous section for 
est imating E[C] when C is lognormally distr ibuted differs con- 
siderably from the J - H  method.  It was also pointed out that  the 
methods used there lead to minimum-variance unbiased estimators. 

Unfor tunate ly ,  however, the ac tuary  m a y  not be in a position 
to make as strong an assertion as that  claim size is lognormally 
distributed. Possibly the strongest assertion he can make with any  
confidence is tha t  claim sizes, after some prescribed t ransformat ion 
(e.g. log) are roughly exponentialJy distributed. This really amounts  
to asserting something like the order of convergence of the prob- 
abili ty densi ty of claim size. 

Under these circumstances, it is natural,  to seek some extension 
of the method used in Section 6. This aim is pursued in this section, 
but it should be s tated at  the outset  tha t  the success achieved in 
this direction is limited, and perhaps the main result emerging 
froin the s tudy  is that ,  when knowledge of the claim size distri- 
bution is as vague as above, the simple ar i thmctic  mean is sur- 
prisingly efficient. 

Let  us suppose that  the sample of claim sizes, Ca, C~, . . . ,  C,,, is 
drawn from a distribution belonging to the exponential  family with 
h a one-to-one transform. Henceforth we denote h by just t. The 
statistic, 

I 
Tn-  Z t(C,), (9) 

n t , , l  
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is a minimum-var iance  unbiased es t imator  of E[t(C)], by Propert ies  
2 and 3 given in Section 5. I t  is therefore  reasonable to assume 
that  the statist ic t - ' (Tn) ,  af ter  approximate  correction for bias 
will provide an es t imator  of E[C] of relat ively small variance. 

Let  us write 

F rom Section 2, 

= E[t(C)], a~- = Var [t(C)]. 

m = E [ C ] .  

Now, we know tha t  

EEt - = E [ t ,  l ( t ,  ( C ) ) ]  = m .  

We therefore need to es t imate  the difference, 

E [ t -  *(Tn)] - -  E [ t -  1(T,)], 

occasioned by increase of sample size from I to n. ] 'his change 
represents the bias in l - l (Tn)  as an es t imator  of m. 

Let  us now write Z ,  for the s tandardized  version of Tn, i.e. 

Tn - -  

Let  the d.f. of Zn be expanded  in an Edgewor th  series, 

(z), 
I}" ,o  

where, as usual, (1)(x) is the k-th der ivat ive  of the s tandard  normal 
d.f. Then 

E [ t - t ( r n )  ] = E c~ E (k) [t- ' (n - ½ . Z  n + ~)], ( I I )  

where E (~) [function of Zn] denotes the expected value of the 
a rgument  on the assumption tha t  Zn has "dis t r ibut ion funct ion"  
(b (k). 

Now, if D denotes the differentiat ion operator ,  repeated  in- 
tegrat ion by par ts  gives 

E(~) It -' ( -0+n-~  a Z n ) ] = n  -x/°- (----a)# E(°) [Dkt-~(B+n -½ *Zn)], (12) 

under  obvious regular i ty  conditions on the functions l - t ,  Dr-', 
D2t- 1, etc. 

Thus,  by (II)  and (I2), 

E[t-l(Tn)] = X c~ n -kl2 (--a)tcE(°) [Dkt -I ('~ + n -½ aZn) ]. (13) 
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I t  is apparent  from (Io) and (I3) tha t  

E[t-~(r.)]  - ,,~ - -  z (--~)~ { 4 E  (°~ [D~t -1 (7 + oz)] 
k 0 

- -  n-~%~ E I°)[D~t-1(.~ + f~ -~  ~Z)]}, 

where the subscripts on Z have been suppressed since they  are 
made irrelevant by  the distributional assumptions implied by 
E(o). Hence an unbiased est imator of m is 

U,, = t - '  (T.) + E (----a) k {c~ E (°) [DXt -t ('q + aZ)] 
k - 8  

- -  n -k;~ c~ E (°) [ b k t  -~ (7 + n-V~ ~Z)]},  (~4) 

Now it  Is known that 

-'A. 4 '  = I ,  cl' = c&' = o,  4 '  = - -  ~ n y , ,  c2 = ~ . - 1 y ~ ,  

where yt and "t-" are the coefficients of skewness and excess re- 
spectively of Tn. Moreover, 

y l ~  3 = K 3 ,  

where Kj is the j - th  cumulant  of t(C). 

Using these facts, we can simplify (14) somewhat  to give: 

U , ,  = t -  ~ ( T ~ )  

+ {E<0) [t-1 (7 + ~Z)] _E¢o~ [t-~ (7 + --~: ~Z)]} 

+ ~K3{E(Ol [D3t -~ (~ + aZ)] - - n - 2 E ( ° )  [D3t -~ ('~ + n-Y= aZ)]} 

+ ~ 1(4 {E (o) [D4i -1 (7  + a Z ) ]  - - ' ~  - 3 E (o) [D41-t (~l + n-  K, aZ)] } 

. . . .  

Since we do not have true values of V-, g, Kn and 1(4, we replace 
them by estimates. The obvious choices are (see Cramer, 1946, 

352) 
/ 

n 

n - -  I a2, 

K 3  - ~  '//2'2 

( .  - -  I )  ( . - -  2) "~' 

/~4 = (n - -  I )  ( '~l,-- 2) ( ~ t - -  3) (n + I )  ~ - -  3(u - - -  I )  , 

where a~ is the v-th sample central  moment  of t(C). 
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Thus  we finally adop t  as our es t imator  of ¢'a the statl~tic: 

- - l  ,(T.) 

+ it-  , ( r , ,  + taz)  - -  ft- ,(T,, + ' / ;  aZ)]}  
• + ~Ka {E (°) IDa/, -1 (T,, -q- aZ) ] - - ,z-2E(°)  [mal ' (.7"~ -4- ',*-V... aZ)]} 
+ ~4 I¢4{E(o) Cl)q 1 (Tn + aZ)]- - ,z-aE (°) [D4I - '  (T,, + n-'/-.aZ)]} 
+ . . . .  

I t  is of course appa ren t  tha t  In is not ill general  unbiased. How- 
ever, the inclusion of tile correct ive  t e rms  should remove  the 
ma jo r i t y  of the bias which would be present  if t-l(T~,) alone were 
taken as estinaator of m. 

8. N U M E R I C A L  R E S U L T S  

Although the deve lopmen t  of 1~ as an estinaator of m began with 
considerat ions  which rested on sound theory  (see Section 5), a 
number  of subsequen t  app rox i m a t i ons  have  led to the position irl 
which the bias and  s tab i l i ty  of ~ are not ent i rely clear. For  this 
reason, a n u m b e r  of s imulat ions  were carr ied out  in order to com- 

pare the e s t ima to r  ~ir with the simple a r i thmet ic  mean  for bias and  
s tabi l i ty .  The  mos t  in format ive  results  are summar ized  in Tables  
3 and  4 below. 

In  Table  3 the sampl ing  dis t r ibut ion for claim size was t aken  to 
be log-Laplacian,  i.e. log C(= L, say) was taken  to have  a likelihood 
function,  dependen t  upon p a r a m e t e r  k, equal  to 

~ k e x p F - - k  ! L l], - - c o  < L < co. 

