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EDITORIAL 

It is now almost 2 years since I took over from David Wdk~e as a co-edi tor  
of  ASTIN Bulletin. It was indeed a great honour  for me to have been 
appointed  to the e&toNal commit tee  and certainly it is my mtenUon to work 
hard to maintain and enhance the excellent reputat ion that ASTIN Bulletin 
has. 

As with my predecessor,  my pr imary  responsibility hes on the A F I R  side 
of  the journal .  It is now, I think, almost  10 years since A F I R  was formed.  As 
a consequence the scope o f  ASTIN Bulletin was broadened to encompass  
not just  non-hfe research but also actuarial  problems deahng w~th financial 
risk. As most readers o f  ASTIN Bulletin will reahse we sull have a long way 
to go before we get a good balance m the journal  between ASTlN- type  and 
A FIR - type  papers 

Perhaps this reflects how well the A F I R  colloqtua have been orgamsed m 
the past and no doub t  the future also. In parucular ,  the success of  the 
meeting depends upon the papers  presented and, m consequence,  the 
proceedings produced for the meeting. For  many authors  the pubhcat~on of  
a paper  m a col loquium proceedings is a satisfactory endpomt .  I would 
argue that this is not good enough! For  every one A F I R  member  who 
at tends an A F I R  col loquium there are ten who do not. It is impor tan t  that 
we cater for these members  by ensuring that the best o f  the colloquia papers 
get through to A S T I N  Bulletin. What ,  then, do I regard as a paper  m the 
core of  AF IR ?  A F I R  translates as Actuarial  Approach  to Fmancml Risks. 
Here there ~s something o f  a two way flow. On the one hand actuaries have 
the abdlty to apply well known actuaNal methods  to purely financml 
problems On the other  hand actuaries also need to import  the best of  
financial economics into the t radmonal  actuarial  problems o f  r~sk manage- 
ment (for example, of  an insurance company)  1 would say that this flow of  
ideas is essential for us to maintain our  pos~t~on as the leaders m this field. 
Thus  actuaNes already acuve m this field need to take on board,  and adapt  
as appropria te ,  financial economic  theory Fur the rmore  our  systems of  
educat ion wdl also need to adapt  to equip the actuaries of  t omor row with 
the necessary tools to cope with tomorrow's  problems. Those  who ms,st that 
we already have the tools wdl be left behind 

There  are a number  o f  areas which I would like to see flourish within the 
pages o f  A S T I N  Bulletin. asset-habdity modelhng;  securitizatlon of  
insurance risks; models for long-term financial risk analys~s; value at risk, 
to name but a few. However,  I would hke to concentra te  here on the need for 
papers which work towards a reumficat~on of  the financial economic  and 
t radmona l  actuarial  theories. I use the word " reun i f i cauon"  here mtenuon-  
ally, since ~t Is only in the last 20 to 30 years that financial economics (as it 

ASFIN  B U L L E T I N ,  Vol ,28, No I, 1998, pp I-2 



2 EDITORIAL 

might be applied to actuarial problems) has split off and become a major 
field of study in its own right In the process actuaries were left behind, the 
majority preferring to stick with their tried-and-tested tools. Before that 
actuaries could be regarded as being as much at the forefront of financial 
economic thought as any other group. Indeed, recently | found m one of the 
earliest volumes of the Journal of the Institute of Actuaries (1855) a paper 
proving a now-well-known result in stochastic interest. If that doesn't prove 
that we were once at the forefront of financial economic thought I don't  
know what else could. 

Over the last few years I have watched and become involved in some 
heated debates over which approach is the right one In my view both 
approaches are correct and that they are compatible Differences of opinion 
arise because of misconceptions about what the other approach is 
attempting to do. On the one hand we have problems which require a fmr 
value or price to be put on a set of haNhties (for example, xn setting a 
premium rate or in defimng the hablhtles whmh appear in company 
accounts). In my vmw the financml economm approach here is the right one. 
On the other hand we have, for example, problems of reserving A reserve 
may be some sort of antmipated present value of future net cashflows often 
calculated along determlmsuc lines However, reserves may be based on 
more sound stochastic principles. For example, reserves may be calculated 
according to the principles of value at risk. This means determining the level 
of reserve which will have a 95% probability, say, of being sufficient to take 
care of the future net cashflows as they arise when these are subject to 
uncertainty (such as stochastic habflmes and assets, parameter uncertainty 
and model risk). It is immediately possible to tie the two approaches together 
by describing a value-at-risk reserve as the fair or market value of the future 
net cashflows plus a contingency margin for future uncertainty. 

