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ABSTRACT 

We study the linear Markov property, ~.e. the possibility of  basing the credibility 
estimator on data of the most recent time period without loss of  accuracy. 
Necessary and sufficient conditions are derived generally. The meaning of the 
linear Markov property is also discussed in different experience rating and loss 
reserving models. 
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1. INTRODUCTION 

A fundamental question in credibihty theory is that of upon which statistic of the 
available data the credibility estimator should be based. A very general treatment 
of  this problem and a survey of other approaches can be found in NEUHAUS 
(1985). We consider the special case of  data ordered with respect to time. Is it 
then possible to reduce the data to those of the last time period without 
diminishing the accuracy of the credibility estimator? If this is the case, then we 
have defined the linear Markov property. This principle is introduced generally 
and discussed in some important models of risk theory. We give some sufficient 
and necessary conditions which are useful in situations when the linear Markov 
property is not obvious. In most cases the linear Markov property results in a 
considerable reduction of  the number of normal equations which it is necessary 
to solve to derive the credibility estimator explicitly. 

This paper is in a way a summary of  the first part of the author 's  PhD thesis 
which ~s taken sometimes as a reference. A copy of  this thesis can be obtained 
from the author. 

2. CREDIBILITY ESTIMATION AND LINEAR MARKOV PROPERTY 

2.1.  G e n e r a l  A s s u m p t t o n s  a n d  N o t a t t o n  

In the present paper it is generally assumed that random variables are square m- 
tegrable, i.e. all (mixed) second moments exist and are finite. The transpose of  
a matrix ..4 is A T. (Random) vectors are in boldface and have to be interpreted 
as column vectors, i.e. x =  (x ,  . . . .  , x , )  r is a vector with n components. 
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I, is the n × n-unit matrix and cSu the Kronecker symbol. 
For random vectors X=(X~,  ,Xn) T and Y=(Y1 . . . .  y,,)r we use the 

following symbols and terminology: 

Px for the probability distribution of X. 
Vxlr=y for the conditional probabihty distribution of X gwen [ Y = y ]  
and Pxlv for the corresponding stochastic kernel. 
E[X] = (El X1 ] . . . . .  E[ Xn ] ) r for the expected value of  X. 
E[X] Y] =(E[Xi  I Y] . . . . .  E[X~ I y])T for the conditional expected 
value of  X given Y. 
C[X, Y] = E[ ( X -  E[X] ) ( Y -  E[ Y] )r] for the joint covariance matrix 
of  X and Y. 
C[X] = C[X, X] for the covariance matrix of  X. 

It is generally assumed that all symmetric covariance matrices C[X] appearing 
m the text are positive definite, i.e. the inverse C[X]-1 exists. The regularity of  
C[X] is equivalent to hnear independence of the "vectors" 1, X1 . . . . .  X ,  in the 
linear space Lz(R) of all square integrable real random variables. For a proof  see 
e.g. WITTING (1986). In particular all random variables appearing in the text are 
not degenerate. All equations between random variables should be understood in 
the sense of  L2-equivalence. 

2.2. Credibthty Estimation 

We want to estimate the real random variable Y with help of  the n-dimensional 
random vector X which represents the available data. It is well known that 
g * ( X ) = E [ Y I X ]  Is the optimal estimator in the sense of  minimizing the 
expected squared loss E[  (g(X) - y)2]  in the class of  all measurable functions 
g(x). Because E[ YI X] can be calculated explicitly by a closed formula only in 
a few special cases the estimation problem is simplified: we look for the optimal 
estimator of  Y only in the class of  (inhomogeneous) linear estimators 

g(X)=ao+ ~ a,X,. 
r = l  

This optimal estimator exists, is uniquely determined and interpreted as the or- 
thogonal projection of Y onto the n + 1-dimensional subspace of L2(R) which 
is generated by 1, X~ . . . . .  X,.  Therefore we denote it E[ YI X] .  E[ YI X] is call- 
ed the credibility estimator of Y given X. 

