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A B S T R A C T  

The method of Esscher transforms is a tool for valuing options on a stock, if the 
logarithm of the stock price is governed by a stochastic process with stationary and 
independent increments. The price of a derivative security is calculated as the 
expectation, with respect to the risk-neutral Esscher measure, of the discounted 
payoffs. Applying the optional sampling theorem we derive a simple, yet general 
formula for the price of a perpetual American put option on a stock whose 
downward movements are skip-free. Similarly, we obtain a formula for the price of 
a perpetual American call option on a stock whose upward movements are 
skip-free. Under the classical assumption, that the stock price is a geometric 
Brownian motion, the general perpetual American contingent claim is analysed, and 
formulas for the perpetual down-and-out call option and Russian option are 
obtained. The martingale approach avoids the use of differential equations and 
provides additional insight. We also explain the relationship between Samuelson's 
high contact condition and the first order condition for optimality. 
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I. INTRODUCTION 

The option-pricing theory of BLACK and SCHOLES (1973) is perhaps the most 
important development in the theory of financial economics in the past two decades. 
A fundamental insight in advancing the theory is the concept of risk-neutral 
valuation introduced by Cox and Ross (1976). Further elaboration on this idea was 
given by HARRISON and KREPS (1979), HARRISON and PLISKA (1981) and others 
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under the terminology of equivalent martingale measure. It is now understood that 
the absence of arbitrage is "essent ia l ly"  equivalent to the existence of an 
equivalent martingale measure, and some authors (DYBVlG and Ross, 1987; 
SCHACHERMAYER, 1992) call this the Fundamental Theorem of Asset Pricing. 

Under the assumption that the logarithm of the stock price is governed by a 
stochastic process with stationary and independent increments, one may determine 
such an equivalent martingale measure by a time-honored technique in actuarial 
science - -  the Esscher transform (ESSCHER, 1932). An Esscher transform induces 
an equivalent probability measure on such a stock-price process. The risk-neutral 
Esscher parameter (which is unique) is determined so that the stock price, 
discounted by the risk-free interest rate less the dividend yield, becomes a 
martingale under the new probability measure. The price of a derivative security is 
the supremum of the expected discounted payoffs, where the expectation is taken 
with respect to this equivalent martingale measure and the discounting is calculated 
using the risk-free interest rate. 

The pricing of American options with a finite expiration date has been a 
challenging problem in the field of financial economics. A main difficulty is the 
determination of the optimal exercise boundary. Some papers on American options 
in the past decade are BENSOUSSAN (1984), MACMILLAN (1986), BARONE-ADESI 
and WHALEY (1987), OMBERG (1987), KARATZAS (1988), JAILLET, LAMBERTON and 
LAPEYRE (1990), KIM (1990), JACKA (1991), CARR, JARROW and MYNENI (1992), 
MYNENI (1992), CHESNEY, ELLIOT and GIBSON (1993), LAMBERTON (1993), HULL 
and WHITE (1993), and TILLEY (1993). In this paper we study the pricing of 
American options without expiration date by means of the Esscher transform and 
the optional sampling (stopping) theorem. This is a more tractable problem because 
the optimal exercise boundary of a perpetual American option does not vary with 
respect to the time variable. We derive a simple, yet general formula for the price of 
a perpetual American put option on a stock whose downward movements are 
skip-free (jump-free). Similarly, we obtain a formula for the price of a perpetual 
American call option on a stock whose upward movements are skip-free. In the 
appendix, we present a family of stochastic processes for modeling such stock-price 
movements. This family includes the Wiener process, gamma process and inverse 
Gaussian process, and combinations of such processes. 

Under the classical assumption that the stock price is a geometric Brownian 
motion, the general perpetual American contingent claim is analysed, and formulas 
for the perpetual down-and-out call option and Russian option are obtained. The 
martingale approach avoids the use of differential equations and provides additional 
insight. We also explain the relationship between Samuelson's high contact 
condition and the first order conditions for optimality. 

2. THE RISK-NEUTRAL ESSCHER TRANSFORM 

Let S(t) be the price of a stock at time t, t ~ 0. We assume that the process, 
{X(t)},_~ o, defined by 

(2.1) S(t)=S(O)e x(n, t>--O, 
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is one with stationary and independent increments. Let 

(2.2) F(x, t) = Pr [X(t) _< x], t _> 0 ,  

be the distribution of the random variable X(t), and 

(2.3) M(z, t) = E [e~X(')], t --> 0 ,  

its moment generating function. Under a mild continuity condition (BREIMAN, 1968, 
Section 14.4), 

(2.4) M (z, t) = [M (z, 1 )] ', t .~ 0.  

While the Esscher transform of a random variable is a well-established concept, 
in this paper we consider the Esscher transform of a stochastic process which 
satisfies (2.4). The Esscher transform (parameter h) of  {X(t)} t ~_ 0 is again a process 
with stationary and independent increments; the modified distribution of  X(t)  is 
n o w  

F(x, t; h) = Pr [X(t) ~ x; h] 

f l  e hy dF(y,  t) 

f l _ 1 e hy dF (y, t) .  
M(h, t) oo 

The corresponding moment generating function is 

(2.5) 

It follows from (2.4) that 

(2.6) 

M(z, t; h) - 
M ( z + h , t )  

M(h, t) 

:F 
M(z,t;h) L M(h~) J 

= [M(z, 1; h) ] ' .  

Because the exponential function is positive, the old and new measures have the 
same null sets, i.e., they are equivalent probability measures. The appropriate 
parameter h = h* is determined according to the principle of  risk-neutral valuation 
(Cox and Ross,  1976), or, using the terminology of  HARRISON and KREPS (1979) 
and HARRISON and PLISKA (1981), we seek h=h*  to obtain an equivalent 
martingale measure. 

In this paper we assume that the risk-free force of interest is constant, and it is 
denoted by 6. We also assume that the market is frictionless and trading is 
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continuous. There are no taxes, no transaction costs, and no restriction on 
borrowing or short sales. All securities are perfectly divisible. Furthermore, we 
assume that the stock pays a continuous stream of dividends, at a rate proportional 
to its price, i.e., there is a nonnegative constant p such that the dividend paid 
between time t and t + dt is S ( t ) p d t .  The parameter h = h* is chosen so that the 
process {e - (a-p) '  S ( t ) } ,  _> o is a martingale with respect to the probability measure 
corresponding to h*. In particular, 

(2.7) 

hence, by (2.1) and (2.6), 

S(O) = E[e  - (~-p) '  S ( t ) ;  h*] ; 

e (a-o)' = E[eX('); h*] 

= [ M ( 1 ,  1 ; h * ) ] ' ,  

or  

(2.8) In [M(1, 1; h*)] = 6 - p .  

