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A BSTRACT 

The sensitivity of the ruin probability depending on the claim size distribution 
has been the topic of several discussion papers in recent ASTIN Bulletins. This 
discussion was initiated by a question raised by Schmitter at the ASTIN 
Colloquium 1990 and attempts to make further contributions to this problem. 
We find the necessary and sufficient conditions for fitting three given moments 
by diatomic and diexponential distributions. We consider three examples 
drawn from fire (large spread), individual life (medium spread) and group life 
(small spread) insurance data, fit them with diatomics and diexponentials 
whenever the necessary and sufficient conditions are met, and compute the ruin 
probabilities using well known formulas for discrete and for combination of 
exponentials claim amounts. We then compare our approximations with the 
exact values that appeared in the literature. Finally we propose using diatomic 
and diexponential claim distributions as tools to study the Schmitter prob- 
lem. 
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I .  I N T R O D U C T I O N  

Parametric representation of claim data and exact calculation of ruin probabil- 
ities have a long history. In the classical work of CRAMER (1955, p. 43), the 
following claim amount distribution was used to represent data from Swedish 
non-industry fire insurance covering the years 1948-1951: 

(1) p(x)  = 4.897954e-Sst4588x+4.503 (x+6) -2'75, 0 < x < 500. 

Exact ruin probabilities were computed by numerically solving 

(2) ~(u) = - [ I -  P(y)] ~ ( u - y ) d y  + - [ l - P ( y ) l d y ,  
C 0 C u 

which was a nontrivial numerical task then (CRAM£R 1955, p. 45). A modern 
reference for the above integral equation is Exercise 12.11 in BOWERS et al i i  
(1986). 
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A much easier numerial task even now is to approximate (1) by a 
distribution for which there is a readily executable formula for its ruin 
probabilities. In this paper, we choose our approximants from special types of  
claim amount  distributions in which there are recent interests: For  combina- 
tion of  exponential distributions, there are the TACKLIND (1942) types formu- 
las. See SHIU (1984), GERBER, GOOVAERTS and KAAS (1987), DUFRESNE and 
GERBER (1988) (1989) (1991), and CHAN (1990). For discrete distributions 
(mixture of  atomic distributions), there are the TAKACS (1967) type formulas. 
See BEEKMAN (1968), SHIU (1989) and KAAS (1991). In particular, we consider 
the special cases of  mixture of two atoms (diatomic) and of  combination of two 
exponentials (diexponential). 

2. T H R E E  M O M E N T  FIT F O R  D I A T O M I C  A N D  

D I E X P O N E N T I A L  D I S T R I B U T I O N S  

2.1. Diatomie distributions 

Proposition I : 

Given mean, variance, and third central moment written as/~, 0.2, and •3, there 
is a unique diatomic fitting these moments. The locations of  the two atoms 
a r e  

(3) { u -  x, .u + y}, 

and the corresponding probabilities are: {o2 
(4) X 2 q _ 0 . 2  , X 2 "{- 0 "2 , 

where 

(5) N / K ' 6 " •  _ K 3 
X = 

2 0 . 2  

(6) y = 
20. 2 

Clearly, x > 0 and y > 0. In addition, if the given p > 0 and non-negative 
atoms are desired, then one must have 

0.2(0 .2__, / . /2)  
(7) t¢ 3 > 

Proof:  

A diatomic distribution has the routine parametrization by probabilities 
A, 1 - A  at atoms Xl, x2. Instead, we choose as the three parameters the mean 
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/~ and the locations of  the two atoms expressed in (3)• The equation of  
mean =/1 is equivalent to the probabilities at the atoms equal 

x + y  x + y  

The equation of  variance = 0.2 is equivalent to 

(9) x y  = a 2 . 

0.2 
With y = - - ,  the probabilities (8) can be rewritten as (4). Finally, the 

x 

equation of  third central moment = x 3 is equivalent to 

0 . 2 ( ° ' 2 - x 2 )  3 
(10) - x , 

x 

which is a quadratic equation in x and has two solutions, one positive and one 
negative in this case. The positive solution is (5). Use (9) to obtain (6). 