The orthogonal principle can be formulated in a probabilistic manner as 
follows: 

E [ £ [  YIX]  ] = E [  Y] 

(1) C[ Y -  ~ [  Y] X ] , X ]  = 0. 

If  the credibility estimator is written in the form 

I~[ YI X] = a o +  ~ a,X, 
1 =1  
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(1) is equivalent to 

ao = E[ Y] - 2.~ a,E[X,] 
(2) ,= i 

~ a, Cov(X,, XR) = Coy(Y, Xk) k = 1 . . . . .  n. 
1=1 

This linear system of normal equations for determining the coefficients 
ao, a z , . . . ,  an has a unique solution because of our general assumption that 
C[X]  is positive definite. There is no guarantee for being able to calculate 
C[X]  - i explicitly although this may be useful in theoretical situations. However, 
a recurswe algorithm for the inversion of C[X]  exists always (see e.g. NORBERG 
(1985)). 

If a random vector Y = ( Y ~  . . . . .  y,,,)r has to be estimated, we define 
E [Y]  X] = (~7[ Yt lX]  . . . .  ~ [  y,,, i X  ] ) r  and confirm the property 

E [ ( t ~ [ Y I X ]  - Y ) r ( ~ [ Y I X ]  - Y)] = min E [ ( g ( X ) -  Y ) r ( g ( X ) -  Y)]. 
g 

The mimmum is taken over the class of  all functions g ( x ) = a +  A x  with 
m-dimensional vector a and m x n-matrix A. The generalization of (1) to this case 
is obvious. Finally we get the well-known formula 

(3) 12[ r l  X] = C [ Y , X ] C [ X ] -  l ( x -  E [ X ] )  + E[ Y]. 

2.3. Linear Sufficiency 

We consider again the problem of  estimating Y by means of X. For many 
statistical problems one can restrict the investigation to decision functions which 
depend only through a "sufficient" statistic T(x) on the original observation x. 
Here we call a statistic T(x) sufficient if 

(4) Prlx = PrlT(X) 

This corresponds with the Bayesian definition of  sufficiency ff Y is interpreted as 
a "prior varmble".  

In the credibility situation one should manage only with linear statistics and the 
knowledge of second-order moments.  This fact suggests a slight change of the 
meaning of sufficiency m our case. 

DEFINITION: The linear statistic T(x) (which is formally a linear mapping 
T: R n -> R r with r < n) is called linear sufficient if 

(5) ~7[ y[ X] = E[  Y[ T(X)] .  

REMARKS: (i) By comparing the system (X, Y) with the corresponding system 
(,,~, Y) which is normally distributed with the same second-order moment  struc- 
ture it can be proved that for linear statistics T(x) the implicauon (4) = (5) is 
vahd. 
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(ii) We can restrict the investigation to homogeneous  linear mappings T(x) ,  
because a possible inhomogeneous  part has to be adapted anyway afterwards 
when t [  YI T(X)]  is calculated. 
(iii) The concept  o f  linear sufficiency has been already introduced into statistical 
literature, but  only in the context o f  estimation for linear models; e.g. DRYGAS 
(1983, 1985). 

LEMMA 1. Let  r < n and A a f u l l  rank  r × n-matrix .  The statistic T(x) = A x  is 
linear suff ictent if, and  only t f  

C[ Y , X ]  I I n -  A r ( A C [ X ]  A r ) -  ~ A C [ X ] }  = O. 

PROOF. Without  loss o f  generality we may assume E [ X ]  = O, E [  Y] = O. Then 
it follows that T ( x )  is linear sufficient. 