Papers which do attempt to pull these approaches together are starting to 
appear and I very much hope that their authors will choose AST1N Bulletin 
as the right home for their work. 

ANDREW CAIRNS 



THANKS 

Attentive readers will have noticed that Harry Reld's name no longer 
appears on the front cover of  AST1N Bulletin This follows Harry's 
retirement from the editorship of  the journal after fifteen years Harry 
prowded a very valuable link with the industry. As a testimony to his 
achievements we only need to refer readers to a recent survey by Colquitt 
(1997) Oll the significance of actuarial journals in which ASTIN Bulletin 
ranks very high. 

On behalf of  the readership we would like to wish Harry a long and 
happy retirement 

All members of  ASTIN and AFIR will, by now, have received the 
cumulative index for volumes I to 27 of  ASTIN Bulletin. This index would 
not have been produced without the hard work of Marc Goovaerts and his 
colleagues for which we are extremely grateful 

L.L. Colqmtt (1977) Relative sigmficance of  insurance and actuarial 
journals and articles: a citation analysis. Journal of R~sks and Insurance 
64' 505-527. 
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H E D G I N G  IN F I N A N C I A L  M A R K E T S  I 

B Y  M A R T I N  B A X T E R  

Stattsttcal Laboratory, Cambrtdge Umverstty 

A B S T R A C T  

Th~s (mostly) expository paper describes the importance of  hedging to the pricing 
of modern financml products and how hedging may be achieved even when the 
tradmonal Black-Scholes assumptions are absent 

K E Y W O R D S  

Derwatwes; hedging; option-pricing, superhedgmg; volatihty 

l O V E R V I E W  

Any market practtttoner who sells derivatives on his own account will say that 
hedging is the key to pricing If a contract is not hedged, one can sell it at any 
price, even the right one, and still lose money. The price of the contract rnust be 
the cost of  the hedge, plus margin, and the profit/loss of the deal wdl depend 
crucially on the hedge being effective 

From the earliest days of  the rigorous hterature, such as Harrison and Phska 
(1981), hedging has been used to derive prices m the absence of arbitrage. Text 
books for practmoners, such as Chapter 14 of Hull (1997) and Baxter and Renme 
(1996) stress the centrahty of  hedging to securmes trading The essence of the case 
being that hedging allows the derwatwe writer to mmlm~se his exposure to market 
risk without reducing hts profit, thus allowing hma, in the words of  one banker, 
' to quote a price with a view of making a profit through h~s intermedlat~on rather 
than by taking a directional view" (Bogm, 1997). 

Hedging may be performed on a wide variety of  markets for arbitrary 
denvauve products. In simple cases, an option ~s hedged by trading m the 
underlying security (stock, currency or bond), but It Is equally possible to 
construct a hedge for a denvatwe m terms of simpler dertvatwes, such as forwards 
and calls Duplre (1993) has doric interesting work m developing this area of  
option-hedging, which we will study m section 5 

On the other hand, it might be attractwe to work with a model in which it is 
not possible to hedge. Such incomplete markets can appear  retractable, but, 
following work by El Karom et al (1996) are now amenable to the tool of  

This  p a p e r  was  dehvered  al  a mee t ing  on  "F inanc ia l  M a t h e m a t i c s  a n d  D e r w a t w e s '  at  the 
In t e rna t t ona l  Cen t r e  for  M a t h e m a t i c a l  Sciences in E d i n b u r g h  on  21 J a n u a r y  1997 

ASTIN BULLETIN, Vol 28 No | 1998, pp %16 



6 MARTIN BAXTER 

superhedgmg.  This techmque produces  a s t rategy that  domina te s  the opt ion  
payof f  Tha t  is, the hedge will p roduce  at least as much as the cont rac t  requires, 
and may  p roduce  a surplus  E h m m a t m g  down-s ide  marke t  risk (in theory at least) 
is achieved at  the expense of  the loss of  two-way pricing Final ly ,  the 
supe rhedgmg of  der ivat ives  using o ther  op t ions  gives even bet ter  results, and 
creates an elegant  dual i ty  between the o p u o n - h e d g m g  and the superhedgmg 
approaches  