To prove (7), observe that for fixed ,u > 0 and 0.2, as x 3 goes from the right 
to the left on the real line, the corresponding , u - x  goes also from the right to 
the left. The value of x 3 for which / t - x  = 0 is given by the right side of (7). 

Q.E.D. 

Remark:  The third central moment equation (10) is best understood as 

h7 3 
( l l )  y - x  = - -  

0.2 ' 

since (9) and (! 1) give a geometric interpretation of  0.2 and s: 3 in terms of  the 
three points: the mean p and the two a t o m s / ~ - x  and ~u+y. Equation (9) says 
the standard deviation is the geometric mean of  x and y. Equation (1 i) says 
that the asymmetry as measured by y - x  is fully responsible for the skewness 
K 3, after s: 3 is properly scaled into ~3/0.2. The transformation of ~, x, y to kp, 
kx ,  k y  would change skewness to k3tt.¢ 3, but equation (11) would be scale 
invariant. 

2.2. Diexponential  distributions 

Out of  two exponentials with parameters 0 < fl _< y, we adopt the convention 
that the smaller of  the two parameters is always named p, and call a distribution 
with density function 

(12) p ( x ) = A f l e - P X + ( 1 - A ) y e  - r x  for x > 0  

a diexponent ia l  distribution when and only when A makes the above p ( x )  a 
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(non-negat ive)  density funct ion over  x > 0. The  necessary and sufficient 
condi t ions  for  ,4 mak ing  p ( x )  a legitimate density function are" 

), 
(13) 0_<A _ < - - ,  

) , - f l  

Y 
since A negative would lead to p (x)  negative for  large x, and < A would 

) , - p  

lead to p ( x )  negative for  small x. A m e m b e r  o f  this three pa rame te r  family 
is t radi t ional ly called a mixture of  two exponent ia ls  when 0 < A < 1 and a 

), 
combination o f  two exponent ia ls  when 1 < A < • . No te  that  when fl = ),, 

),-p 

A = 0, or  A = 1 it degenerates  to a single exponential .  When  A - 

have p(0)  = 0 and it becomes  a two p a r a m e t e r  family" 

Ap 
(14) 

),-p 

p ( x ) = A f l e - a X - A f l e  A - t " f o r x > _ 0 ,  w h e r e 0 < f l ,  l < A .  

- -  - -  w e  

This dis tr ibut ion is the independent  sum of  two exponent ia ls  o f  pa rame te r  fl 
and o f  pa rame te r  y and is usually paramet r ized  as" 

(15) p ( x )  = - -  fl), ( e - ~ X - e  - rx)  for  x > 0  

where O < f l < y .  

_ ), f l e - l J x _  fl ),e-~.,- 
),-fl ),-p 

for x > 0  

H o w  big is the family of  diexponent ia l  d is t r ibut ions?  Can a diexponent ial  
a lways be found to fit up to the third m o m e n t ?  This  quest ion translates into 
the solut ion o f  the following system o f  equat ions  

A I-A 
(16) -- + - E(X)= /2, 

A I - A  E ( X  2) 02+/2  2 
( 1 7 )  - -  + - -  - - - -  , 

f12 ),2 2 2 

A 1 - d  E ( X  3) ~3+30.2/2+/23 
(18) - -  + - -  -- - -  -- 

f13 ),3 6 6 

We shall find that  the answer  is different f rom the case of  d ia tomic  
dis t r ibut ions where any/2 ,  a 2, and ~c 3 would find a d ia tomic  fit. 
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Following the intuition gained from the case o f  the dia tomic distribution, we 

parametrize the diexponential distribution with three 
1 

" p o i n t s " ,  p, b = - , and 

Consider  

(20) 

(21) 

(22) 

c<_#_<b+c .  

a 2 = 2 / # b + 2 # c - 2 b c - #  2 

= ,u 2 + ( b -  c) ~ -  ( # -  c) 2 -  ( b - z ) 2  

= #2_  2 {bc -  (b + c -  #)p} 

where the first equality is obtained by solving (17) for a 2 and the other  two are 
algebraic reformulations.  For  # fixed and 0 < c _< # _< b (mixture o f  exponen-  
tials, i.e., 0 _< A _< 1), (21) tells us that a 2 is at least p2 and gets close to #2 when 
c ~ # and # ~- b. For  # fixed and 0 < b < # _< b + c (combinat ion  o f  exponen-  

b #2 
rials, i.e., 1 < A _< - - ) ,  (22) tells us that a 2 is at most  #2 and at least - -  

b - c  2 
#2 

because {.} is always non-negative and is at most  - -  The last s tatement  is 
4 

verified by the observat ion that b + c =  ( b ) + ( c ) =  ( b + c - # ) + ( # )  and the 
maximum o f  {.} as a function o f  the two variables b and c is reached at 
# ~ - b + c  and b~--*c. 