T A B L E  3 

R i sk  /,' T r u e  Meal1 A r i t h m e t i c  Mean  7~ 

Ca te -  h=/(leL- l) s a m p l e  s a m p l e  s a m p l e  s a m p l e  s a m p l e  s a m p l e  
go ry  *s~ze --  ~o size = 5o size =: 250 size - -  io  size = 5 ° size ~ 250 

I i.  IO 5.8 2 3(4.2) 3.7(4 ° I) 4 °(27.5) 6.3(884) 3 . 5 0 0  2) 3.3(I  8) 
2 t ,3o 2. 4 2.6(46.8 ) 2 2(1 7) 2.4(l  4) 5 t(679) 2.2(I,4) 2.2(o.2) 
3 I 49 I 8 1.7(1.8 ) I 8(1 o) I 8(0 t) 2 .1( to .3)  1.8(o.8) I 7(o.1) 
4 t '70  t 5 I 5(0 9) 1.6(O 3) I-5(°.O2) 1.7(3 9) 1.6(O.2) 1.5(O.O'2 ) 
.5 I 89 1. 4 1,4(o .3)  t . 4 (o  1) 1.4(o.o22 ) 1 .5(o .5)  I 4(0 .3)  1 . 4 ( o . o l  ) 

*~amt)le size in each  r isk  c a t e g o r y  

In Table  4, the salnpling dis t r ibut ion was taken  to be lognonnal  
as in Tables  I and 2. As ill Tables  I and  2, the portfol io is assumed 
to consist of five risk categories,  and  t(.) is t aken  to be log (.). 
The  figures for " a r i t hme t i c  mean" and  ~ are s imulated values of 
these es t imators .  The figures in parentheses  are the corresponding 
s imula ted  values of the var iances  of the es t imates .  
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R,.nk 
]ate- V- e2 
gory 

I 4 0 0 0  l 2 0  

2 4'250 1 [ 0 

3 ,I 5 °0 t o o  
4 4 625 o 95 
5 4.75 ° o 90 

True Mean 

99 
1 2 2  

[4S 
[64 
[81 

sample 
* q l Z e  ~ 1 0  

94(18oo) 
127( 3 too) 
t 39(3200) 
164(5600 ) 
188(5900) 

TABLE 4 

Ari thmetm Mean Fz 

sample sample sample sample 
a , z e = 5  ° s i z e = 2 5 o  s i z e = i o  s i z e = 5  ° 

99(55 o) 1 oo(I lO) ,)8(2200) io i  (63o) 
123(7oo ) 12o(1oo) 135(51oo ) 124(75o ) 
146(75o) t49([6o) 143(4too) I47(8oo) 
162(74o) 165(e5o) t 73([oooo) 163(78o) 
1 79(87o ) t83(t4o ) 105(96oo ) 181(93 o) 

sample stze in each risk category 

sample 
size = 250 

I 0 0 ( I  I 0 )  

I2~(1~o) 
149(16o) 
165(15o) 
183(140) 

9' CONCLUSIONS 

The theme of the paper has been the estimation of mean claim 
size in the light of only wtgue iuformation about the claim size 
distribution. \'Vhen this information includes knowledge of a suf- 
ficient statistic, it is tempting to base the estimator on this statistic. 

One such estilnator is provided by the Johnson-Hey method, but 
Section 4, and particularly Table z therein, reveals that  there are 
quite common situations in which this estilnator gives poor results. 

The estimator ~; developed in Section 7 attempts to improve on 
the J -H method. Indeed, Table 3 indicates that  for some long- 
tailed claim size distributions, this estimator is largely unbiased 
and achieves a significant reduction in variance as compared with 
a simple arithmetic mean. The longer the tail, the larger is the 
reduction in variance. 

The usefulness of ~n as an estimator is limited, however, as is 
evidenced 1)y Table 4 where the variance of ~ is slightly greater 
than the variance of the arithmetic mean. The reason for this is, 
presumably, that the sufficient statistic for the distribution involved 
here is an ordered pair rather than a single real value (as in the case 
of Table 3), and in such a case the transformation (9) makes only 
partial use of our knowledge of the sufficient statistic. 

Perhaps the estimator ~ can be refined to make fuller use of the 
sufficient statistic ? 

Perhaps also the main conclusion to be drawn from this investiga- 
tion is that, in the possession of only the vague knowledge outlined 
in Section I, it is often very difficult to improve upon the simple 
arithmetic mean as an estimator of mean claim size. 
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P A R A M E T E R  E S T I M A T I O N  IN C R E D I B I L I T Y  

T H E O R Y  

17L. DE VYLDER 

University of Louvain, Belgium 

ABSTRACT. 

The problem of distribution-free parameter estimation in recent credibility 
theory is discussed in the papers [I], [3] and [4] of the bibliography. Here, 
we consider a multiclass model with rcgresmon assumption. In  that  case, 
already treated by Ch. Hachemelster, [3], this author obtmns an unsym- 
metrical matrix as an estunator of a covanance matrix. Of course, for 
practical use, this matrix is symmetrized in the obvious way. We show that  
this procedure can be avoided and that  a lot of symmetrical unbiased 
estimators can be obtained at once. 

By parhcularisations to the I-rank model, we find the estimators given 
by Buhlmann and Straub, [I], [4]. 

In the mulhrank case, a generahzation of the minimumvariance principle 
(mimmization of the trace of the covariance matrix) leads to an optimal 
estamator of the mean regression vector. A noteworthy conclusion of our 
discussion is that  there is no difference at all between the various credibility 
formulae (the inhomogenous formula, the homogeneous formula, the mean- 
free formula) if the mean regression vector is estimated optimally. 

Finally we show that  it must not be hoped to find, in a large set of un- 
biased estimators of the covariance matrix, one estinaator furnishing, 
ahvays, a semidefinitc positive estimate 

i .  THE MULTICLASS 'MODEL WITH REGRESSION ASSUMPTION. 

I . I .  Descriplion of  the model 

We cons ider  the  a r r a y  of o b s e r v a b l e  r a n d o m  va r i a b l e s  

1X1 2X1 . . .  i X 1  . . .  kX1  

t X ~  2X2 . . .  i X 2  . . .  k X 2  

~Xs ~Xs . . .  j X s  . . .  ~Xs 

aXt 2Xt . . .  j X t  . . .  k X t  

I n  the  n o t a t i o n  j X s  ( j  = x, 2 . . . . .  k; s = x, 2 . . . . .  t ) ,  t he  lef t  i n d e x  

j is the  class index ,  the  r igh t  i ndex  s is the  y e a r  index .  F o r  e x a m p l e  

j X s  m i g h t  be the  c la im r a t e  of t r e a t y  j in  y e a r  s in  a r e i n s u r e r ' s  

portfol io,  b u t  o the r  i n t e r p r e t a t i o n s  are possible.  The  c o l u m n  

j X  = (iX1, jX~ . . . .  , jX t ) ' ,  will be  ca l led  the  class j .  To j X  is assoeia  

t ed  the  s t r u c t u r e  v a r i a b l e  jO. We  a b b r e v i a t e :  

0 = (~0, ~0 . . . . .  ~0). 
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The numbers  k (nm-nber of classes) and t (number of observat ion 
years) are fixed. As variable class-indices we use i, j = I, 2 . . . . .  k 
and as variable t ime indices r, s = I, 2, . . . ,  t. 

Before we specify the assumptions relating the observable and 
s t ruc ture  variables, we make some general remarks about  the 
mat r ix  notat ion used th roughout  the text .  A n matr ix  is one with 
m rows and n columns. Then n is the dime~s,io,a of the matr ix.  

Rows, columns, scalars are par t icular  matrices. The dimension } is 
also denoted  more simply by  I. Some relations are completed by 
the dimensions of the displayed matrices.  The same symbol (without 
indices) is used for a mat r ix  and for its elements (with indices). 
The inferior right index is the row-index. The superior right index 
is the column-index.  M a l r i x  rules are applied to indices wrilten on 
the right only. 

The following assumptions are made. 

(i) Independence  of classes: ~X, 2X . . . . .  eX are independent .  
(ii) In each class, i r re levancy of other  parameter  values than tha t  

one of the given class: For  each class-index j and function 

f(.) ,  
E ( f O X ) / ®  ) = E ( f O X ) / j ®  ). 