2 STATIC HEDGING 

We begin with the simplest  case 
Cons ide r  the con t rac t  to forward  purchase  at  tmle T o n e  unit o f  a stock S for 

a pre-set price k. Imagine  that  interest rates are cons tan t  at  a (cont inuously  
c o m p o u n d e d )  rate r and there are no t ransac t ion  costs payab le  nor  dividends due 
from the stock At  what  price k should we sell the forward  contract'~ 

At  time T, the cont rac t  has the (now certain)  value o f  

X = S r - k ,  

so we might  expect  its t ime-zero d iscounted  worth  to be 

E(e  rT x )  = e - r rE(ST)  - ke -fT. 

and then the price k required to give the con t rac t  nil net present  value would be 
k = E(ST) More  generally,  we might  d iscount  equities at a different rate, u, than 
the cash d iscount  rate r. In that  case, the a p p r o p r i a t e  forward  price would be 
k = e-(U-r)TE(ST). Either  way. this seems to make  some sense if S r  is expected to 
be large, the forward  price should be cor responding ly  large Paradoxica l ly  
however,  this price is wrong 

The  actual  fo rward  price, m this model ,  is k = erTSo That  Is, the price is jus t  
the current  s tock price So scaled up by the time value of  money over  the per iod 
The price does not  depend  at all on whether  ST IS expected to be high o r  low The 
reason for this is a hedge The cont rac t  X can be hedged if we. 
• buy one unit o f  stock for price So, and 
• bo r row ke -rT units o f  cash 

This has initial cost  So - ke - 'T By time T, the stock has evolved to be worth  
ST and the debt  has grown to - k ,  giving exactly the same net wor th  as the 
forward  X. So the initial wor th  of  X is the initial cost  of  the hedge, which is zero 
only If k = e~'rSo 

The hedge is essential ly to buy one unit  o f  the stock and walt,  so that  it ~s 
ready to be handed  over  at t ime T We are unconcerned whether  the s tock price 
rises or  falls, or  indeed whether  it is valued ' cor rec t ly '  at ei ther t ime 0 or  tmae T. It 
is enough for us to have it, because we are now unexposed to marke t  risk, in the 
form of  stock price movements  

This  example  demons t ra t e s  a stat ic hedge, which can be put  on at the s tar t  of  
the con t rac t  and left unchanged till the end 
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E x a m p l e :  f o r w a r d  b o r r o w i n g  The interest-rate  marke t  can be descr ibed 
through the behav lour  o f  ze ro-coupon  discount  bonds  The  T-bond pays one 
unit o f  cash at t~me T, and at time t before then has a value ( typical ly)  less than 1, 
wri t t en  P(i, 7) This al lows us to lend £ 1 to a cus tomer  from time zero to time T 
by selhng P-I(O. 7") units o f  the T-bond Into the marke t  now for a price o f £  1, 
which we loan to the cus tomer  At  time T, tile cus tomer  pays  us back  p - I  (0, 7") 
which we use to meet our  ma tu r ing  T-bond hablh ty  We could also accept  term 
deposi ts  from the cus tomer ,  by changing  all the s~gns and buying T-bonds  
instead. 

Our  cus tomer  may  wish instead to bo r row later  (from tlme S to time T), but  
agree on the price now, at t ime zero Suppose  he wants  to bo r row £ I at  tune S 
How much should we demand  back at t ime 7v 

The answer  is, we should get back P(0, S)/P(O,T) and here is the hedge 
* sell P(0, S)/P(0,7) units o f  T-bond,  and receive P(0, S) now, and 
• buy one unit o f  S -bond ,  for cost  P(0, S) now. 

These mmal  t ransac t ions  have zero net cost  At  hme S, we receive £ 1 from 
our  S -bond  which we can loan to the cus tomer  as agreed.  At  time T, we recewe 
P(O, S)/P(O,T) from the cus tomer  which exact ly cancels our  ma tu r ing  T-bond 
I labdlty 

In o ther  words,  the forward  price to sell the T-bond at tn-ne S is 

F -  P(0, T) 
P(0, s) 

Away  from the specml case of  forwards ,  statm hedging can still be beneficml, 
even ~f ~t is not  pcrfect. Fo r  mstancc,  a static hedge to approxmaate  a clama X can 
be made by holding ¢ units of  s tock and ~; umts of  the cash bond  Thc expectcd 
square er ror  o f  thxs hedge (to choose  a s imple loss function),  is 

We can mlnimlse this, to begin with, ovcr  the cash holding,  with the op t imal  
choice of  ~ being ~b=e-rTE(x-~S.r), and the minimal  value being 
E(¢)  = Var (X  - ¢ST) This itself can now be mmlmlsed  over  ¢ at the value 

Coy(X,  ST) 
Var(ST) 

with value E(¢)  = V a r ( X ) ( l  - p2), where p is the cor re la t ion  between X and S t .  