. 1~[ YI X]  = C[ Y, T ( X ) I C [ T ( X ) ]  - ' T ( X )  
(3) 

¢~ C[  Y -  C[  Y, T(X)]  C[ T(X)]  - ~T(X) ,  X]  = 0 
(1) 

(6) ¢~ C [ Y , X ]  = C [ Y ,  T ( X ) ] C [ T ( X ) ] - ~ C [ T ( X ) , X ]  

¢~ C[ Y , X ]  = C[ Y , X ] A T ( A C [ X ]  A T ) -  ~ A C [ X ] .  QED 

EXAMPLE. (r = m = 1). 
Let A be the 1 x n-matrix and E the n x n-matrix whose elements are all equal 
to 1. We assume that the random variables Xz, . . ,  X ,  are exchangeable relative 
to Y, i.e. P(x,. • • •, x.. r) = P(x .~ ,  • • . ,  x.~.~, r) for all permutat ions 7r o f  1 . . . .  n. 

In SUNDT (1979), Theorem 1, it is shown that this condit ion implies the linear 
sufficiency of  the statistic T(x )  = A x  = Ex, .  This implication can also be derived 
f rom Lemma 1, for it follows f rom the exchangeability condit ion with appro-  
priate constants c, d and e that: 

C [ X ]  = d ( E  + c I , ) ,  C[ Y, X] = eA .  

This implies together with the simple relationships E E = n E ,  A E = n A  and 
A TA = E  that: 

A C [  X]  A T= dn(n  + c),  A r A C [  X]  = d(n + c)E.  

From this follows 

C[ Y, X] [ In - A T(AC[X] A r ) -  ~ A C [  X]] = eA ( I ,  - l i n E )  = e ( A  - A )  = O. 

2.4. Linear  M a r k o v  Proper ty  

In the present paper we consider mainly a special case o f  hnear sufficiency, name- 
ly the linear Markov  property.  

Now, there are given n informat ion vectors o f  dimension / 

X1 = (Xlt  . . . .  Xll)  r, . . . .  X .  = (Xl . . . . .  Xt.)  r 
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from which the random vector 
patch the complete information 
X = ( X i  r, ,Xnr )  r. 

Y = ( Y ~  . . . . .  Ym) r shall be estimated. We 
together to the n x l-dimensional vector 

DEFINITION. The sequence X~, . . ., X , ,  Y is called hnear Markov tan  (I.M.) if 
~ [ r l x ]  = E [ Y I X , , ] .  

The linear Markov property is equivalent to the linear sufficiency of the statistic 
T(x)  = xn and makes it possible to reduce the complete information to the infor- 
mation of the last period. 

In the language of  NEUHAUS (1985) it means that the secondary statistic 
(Xz r, . . . ,  X~- i r)  may be excluded from the basic statistic X wRhout loss. The 
hnear Markov property can be characterized by a relation between the second- 
order moments: 

LEMMA 2. The sequence X~ . . . . .  X , ,  Y is I.M. if, and only if 

(7) C [ Y , X , ]  = C [ Y , X ,  I C [ X , ] - ~ C [ X , , X , ]  f o r i = l , . . , n - I .  

The proof follows as special case from Lemma 1 with T ( x ) =  xn, because (6) is 
then equivalent to (7). 

Now we define the linear Markov property also for processes: 

DEFINITION. Let X, be a /-dimensional random vector for all iF N. The 
stochastic (vector-)processes (X,),EN is called hnear Markov tan  (I.M.) if the se- 
quences Xt, . , X n ,  Xn+k are I.M. for all n, k E N .  

REMARKS. (i) We consider a l-dimensional process (XI)t(N. 
Then (X,),~N is I.M. tf, and only if the following relation ts valid with 
c,,~ = Coy(X,, Xk):  

(8) Cn+k.,Cn.n = Cn+~.,C,., for t, k, n ~ N with t < n. 

FELLER (1966) shows that the ordinary Markov property Is characterized by 
(8) for a Gaussian process (X,),~N. In this special case the ordinary and the 
linear Markov property do coincide. 