(iii) Independence  of parameters :  ~®, 20, . . . ,  e@ are independent .  
(iv) Equidis t r ibut ion  of the parameters  1@, ~0, . . . ,  a.O. 
(v) There  exist functions ~s ( . ) sa t i s fy ing  

EOX~hO) = ~,(jO). 

(The assumption is in the fact tha t  g.,(. ) does not depend 
on j.) 

(vi) There  exist  symmetr ica l  definite positive ~ matrices jv and 
a scalar funct ion ,2 ( .  ) satisfying 

C O V ( . / X  v jXr/ jO ) = 62(yO) yv~. 

(vii) Regression assumpt ion:  For  each j,  the ~ column V(j®) of 
elements V, s0@), can be wri t ten  as 

= y (jo), 

1 ~ g 

vector of elements where y is a known ~ mat r ix  and ~( . ) a g 
}~o( - )" I t  is assumed moreover  tha t  y is of rank g and tha t  

g < t .  
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1.2. Special assumplions 

Occasionally, (vi), (vii) will be specified in the following manner.  

(BS): jv is a diagonal matr ix with diagonal elements 

(BSI):  (BS) is true and moreover,  y is the ~ column y = (1, I . . . . .  
z)'. (Of course, then ~3(. ) is a scalar function.) 

The case (BS) is introduced in Bfihhnann and Straub,  [i] and is 
further used in Hachemeis ter  [4]. In [i1, the number  JPs is the 
premium volmne underlying t rea ty  j in year  s in a reinsurer 's  
portfolio. In [4], each class is related to an American s ta te  and jPs 
is a nunlber of claims in s ta te  j in the observat ion period s. 

Assumption (BSI) is a s ta t ionar i ty  in t ime assumption,  since 
then V-s(.) does not depend on s. 

In the sequel we assume (i) to (vii). The matrices jr, y are supposed 
to be known. Assumptions  (BS), (BSI) are ment ioned explicitly 
if they  are used. 

1. 3 . Summary of credibility theory results 

The following credibili ty approximat ions  to the vector  [3(j®) 
are known. 

- -  The inhonlogeneous approximat ion ([3], [5], [2]) 

j B = ( ~ - - j z )  b + j z j ~ .  
1 _ _  g 1 ~ 1 
g - -  g g - [ -  g 

- -  The homogeneous approxinlat ion ([3], [2]) 

j/~ = ( i - - ] z )  b S + jz jB. 
i __ g I g t 
g - -  g g I -@ g g 

- -  The homogeneous mean-free approximat ion ([5], [2]) 

fl~ = ( i - - j z )  B + jz jB. 
1 ~ g i gg I 
g g g ~ g 

In these formulae:  

jz = a y'~d -1 y (I + a y ' j d  - ~ y ) - l ,  

jB = (y' f l - i  y ) - i  y, f l -~  iX, 
t 1 
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B = (X ,z) -~ X ,z ,B,  
t i 

I. ~ = (  ~) g ~  
ff # 

S = E b ' a - l F ~ B / G b ' a - l G b  

_ g g g 1/ f f  g g i 
i -- i g g g 1 9 g ff 

and fu r the r '  

vector  of elements I) b is the g 

b~o = E (~3v0®)), independent  of j. 

2) jd is the ~ mat r ix  of elements 

S 2 8 jd~. = E COV (jXr, iXs/10) = E(cr2(j0)) :~vSr = f r ,  

where 

s 2 = E(cr2(jO)), independent  of j. 

3) a is the gg ma t r ix  of elements 

aq v --  COV(C3v(~® ), ~3q(jO)), independent  of j. 

1. 4 . Problem 

Our problem is to find unbiased est imators  for b, s °-, a. For  brevi ty ,  
these quant i t ies  will be called, respectively,  the mean  veclor, the 
variance, the covariance matr ix .  

2 .  F I X E D - C L A S S  E s r I ~ t A T O R S .  

In this section we consider a fixed class jX and we make  infer- 
ences based only o11 the variables in tha t  class. 

2.1. Es t ima t ion  of  lhe mean  vector 

2 . i . i .  Theorem 

For  the estinaator 

j~ = (y, jv-ly)-,  y . f -1  ix ,  (~g), 
we have 

EOgghO) = ~0o), 

~0~) = b .  

Demonstra t ion.  Follows from the fact tha t  

E O X h O  ) = ~00)  = y ~ ( # )  

and the definit ion of b. 

(I) 

(2) 

(3) 
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2.1.2. Remark .  The arguments  in favor of the es t imator  jb are the 
same as those just ifying the identical ly cons t ruc ted  es t imator  
in mul t ivar ia te  regression theory.  We shall not  repeat  them here, 
but  we note  however  tha t  such an es t imator  can be ob ta ined  as 
well by  least-squares theory  as under  normal assumptions.  

I t  is seen tha t  jb is tB defined in 1. 3 . 

2.2. Est imat ion  of the variance 

2.2.1. L e m m a  

For  an 3, symmetr ica l  ~ mat r ix  r:  

E O X '  r iX~j®) = a20®)lr(r jv) + p.'O®) rb~00 ). 

Demonst ra t ion .  We have,  dropping everywhere  the fixed class- 
index j,  

E ( X ' r X / @ )  = £ r~ E ( X  r Xs /O  ) 
r 8  

- -  + r , r 

- -  £ rSr LE(XrXs /@ ) - -  E ( X r l O  ) E(XsI@)] + ~ r~ E(XrI@)E(XsI@) 
r 8  r 8  

r ,8 = Y., 4 COV (X,, Xs/® ) + £ p.r(®) r, ~,s(®) 
r 8  r 8  

= a2(@) Z r~ vet + p.'(O) rbt(O ) 
r 8  

= a'°(®) tr(rv) + b((O) rv.(® ). 

2.2.2. Theorem 

For  the es t imator  

I O X -  yjb~) ' ~v -~ OX - -  YJb), (4) j,~2 _ l - - g  

we ]lave 

E(d2hO) = ~20o), (5) 

EOs ~) = s2 (6) 

Demonsbration 

We drop everywhere  the class-index j.  Using (I), we have, af ter  
obvious simplifications: 

( t - -  g) 82 = X '  r X ,  

wln ere 

r = v - t  - -  v - l y ( y ' v - l y ) - l y ' v  -1 
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tr(rv) -= tr(I °) - -  t r ( v - [y (y ' v - ' y ) - [y ' )  
= t r ( : )  - -  : r ( y v - l y ( y ' v - [ y ) - , )  

= lr(1 °) - -  t r ( :  °) = t - -  g, 

where I °, I °° are respectively the ~ and the ~ unit  matrix. 

Also, 

/ ( o )  r~(o)  = / ( o )  rye(O) = o, 

since ry = o. Therefore (5) follows from the lemnla. Then (6) is 
evident from the definition of s 2. 

2. 3. Relation, for the covariance malrix 

2.3.1. Remark 

The covariance matr ix  a cannot be est imated from observations 
in one class. However, the following relation (8) is the first step 
in the construction of unbiased estimators for a. Observe that ,  as 
is indicated, the relations (7), (8) are ~ matr ix  relations. 

2.3.2. Theorem 

E ( ( j g -  b)(S g -  b)'ljO ) = ,~(SO) (y' jv ' y ) - '  + 

+ ( ~ ( : o ) -  b)(~(:O)-  b)', (~), (7) 

E ( ( j b  - -  b) ( jb - -  b) t) = S2(y ' .~V-my)- [  + a ,  (~). (8) 

Demonstration 

\Ve drop everywhere j. First we prove: 

E(XX' /O)  = ~-°(0) v + y~(O)~'(O)y' .  (9) 

Indeed, the s element of the first member of (9) is t" 
: r r r E ( X r X J O  ) = COX (X r, Xs/~) ) + E(Xr/O ) E(xye) 

= : ( O ) v ~  + ~ ( e )  ~ ( o ) .  

s element of the So we have (9) since the last expression is the ,. 
matr ix  

~2(0) v + ~ ( e ) / ( O )  = ~-'(O) v + y~(O)~'(e) y'. 
^^  

By (I): bb' = (y 'v-[y)-~y 'v  -[ X X '  v ~y(y 'v-~y)  -~. 