The Esscher measure corresponding to the parameter h* is called the risk-neutral 
Esscher measure. The price of a derivative security, whose payments depend on 
{S (t)}, is calculated as a discounted expected value, where the expectation is taken 
with respect to the risk-neutral Esscher measure. 

Under some regularity conditions, equation (2.8) has a unique solution. To see 
this, consider the function 

The formula 

g(h)  = In [M(I ,  I ; h)] = In  [M(I +h ,  l ) ] - l n  [M(h, 1)]. 

d 
- -  E [ X ( I ) ;  h] = Var  [ X ( l ) ;  hi  
dh 

shows that E [ X ( I ) ;  h] is an increasing function in h. Hence 

g'(h) = E [ X ( I ) ;  1 + h ] -  e [ X ( l ) ;  h] 

is positive, showing that g(h) is an increasing function. This proves the uniquencess 
of  the solution of  equation (2.8), which is 

g(h )  = 6 - p . 

To discuss the existence of  the solution, let M and m denote the right and left end 
point of the (essential) range of  X(i ) ,  respectively. (M may be + oo and m may be 
-oo). We may assume 

m + p < 6 < M + p ,  

o r  

m < 6  - p < M ,  
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because otherwise arbitrage would be possible. Let (a, b) denote the interval of 
values of h for which g(h) exists. Under some regularity conditions, 

lira g(h) =m,  lim g(h) =M, 
h $ a 11 ' "  b 

in which case (2.8) does have a solution. It should be noted that, although the 
risk-neutral Esscher measure is unique, there may be other equivalent martingale 
measures; see DELBAEN and HAEZENDONCK (1989) for a study on equivalent 
martingale measures of compound Poisson processes. 

The price of a derivative security is taken as the expectation of its discounted 
payoffs with respect to the risk-neutral Esscher measure. For example, consider a 
European call option on the stock with exercise price K and exercise date t, t > 0. 
Let /(.) denote the indicator function and K = In [K/S(O)]. The price of the option 
(at time 0) is 

(2.9) e-atE[(S(t) - K) l(S(t) > K); h*] 

= e-~'E[S(t) l(S(t)  > K);  h * ] - e - ~ ' K E [ I ( S ( t )  > K);  h*]. 

The second expectation in the right-hand side of (2.9) is 

Pr [S(t) > K;  h*] = 1 -F(K, t; h*). 

To evaluate the first expectation in the right-hand side of (2.9), note that, for each 
measurable function g(.), 

E[g(S(t )) e 'x(')] 
(2.10) E[g(S(t)); h] = 

E[e;'X(')] 

E[g(S(t)) S (t);'] 

E[S(t);'] 

With this formula, the following result can be proved. 

Lemma : Let h and k be two real numbers. Assume that the Esscher transforms of 
parameters h and h + k exist. Then, for each measurable function ~ (.), 

(2.11) E[S(t)k~p(S(t));h]=E[S(t)k;h]E[~p(S(t));h+k]. 

Applying the Lemma [with k=  I, ~p(x)=l(x> K) and h = h * ]  and (2.7), we 
obtain 

E[S(t) l(S(t) > K);  h*] = E[S(t); h*] E[I(S(t) > K);  h* + 1] 

= S(0) e (a-p)'  Pr [(S(t) > K) ;  h* + I] .  

Thus the price of the European call option is 

(2.12) S(O) e - ° t [ l -F (K , t ;h*  + l ) ] -Ke-a ' i l -F(K, t ;h*)] .  
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If {X(t)} is a Wiener process with variance per unit time o 2, then (2.12) (with 
(4.2) below) yields the expression 

o/ / ) _ _  - . ,  

where 9 ( . )  denotes the standardized normal distribution. For P = 0 this is the 
celebrated Black-Scholes  formula.  Formula (2.13) is the same as formula (53) in 
SMITH (1976). 

R e m a r k s  : 

(1) We assume that the stock pays dividends at a constant proportional rate p. If 
all dividends are reinvested in the stock, then each share of the stock at time 0 
grows to e p~ shares at time t; this gives an interpretation for formula (2.7), 

S(O) = E [ e -  ~ S ( t  ) eP' ; h*l. 

On the other hand, we can also consider the situation where none of the dividends 
are reinvested in the stock, leading to the intuitive formula: 

(2.14) S(0) = E e-~US(u) pdu  + e - ° ' S ( t ) ;  h* . 
0 

To prove (2.14), we interchange the order of expectation and integration on the 
right-hand side and apply the formula 

E | e -  O"S(u); h*] = e-P"S(O);  

thus 

R.H.S.  = S (0 e - p,, pdu  + e - p' 
0 

= s (o )  

= L.H.S. 

(2) Formula (2.12) may be used to price currency exchange options, with S ( t )  

denoting the spot exchange rate at time t, 6 the domestic force of interest and p the 
foreign force of interest. In this context, (2.13) is known as the Garman-Kohlhagen  

formula.  

3. PRICING PERPETUAL AMERICAN OPTIONS 

In this section, by applying the optimal sampling theorem, we derive pricing 
formulas for perpetual American put and call options on a stock. We make the 
assumptions about stock pricer and dividends that were introduced in the previous 
section. In addition, when pricing a perpetual American put option, we assume that 
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the downward movements of the stock price are skip-free. Similarly, when pricing a 
perpetual American call option, we assume that the upward movements of  the stock 
price are skip-free. Under these convenient assumptions, attractive formulas can be 
obtained. 

First, we consider a perpetual  American put option with exercise price K. We 
temporarily assume that K < S(0), so that an immediate exercise of  the option can 
be excluded. The owner of  this option exercises it according to some strategy: a 
stopping time T. Then, at time T, he will get 

( K -  S(T))+ , 

where x+ = Max (x, 0). Thus the value (at time O) associated with the strategy is 

(3.1) E [ e - a Y ( K -  s ( r ) ) +  . h* ] .  

To maximize this expression, we can limit ourselves to stationary strategies of  
the form 

(3.2) T L = inf {tls(t) -< L} ,  

where L _< K; the option is exercised the first time when (if ever) the price of  the 
stock falls below or equals the level L. The price of  the option is the maximal value 
of 

(3.3) E [e - arL (K - S (TL)) + ; h*].  

With the assumption that the stock-price process, { S ( t ) } t . ~ o  , is skip-free 
downwards, the stock price is equal to L at the time when the option is exercised, 
i.e., 

(3.4) L = S (TL) = S (0) e x(r'.) . 

For simplicity, denote the current stock price S(0) by S and expression (3.3) by 
V (S, L). Since L ..~ K, 

(3.5) V (S, L) = ( K -  L) E[e-aT~ ; h*].  