PAPOULIS (1965) shows the corresponding result for the optimal homogeneous 
linear estimation. In that case we would have to define ~[  YI X~ . . . . .  Xn] as an 
orthogonal projection from Y onto the linear subspace generated by X~, .. Xn. 
Then (8) is vahd with c,,k = E [ X ,  X k ] .  
(ii) For a standard normal variable Z and arbitrary i.i.d, variables Zt, Z2 it follows 
that the sequence X~ = Z 2, X2 = Z, Y= Z 2 is Markovlan in the ordinary sense 
but not I.M. The sequence Xz = Z~, 22 = Zi + Z2, Y= Zi • Z2 is I.M. but not 
Markovlan in the ordinary sense. 

These two examples show that the ordinary Markov property does not imply 
the linear Markov property and vice versa. 
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The following l emma gives some helpful necessary and sufficient condit ions to 
detect the linear M a r k o v  proper ty  directly by inspection of  the covar iance struc- 
ture of  the process.  

LEMMA 3. The following condttions (7)', (9) and (10) are equivalent to the 
linear Markov property o f  the process (X,),~u: 

(7) '  C[X,+k ,X ,]  -= C[Xn+k,  X n ] C [ X n ] - l c [ x n ,  x t ]  

for  i, k, n E N wtth t < n. 
There extsts a sequence (A,),~N of  regular l X I-matrtces wtth 

(9) C[Xs 'X ']  = ( k = , + t  ~ A k ) C [ X , ]  f o r l ~ j .  

There exist sequences (A,),EN and (B,),~N o f  regular I x I-matrtces with 

C[Xs, X,] = BjA, for  t ~< j .  (10) 

where 

Ck:= I C" Cr for r ~< rn 
k=r [ It for  r > m. 

PROOF. Because o f  L e m m a  2 the hnear  Markov  proper ty  of  the process 
(X,),~N is equivalent  to condit ion (7) ' .  There fore  it suffices to show: 

(9) = (10) = (7) '  = (9); 

(9) implies (10) with 

B~ = Ak and A, = Ak C [ X , ] ;  
k= l  k=l 

(10) implies (7) '  by means o f  the relation 

C[Xn+k, 9(.] C[X.]  - IC[X. ,  X,] = B . + k A . A Y  IB~ LB.A, 

= B,+kA, 

= C [ X . + k , X , ] ;  

(7) '  implies (9) with Ak = C[Xk,  X k - 1 ] C [ X ~ - i ] - i ,  for it follows with t < j :  

c [ x j ,  x , ]  = c [ x j ,  x j _ ,  ] c [ x ~ _ ,  ] - l c [ x j _ , ,  x , ]  
(7)' 

= A j C  [ X j -  i , X ,  ] 

= A j . . . A , +  i C [ X , ]  

(mducuon) QED 

NOTATION. The sequence of  l × / - m a t r i c e s  (A,),~N in (10) is called a I.M.- 
factor. A,  is fixed uniquely to the extent o f  mult ipl icat ion f rom the left o f  a l × l- 
matr ix  independent  o f  ~. 
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Ana logous ly  with the segment  (10) = (7) '  in the p r o o f  o f  L e m m a  3 the fol low- 
ing result  for finite sequences can be shown:  

LEMMA 4. Let  (10) be vahd f o r  l~< t~< j~< n whereby A z, . , A ,  ts the 
b e g m m n g  o f  the I .M.-factor and also 

(11) C[ Y ,X , ]  = BA,  f o r  1 ~< i ~< n with a I× l-matrix B. 

Then the sequence Xl  . . . . .  X~, Y is 1.M. 

2.5. Componen tw i se  Lmear  M a r k o v  Property  

We use the same no ta t ion  as in 2.4. 

DEFINITION. The  sequence X j , . . , X ~ ,  Y is called componen twise  hnear 
Marko  vian (c./. M. ) i f t he sequences Xk I . . . . .  X k n ,  Y are I .M. for all k = 1 . . . .  I. 

If  the componen t s ,  i .e. the rows o f  the / × n -mat r ix  (Xt,  . ,  X~), are indepen-  
dent ,  it holds  that :  

Xl  . . . . .  Xo, Y is l.M. ¢~ Xi . . . . .  Xo, Y is c.I.M. 