By an application of E(. /O) ,  using (9)" 

E(bb'/0) = ~(0)  (y'~,-,y)-~ + ~(0) f3'(0). (lO) 
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From (2) and the relation 

(~- ~)(~--b)'= g g ' - - g ' - - ~ b '  + w 

it follows tha t  

E( (~ - -  b) (~ - -  b)'lO) = E ( ~ ' I O  - -  ~,~'(0) - -  ~(0)  b' + bb'. 

Combining this relation with (IO) we have (7). Then ($) follows. 

3' GLOBAL ESTIMATORS. 

Here we use the statistical material  of all the classeq. 

3.1. Estimation, of the mean vector 

3.1.I. Theorem 

Whatever  be the ~ matrices jr: satisfying 2.., j n - -  t, the vector 
I 

! 

i __ g t 
9 ¢ 9 

is an unbiased est imator of b. 

(ii) 

Dcmo~tslration 

Use (3). 

3.I.2. Natu.ra! estimator 

[n the (BS) case, the est imator 

g = z jp j~, (12) 
J 

where the scalars jp are clefined by 

jp  = ~ j p , l X  @, ,  (13) 

will be called the natural estimator of b. The natural  est imator is a 
particular est imator (11) obtained by taking for Fv the diagonal 
matr ix with each diagonal element equal to jp. The nulnbers jp 
will be called the natural weighls. The matrmes jr~ in (II) can be 
considered as generalized weights. 

The natural  est imator b is used (at least implicitly) in Buhlmaml 
and Straub,  [I], in the (BS1) case. 
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3.2. Estimation of the variance 

3.2.1. Theorem 

\Vhatever  be the scalar weights .lP satisfying E jp = I, 
I 

g2 = ~ jp j§2 
I 

is an unbiased es t imator  of s 2. 

(14) 

l)emonslralion 

Use (6). 

3.2.2. Natural and ,u,nweighted estimators 

In the (BS) case, the es t imator  

~ = x jp jg~ (15) 
J 

will be called the nalural estimator ors 2. 

In the general case, the es t imator  

I 

g" = ~ X jg" (I6) 
I 

will be called the u.nweighted estimator of s 2. 

The unweighted es t imator  is considered in Bt ihlmann and Straub,  
[I] in the (BSi) case and also in Hachemeis ter ,  [3] in the more general 
(BS) case. 

3.3. Eslimalion of the covariance matrix 

3.3.1. Theorem 

Let  tjk be weights satisfying tjk = j,k, ~ tjk = I and set ~ k  =- 

E,jk. Let  g2 be an unbiased es t imator  of s 2. Then the ~ mat r ix  d 
I 

defined by  the relation 

x ,jk ( , g -  j~) (,~ - jg)' = 
t t  

2 ( r - - . Z  uk) d + 2 ge.x ( , ~ k - - u k )  ( y ' t v - ' y ) - ' ,  (o°), (17) 
i i 

is an unbiased es t imator  of a. 

Demonstration 

(,b -- j?) (~g-- jb)' = ((~g -- b) -- (jb -- b)) ((~g-- b) -- (~ -- b))' -- 

(,~ - -  b) ( , g -  b)' + O g - -  b) O g - -  b)' - -  ( , g - -  b) O g - -  b)' - -  

([b -- o) (,~ -- b)'. 
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Therefore, by the assuml)tion of independence of classes, by 
(3), (8), writing momentar i ly  ~w for s 2 (y'  , v  ly) - 1 : 

.B ~d~(~w + a) + .X ~d~ (m + a) - -  2 ~ ljk a~j (~w + ~) = 
~ j  t j  i ]  

2 ,~ (z - -  X uk )  + 2 X ( ~ k  - -  uk)~w. 
J t 

lgrom this the theorem is clear. 

3.3.2. Nal~tra! eslimator 

In the (BS) case, let .l.lk = , p j p .  Then d defined by (r7) will be 
called the nalural  esgimalor o f  a, for the given ~, even if the lat ter  
est imator ~s not the natural  one. 

If b'is the natural  est imator (12) of b, then 

.X lP .IP (zb ~b' + .jb jb' - -  ~b ~b' - -  jb ~b') = 
i !  

2 E , p , b , b ' - - 2 b b '  = 2 x i p ( t b - - b )  ( , b - - b ) ' .  
t l 

So the natural  estinaator d results from the relation 

z ,b 

( ~ -  x d, ~) d + ~ x  , p ( ~ -  d')(y'  ,v - -b) - ' ,  (9, (~8) 

where b is the natural  esnmator  (12) of b. 

3.4- The (BSz )  case 

3.4.1. Notagio~as 

Here we consider the (BSI) case and use the notat ions 

~P= = £ ~P~, ,=P~ = £ ~P,- = £ aPs. 
. t t .  

"['hen the natural  weights are ~p = ~P~/r,P~. 

We use the abbreviations 

• J I s 

3.4.2. EsHmaHon of  lhe mea~ 

Now ~b, b are scalars denoted by Fh, ,~h.. By  partieularisation 
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of the general results we have j~]z = jXE and the natural  mean 
equals *h = a'XL'. 

3.4.3. Estimation of the variance 

The j - th  class variance es t imator  is, by part icularisat ion of (4): 

I 

J~" = t - - -~  ".X; jp~ (jX~ - - / G : ) " .  (z9) 

l 'he  unweighted es tmmtor  is 

I 
"~ - le(t - -  1) x jp~ (j~'~ - -  j x ~ ) ~ .  (2o) 

i t  

This is the est imator  considered in Btihlmann ancl Straub,  LI]. 

3.4.4. Estimation of a 

The natural  es t imator  d, a scalar in this case, results from the 
relatmn 

(I - -  X j p 2 )  d = Z j p ( j X E  - - -  E X E )  2 - -  ( k  - -  I) ga/ ,ApX,  (2I)  

obta ined from (18). The B/_lhlmann and Straub,  [I] es t imator  
results from the relation 

^ ~-~ jPs let - -  I 
/ t  x, jp=') a. = ~ ,.p,--i ( j x ~ - - -  ~ .xe)~  "=P'= ~ .  (22) 

I • 

13y the ident i ty  

Z, doe O X , -  EXu) = = X d),( jX,--jXL.)'- '  + ~ H,,_. OXu--  eX~.) ~, 23 
t s  1#  ! 

it is seen that  a = 7, if g" is the unweighted es t imator  (2o). 

4'  OPTIMAL ESTIMATION OF TIlE MI'AN I{.EGRESSION \;ECTOI< 

4.1. Optimal estimator 

An est imator  d in a set E of vector  est imators  shall be called 
opt,mal m E if the trace of the covariance matr ix  of d is minimal,  
in comparison with the traces defined similarly for tile other  ele- 
ments m E. If E is a set of scalar estimators,  the principle invoked 
~s that  of minimum-variance.  