For  fixed #, we found that it is necessary for a 2 to be big ( >  #2) to fit a 
mixture;  and one would guess x 3 must  not to be too small. The exact lower 

bound o f  x 3 will be determined later. It is necessary for #d < a 2 < #2 to fit 
2 

a combina t ion ;  and one would guess K 3 must  be in an interval too. The exact 
interval for x 3 will be determined later. For  a 2 = p2, (21) and (22) both tell us 

#2 
that it must  be a single exponential,  thus (ii) below is proved.  Fo r  a 2 = - - ,  

2 

1 
c = - . Solving (16) for A we get 

Y 

~ ( y# - l )  # - c  
(19) A - - 

y - f l  b - c  ' 

which allows us to turn (16), (17), and (18) into equat ions in #, b, and c. Since 
our  points b and c are not atoms,  unlike the dia tomic case, l - A  is allowed to 
be negative but still gives a genuine probabil i ty density function. The conven-  
tion o f  0 < fl_< ~, < ~ becomes 0 < c_< b < ~ ,  and (13) becomes 
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(22) tells us that  we must  have c = b = --/2 , thus (iv) below is proved. We have 
2 

just  p roved  mos t  o f  par t  A in the following proposi t ion .  

P r o p o s i t i o n  2 : 

A. Necessary  and sufficient condi t ions  for  finding a fit" Fo r  a f ixed/2 > 0, 

(i) for  a 2 >/22, 

if x 3 > - - /24+3a4 

2/2 

if x 3 < --/24+30"4 
2/2 

(ii) for  0.2 =/22, 

if x 3 - /24+30"4 

2/2 

, then a mixture  of  exponent ia ls  with A < 1 fits, 

, then there is no diexponent ia l  that  fits; 

a single exponent ia l  (1//2), any  o ther  value o f  x 
fit; 

/22 
(iii) for - -  < 0"2 </22, 

2 

/ 24+3a4  
if 6/20"2-4p 3 + 4 1 8 ( / , , . 1 2 - 0 " 2 )  3 < x 3 < - -  , 

2/2 

then a combina t ion  of  exponent ia ls  with A > l fits, 

/24+30"4 
if x 3 < 6 /20"2 -4u  3 + x /18 ( /22 -a2 )  3 or  

2/2 

then there is no diexponent ia l  that  fits; 

/22 
(iv) for  a 2 - , 

2 

(v) 

-- 2/23, then the fitting diexponent ia l  degenerates  into 

3 has no diexponent ial  

K 3 , 

if x 3 = 6/20"2-4/23 + X/18(/22--0"2) 3 -- /23 
2 

then the fitting diexponent ia l  degenerates  into a single g a m m a  (2, 2/p), any 
o ther  value o f  x 3 has no diexponent ia l  fit; 

t.l 2 
for  a 2 < - - ,  there is no diexponent ia l  that  fits the given moments .  

2 
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B. The fit: When the three moments/2, 0.2, x3 satisfy the above conditions to 
give a fitting diexponential, the appropriate parameters are: 

1 1 x3-2//3::i:4x6-41c3//(30.2-2//2)+180.6-180.4//2+6a21t4-2//6 
(23) - 

f l(y;-  l) 
A -  

y-fl  

6 (0. 2 -- ,/,/2) 

Proof: 

The bounds for X 3 will be found naturally after we solve (16), (17), and (18) 
and establish B. Substitute (19) into (17) and (18) and write everything in terms 
of/ t ,  b, and c. Solve the second moment equation for b and substitute this back 
in to the third moment equation for c. This is a quadratic equation which we 
solve to get solutions cl,  c2. Substitute back to get b~, b2. With the algebraic 
symmetry of  b and c, it is not surprising that we found {cl, bl} and {c2, b2) are 
the same set of  two numbers. By the convention of fl _< y, we name the smaller 
number c and the bigger number b. The formulas in B are thus established. 