The expectation in (3.5) is a Laplace transform of T L and can be calculated by the 
following classical argument. 

Consider the stochastic process {e-a '+°x( ' )} , ->o.  For t <- T L, it is a bounded  
martingale with respect to the risk-neutral Esscher measure if the coefficient 0 is 
the negative solution of  the equation 

E[e  -a'+°x(') ' ,  h*] = 1,. 

or  

(3.6) M(O, I ; h*) = e a . 

Equation (3.6) has two (real) solutions; one is negative and the other is greater than 
one. To see this, consider the function 

dp(O) = M(O, I ; t2") = E[e  °xO)" h*].  
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Since 

~"(0) = E[X(I)  z e°X(I); h * ] > O ,  

the function ~ ( 0 ) i s  convex. Consequently, equation (3.6), 

~ ( 0 )  = e ~ , 

has at most two solutions. We note that 

(0) = I < e  ~ 

and, because of (2.8), 

Let us assume that 

and 

qb(l) = e  ~ - °  < e ~. 

Pr [X(l)  < 0] > 0 

Pr [X(l)  > 01 > 0 ,  

from which it follows that q~ (0)---) + oo for 0 ~ - ~  and for 0 ~ + oo. Thus 
equation (3.6) has two solutions, 00 < 0 and 0t > 1. 

By the optional sampling theorem, we have 

E[e-aTL+°°x(Ti); h*] = 1 , 

which, because of (3.4), becomes 

(3.7) E[e- '~r" ;  h *] = / ~ / - ° '  

Applying (3.7) to (3.5) yields, for S -> L and K > L, 

(3.8) V(S, L ) = ( K - L ) ( ~ )  -°°. 

For a given current stock price S, we seek the maximal value of (3.8) by varying 
the option-exercise boundary L. Let V L denote the partial derivative of V with 
respect to L. Solving the equation 

VL(S, L) = 0 

yields the optimal exercise boundary 

L = L - - - - - 0 °  K. 
I - 0o 

(3.9) 

Thus the maximal value is 

V(S, E) = - -  
I - 0 o  S -Oo)J  
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This is the price of the perpetual American put option provided that S -> L. For 
S < L, the option is exercised immediately and the price is simply K - S. Hence the 
option price is 

,+00[ °° if S~-/.~ 
(3.10) S ~  - 00)_1 

K - S  if S < L  

It may seem surprising that 6 and/9 do not appear in (3.10). However, they were 
used to determine 0o. 

Next we study the pricing of a perpetual American call option with exercise price 
K, and we temporarily assume that K > S. For M ~. K, let 

TM= inf {t lS(t) -> M } (3.11) 

and 

(3.12) 

With 

W(S, M) = E[e -aTM (S(TM)- K)+ ;h*] .  

the assumption that the stock-price process, {S(t)}t_>0, is skip-free 
upwards, the stock price is equal to M at the time when the option is exercised, i.e., 
S(TM) =M. Since M -> K, formula (3.12) becomes 

(3.13) W(S, M) = (M - K) E[e -rTM ; h*]. 

The expectation in (3.13) is evaluated in the same way as above, except that we 
now use 01, the positive root of (3.6), to make sure that {exp [ - 6 t  + O~ X(t)]} is a 
bounded martingale (with respect to the risk-neutral Esscher measure) for t --< TM. 
The resulting formula is 

(3.14) E[e-aT";h*.l=lfMI °' . 

For given current stock price S, the maximal value of 

(3.15) 

is attained at 

(3.16) 

and 

W ( S , M ) = ( M - K ) ( ~ - )  °' 

M=/~----01 K, 
0 1 - I  

K [S(O,-I)] °' 
(3.17) W(S,/Q)= 0 . ~ l  L K ~  

This gives the price of the perpetual American call option provided S --< A~. For 
S > M, the option is exercised immediately and the price is simply S - K. Thus the 
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option price is 

(3.18) 
K [ S ( O . - I ) ]  °' 

"b~'-~-] L" "K~ if S-<,,Q 

S - K  if S > , Q .  

Remarks: As the dividend yield p tends to 0, the coefficient 0~ tends to 1, the 
optimal exercise boundary /Q tends to oo, and the price of the perpetual American 
call option tends to S, the current stock price. These limiting results can be verified 
by direct calculations: for p =0, 0~ = !, (3.15) reduces to 

(3.19) W(S,M)=(I  - ~-)S,  M--> K. 

Since this is a strictly increasing function of M, its supremum is not attained for a 
finite value of M, and the maximal value (the value of the option) is S. Thus, if 
/9 = 0, the perpetual American call option will never be exercised, but nevertheless 
it has a positive value. To avoid this anomaly (to which INGERSOLL (1987, p. 373) 
refers as the problem of " inf ini t ies")  we might modify the payoff of the call 
option as 

[ ( S ( T ) -  K)+ ]4, 0 < a < I. 

Then 

which is maximal for 

S 
W(S, M) = (M - K) c~ - -  

M 

K 

1-or  

3.1. The high contact condition 

Each of (3.10) and (3.18), as a function of the current stock price S, has a 
continuous first derivative, because 

v(£,£) =K-£ ,  
(3.I.1) V s ( £ ,  E )  = - l ,  

W(.,Q, ,Q) = ]Q - K, 

and 
Ws(M, M)= 1. 

Formulas (3.1.1) and (3.1.2) are special cases of the so-called high contact 
condition (SAMUELSON, 1965); in the literature about optimal stopping problems 
(SmRAYAYEV, 1978, p. 160) the term is smooth pasting condition. SHEPP and 
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SHIRYAEV (1983) use the tenon the principle of smooth .fit and attribute it to 
Kolmogorov. (Shirayayev is the same person as Shiryaev). 

MERTON (1973, p. 171, footnote 60; 1990, p. 296, footnote 47) has derived the 
high contact condition as a first order condition necessary for optimality. (Merton 's  
proof is reformulated on page 189 of BREKKE and OKSENDAL (1991)). Under some 
weak conditions, the converse is also true - -  a solution proposal to an optimal 
stopping problem satisfying the high contact condition is in fact an optimal solution 
to the problem; a recent paper on this is BREKKE and OKSENDAL (1991). It is easy 
to check that condition (3.1.1) does determine the optimal exercise boundary L, 
while (3.1.2) determines ,,~. 

We now derive a formula explaining how the high contact condition (3.1.1) and 
optimality for V(S, .) are related. Let 

(3.1.3) ~(S, L)=E[e-~TL;h*]. 