This equivalence is evident  by L e m m a  2, because  in the case o f  independence  the 
matr ices  C [ X , ] -  1 and C [ X ~ , X , ]  in (7) are d iagona l .  

Genera l ly  no d i rec t ion  o f  this equivalence is vahd,  for it holds with two 
independen t  real r a n d o m  variables  Zi and Z2: 

The  sequence X~ = (0, Zz)T, Xz  = (ZL + Zz, O) r, Y =  Z~ is c . l .M,  but  not  
l .M.  
The sequence Xl  = (Z t ,  z2 ) r ,  x 2  = (Z2, Z j )  r, Y =  Zi + Zz is I .M. but  not  
c . l .M.  

in the s i tua t ion  of  insurance  the independence  of  componen t s  is not  a lways ful- 
filled. As an example  one should  imagine  the comp one n t s  to be claim numbers  
and totals  o f  claims.  Reflecting on the bet ter  handl ing  of  the c . l . M . - p r o p e r t y  we 
are looking  for an add i t iona l  cond i t ion  that  the c . I . M . - p r o p e r t y  implies the 
I .M. -p rope r ty  even in the case o f  dependen t  componen t s .  

To solve this p rob lem we cons ider  two vector  valued componen t s .  So let 
X, = ( z , r , N ~ r )  r with / i -d imens iona l  r a n d o m  vector  Z, and /2-dimensional  ran-  
d o m  vector  Nj and II + Ix = l (l  ~< i ~< n).  

LEMMA 5. Let  the fo l lowtng  f o u r  condit tons be vahd." 

The sequence Zi  . . . .  Zo, Y ts l.M. 
The sequence N~, . , N~, Y ts I.M. 
The sequence Zi ,  . . ,  Z~, No ts I.M. 
The sequence NI,  . . ,  No, Z~ is I.M. 

Then the sequence X i  . . . .  Xn, Y is l.M. 
To prove  this l emma condi t ion  (7) has to be checked with help o f  invers ion o f  
the matr ix  C[X~] .  This is somewha t  tedious  and can be found  in WITTING 

(1986), p . 3 3 - 3 6 .  
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3. THE LINEAR MARKOV PROPERTY IN SOME EXPERIENCE RATING MODELS 

In the following models our starting point ~s always a real stochastic process 
(Y,),EN with covariance structure given by C,.k = Coy(Y,, Yk)0, k E N). Thereby 
Y, may be interpreted as claim number or total of claims during the period 1. At 
the end of period n the net premium P,+i for the next period will be fixed by 
P,+ 1 = ~[  Y,+ 11 Yl, , Y,]. Let ( X I ) I E N  be a "linear cumulated transform" of 
the process (Y,),~N, i.e 

X ,=  ~ akYk 
k = l  

w~th appropriate coefficients aj, . . . ,  a, (t ~ N).  
Let us further assume that the process (X,),~ has the covanance structure given 
by 

(12) Cov(X, ,Xj)=g,+ fJ) for l~<jwith g,>Oand ~ + l - f f i ~ O .  

With help of the multiphcative decomposition criterion (10) of Lemma 3 the 
following equivalence can easily be verified: 

(13) (X,),~N is I.M. ~ The quotient f , /g,  is independent of I. 

Indication of the proof of the " = " part: From (10) it follows that the fractions 

g , + f d )  and 1 + ( f d g , ) J )  
gl + f l f j  1 + ( f l / g l ) f s  

do not depend on j. This can only be true if ~ / g ,  is independent of  i because of  
our assumption in (12) that fs depends on j. 