\,Ve leave the question of an ophmal  ~ or ~2 unsettled. \\:e con- 

sider, here, the cake of an optimal  b given by (II).  \,Ve prove that  the 
optimal  sequence (~r:, 2rv, . . . ,  xr~) is the sequence (,z, 2z . . . . .  kz) 
of credibil i ty matrices (see 1.3), except  for the constant  pre-factor  
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4.2. Lomma 

Let ~m, 2m, . . . ,  k m be definite posi t ive symmet r i ca l  g matrices.  
Let  ~x, 2x . . . . .  kx be var iable  ~ matr ices.  Then the min imum of 

the t race  

lr(X ix ira, ix'), (24) 
t 

subject  to the cons t ra in t  .X tx = l ,  is reached for 
i 

jx  = (,_, t m - ~ ) - ' j m - ~ ,  ( j  = , ,  2 . . . . .  le). (25)  
t 

Demonslral.ion 

If ix is fixed and  if 3' is an a rb i t r a ry  ~ vector,  we have  

y' (~x lm ~x') 5' = (Y' ~x)~.m(y' ix)' > o 

since ,m is defini te posit ive.  Therefore  ,x ,m ix' is semidefini te  
pos i t ive  and has a nonnega t ive  trace. Thus,  (24) is _> o. I t  is a 
quadra t i c  form in the hg 2 var iables  ,x~. I f  we el iminate  g2 var iables  
by  the cons t ra in ts  Z,x = I,  we have  a quadra t ic  po lynomia l  in 
( k - - I )ge  independent  var iables  tha t  is never  negat ive.  Such a 

funct ion is m i n i m u m  for finite values of the variables.  (See, for 
example ,  the l e m m a  2.5 in De Vylder,  [2]). Now we shall a p p l y  
Lagrange ' s  me thod  and  we shall find a unique  e x t r e m u m .  F rom 
the preceding discussion it follows tha t  this e x t r e m u m  mus t  be the 
min imum.  

We in t roduce the g2 Lagrange  mult ipl iers  X~ corresponding to the 

cons t ra in ts  

t 

\~Ze minimize 

We must  have  

. a  
L = t r ( X i  x i m t x ' ) - 2  E ),~%, 

t to t~  

= X , x ~ , x : , m ~ - - 2  X X~ix~. 

0 - -  

I ~L 
E jx v 

2 b jX~ 

or, in ma t r i x  form, 

Then,  successively, 

jx = kiln -1, I = ..Xlx = X.Xfl~t -1 , x = ( 2  j ,m- 1 ) - ,  
/ 
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and (25). Note that  the existence of the inverse matr ix of Ejm -x 
results from the assumptions.  

4.3. Le.mma 

"File covariance matrix of b, given by (II),  is 

N ,rc (s °- (y" fv t y ) - ,  + a ) , n ' ,  (~). (26) 

Demonstrat ion 

From (8) and from the independence of classes: 

e ( (x ,=  ,gg-- t) (xj~ jgg-- b)') = 

x ,~ E ( ( , ~ - -  b) ( jgg-  b)') j~' ~,j = 
f ]  

2 ,re (s~(y' ~v-~y)-' + a) ~'. 
I 

4.4. Theorem 

The optimal es t imator  b in the class of est imators (II) is 

= Z (E lz)- ~jz jb, (27) 
1 t 

where the :~z are the credibil i ty matrices defined in 1.3. 

Demonstragion 

From the definition of jz  follows the relation 

( y ' j d - J y )  + a = jz -~ a. 

Then, since 

s2(y ' i v - t y ) - ~  = (y, j d - ~ y ) - ,  

the theorem follows from the lemnaa's. 

4.5. Corollary 

If b is es t imated optimally,  there is no difference between the 

credibil i ty approximat ions  j/?, fiT, ji? to {3(j@) given in 1.3. 

4.6. Rem ark s  

It  seems that  we are in a circular si tuation if we t ry  to use the 

optimal b, since this b depends on a and that  b is needed in, for 
example,  the natural  est imator  d of a. 

However ,  this anomaly  is only apparent ,  since the first member  of 

(18) can be wri t ten wi thout  b. In other  words, in (18) b mus t  be the 
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natura l  estinaator and not the opt imal  one. I t  is not  excluded,  
however,  tha t  (I8) can be opt imized in some way  b y  a method  of 

successive approxilnat ions,  using successively improved b ' s  and, 
eventual ly,  redefinitions of the numbers  jPs. 

5" NoN-NEGATIVITY CONSIDERATIONS 

The covariance mat r ix  a is semidefinite positive. In part icular ,  
in the (BSI) case the nmnber  a is non-negative.  I t  is known tha t  

A 

the est imator  a can provide negative values. In such cases, Biihl- 
mann and Straub,  [I] es t imate  a by  o. 

A similar me thod  can be used if a is a matr ix.  For  example,  
suppose that  a ° is an est imate  of a and tha t  a ° is not  semidefinite 
positive. Then make  a ° diagonal by  an or thogonal  t ransformat ion.  
Replace the negat ive diagonal elements (i.e. the negat ive character-  
istic values) by o and apply  the inverse or thogonal  t ransformat ion.  

If all diagonal elements of a ° are posit ive and if a ° is not  semi- 
definite positive the following me thod  can also be used. Mult iply 
all non-diagonal  elements  of a ° by  the same number  x. Then if x 
decreases from I to o the mat r ix  becomes necessarily semidefinite 
positive. Keep the largest possible x. 

Of course, a just if ication of these methods  is difficult to find. 
Moreover, the est imators  redefined in such a way are no longer 
unbiased. Bu t  it  must  be kept  in mind tha t  it is preferable to have  
an est imate tha t  might  be bad, than  no estinaate at all. And also 
tha t  the applicat ion of credibi l i ty formulae  with wrong parameters  
introduces unfairnesses in the different  classes, bu t  tha t  these 
counterba lance  each other ,  at  least if b is es t imated  correctly.  

Finally,  let we go back to the general formula (17) and let we 
consider the following question. Is a reasonable general choice of 
the weights ,jk and .~p (in g2) possible in such a way  that  the resulting 
d always is semidefinite positive ? The  answer is negative.  Indeed,  
let we consider the (BSI) case with each jPs = I. Then our  general 
hypothet ica l  rule for fixing the weights must  lead to equal weights 
jla since we s tar t  from a symmetr ica l  si tuation. For  the same reason, 
we must have 

~jk = o~ (i f j ) ,  . k =  

for some ~ and 13. Since we must  have Etjk = z, there is one in- 
dependent  parameter ,  say ~, left. But  an inspection of (z7) shows 
tha t  this pa rame te r  simplifies in tha t  relation. So we m a y  take  o~ = 
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{3. Then d is the natural  estimator,  given by (2I). The particular 
case /e = 2 ,  I = 2 shows tha t  d < o for the values 

i X l  = I ,  2 X i  = I ,  

13(~ =~ O, a x e  = o. 
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P.  PICARD 

Paris 

~UMMARY 

:4 Conlribulzon to lhe Sludy of Aulomobile claims amounts 

After  having :~ look at  the results ob ta ined  by  a d j u s t m e n t  of au tomobi le  
claims a m o u n t s  dmtr~bution, we research how the n u mb er  and the t ime- 
conf igurat ion of pas t  clailns condi t ion the claHns law of probabi l i ty .  

kVe have s ta t i s t ics  abou t  a group of 47 ~ ooo cars whmh was followed for 
three y e a r s  7970, ~971 and r972. \.Ve use naathematical  technics  and among  
mul t i -d imenslonal  analysis,  we use factorial  analysis  of cor rcspondancc  
(A F C.) A F.C. permi ts  us to show the link M u c h  exists be tween  the  clam1 
a m o u n t  of the  t lnrd 3-ear and the nl tmber  of clalnas du rmg  the  two years  
before. A quantveat lve analysis  of the corporal  claims shows tl)at, of the 
f requency of corporal  claHns dur ing the  th i rd  year  g rowths  up in funct ton 
of the number  of paat clatms, the expec ted  corporal  claims a m o u n t  of the  
th i rd  year  decreases as the square  of the mater ia l  elamis n u mb er  dur ing the  
two first  years  

[. POSITION ~ATHI~MA'I'IQUE 

La notion de processus de risque est d6sormais bien connue des 
actuaires.  Oll ne rappellera done ici que les d6finJtions et propri6t6s 
utiles pour  la suite des ealculs. 