The mysterious bounds in A are determined by studying (23). The fact that 
(23) must give positive values leads to the question of  when is the right side of  
(23) zero: 

( x 3 - -  2/.t3) 2 = X 6 - - 4 K 3 1 t ( 3 0 . 2 - - 2 / . t 2 ) +  180. 6 -  18 0.4/.z2 + 6 a 2 / . t 4 - -  2/..t 6 , 

which is a linear equation in x 3. Solving for x 3 gives 

K3 -- ,/-/4+30"4 

2/2 

The fact that (23) must not give complex numbers leads to the equation of  
the expression under the square root sign in (23) equals zero: 

K K 6 - - 4 K 3 f l ( 3 0 . 2 - -  2 / , t2 )+  180  . 6 -  1 8 0 . 4 / . / 2 + 6 0 . 2 / . / 4 - - 2 / / 6  = 0 ,  

which is quadratic in ~c 3. The two roots for K 3 a r e  

K 3 = 6//0.2-4//3:1:: 4 1 8 ( ] . t 2 - 0 . 2 )  3 . 

Of the two roots, the one taking the + sign is bigger and determines the 
boundary that x 3 must not go below. Q.E.D. 

3. RUIN PROBABILITIES FOR DIATOMIC AND 
DIEXPONENTIAL DISTRIBUTIONS 

The ruin probability formula for a discrete claim amount  distribution has been 
given by SCHMITTER (1990). See KAAS (1991, p. 136). For  similar formulas see 
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SHIU (1989). Proof for the atomic case and a reference to FELLER (1971) are 
found in SnIu (1987). We list the ruin probability formula for diatomic claim 
amounts below for use in Section 4: 

0 p~,p~2 
(24) ~u(u) = 1 - Z (--Z)k'+k2 e Z - - '  

1+0 k,,k2 kl!k2! 

( u -  kl xt -- k2 x2) + 
where z = 

(1 +0)/1 

The theory of ruin probability for mixture and combination of exponentials 
is well known. See Snlu (1984), DUFRESNE and GERBER (1988), (1989), (1991), 
and CHAN (1990). In the case when there are only two exponentials, the 
adjustment coefficient equation 

M x ( r ) -  I 
(1 + o ) #  - 

r 

is quadratic and has solutions: 

l( ' 
(25) R, r 2 = -  # + y - - - T -  - - - ( / / + ~ ' )  - - -  , 

2 /~(1 +0) /z(I +0) 1 +0  

and 

(26) ql(u) = C le -Ru+C2e  -r2" 

where Ci,  C2 are found by the T/icklind formula (r I = R): 
2 2 

(27) Ck = H ri 1--I f l i -rk  k =  1,2. 
i~k  r i - r  k i=l tot 
i=1 

4. D I A T O M I C  A N D  D I E X P O N E N T I A L  AS A P P R O X I M A N T S  

In this section, we study three claim amount distributions and compute i'uin 
probabilities of approximating diatomics and approximating diexponentials 
with matching first three moments and compare the approximations with the 
exact values of ~(u).  In the first example (Cram6r's fire) the claim amount 
distribution has a large spread, none of the approximations is very close to the 
exact value. Along with the first example we discuss the run-off error problem 
encountered in the Takfics type formulas. In the second example (Reckin, 
Schwark, and Snyder's individual life) the claim amount distribution has a 
medium spread, both the diatomic and the diexponential give good approxima- 
tions. In the third example (Mereu's group life) the claim amount distribution 
has a small spread, the diatomic gives an excellent approximation, but the 
spread is so small that there is no diexponential fit. 
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Example 1: We consider Cram6r's fire insurance data, the one mentioned in 
the introduction. In the following table, the exact values.of ~ (u) for 0 = 0.3, 
and the values by the Cram6r-Lundberg approximation' are taken from 
CRAMf~R (1955, p. 45). The values by the Beekman-Bowers approximation are 
taken from BEEKMAN (1969, p. 279). The ruin probability formula for diatomic 
claims, (24), leads to convergence problems when u is large. Our exprience 
echoes with that reported in SEAH (1990, § 4). For values o fu  close to and above 
30 times u, run-off errors take over and we obtain probabilities less than zero 
or greater than onel These problematic values are indicated by ** below. In 
Table 1, the approximating diatomic has atoms {.7657175616, 181.1382584} 
and probabilities {.9987011192, .001298880855} as found by (3), (4), (5), and (6). 