From (3.7) or simply by interpretation, it follows that, for 0 < x < S -  L, 

(3.1.4) 2(S, L) = 2 ( S ,  L + x ) 2 ( L  +x ,  L) 

(cf. Lemma 7.1 on page 243 of KARLIN and TAYLOR (1981)). Differentiating (3.1.4) 
with respect to x and setting x = 0 yields 

(3.1.5) 0 = 2L (S, L) + 2 (S, L) ~s (L, L) .  

Now, let 

(3.1.6) ~ (x )  = (K - x)+ 

denote the payoff  function. Then (3.5) becomes 

(3.1.7) V(S, L) = ~ ( L )  ,1, (S, L). 

Differentiating (3.1.7) with respect to L and applying (3.1.5) yields 

(3.1.8) VL(S, L) = ~' (L) ~ (S, L) + ~(L)  2 L (S, L) 

= ~ '  (L) 2 (S, L) - ~ (L) 2 (S, L) 2s(L,  L) 

= 2 (S, L) [~' ( L ) -  Vs(L, L)] .  

(Formula (3.1.8) can also be derived using (3.8)). Since ~ ( S , L )  is positive, 
Vt,(S,L)=O if and only if 

(3.1.9) Vs(L, L) = ~' (L ). 

Equation (3.1.8) shows explicitly that the optimal exercise boundary i does not 
depend on the current stock price S. We note that (3.1.7), (3.1.8) and (3.1.9) are 
valid for payoff  functions ~( . )  more general than (3.1.6). 

Similarly, one can derive the formula 

(3.1.10) WM(S, M) =/.t (S, M) [~ '  (M) - Ws(M, M)] ,  

where 
u (S, M) = E[e - 6r,; h*l .  
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4. LOGARITHM OF THE STOCK PRICE AS A WIENER PROCESS 

The stochastic process with stationary and independent increments and sample paths 
which are both skip-free upwards and downwards (i.e., continuous) is the Wiener 
process. In this section we assume that {X(t )} ,a0  is a Wiener process; this is the 
classical geometric Brownian motion model for stock-price m o v e m e n t s  (SAMUEL- 

SON, 1965; BLACK and SCHOLES, 1973). Let /.~ and o. 2 denote, respectively, the 
mean and variance of  {X(t)} per unit time. In terms of  a stochastic differential 
equation, the assumption is 

S ~  - + dt + o.dW (t ), t -~ 0 ,  

where {W(t)}, ~-o denotes the standardized Wiener process. 
Since 

M(Z, t) = exp [(,uz + ' /2o.2z2)t], 

it follows from (2.5) that 

In [M(z,  t; h)l = [(~ + ho.2)z + V2o.2z 2It .  

This shows that the transformed process has modified mean per unit time l.t + ho. 2 
and unchanged variance per unit time o. 2. From (2.8) we get 

(4.1) (/,t + h * o .  2) + Y2o. 2 = 6 - p .  

Thus to evaluate a derivative security, we use a Wiener process with mean per unit 
time 

~ + h* o.2 = 6 - p - V2 o. 2 . (4.2) 

From (3.6) we obtain 

(6 - p  - 1/2 o.2) 0 ÷ 1/20202 = 6 ,  

o r  

(4.3) o. 202 + (26 - 2 p - o. 2) 0 - 26  = 0.  

The roots of this quadratic equation are 

- ( 2 6 -  2 p - o .  2) - { ( 2 6 -  2 p - ( 7 2 ) 2 +  8 o 2 6  
0 0  - -  

2 a  2 
(4.4) 

and 

(4.5) 0,= 
-(26-2p-o. 2) + {(26-2p-o.2)2+8o.26 

2 o  2 

Formula (4.5) should be attributed to MCKEAN (1965, Section 3) who studied the 
pricing of perpetual warrants ; at that date of  course he did not solve the problem in 
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terms of the risk-neutral measure. With zero dividend yield (/9 = 0), formula (4.4) 
becomes 

- 2 6  
(4.6) 00 - , 

0 .2 

which was first given by MERTON (1973, Section 8; 1990, Section 8.8), who 
evaluated the perpetual American put option by adopting MCKEAN'S (1965) 
technique. Discussions on pricing perpetual American options can also be found in 
the books by KARLIN and TAYLOR (1975, p. 365), INGERSOLL (1987, p. 375) and 
LAMBERTON and LAPEYRE (1991, p. 82), and in the recent articles by KARATZAS 
(1988, p. 59, e.g. 6.7), KIM (1990) and JACKA (1991, Proposition 2.3). (In formula 
(9) of KIM (1990), the denominator I - f l  should b e / 3 -  1). 

In the finance literature, the formulas for pricing perpetual American options are 
usually derived as follows. Let D denote the value of a derivative security. It 
follows from the hedging argument first given by BLACK and SHOLES (1973) that D 
satisfies the partial differential equation 

(4.7) Vz 0.z S 2 Dss + (6 - 19) SDs - 6 D  + D, = O, 

subject to the appropriate boundary conditions. In the case of a perpetual option, we 
have D , = 0  and (4.7) becomes a homogeneous, linear, second-order ordinary 
differential equation in S, 

(4.8) V2o 2 S 2 Dss + (6 - p )  SD s - 6 D  = O. 

The function D = S o is a solution of (4.8) if the number 0 satisfies the quadratic 
equation, 

(4.9) 1 / 2 0 . : 0 ( 0 - I ) + ( 6 - 1 9 ) 0 - 6  = 0 ,  

which is the same as (4.3). Then any solution of (4.8) is of the form 

(4.10) D = c o S °° + ct S °' , 

where e 0 and cl ai'e independent of S. 
In this paper we use the martingale approach and avoid differential equations. 

Additional insight for (4.10) is provided in the following; see (4.1.16) below. 

4.1. Perpetual contingent claims 

In this section we consider the pricing of perpetual contingent claims with U-shaped 
payoff functions such as 

(4.1.1) 3z(x) = a l  (KI - x ) +  + a 2 ( x -  K2) + . 

For a I = a 2 =  1, the contingent claim may be called a perpetual  Amer ican  

strangle if K~ < K 2, and called a perpetual  Amer ican  straddle if Kt = K2. The 
assumption on {X(t)} remains that it is a Wiener process. 
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Let S = S(0) denote the current stock price. We consider exercise strategies 
arising from stopping times of the form 

TL.M = inf {t }S(t) = L  or S( t )  = M} ,  

where 0-<  L-< S-< M. The value of the contingent claim according to such a 
strategy is 

(4.1.2) 

Put 

(4.1.3) 

and 

(4.1.4) 

Then 

V(S, L, M)  = E[~(S(TL.  M ) )  e - a'tl ,,; h*] .  