Soit St la somme des n-tontants des sinistres pendant  la p6riode 
de temps (o, 1). St est une variable al6atoire d6pendant  du temps,  
e 'est  un processus al6atoire que l 'on d6eompose ell: 

- -  la probabili t6 P,~ (t, s) pour  que le hombre  de sinistres passe de 
n & m pendant  la p&iode de temps (t, s); 

- -  la fonction Ft(x/y), probabili t6 pour  que 5t soit inf6rieur h y 
sachant  qu'~. l ' ins tant  pr6c6dent t, il 6tait  6gal h x et sachant  
que i e s t  l 'abscisse d 'un saut  du processus (un sinistre). 

Cette fonction Ft(x/y) est l 'objet  de cet te  6tude. On a: 

Ft(x/y ) = Prob  ESt < y/St_G= x et t = abscisse d 'un  sinistre] 

soit en posantz = y - - x  (montan t  du sinistre h l ' ins tant  l) 

Ft(z) = Prob  lASt < z/t = abscisse d 'un  sinistre] 

oh &St est l 'accroissement de Ht 5. l ' ins tant  t. 
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n .  AJUSTEMENTS DE LOIS 

I I . i .  Prdcautions ~ prendre pour analyser des co~ts de sinistres 
automobiles 

La base s tat is t ique est un ensemble de sinistres survenus au 
cours d 'un  certain laps de temps 5. un groupe de vdhicules bien 
d~fini. Mais pour  analyser  ces chiffres, des prdcautions doivent  ~tre 
prises: 

- -  Si l 'on observe des sinistres r6cents, beaucoup d 'en t re  eux ne 
sont r6gl6s que par t ie l lement  et la pat t ie  6valu4e est peu pr6cise. 
Pour  avoir une meilleure connaissance des coflts, il faudra  
a t tendre  le moment  off la proport ion des dossiers res tant  en 
dvaluat ion est faible. 

- -  Dans une 6tude de ce type,  sur tout  si la p6riode d 'observat ion 
est longue, on est amend ~. comparer  des sommes k des instants  
diff6rents et, donc, se pose le probl~me du choix (ou de la con- 
struction) du type  d 'actual isat ion.  

II.2. Rdsultats obtenus 

Monsieur Marcel Hen ry  a montr6 que la fonction y, hombre  de 
sinistres sup6rieurs/ t  une garant ie  x, pouvai t  6tre repr~sent6e d 'une  
fa~on assez satisfaisante par  la fonction de Galton-MacAlister : 

I z -z' 

y - -  f e ~-- dz avec z = a Log x + b 
~ / ~ _ .  

I1 appara l t  toutefois  ndcessaire de donner  /t a deux valeurs 
difffrentes,  l 'une pour  les x infdrieurs 5. un certain montan t ,  l 'autre  
pour  des valeurs de x plus 61ev~es (le nombre  de gros sinistres 
d~croit tr6s rapidement) .  

On obt ient  des r fsul ta ts  comparables  avec la formule de Pare to :  

b 
L o g y = a L o g x + b  ou y - -  x a 

qui a l ' avantage  de conduire 5. des calculs plus simples. Mais, comme 

darts la loi propos6e par  Monsieur Marcel Henry ,  on doit a iuster  
plusieurs courbes suivant  l ' importance des sinistres. 

Monsieur B. Almer a propos6 d 'a jus ter  la distr ibution des sinistres 
par  un t r in6me exponent ie l :  

'F(x) = n [ a ~ c  - ~  + a#~c -~x + a ~ c  -~'~x] 

a v e c a t  + a 2  + a a =  I 
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Plus r6cemment ,  Monsieur Gaudiber t ,  dans  une th6se pr6sent6e 

devan t  l ' I n s t i t u t  des Actuai res  Fran~ais  a ajust6,  pour  les gros 
sinistres, une fonction du type :  

A 

y - -  xa cox 

III.  LIAISONS DES Rt~SULTATS DES ANN~ES SUCCESSIVES 

I I I . I .  Rappel des rdsulta~s obtanus ~our les frdquences des sinistres 

P. Depoid,  dans  son ouvrage  "Appl ica t ions  de la s ta t i s t ique  aux  
Assurances" ,  fait  appa ra l t r e  la liaison entre  les fr6quences d 'ann6es  
successives de m~mes assur6s. 3~onsieur Delaporte a formalis6 le  

GRAPHIQUE I 

Sinislers Materiels et Corporels 

_l i ,~  l ~ t l  [ I [ ± -  

• ! ! , ! / T q I g ~ I 

-t --i-1~1 1 t I- I :-FI~ -I, t 

- I  
• I , l ' ! -J  t I 

J i I l u t  I " 1  

I I " l l l J t  I i j l  i-i I,,I I ' l .~ 
2 

- F ~ c e  totale 

F' r~quence  
L __ rello 

z~ 

r 

L.  i 

. '- ~iL t : 

i:. ' 1~ Nombre ~e 
, j'~ - o~IDtreo pen- 

dant 2 ~n8 

Indice de Fr6qence de 3~me Annde en Fonction des Resultats de i~re et 
2~me Ann6e. 
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LA--kA2 
Indice do 
fr4quence 

corporelle do 
3~mo 

300 

2OO 

~00 

0 I 

GRAPHIQUE 2 

, d o  
; r e s  m a -  

.els pen- 
dant 2 

3 arm 

Indice de Fr6quence Corporelle de 36me Ann6e cn ]:onction des Resultats 
l~{ateriels de r6re et 26me Ann6e 

problhme. Monsieur M. Brichler a propos6 une formule remar- 

quablement  simple : 

I + X  

I + nF 

oh F est la fr6quence d 'ensemble et x le hombre de sinistres 1)endant 
n ann6es. 

Cette formule a ensuite 6t6 am61ior6e dans des t ravaux effectuds ~t 
l 'Association gdn6rale des Socidt6s d 'Assurance centre les Accidents. 

Pour  fllustrer ce ph6nomhne, on se reportera au graphique n ° I 

obtenu avec la "Sta t is t ique commune"  de I97o, 197I et 1972. 
On a port6, en ordonn6e, un indice de fr~quence: IOO -~ ensemble 

de la populat ion pour  l 'annde consid6r6e et, en abscisse: le nombre 
de sinistres survenus dans les deux ann6es pr6c6dentes. Lc graphique 
n ° 2 montre  l 'accrolssement du risque corporel en fonction du 
nombre de sinistres mat6riels pass6s. 
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III .2.  Liaiso~s e,n, lre les r&,t~llals des amides prdcddenles el le codt 
moye~ des sinislres augomobiles 

Sur le graphique n ° 3, on porte en abscisse, le hombre  de sinistres 
des deux premieres anndes et, en ordonn6e, un indice du co~t 
moyen des sinistres de troisi6me ann6e. La d~croissance du co¢fit 
moyen en fonction de la gravit6 des ant6cddents est nette.  En  effet, 
pour 3 sinistres en deux ans, le coflt moyen est diminu6 de 25%. 

GRAPHIQUE 3 

Sinistres Materiels & CorIborels 

] 
co( 

3~ 

7 

do 
~ D  ~ e n -  

0 1 2 

lud ice  du cout  Moyen  de 3brae Annde  en Fonct:ion du N o m b r e  de Smis t r e s  
en l~rc ct  2~nae 2\nn~c 

I l l .3 .  Choix d'u~,e mdlhode de recherche 

Le but  de la pr6sente 6tude est de rechercher comment  le hombre  
et [a configuration temporel le  des sinistres passfs conditiom~ent la 
distribulio~ des cot;ts des sinistres de del'ni&re ann6e. 
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La statist ique classique permet d 'a juster  une loi de probabilit6 
de forme analyt ique donn6e aux r6sultats empiriques. Pour 6tudier 
la liaison temporelle dans le cofit des sinistres automobiles, il est 
in t f ressant  de se df tacher  d 'une hypothhse de loi: les "analyses 
mult idimensionn6es" et, plus particulihrement, 1' "Analyse fac- 
torielle des correspondances" (A.F.C.) choisie dans cette 6tude le 
permet tent .  