3.1. The Model of  Jewell 

JEWELL (1975) considers the covariance structure given by c,.k = 8,k~g + ce,c~ 
with appropriate numbers 7k > 0 and a, ~ 0 (l, k E N).  This covarmnce structure 
is shown by Jewell to yield an explicit solution of  the normal equations (2). Under 
which conditions has the transformed process (X,),~,v the hnear Markov prop- 
erty? In Jewell's model we have 

Cov(X, ,XJ)=m~=l  a,2nTm + (n,~_ 1 a,,,Otm) (g=~ akoLk). 
So (12) is fulfilled with 

gx= ~ 2 + 
am3',n and f~ = z.a amOtm. 

m =  l r n = l  

We conclude: 

amO:m 
(X,')I~N IS I.M. ¢~ .... 1 

H3) ~ 2 a m"ym 
ltll = 1 

is independent of 1. 

~m 

am~m 
(14) ~ is independent o f  m. 
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Therefore in Jewell's model the statistic ~(Otk/3"k)yk is linear sufficient and the 
premmm becomes 

3.2. The Classical Credlblfity Model 

It is obvious that the classical Buhlmann-Straub model (BUHLMANN and 
STRAUB, 1970) in the ordinary formulation is a special case of Jewell's model 
with known numbers ~,, and 3'k. We choose a cumulative view onto the model. 
Considering one risk unit we denote by 

X,, the cumulated total of claims up to the end of period t; 
O, a random risk parameter describing the unknown characteristics of the risk 

unit; 
p,, a known cumulated measure of volume up to period t. 

It is assumed that for given [@ = 0] the process (X,),~N has independent incre- 
ments, and E [ X , I  O = 0] = ~(O)p, with a measurable function #(.) independent 
of t. From these assumptions it follows that: 

Cov (X,, Xj) = E [ V a r [ X ,  [O] ]  + p,psVar [~(O)] for i ~< j. 

With (13) we conclude: 

(15) (X,),~,v is I.M. ~ P' is independent of  t. 
E[Var[ S,  [ O]]  

In this case the l.M.-factor is (p,). 
It should be mentioned that (15) is fulfilled in the classical credibility model of 

Buhlmann and Straub. 

3.3. The Model o f  Shur 

SHUR (1972) considers the following model. The variables Y~, Y2, . have all 
the same expected value iz and the same variance o 2, and the covarlance structure 
is given by 

(16) c , .k=p l ' -~ la  2 w i t h  0 ~ . p  <~ I .  

Hence the correlation between the total losses of two different periods decreases 
geometrically with the number of periods separating them. By inversion of the 
matrix 

(i c ~ 1 p pn-2 
( ,,k ),,~ : l = ~2 

-1 n-2 i P .. / 
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and application of (3) one gets the credibility formula 

(17) P.+ i = pY~ + (1 - o)tz. 

Of course, this formula implies the linear Markov property of the process 
(Y,),~N. But this fact can already be detected directly from (16), because 

c,.j = Coy(Y,, Yj) = p- 'pJcr 2 for t ~< j 

fulfils the multiplicative decomposition criterion (10). 
Following thxs way the inversion of the matrix (C,.k) becomes unnecessary for 

the calculation of  formula (17). 

3.4. A Model w~th Claim Numbers and lndtvidual Claim Amounts 

Let us consider one risk unit with the following notations: 

N, is the cumulative number of  clazms up to the end of period i. 
Z <k) is the amount of the k'th individual claim. (It is assumed that these claims 
are numbered according to their order of occurrence.) 

N, 
X, = ~ Z ~k) is the cumulative total of claims up to the end of period i. 

k = l  

@ denotes a random rssk parameter describing the unknown characteristics of 
the risk unit. 

We make the following assumptions: 
(A1) Given [O = 0] the random variables Z °), Z Cz), .. are i.i.d. 
(A2) Given [ O = 0 ]  the stochastic processes (N,),~u and (Ztk))k~U are 
independent. 

PROBLEM. Which are sufficient conditions such that the process (Xz),~N resp. 
the 2-dimensional process ((X,,N,)r),~N is [.M.? This would simplify the 
premium 

Pn+l = ~[Xn+l  - Xn[ Xi . . . . .  X~] resp. 