2 (S, L, M)  = E[I(S(TL. M) = L) e -  0rL. , ;  t7"] 

u(S ,  L, M)  = E[I(S(TL.M) = M) e -aT).. ~,; h*] .  

(4.1.5) V (S, L, M)  = 7r (L ) 2 (S, L, M)  + ~ (M) ~ (S, L, M) .  

For 0 = 0o and 0 = 0t (the roots of  equation (4.3)), the process {e 
bounded martingale (with respect to the risk-neutral measure) 
Applying the optional sampling 
equations 

(4.1.6) 

and 

(4.1.7) 

respectively, from which we obtain 

theorem to these two 

173o j +.,S.L,M) = ,  

2 ( S , L , M ) ( L ' ~ ° ' + / u ( S , L , M )  = 1, 

(4.1.8) 2 (S, L, M) = 

and 

(4.1.9) fl (S, L, M) - 

- 6 , ÷ o x ( , ) }  is a 

for t --< TL. M . 
martingales yields the 

Note that 

(4.J.~o) 

M °, SO,,_ Mo,,SO~ 

M o, LOo _ MOoL o, 

S o, Loo _ sOo L o, 

M o, LO,,_ Moo L o, 

lim 2(S, L, M) = 
M .-..) ~ 
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which confirms (3.7), and 

(4.1.11) 

which is (3.14). 

lim B ( S , L , M ) =  
L+0 

The remaining problem is to optimize V(S, L, M), considered as a function of the 
exercise boundaries L and M. The first order conditions are 

VL(S, L,M) = 0  

and 
vM(s, E, ,0) = o. 

These conditions do not depend on S (as long as S is between L and M). At first this 
seems surprising, but it follows immediately from the formulas 

(4. I. 12) V L (S, L, M) = 2 (S, L, M) [~' (L ) - V s (L, L, M)] 

and 
(4.1.13) Vu(S, L, M) =u(S ,  L, M) [z~' (M) - Vs(M, L, M)],  

which generalize (3.1.8) and (3.1.10), respectively. Thus the first order conditions 
become 

(4.1.14) Vs(L, L lO) = x '  (I2) 

and 

(4.1.15) Vs(lO , 12, IQ) = x '  (lO), 

which are the high contact conditions. The optimal exercise boundaries/2 and ]Q are 
determined by solving (4.1.14) and (4.1.15) simultaneously. For L<-S  <-ffl, the 
price of the perpetual contingent claim is 

(4.1.16) V (S, L, M) = zr (£) 2(S, L, IQ) + ~(IQ) p (S, L, M) 

1 =(s°° S°')[~Oo ~0,  ~ ( ~ , )  • 

To prove (4.1.12), consider the identities 

2(S, L, M) = 2(S, L + x, M) 2(L + x, L, M) 

and 

k t ( S , L , M ) = I t ( S , L  + x , M ) +  2 (S ,L  + x , M ) I t ( L  + x , L , M )  

where 0 < x < S - L. Differentiating these equations with respect to x and setting 
x = 0 yields 

(4.1.17) 0 = 2t.(S, L, M) + 2 (S, L, M) 2s(L, L, M) 
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and 

(4. I.18) 0 = ~L (S, L, M) + 2 (S, L, M) A s (L, L, M),  

respectively. Differentiating (4.1.5) with respect L and applying (4.1.17) and 
(4.1.18), we have 

VL(S, L, M) = st' (L) 2 (S, L, M) + st(L) 2 L (S, L, M) + st(M) UL(S, L, M) 

= 2 (S, L, M) [st' (L) - st(L) 2 s (L, L, M) - st(M)/z s (L, L, M)] 

= 2 (S, L, M) [st' (L) - Vs(L, L, M)],  

which is (4.1.12). The proof of (4.1.13) is similar. 

Remarks: For general payoff functions, there might be several disjoint optimal 
non-exercise intervals. For a matrix derivation of the results in this Section, see 
Section 5 of GERBER and SHrU (1994). There are closed-form formulas for deferred 
perpetual American call and put options; see GERBER and SHIU (1993b). 

4.2. Perpetual down-and-out option 

In this section we consider the pricing of a perpetual "down-and-out"  American 
call option with exercise price K. The option contract becomes null and unexercis- 
able, if the stock price declines to the knock-out price L, L < K. When this occurs, a 
rebate or refund of amount R is given. For M _> K, it follows from (4.1.5) that the 
value of the strategy to exercise the call option when the stock price increases to M 
for the first time is 

(4.2. I) V ( S , L , M ) = R A ( S , L , M ) + ( M - K ) l z ( S , L , M ) ,  L_<S_<M. 

Note that the lower exercise boundary L is fixed, and the problem is to maximize V 
as a function of the upper exercise boundary M. 

We now consider the special case where the stock pays no dividends (hence 
01 = 1 and 00= -26 /o2 ) .  We shall show that the maximal value of (4.2.1) is 
obtained for M---> oo and that it is 

(4.2.2) V ( S , L , ~ ) = S + ( R - L ) I s I  -°'' 

/U = S + ( R - L )  

This result can also be found in MERTON (1973, (57); 1990, (8.57)) and INGERSOLL 
(1987, p. 372, (39)). 

For the proof we first observe that 2 (S, L, M) is an increasing function of M and 
hence the first term on the right-hand side of (4.2.1) is bounded by 
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The second term on the right-hand side of  (4.2.1) may be estimated as follows: 

(M - K) ~ (S, L, M )  = (M - K) 
SL °° - S °° L 

ML °° - M oO L 

= lim ( M - K ) ~ ( S , L , M ) .  
M .---~ ~ 

4.3. The Russian option 

Let M be a number such that M ~ S. Let 

(4.3.1) M ( t ) = m a x  {M, max [ S ( u ) l 0  --< u --< t ]} ,  

which can be interpreted as the historical maximum of the stock prices at time t. 
Note that the pair {S(t), M( t ) ;  l --> 0} is a homogeneous Markov process. The term 
"Russ ian  op t ion"  was coined by SHEPP and SHmAYAEV (1993) to describe a 
perpetual American option whose payoff is M(t ) ,  if it is exercised at time t, t -> 0. 
That is, the holder of  a Russian option has the privilege of  receiving the historical 
maximum of the stock prices up till when he chooses to exercise the option. The 
price at time 0 of  the option is the supremum, over all stopping times T >- 0, of  

(4.3.2) E [ e - ~ T M ( T ) ;  h*]. 

SHEPP and SHmYAEV (1993) show that there is a number/~, which depends only on 
6,/9 and a, such that (if S(0) >/~M) the optimal strategy is to exercise the option at 
the first time t when 

(4.3.3) S (t ) = IkM (t ) . 