IV. ANALYSE FACTORIELLE DES CORRESPONDANCES (A.F.C.) 

IV.i .  Thdorie 

Cette analyse est g6n6ralement utilis6e dans l '6tude des tableaux 
de contingence, reals, par extension, cette m6thode s'applique ~. 
tout  tableau rectangulaire de nombres positifs ou nuls. 

Soit pij l'616ment de la ligne i e t  de la colonne j. On note: 

f , j  = p,j/.X #,j;  p, = X p,j, pj = ~, p,j 
~,t t t 

f ,  = X f ,  j; f j  = ~ f , j  et X f t  = Z f j  = I 

JJ =/*j / f*  = P*/Pt ; JJ = f*j/fj = P*j/Pj 

On associe ~. l ' individu i (~ la ligne i), la loi conditionnelle sur J :  

{f~ . . . . .  f3max} = f 3 ,  muni de la masse f ,  off ] m a x  = card (J). 

De m6me, / t  l'616ment j,  on associe: 

{f{ . . . .  , f~max} = f~  muni de la masse f ,  o u / m a x  = card [/]. 

On a alors les deux nuages: 

N ( I )  = {f3 de masse A/i e I} ( I R j  muni de la m6trique du Z 2 de 
centre f j  : 

J m a ~ t  

d2(i, i') = It/3 - - / 3  [{o = X ( f ~ - - f ~ ' ) 2 / f  1 
J, 1 

m ( f )  = {f] de masse f¢/j  ~ J} ( IR i muni de la m6trique du Z 2 de 
centre fl" 

Le meilleur espace de dimension k reprdsentant N ( I )  est engendr6 
par k vecteurs orthonormds de R d { ( e ~ ) I . . .  (ek)j}, auquel cor- 
respondent  les op6rateurs de projection (facteurs): ~ . . .  ~ ap- 
par tenant  AIR  J = (IRj)* qui sont les vecteurs propres de m o a 
(m est la m6trique e t ~  est la forme quadrat ique d'inertie) correspon- 
dant  aux k plus grandes valeurs propres: X($1), . . . ,  X($k). 
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Le nuage N(I)  est approxim6 par  sa projection sur la vari~t6 
pr6c6dente, 5. l ' individu i on associe ses coordonn6es:  G(i, I) . . . .  , 
G(i, k), et on a avec le h i ,me  facteur :  

d m ~ x  

G(i, n) s ~ : ~ 

De m~me pour N(J), 5. j on associe: 

F(j ,  I) ... F( j ,  k) 
avec 

et 
d m ~ x  

G(i, n) = X F(j, n)f~lVX(~ 
J , !  

d m ~ x  

G(i, n) ---- X F( j ,  n) P,:/P~ 
1 , , l  

IV.2. Propridtds 

L'analyse  factorielle des correspondance donne un r61e ident ique 
aux individus et aux caract~res (Syn%trie parfaite).  

L 'analyse  des correspondances satisfait  le princlpe d'dquivalence 
distributionnelle. 

IV.3. Organisation des donndes 

Pour  examiner  la distr ibution des coflts des sinistres, on est con- 
duit  ~ discr6tiser. Les abscisses des classes de coflt sont les suivantes:  

Classes de co,it des sinis~res automobiles 

N o  A B S C I S S E S  No.  A B S C I S S E S  

C oi  ~/lOillS de 15o F C 16 

C 02 I5o  .F 5. 200 
C 03 200 F. ~ 3oo 
C 04 3o0 F 5. 400 
C o 5 400 F 5. 5o0 
C 06 500 F. 5. 600 
C 07 600 IF 5. 700 
C 08 7oo 17. 5. 800 
C 09 800 F.  5. 900 
C IO 900 F.  5. ~ ooo 

C I I  I ooo F.  5. I 5oo 
C 12 I 5 o o l  7 • 5. 2 o o o  

C ~3 2 o o o F .  5. 3 o o o  
C 14 3 ooo F. 5. 4 ooo 
C i5 4 o o o F .  5~ 5 o o o  

CW 
F. C 1 8  
F. 
F. C ] 9  
F. C 20 
F. C 2 I  
F. 
F. C 2 2  
F.  C 2 3  
F.  C 24 

F. 
F. C 25 

F. C 26 
Iv. 

Iv. 

5 o o o F .  5~ I o o o o  F. 
IOOOOF.  5. I 5 o o o i v .  
15 ooo F.  5. 2 o o o o  F.  

2 o o o o  1:. 5. 3 o o o o  F. 
3 o o o o  F. 5. 4 o o o o  F. 
4 o o o o F . 5 .  5 o o o o F .  

50 ooo F. 5. IOO ooo F. 
t oo  ooo F. ~ 15o ooo F 
150 ooo F. 5. 2oo ooo F. 

200 ooo 1 v. 5. 500 ooo F.  

P lus  de 500 ooo F.  
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Pour  chaque configuration de sinistres duran t  les trois anndes 
consdcutives observdes, on no t t  la distr ibution des costs  des 
sinistres de troisi6me ann6e. C'est-h-dire que:  
- -  pour  tou t  tr iplet  nO i (a ,b ,c )  avec o < a  < 3 ,  o < b  < 3  et 

1 < c < 3, on a les nombres Pil des sinistres de la classe de 
cofat n o j .  

l 

N o  

CONFIGURATIONS "~RANCHES DI£ COUTS 

t o r e  2 ~ m e  3 b r a e  

a r t n d e  a n n d e  a n n d e  C o l  C o z  . . . .  C j . . . .  

o o l P i t  P~-. • . P t j  . . . .  

a b c a . 

M 3 3 3 ) ~ I ~  ]~,~t2 . . . .  
I 

M :~ 4 8  c o n f i g u r a t i o n s  N ~= 2 6  c l a s s e s  

P ~ N  

J~ IN 

P MJ . . . .  ]-JM N 

R E M A R Q  UES:  On a retenu comme hombre .maximum de sinistres 
par an, le hombre lrois, afin de possdder darts chaque cas nn, ,hombre 
d'observatio~,s suffisant flour l'analyse. 

V .  A N A L Y S E S  D E S  R I ~ . S U L T A T S  

Les t aux  d ' inert ie  des axes factoriets sont faibles. Cependant ,  Its 
plans des axes z et 2 et des axes I e t  3 poss~dent des parts  d ' inert ie  
suffisantes pour  pe rmet t re  une interprdtat ion.  

Pour  amdliorer la commoditd de lecture des graphiques en cas de 
points superposds, on imprime un ident i f icateur  d ' au tan t  plus noir 
que la multiplicitd est grande. 

Lts  configurat ions 33z et I33 st  dist inguent  part ieul i~rement et 
rendent  l ' in terprdtat ion du reste des nuages diffieile. Les figures 
110 4 et nO 5 reprfisentent les projections des nuages sur les plans 
(1, 2) et (i, 3) apr~s suppressiou de points 33z et I33 (sans modifica- 
tion des actes factoriels). 

L 'd tude  du plan (z, 3), figure n o 5, permet  de mct t re  en ~vidence 
un effet Gutlman, c'est-5_-dire que l'on peut  dmposer le tableau de 
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GRAPHIQUE 4 

A X E  I E T  2 A F C  

I 2 I  

,333 

C20 

313 

C19 

C20 

• e - - o - -  

C14 

e311 

233 

132 

332 

C10 

213 

032 

= 301  

o o  

0 0 0 0  

221 

231 

223 

321 

131 

031 

312 

303 

322 

Cout.~ des Sin].~tre> A u t o m o l n l e s  



1 2 2  PICARD 

m 
< 

°~ 

< 

/ ,  
< 

M 

O4 

0 
o o  

U 

i • (. 