Pn+l = ~[X~+l  - Xn[ Xl . . . . .  Xn, N1 . . . . .  Nn] 

as usual, namely 

Pn+l = E [ X n + ! -  Xn[ Xn] resp. P~.l = E [ X ~ + i -  X,[ Xn, Nn]. 

CONDITION I. Given [O = 0] (N,),EN is an mhomogeneous Poisson process, 
X,g(O) being the Poisson parameter of  N,. Thereby g(.) is a measurable function 
independent of t. 

NOTE. It IS not required in assumptions (A1)-(A2) and condztion I that claim 
numbers and claim amounts are independent. They have only to be conditionally 
independent. 

We get from assumptions (AI) and (A2) and Condition I: (X,),~u is a process 
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with conditional independent increments (given 0 ) ,  and 

E [ X , I  O] = k,g(O)E[Z(~) I O],  Var[X,I  O] = k,g(O)E[Z(t))21 O].  

Therefore condition (15) is vahd with p , =  k, and the process (X,),~N (and 
also the process (N,),~N) is I.M. with I.M.-factor (k,). It remains to prove the 
1 M.-property of  the 2-dimensional process ((X,, N,) r),~,v. Because of Lemma 5 
it suffices to check two l-dimensional conditions (for fixed n): 

(18) The sequence Xt, ., X,,  N, is I.M. 

(19) The sequence N, . . . . .  N,,  X,, is I.M. 

It is true for 1 ~< t ~< n that: 

Coy(X,, Am) = Coy(N,, X, )  
N, 

= E [ E [ Z  (~)1 O]Var [N, I  @] ] + X,X. Co v (E[Z  (~) I O]g(@),  g(@)) 
(AI),(A2) 

= ~,IE[E[Z~')IO] g(@)] + Xn Cov(E[Z~) I O] g ( 0 ) ,  g(O))} 
cond [ 

= k, × term which is independent of i. 

Because each of the processes (X,),~N and (N,),~N has the I.M.-factor (k,) we get 
(18) and (19) by application of Lemma 3 (criterion (10)) and Lemma 4. The pro- 
cess ( (X,  N~)r),~N is actually I.M. 

Now we replace the Poisson assumption (condition I) by the hypothesis that 
the counting process (N,),~N Is I.M. and claim numbers and claim amounts are 
independent (level-2 assumption): 

CONDITION II. 

(A3) (N,),~N is I.M. with l.M.-factor (E[ N,] ). 
(A4) (N,),~N and O are independent. 

REMARKS. (i) We have lost the convenient property that the increments of the 
process (N,),~N resp.(X,),~N are independent given O. Therefore it ~s not possible 
to apply the classical credibdity model and condition (15) any longer. 
(ii) Condition I implies (A3). 
We need the further notation: 

vz = E [ V a r [ Z  (I)] O] ] and Wz = V a r [ E [ Z  °) I O] ]. 

Then we get from the assumptions (A1)-(A4): 

Coy(X,, Xj) = E[Cov(X, ,  Xj] O, (Nk)k~N)] 

+ Cov(E[X, lO, (Nk)k~N],E[Xj] O. (Nk)k~N]) 
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=E[N,  Var[Z(t )  10 ] ] + Cov(N,E[Z(I)[o] ,  NjE[Z(t) IO ]) 
(AI),(A2) 

= E[ N,] vz + Cov(N,, N:)[ Wz + mz 2 } + E[ N,] E[ Nj] wz 
(A4) 

= E [ N , ]  x factor which depends only on j (and not on i) (i ~< j ) .  
(A3),(10) 

Applying criterion (10) again we obtain that the process (X,),~N IS I.M. with 
l .M.-factor (E [N , ] ) .  Furthermore it is true for t ~  n: 

Coy(X,, Nn) = Coy(N,, X . )  = Cov(N, ,E[X, , IO,  (Nk)k~U]) 

= Cov(N,, NnE[ Zfl) ] 0 ]  ) = Coy(N,, N.)mz  
(A 1 ~,(A2) (A4) 

= E[N , ]  × factor independent of  i. 