Here we shall show how/k can be determined in a very transparent fashion. Let k 
be a number, 0 < k < 1. For a current stock price S = S(0) with kM-< S, we 
consider the strategy to exercise the option at the stopping time 

(4.3.4) T k = inf { t l S ( t )  = k M ( t ) } .  

The value of  this strategy is denoted by R(S,  M; k); we note that 

R ( S , M ; k ) = M R ( S / M ,  1 ;k ) .  

From this and the definitions (4.1.3) and (4.1.4) it follows that 

(4.3.5) R ( S , M ; k ) = M ~ ( S ,  kM, M ) + R ( M , M ; k ) i z ( S ,  kM, M )  

= M [ 2 ( S ,  kM, M ) + R ( I ,  I;  k ) u ( S ,  kM, M)] .  
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Applying (4.1.8) and (4.1.9), we obtain 

(4.3.6) R ( S , M ;  k ) = M [ ) t ( S / M , k ,  I ) + R ( I ,  I ; k ) p ( S / M , k ,  I).1 

M 
- - -  { [ ( S / M )  ° ' ' -  ( S / M )  °'] + R ( I ,  I ; k )  [k °" ( S / M )  °' - k °, (S /M)°"J} ,  

kOo _ k o, 

where R(I ,  1 ; k) needs to be determined by the boundary condition at S = M. This 
condition can be derived by the following heuristic argument. If the current stock 
price S is very close to M, we can be "a lmost  sure"  that the stock price will attain 
the level M (and hence that the maximum will be increased) before the option is 
exercised. Thus, if S is close to M, R(S,  M; k) does not depend on the exact value 
of M, 

(4.3.7) RM(M, M; k) = O. 

From this and (4.3.6) we get the condition 

- - { [ ( 1 - 0 0 ) - ( I - 0 j ) ] + R ( I ,  I ; k ) [ k ° " ( I - O O - k ° ' ( l - O o ) ] }  =O, 
1 

kOo _ k °, 

which yields 

0~  - 0o 
(4.3.8) R(1, l ;  k) = 

(1 - Oo)k ° ' -  (1  - OOk °° 

We substitute this expression into formula (4.3.6) and obtain after simplification the 
result that 

( I  - 0 0 )  ( S / M )  °' + (01 - 1)  (SIM)  °'' 
(4.3.9) R(S,  M; k) = M 

(1 - O o ) k  °' +(01 - I )k  °" 

Now it is clear that the optimal value of k is the one that minimizes the 
denominator, whose derivative is 

(1 - '00) 01k ° ' -  t + (Oi - 1) Ook °°- I 

Hence the optimal value is 

(4.3.10) /~=/0°(1 - 0 ' ) )  '/w' - °°) 

t e , ( l : ~ )  
and the price of the Russian option is 

(4.3,11) {M R(S'M;~) if ~M ~- S ~ M i f  S .~- kM ' 

Formulas (4.3.10) and (4.3.11) are equivalent to (2.3) and (2.4) of SHEEP and 
SMmYAEV (1993). 



MARTINGALE APPROACH TO PRICING PERPETUAL AMERICAN OPTIONS 213 

ACKNOWLEDGEMENTS 

The  authors  thank FRANfOIS DUFRESNE for  point ing out the paper  by SHEPP and 

SHIRYAEV (1993) and the a n o n y m o u s  referees  for  their  c o m m e n t s .  ELIAS SHIU 

grateful ly  a c k n o w l e d g e s  the suppor t  f rom the Principal  Financial  Group.  

REFERENCES 

BARONE-ADESI, G. and WHALEY, R. E. (1987) Efficient analytic approximation of American option values. 
Journal of Finance 42, 301-320. 

BHAT'rACHARYA, S. and CONSTAN'nNIDES, G. (ed.) (1989) Theo O, of Valuation: Frontier of Modern 
Financial Theory Volume 1. ROWMAN and LITTLEFIELD, Totowa, N.J. 

BLACK, F. and SCHOLES, M. (1973) The pricing of options and corporate liabilities. Journal of Political 
Eeonomy 81, 637-659. 

BENSOUSSAN, A. (1984) On the theory of option pricing. Acta Applicandae Mathematicae 2, 139-158. 
BREIMAN, L. (I.968) Probabilio,. Addison-Wesley, Menlo Park, California, Reprinted by the Society of 

Industrial and Applied Mathematics, Philadelphia, 1992. 
BREKKE, K.A. and OKSENDAL. B. (1991) The high contact principle as a sufficiency condition for optimal 

stopping. In LUND and OKSENDAL (1991), 187--208. 
CARR, P., JARROW, R. and MYNENt, R. (1992) Alternative characterizations of American put options. 

Mathematical Finance 2, 87-106. 
CHESNEY, M., ELLIOTT, R.J. and GIBSON, R. (1993) Analytical solutions for the pricing of American bond 

and yield options. Mathematical Finance 3, 277-294. 
COOTNER, P. H. (ed.) (1967) The Random Character of Stock Market Prices, revised edition. M.I.T. Press, 

Cambridge, Massachusetts• 
Cox, J. C. and Ross, S. A. (1976) The valuation of options for alternative stochastic processes• Journal of 

Financial Economics 3, 145-166. 
DELBAEN, F. and HAEZENDONCK, J. (1989) A martingale approach to premium calculation principles in an 

arbitrage free market. Insurance : Mathematics and Economics 8, 269-277. 
DUFRESNE, F., GERBER H.U. and SHlU, E.S.W. (1991) Risk theory with the gamma process. ASTIN 

Bulletin 21, 177-192• 
DYBVlG, P. H. and Ross, S. A. (1987) Arbitrage. In The New Palgrave: A Dictionary of Economics Vol. 1, 

edited by J. EATWELL, M. MILGATE and P. NEWMAN, Macmillan, London, 100-106. Reprinted in The 
New Palgrave: Finance, edited by J. EATWELL, M. MILGATE and P. NEWMAN, W. W. NORTON, New 
York (1989), 57-71• 

ESSCHER, F. (1932) On the probability function in the collective theory of risk. Skandinavisk 
Aktuarietidskrift 15, 175-195• 

GERBER, H. U. and SHtU, E. S. W. (1993a) Option pricing by Esscher transforms• Proceedings of the 24th 
ASTIN Colloquium at Cambridge University Volume 2, 305-344• Also to appear in the Transactions 
of the Society of Actuaries 46, (1994). 

GERBER, H.U. and SHtU, E. S. W. (1993b) Discussion on TH,LEY (1993). Transactions of the Society of 
Actuaries 45. 

GERBER, H.U. and SHlU, E.S.W. (1994) From perpetual strangles to Russian options. Insurance: 
Mathematics and Economics. 