1 1 
The approximating diexponential has - = 60.75201696, - = .6552147239, 

and A = .005737165094 as found by (23) and (19). 

T A B L E  1 

CRAMflR'S FIRE INSORA~CE 
l~ = I, a2/112 = 42 .20323069,  x3fi73 = 27 .69286626 

u qJ(u) C L  BB d i a tom,  diep.  C L / ~ ( u )  B B / ~ ( u )  d i a . / ~ ( u )  die./q,,(u) 

20 .5039 .4524 .5140 .4133 .4666 0 .898 1.020 0 .820 0 .926 
40 .3985 .3904 .4079 ** .4010 0 .980 1.028 ** 1.006 
60 .3280 .3370 .3369 ** .3447 1.027 1.027 ** 1.051 
80 .2757 .2909 .2812 ** .2962 1.055 1.020 ** 1.074 
100 .2346 .2511 .2369 ** .2546 1.070 1.010 ** 1.085 

Example 2: In this example, we consider the individual life insurance data 
from RECKIN, SCHWARK, and SNYDER (1984). This claim amount distribution 
was studied as Example 3 in SEACH (1990), from where we took the exact 
values of ~(u).  The claim amount X is discrete with 'support  
{1,2,3,4,5,7,8,10,12,13,15,16} and probabilities (in order) {.5141, .3099, .0639, 
.0220, .0194, .0096, .0276, .0036, .0041, .0019, .0013, .0226}. Since the claim 
amount distribution is dispersed enough, we have a diexponential fit by (i) of 
Proposition 2. 

T A B L E  2.1 

ip'(u) BY SEAH FOR R S S ' s  INDIVIDUAL LIFE INSURANCE DATA 
It = 2.2896,  a : / p  2 = 1.43257300,  x3/tr J = 3 .60560786 

0 = .1 O -  .2 0 = .3 0 = .4 0 = .5 

u = 0 .909091 .833333 .769231 .714286 .666667 
u = 10 .644361 .450722 .334890 .260412 .209732 
u = 20 .469129 .254324 .152965 .099371 .068466 
u = 30 .341528 .143813 .070341 .038430 .022840 
u = 40 .248408 .081101 .032173 .014735 .007526 
u = 50 .180700 .045752 .014725 .005654 .002482 
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TABLE 2.2 

(DIATOMIC APPROXIMANT)/~(U) FOR RSS'S DATA 
The approximating diatomic has a toms {I .580450117, 12.887964915} and probabilities {.9372389245, 
.06276107517} as found by (3), (4), (5), and (6). 

0 =  .1 0 =  .2 0 = .3 0 =  .4 0 =  .5 

u = 0  1 1 I I 1 
u = 10 1.013 1.029 1.045 1.060 1.073 
u = 20 1.003 1.007 1.012 1.015 1.018 
u = 30 1.001 1.000 0.996 0.990 0.981 
u = 40 1.001 0.999 0.992 0.982 0.968 
u = 50 1.001 0.997 0.988 0.974 0.957 

TABLE 2.3 

(DIEXPONENTIAL APPROXIMANT)/~(U) FOR RSS'S DATA 
I 1 

The approximating diexponential has -~ = 5.448377581, - - =  1.930653556, and A = .1020393986 
# 

as found by (23) and (19). 