Analogously with condition I the l .M.-property of  the process ((X,, N,)r),~N 
follows. 

4. THE LINEAR MARKOV PROPERTY IN SOME LOSS-RESERVING MODELS 

The problem of estimating the ultimate loss reserve wall not be presented wtth full 
rigour. Our only aim is to indicate the role of  the l .M.-property in the most 
important loss-reserving models with credibility character. 

The usual loss-reserving terminology is assumed to be known. Let Y,~ be the 
total of  claims of accident year j which is reported during the development year 
~. Thereby we assume that each individual claim of accident year j is settled at 
its full amount  immediately, i.e. there are no IBNER-claims resp. the IBNER- 
part is already contained in Yv as estimation. 

The statistician considers each of the processes (Yv),~N up to a certain time 
n( j ) .  For constituting the reserve he has to estimate the random variable 

Rj = Y.CJ)+',~ + ' . .  + Y®J" 

Because of the usual assumption of independent accident years it remains to 
evaluate 

/~, = E[Rj[  YI~ . . . .  Yntj).j] for each j .  

Modelling the development process (Y,j),~N, different well-known experience 
rating models can be used. 

4.1. The Model o f  de Vylder 

DE VYLDER (1982) bases the development process on a special case of  the 
(noncumulative) classical credibility model of  Buhlmann-St raub .  Therefore the 
covanance structure ~s contamed in the model of  Jewell. As described in Section 
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3.1 one may gain by linear t ransformation of the development process a process 
(X~j),~N which is l.M. That is, the reserve estimation becomes/~j = ~ [Rj I  Xnol.~] • 

4.2. The Model o f  Norberg 

NORBERG (1985) constructs a micro-model with claim numbers and individual 
claim amounts similar to the experience rating model in Section 3.4 with condi- 
tion I. However, the distribution of the individual claim amounts may also de- 
pend on the reporting year. The resulting covariance structure of  the development 
process becomes too complicated for calculating the theoretical credibility 
estimator up to an explicit formula.  Therefore Norberg proposes numerical 
evaluation of the credibihty estimator. In Norberg 's  model the cumulated claim 
number process is I.M. because of the Poisson assumption. This fact caused the 
present author to consider credibihty estimators for the IBNR-claims in a 
distribution-free loss-reserving model where the Poisson assumption is replaced 
by the linear Markov property. This assumption is shown to be natural if the 
delay distribution does not depend on the hidden risk characteristics of  the acci- 
dent year (WITTING, 1986). 

4.3. The Model o f  Kramreiter and Straub 

Let us consider for fixed j the process (X,j),~N of the cumulative burning costs. 
KRAMREITER and STRAUB (1973) discuss the optimal unbiased homogeneous 
linear estimator of  Rj with given statistical basis XIj . . . . .  Xnc~),j in a distribution- 
free model. "Opt imal"  means that the expected squared loss ~s minimized. This 
estimator exists and is uniquely determined. Kramreiter and Straub write the 
covariance structure in the form Cov(X,j, Xmj) = C,m/pj, whereby pj is a known 
volume measure of accident year j .  

The most general covariance structure given by Kramreiter and Straub for 
which explicit calculatmn of the optimal homogeneous linear estimator remains 
possible is 

c,m=c, ~'I Xk for i~<m, 
k=t+¿  

where (k,),,N is a real sequence. 
Because of criterion (9) in Lemma 3 this is exactly the linear Markov property 

of  the process (X,j),~,v, which appears now as the actual assumption of the 
Kramrei ter -St raub model. 

General Remark on the Linear Markov Property 

In the present paper we have only treated the case of  a stochastic process ordered 
with respect to time. One may imagine the linear Markov property also with 
respect to other orders. An example for that is the recent paper of  BUHLMANN 
and JEWELL (1986), who have used the linear Markov property for recursive 
calculation of the credibihty estimator in a general hierarchical model. 
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