GOLDMAN, M. B., SOSIN, H. B. and GATTO, M. A. (1979) Path dependent options: " Buy at the low, sell at 
the high". Journal of Finance 34, III1-1127. 

HARRISON, J.M. and KREPS, D.M. (1979) Martingales and arbitrage in multiperiod securities markets. 
Journal of Economic Theory 20, 381--408. 

HARRISON, J.M. and PLJSKA, S. (1981) Martingales and stochastic integrals in the theory of continuous 
• trading. Stochastic Processes and Their Applications 11, 215-260. 

HEs'roN, S.L. (1993) Invisible parameters in option prices. Journal of Finance 48, 933-947. 
HULL, J. and WroTE, A. (1993) Efficient procedures for valuing European and American path-dependent 

options. Journal of Derivatives 1, 21-3 I. 
[NCERSOLL, J.E., Jr. (1987) Theory of Financial Decision Making. ROWAN and LIT'rLEFIELD, Totowa, 

N.J. 
JACKA, S.D. (1991) Optimal stopping and the American put. Mathematical Finance 1 (2), 1-14. 



214 GERBER AND SHIU 

JAILLET, P., LAMBERTON, D. and LAPEYRE, B. (1990) Variational inequalities and the pricing of American 
options. Acta Applicandae Mathematicae 21, 263-289. 

KARATZAS, l. 0988) On the pricing of American options. Applied Mathematics and Optimization 17, 
37--60. 

KARLIN, S. and TAYLOR, H. (1975) A First Course in Stochastic Processes (2nd edn). Academic Press, 
New York. 

KARLIN, S. and TAYLOR, H. (1981) A Second Course in Stochastic Processes. Academic Press, New 
York. 

KIM, I.J. 0990) The analytic valuation of American options. Review of  Financial Studies 3, 545-572. 
LAMBERTON, D. (1993) Convergence of the critical price in the approximation of American options. 

Mathematical Finance 3, 179-190. 
LAMBERTON, D. and LAPEYRE, B. (1991) Introduction au calcul stochastique applique ~ la finance. 

Mathrmatiques & Applications #9, Socirt6 de Mathrmatiques Appliqu~es et Industrielles; distributed 
by ELLIPSES, Paris, France. 

LUND, D. and OKSENDAL, B. (ed.) (1991) Stochastic Models and Option Values: Applications to 
Resources, Environment and Investment Problems. North-Holland, Amsterdam. 

MACMILLAN, L.W. (1986) Analytic approximation for the American put. Advances in Futures and 
Options Research I (A), 119-139. 

MCKEAN, H.P. (1965) A free boundary problem for the heat equation arising from a problem in 
mathematial economics: An appendix to SAMUELSON (1965). Industrial Management Review 6 (2), 
32-39. Reprinted in COOTNER (1967), 525--532. 

M ERTON, R.C. (1973) Theory of rational option pricing. Bell Journal of  Economics and Management 
Science 4, 141-183. Reprinted in BHATTACHARYA and CONSTANTINIDE5 (1989), 229-271, and as 
Chapter 8 in MERTON 0990), 225-308. 

MERTON, R.C. (1990) Continuous-Tinge Finance. Basil Blackwell, Oxford. 
MYNENh R. 0992) The pricing of the American option. Ammls of  Applied Probability 2, 1-23. 
OMBERG, E. (1987) The valuation of American put options with exponential exercise polices. Advances in 

Futures and Options Research 2, 117-142. 
SAM UELSON, P. A. (1965) Rational theory of warrant pricing. Industrial Management Review 6 (2), 13-32. 

Reprinted in COOTNER (1967), 506--525. 
SCHACHERMAYER, W. (1992) A Hilbert space proof of the fundamental theorem of asset pricing in finite 

discrete time. Insurance : Mathematics and Economics 1 l, 249-257. 
SHEPP, L. and SHtRYAEV, A. N. (1993) The Russian option : Reduced regret. Annals of  Applied Probability 

3, 631-640. 
SHtRAYAYEV, A.N. (1978) Optimal Stopping Rules. Springer-Verlag, New York. 
SMITH, C.W., Jr. (1976) Option pricing: A review. Journal o f  Financial Economics 3, 3-51. 
TILLEY, J. A. (1993) Valuing American options in a path simulation model. Transactions of  the Society of  

Actuaries 45. 

APPENDIX 

A1. Semi-continuous sample paths 

In the rest of  this paper, we consider the assumption that the sample paths of 
{S(t)},  or equivalently, those of {X(I)}, are skip-free downwards. (This assumption 
was used in deriving (3.10)). Then the following decomposition holds: 

(A. l . l )  X ( t ) = Y ( t ) + v 2 W ( t ) - c t ,  t>--O. 

Here, {Y(t)} is either a compound Poisson process with positive increments or the 
limit of  such processes; {W(t)} is an independent standardized Wiener process 
(with zero drift and unit variance per unit time); the last term, ct, represents a 
deterministic drift. The cumulant generating function of the random variable X(t) is 
of  the form 

(A.1.2) In [M(z, t)l = t (e ;~-  1) [ - dQ( x ) ] +v 2 z 2 1 2 - c z  , 
o 
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where Q(x) is some nonnegative and nonincreasing function with Q(oo)= 0. Note 
that, for each positive number e, the integral 

i oo (e ~ ' -  I) [-dQ(x)], 
e 

as a function in z, is the cumulant generating function of  a compound Poisson 
distribution with Poisson parameter 

and jump amount distribution 

P(x; e) - 

2 (e) = Q (e), 

Q (e) - Q (x) 
X>--/~. 

Q(e) 
For notational simplicity, we assume that 

- d O  ( x )  = q ( x )  dx 

for some nonnegative function q (x). Let ~ and cr 2 denote, respectively, the mean 
and variance of {X(t)} per unit time. Then 

(A.I.3) I~t=E[X(t)]=II ~ xq(x) dx-c]t, 

(A.I.4) a2t=Var[X(t)]= x2q(x) dx+v 2 t, 
0 

and 

I 
oo 

(A.1.5) E[(X(t)-ut) 3] = t x 3 q(x) dx. 
0 

In general, for n >-- 3, the n-th cumulant of  X(t) is given by 

t x" q (x) dx. 
0 

If follows from (2.5) and (A.I.2) that 

(A.1.6) l n [ M ( z , t ; h ) ] = l n [ M ( z + h , t ) ] - l n [ M ( h , t ) ]  

=t{I ] (e~- l)e'tr q(x)dx+v2z2/2-(c-v2h)z} • 
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Thus the Esscher transform (parameter h) of  a process defined by (A.I. 1) is of  the 
same type, with the following modifications: 

(A.I.7) q(x )  ~ en~q(x),  

(A.I.8) v 2 ~ i, 2 (unchanged), 

(A.I.9) c --> c -  v2 h. 