E x a m p l e  In the par t icu la r  case where ST is normal ly  d is t r ibuted  as a N(# ,  o2) 
and  X is the call payoff  X = (ST -- #)+,  then the optmaal  ¢ = ½, and 

7 r - - 2  
E(¢)  - 2~r - 2 E(0), 

a reduct ion m the er ror  var iance  o f  over  73% 
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3. SIMPLE HEDGING 

In a sense, fo rwards  are a special case and their hedge has been known for a long 
ume.  In fact, any payoff  which is a hnear  function of  the s tock price has an exact 
static hedge. The hedge for the claim X = aSr + b, where a and b are constants ,  is 
to hold a units o f  s tock and e-rrb units of  cash, with initial value aSo + e-rTb. 

This exact  answer  for simple clauns m general  marke t s  also holds for general  
c la ims in s imple marke ts  Fo r  instance, take the s ingle-period marke t  with zero 
interest  rates (so there is a cons tan t  cash bond  B~ = I) and one risky asset St. The 
s tock evolves as shown m figure I 

B=I 

X=!  

X--0 

B=I 

FIGURE I Stogie-period securities market 

The stock price ei ther  doubles  or  halves, and cash stays cons tan t  at 1 A call 
op t ion  on Si ,  s t ruck at £ I, with time 1 value o f X =  (Si - I) +, will pay  o f f £  1 if 
the stock goes tip and noth ing  If It goes down.  The pauci ty  o f  possible values for 
S~ enables  us to write X as 

2 I 
X =  ~ S i  3 

Tha t  is, X has the same payoff  as a forward  to buy 2/3 units o f  s tock at the price 
of  £0  50 per unit App ly ing  our  methods  o f  section 2, we see that  the tmlc zero 
price for X is 

V = -2 I _ 1 
3 S° 3 3 

So the price o f  X is ac tual ly  1/3 and the hedge Is to 
• buy 2/3 units of  s tock for cost  2/3 
• bo r row an addi t iona l  1/3 units o f c a s h ,  
which has initial cost o f  I/3 and terminal  value of  X 

We could have per formed this ca lcula t ion for any claim X which paid  xu after  
an up- jump and x,/after a d o w n - j u m p  Such a claim would be worth 

I 2 
V ~ "~X u-]- '~X d 
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This has the form of the expected value of X under a probability measure whmh 
asstgns I/3 chance to an up-jump and 2/3 chance to a down-jump• Thts hedging 
measure  (q, I - q )  is given by thc formula 

So - Sd e' ~'So - Sd 
q - - - - , o l  q - -  t f r  ¢ O, 

A u - -  3 d S u  - -  S d 

where Si takes the value s,, after an up-jump, and sa after a down-jump• To see 
why this actually is an expectatmn, see Chapter 2 of Baxter and Renme (1996) 

Although the model is very simple, Jt can be used as a basra building block of 
more complex models We can combine many mdw~dual branches into a tree 
(figure 2). 

It just takes 10 layers In tlus tree to produce a final layer containing over 1000 
nodes Optmns can still be priced by working back recurslvely through the tree 
from the final layer• See, for example, Chapter 15 of Hull (1997) or Chapter 2 of 
Baxter and Renme (1996). 