0 =  .I 0 = .2 0 = .3 0 = .4 0 =  .5 

u = 0  1 1 I I I 
u = I0 0.997 0.984 0.966 0.947 0.928 
u = 20 0.994 0.985 0.979 0.978 0.984 
u = 30 0.995 0.991 0.997 1.016 1.047 
u = 40 0.996 1.000 1.022 1.066 1.132 
u = 50 0.998 1.009 1.048 1.119 1.224 

E x a m p l e  3 :  I n  t h i s  e x a m p l e ,  w e  c o n s i d e r  t h e  g r o u p  i n s u r a n c e  d a t a  f r o m  

M E R E U  ( 1 9 7 2 ) •  T h i s  c l a i m  a m o u n t  d i s t r i b u t i o n  w a s  s t u d i e d  a s  E x a m p l e  2 in  

SEAH ( 1 9 9 0 ) ,  f r o m  w h e r e  w e  t o o k  t h e  e x a c t  v a l u e s  o f  ~ ( u ) .  T h e  c l a i m  a m o u n t  

X is  d i s c r e t e  w i t h  s u p p o r t  ( 4 , 6 , 8 , 1 0 , 1 2 , 1 4 , 1 6 , 2 0 , 2 5 }  a n d  p r o b a b i l i t i e s  ( in  o r d e r )  

(. 1 5 3 0 4 5 3 3 9 6 0 ,  • 0 7 8 8 2 2 3 7 4 3 6 ,  . 1 1 1 9 9 1 1 9 0 4 0 ,  . 1 0 4 3 2 6 9 8 2 6 0 ,  . 0 9 4 3 2 7 6 9 0 2 1 ,  

• 1 0 9 2 5 8 0 7 9 9 0 ,  . 0 9 7 2 7 3 0 8 1 0 7 ,  . 1 8 0 7 3 4 6 6 7 2 0 ,  . 0 7 0 2 2 0 5 9 4 7 4 } .  

TABLE 3.1 

~(U) BY SEAH FOR MEREU'S GROUP LIFE INSURANCE DATA 
u = 12.61243786, tr2/# 2 = 0.25079144, x 3 / a  3 = 0.30556145 

8 = .25 O= .5 0 = .75 O= .1 

u = 0 .8 .666667 .571429 .5 
u = 25 .433995 .232316 .141606 .094198 
u = 50 .222739 .072766 .030113 .014607 
u = 75 .114114 .022685 .006349 .002236 
u = 100 .058463 .007072 .001339 .000342 
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TABLE 3.2 

(DIATOMIC APPROXIMANT)/~(U) FOR MEREU'S GROUP LIFE INSURANCE DATA 
The approximating diatomic has atoms .~7.187946466, 19.96691435} and probabilities t.5755141225, 
.4244858774} as found by (3), (4), (5), and (6). 

0 =  .25 0 =  .5 0 =  .75 0 =  .I 

u = 0  I I I I 
u = 25 0.9995 0.9992 0.9986 0.9977 
u = 50 1.0003 1.0004 0.9988 0.9962 
u = 75 1.0000 0.9978 0.9929 0.9857 
u = 100 0.9997 0.9962 0.9888 0.9795 

The diatomic approximant is producing excellent values! Since the variance 
is quite small, there is no diexponential fit as indicated by Proposition 2, (v). 
Note that because the approximating claims distribution has the same mean 
and variance as the orignial, the non-ruin probabilities are overestimated as 
well. 

5. THE SCHMITTER PROBLEM 

The Schmitter problem asks: Given 0, u, u, (72, and the range [0, b], is there a 
distribution with support on [0, b] which would maximize the ruin probability 
~(u)?  See BROCKETT, GOOVAERTS, and TAYLOR (1991) and KAAS (1991). 
Schmitter's conjecture of diatomic being the one giving the extremal ruin 
probabilitity inspires us to use diatomics as approximants. The conjecture, 
however, has been disproved by KAAS (1991). 

The general question is the stability of ~(u)  when p(x) is under perturba- 
tion. Schmitter specialized to the question of extreme value of ~(u)  for fixed 0, 
u, u, ~2, and range [0, b]. We would ask another specialized question : Find the 
extreme value of ~(u)  for fixed 0, u, ~, cr 2, and r 3. Like the Schmitter problem, 
our question may not have a complete solution. Our question is related to the 
practical problem: When the true claim amount distribution is represented by 
the sample, which is a discrete distribution, or is parametrized, for example, as 
a mixture of exponentials, how robust is the ruin probability? In this paper we 
have found computational tools to address the stability of ~ (u) when p (x) is 
diatomic or diexponential with first three given moments. 
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