N 

0 
o{~f  

U 

~o 

0 

U 
Q 

N 
~ o  
N 

~° 

M 



L'I~TUDE DU COOT DES SINISTRES AUTOMOBILES 123 

donn6es, par permutation des lignes et des colonnes, sous une forme 
bloc-diagonale et done il existe un classement des types de con- 
figuration qui induit un classement des coflts des sinistres de 3~me 
ann6e. Cette remarque prouve l'existence d'un conditionnement de 
la distribution des coflts par les ant6c6dents. 

L'explication des liaisons entre les configurations et les coflts des 
sinistres se d6duit de l ' interpr6tation des premiers axes factoriels. 
I1 est pratique d'examiner successivement les projections des nuages 
I e t  des nuages J (graphiques nO 6 ct n o 7). 

Sur le graphique n ° 6, on rep~re les configurations par les figures 
suivantes: 

Nombre de sinistres 
en deux ans 

o . . . . . . . . . . . . . . . . .  [ZZ] 

"I . . . . . . . . . . . . . . . . .  0 

3 . . . . . . . . . . . . . . . . .  V 

]:igures 

L'analyse des groupements ainsi obtenus permet de montrer que 
l 'axe horizontal classe les configurations par leurs nombres de 
sinistres dans les deux premieres ann6es. On remarque que le 
nombre de sinistres de 36me ann6e ne semble pas avoir d'influence 
sur la distribution des coflts. 

La forme triangulaire du graphique n o 7 est caract6ristique 
d'616ments class6s naturellement (tranches de coflt). Pour l'inter- 
pr6tation, on doit prendre soin de se baser principalement sur les 
616ments ayant  un poids important  (population importante). A cette 
condition, on remarque le ph6nom6ne de classement sur l 'axe 
horizontal suivant les coflts (coflt 61ev6 ~t gauche, moyen et faible 
/t droite). La distinction entre tranches de co6t moyen et tranches 
de cofit faible peut ~tre observ6e sur l 'axe vertical. 

Cette 6tude permet de mettre en 6vidence la liaison entre les 
survenances des sinistres pass6s et le coflt des sinistres pr6sents. 

La distribution des cofits des sinistres de 3&me ann6e est d 'autant  
plus biais6e vers les classes inf6rieures que le nombre de sinistres 
pendant les deux premieres ann6es est important.  

VI. I~TUDES QUANTITATIV~S 

La mesure du ph6nom~ne observ6 r6clamerait une p6riode 
d'observation plus longue, car on constate que la s61ection des 
assur6s par leurs survenances est moths rapide vis-~t-vis des co6ts 
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que vis-5.-vis des fr6quences.  Cependan t ,  sur  trois ans,  l ' inf luence est 
pa r t i cu l i~ rement  ne t t e  sur  les t r anches  61ev6es de coots ,  c ' es t -5 :d i re  
sur  les sinistres corporels .  

On a vu (g raph ique  nO 2) que  la f r6quence  corporel le  croi t  rapi-  

d e m e n t  en fonc t ion  des ant~c6dents .  On va  m o n t r e r  que  le co~t 
moyen corporel d~croit  en fonc t ion  du n o m b r e  de sinistres pass6s. 

Le  g r a p h i q u e  n o 8 m o n t r e  que  le c o o t  m o y e n  corpore l  de 3~me 
ann~e d4croi t  en fonc t ion  du h o m b r e  de sinistres ma t f r i e l s  des deux  
ann6es  pr6cddentes .  On r e m a r q u e  que si l ' assur6 n ' a  a u c u n  sinistre 
mat6r ie l  p e n d a n t  deux  ans, son coo t  m o y e n  eorpore l  est sup6r ieur  

d ' e n v i r o n  5 %  au coo t  m o y e n  corpore l  de l ' ensemble .  

G R A P H I Q U E  ,8 

Indxco du co(It moyon 
corporol de ,bmo ann60 

i moyon corpore l  I . [ I I 
)en fcr~ t i n d  | ' d e  3~me annie I h~hl--~--~ [ 

o o o ~ ° J o J ,  I, :'~ ! . i .  _~:~ 

I,,2xLi !:: 
I ...,o. I I . : . \ .  ! ,  ~ . i ; i  ] .... I . . ! L _ L 2  

L L _ k l t o L ~ ) Y )  I / )'! J ' l ' : i J  

l;tJ,l~l I iAJ  il.. ,~..P.:;i !~ 
. I :~_1: : N '  i_L.L'L~LL~ILJ 

I I!l,l,t ! )'!,X.)C~]~!,,'! :.It," 
j ( t ~. ! 1 ' . A  ,. ,  ~, 

-// ~ t t  I ' l ~ t  I . I ,  , "4 . :h l lM 
tl~l:l' I1 l t : lT I~I-~-iTF1:T ,.] , 

li1:lTl!, T I: l - ImTFq:iT;T;TriTl 
I~  ' ' , t :LLI_JLLL{ . i : I .q i : i ;  

H LLi )' l~l ~ l, 1 ~ I i I iIU;I!II~UIIIi~IH=.I 
) ( l I t t ) ) ~ l )  t, t) t')l:U~JiU~tt(titi~i: 

~ b l ) t l l  ' l i l t ,  111,Pk,~:,t." flip,i, 
~oV, q FVF-I T]~ VFT~iIiIiFIiTFF 
0 I 2 

• iI~.~ ll':l',ti:ill 
-'ItV,: ;!7~i:[V:q 
LHh, l)i~hll)iHlf!gl 

!l~t2JLl:icllt)b:l17711 
','FTiII.t~;FFNtTIt? 
)": ~ )-i~, N 

1;(' II)!))H) I imi l  
!I l(klb¢I;fl~li:~i| 

fT T I 
'p!lbl h.:q)ilflHIH 
!2LLL21~lAZLizLLU_LI 

~)+.:. )2! !lil)IH 

N,!i-iJ4~lil)~)IIfll)i 
h ~ q!"~.q, q il dlli ill l=l 

.1. I(; H • ,'. i'~'g.~.( H ! H H 
)(I))~i)! IVH ])~l't,.4il H 
l) H ff!fl ]i..: J t f )i~)~x41 

3 Nombre de slnlstro= 
mst6r~.els on 2 s_ns 

La  baisse du coOt m o y e n  corpore l  de 3~me ann4e est p ropor -  
t ionnel le  au carrfi du n o m b r e  de s inis tres  mat6r ie ls  des deux  pre-  
mi6res ann4es,  

Nombre de sinistres Baisse du coflt moyen 
materiels en deux ans N 2 corporel 

I I 5 ~0 
-2 4 ~o % 
3 9 45 % 
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\11I. CONCLUSION 

L'analyse factorielle des correspondances appliqu6e dans cette 
6tude permet de mettre en dvidence le conditionnement de la 
distribution des cofits des sinistres de derni~re annfe par le nombre 
de sinistres pass6s. La probabilit6 d'un sinistre de coflt 61ev6 
diminue tr~s rapidement lorsque le nombre d'ant6cfdents 
augmentent. 

La probabilit6 de survenance d'un sinistre corporel est d 'autant  
plus forte que le nombre de sinistres pass~s est important. Cepen- 
dant, l'~tude quantitative a permis de mesurer la ddcroissance de 
gravit6 des sinistres corporels. Le cofit rnoyen corporel de troisi~me 
ann6e semble ~tre une fonction quadratique d~croissante du nombre 
de sinistres mat6riels des deux ann6es pr6c6dentes. 
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elsewhere, is not acceptable. So, a confirnlation of the sole rights for the 
Bulletin is required. 
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