Furthermore, it follows from (A.1.6) that (2.8) and (3.6) can be written as 

(A.l.10) 

and 

( A . I . I I )  

I 
~ 1,2 

(e x -  1)  e h'x q(x) dx+ v 2 h  * = c + 6 - l0 - - -  

0 2 

f 
oo 1,,2 0 2  

(e °-~_ l)eh'." q ( x ) d r  + - -  - ( c - v 2 h * ) O = 6 ,  
o 2 

respectively. 

A2.  A par t i cu lar  f a m i l y  

For the model defined by (2.1) and (A.I . I ) ,  we now assume that v = 0 ,  i.e., 

S (t ) = S (O) e r( ')-c' ,  

and that 

(A.2.1) q ( x ) = a x ~ - I e  -bx, x > 0 ,  

where a > 0, a > - 1, and b > 0 are three parameters. In the context of  risk theory, 
DUFRESNE, GERBER and SHtU (1991) have considered such a q(x )  function. 

According to (A.I.7), for h < b, the Esscher transform of a process defined by 
(A.2.1) is a member of the same family, with b replaced by 

(A.2.2) b (h) = b - h.  

The moment generating function of  Y(t)  is 

~-~--~ ) if a = 0  

- 1 t if a ~ O  
t b ~ 
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Thus, for a=O, {Y(t)}t_> o is a gamma process;  for a > 0 ,  it is a compound 
Poisson process with Poisson parameter 

aF(a) 
2 (a, a ,  b) - 

b ~ 

and gamma jump density 

p(x; a, b) = 
b ~  

X o~ - I e - bx, 

F(a) 
x > 0 .  

For  - 1 <  ot < 0, the most prominent case is a = - I / 2 ,  where {Y(t)}t_> 0 is an 
inverse Gaussian process and the density function of  Y(t) is 

I - (  x~f~at)21 at exp ~ x > 0 
X 3 / 2  ' • 

b* = b(h*)  = b -  h* 

The condition for 

becomes 

b* c + b - p  
(A.2.4) - -  - e 

b * -  l 
if a = 0  

and 

I 1 c + ~  - p  
(A.2.5) - if o~ ¢ 0.  

( b * -  1) ~ b *~ aF(a) 

Solving (A.2.4) yields 

1 
(A.2.6) b* = 

l - e - ( c + ~  - p ) l a  ' 

which, with p = O ,  is formula (3.1.7) in GERBER and SHIU (1993a). In general, 
equation (A.2.5) does not yield a closed-form solution for b*. However,  if a = 1 
(exponential jump amounts), one finds 

4 o  
1 +  1 +  

c + 6 - p  
(A.2.7) b* = 

2 

A discussion of  the case where or= -V2 can be found in GERBER and Smu 
(1993a). 

For each fixed o~, we might determine the parameters, a, b and c, by the method 
of  moments. Thus we assume that we know u,  o and the third central moment of  
X( I ) ,  which we write as ~,a 3 (y being the coefficient of  skewness). Matching the 
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first three moments (by means of formulas (A.1.3), (A.1.4) and (A.I.5)) yields the 
equations : 

I ~ a F ( a +  1) 
IX= x q ( x ) d x - c -  b '~+l c ,  

0 

i 
oo a F ( a  + 2) 

0"2= x2 q ( x ) d x =  ba+2 ' 
0 

and 

I = a F ( a  + 3) 
yO3= x3 q ( x )  dx - ba+3 

0 

From these equations we obtain 

o~+2 
b -  

y a  

(to be replaced by b* for the evaluation of a derivative security), 

(a  + 2) ~ + 2 
(A.2.8) a = 

F(ot + 2) y~+ 2 oc~ ' 

and 

a + 2  a 
(A.2.9) c - ,u. 

o t + l  y 

These formulas generalize (and explain !) the formulas in Sections V.2 and V.3 of 
GERBER and Smu (1993a). We note that HESTON (1993) has independently 
introduced the gamma process for modeling stock-price movements ;  his for- 
mula (lOa) is the same as formula (4,1.7) of GERBER and S , lu  (1993a). 

A3. Formulas  for the negative root 

With the assumptions v = 0 and 

q ( x ) = a x a - l e  -bx, x ~ O ,  

equation ( A . I . I I )  becomes 

a (eO~-- l )eh"~X'~- Ie -b*dx- -cO-- - -6 ,  

0 

o r  

(A.3.1) I ~ (e °~-  1) x ~ - ~ e - b " ~ d x =  d + c O  

0 a 
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The  value o f  the integral in the left-hand side o f  (A.3.1.) can be read o f f  f rom 

(A.2.3). 
If  ot = 0, then (A.3.1) becomes  

b *  ~ + co 

(A.3.2) - -  = e  a 
b* - 0 

Subst i tut ing b* in (A.3.2) with formula  (A.2.6) yields 

- cola + 0 [ e  ~la - e - ~c - p~la] = e ~ l a .  (A.3.3) e 

By (A.2.8) and (A.2.9),  

I y2 

a 4 

and 

a 2 

For  example ,  a ssume that d = 0.1, 0 = 0, ju = 0.1, a = 0.2 and ~ = 1. Then  (A.3.3) 

becomes  

e - 30/40 -t- 0 [ e  1/40 - e - 3140] = e l / 4 0 ,  

f rom which we obtain 

00 = - 7 .559609675.  

Note  that, in the Wiene r  process model  (with 6 = 0.1 and a =  0.2), 00 = - 5  by 

formula  (4.6). 
If  c t ~ 0  and ot > - 1, then (A.3.1) becomes  

1 1 b + c O  
(A.3.4) - -  - - -  , 

( b *  - O )  ~ b *~' a F ( o t )  

where  b* is def ined by (A.2.5). In the special  case  where  a = 1, (A.3.4) s impl i f ies  

as  

1 1 b + c O  
(A.3.5) - -  - - - - ,  

b* - 0 b* a 

which is a quadrat ic  equat ion in 0, where  b* is g iven  by (A.2.7),  

27 
a -  

2 y 3 O r  

and 

3 a 
c -  - ~ .  

2 y 
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Now, consider  the zero d iv idend case (p  = 0), then the positive root of  (A.3.5) is 
0~ = I, and the negat ive root is 

0 o = - 6b*lc ; 

using the same numerical  values as above,  6 = 0.1, # = 0.1, o = 0.2 and y = 1; we 
obtain 

l +, di 
b * -  

2 

and 

O0 = - 7 . 7 5 4 1 6 5 5 1 .  
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