FIGURE 2 B m o m m l  b e e  

4. BLACK-SCHOLES 

The simplest continuous-time rnodel for a stock price is the Black-Scholcs model, 

St = S0 exp(o-W, + #t) ,  

where W, ~s a Browman motmn, and cr and # are constants In this model, 
log(S f fSo)  is normally distributed with variance oat and mean/~,, The wmable cr 
Is called the vola td t ty  of the process 

We can also see S as the hm~t of discrete trees, as m section 3, with current 
value So evolving to 

So exp(crv/~7 + t ,&) ,f up-jump, 
S~t = So e x p ( - o x / &  + p,6t) If down-jump 
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The time uncrement 6t over one step of  the tree ~s going to get ever smaller.  Then 
log(St~So) is equal  to I t t+ crx,~X(t/~St), where X,, is a smaple symmetr ic  randorn 
walk,  with X,, dis t r ibuted  as a function o f  a b inomial ,  2 Bin(n, 1/2) - n, with zero 
mean and var iance  n. By the Centra l  Limit  theorem,  the dls tNbut lon o f  log(St/So) 
converges  to that  o f  the Black-Scholes,  namely N(#t ,  a2t) 

Choos ing  q to be the hedging measure  

q - e,,./~7+j,,~ , _ e-,../~7-~,,~, "-' ~ ~ ' 

o-2,) then now Iog(S,/So),s  asympto t ica l ly  d ,s t r ,buted  as a normal  S ( ( r -  ~o--)t, 
The hedging price at t ime zero of  any clama X payab le  at tmle T will then be 
I~ (e -~rx ) ,  where the behav lour  o f  X u n d e r  Q is governed by the new asymptotuc 
normal  dustrlbutlon Evalua t ing  thus for the European  call claim X = ( S T -  k) + 
guves rise to the ce lebra ted  Black and Scholes (1973) call optuon pricing formula  

V 0 = e-rT<F+(l°g(- t -½ cy2 
2 

where F us the forward  price F = Soe ~r, and ,-I, us the normal  dustrlbutuon functuon 
Again  we do not  use this price because it Js an expected value o f  the claim, but 

because this is the value whuch lets us hedge In thus case the hedge we need at tume 
av  Fo r  a general  optuon X we can also price and hedge m the same way 0us-ug 

In fact the Black-Scholes  formula  ns not  jus t  true for the Black-Scholes  model .  
It is enough that  the s tock S r  and cash bond  Br are jo in t ly  log-normal ly  
dustnbuted under  the hedging measure  Q. The formula  wull then still hold wuth 
~ T  replaced by Var(log(S.r/So)), e ,r  replaced by IE~(B~I), and the forward  
price F equal  to F = So/IE~(Br I ) 

F o r  a good untroductlon to Black-Scholes  from the actuarml  point  o f  vuew. see 
the comprehcnswe  review paper  by K e m p  (1996) 

Also H o b s o n  (1996a) reviews the extensions possible from the constant  
vola t lh ty  assumptuons o f  the basuc Black-Scholes  model  Tha t  paper  describes 
hedging m a stochastuc vola t lh ty  f ramework ,  as well as consudermg duscrete-tume 
A R C H  and G A R C H  models,  and provudes a good  in t roduc t ion  to the more  
advanced  techmques  

5. OPTION-H EDGING 

The above  formula  does depends  crucnally on some aspects  of  the Black-Scholes  
model ,  namely that  
• volatnhty IS cons tan t  (or at least determlmStUC) 
• the marke t  genera ted  by the asset us comple te  

In practice,  these can not  be relied upon One solut ,on is to recogmse that,  say, 
vanil la call op t ions  arc so frequently t raded as to be hqtlJd assets m theur own 
Nght As such. they are not priced per re by the Black-Scholes  formula ,  but they 
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can themselves be used m hedges to price more comphcated  products  This ts, to 
corn a phrase, opt ion-hedging using ophons  as a hedge for other  derivatives, as 
opposed to the classical hedging of  options 

As an example, suppose we have a traded stock S, and traded call options, 
where C,(T, y) is the time t price of  a call on ST struck at y. For  smlphclty, take 
interest rates to be zero, so that 

C , ( T ,  :,) = ~:Q((ST -- : ' )+1-~, )  

A particular case, originally due to Breeden and Litzenberger (1978), is that o f  
a terminal value payoff  X = / ( S r ) ,  for some twme-dlfferentlable funcuon f. A 
simple varmnt o f  Taylor ' s  theorem says that 

/7 ~x)  = f (O)  + x['(O) + ( x -  y)+f"O,)dy, for al x >_ O, 

whmh can be proved by integrating by parts. Subsutut lng S r  for x and taking 
expectauons under Q gives the tmle t value o f  the optmn,  Vt, as 

V, = f ( 0 )  + &J'(O) + C¢(T, y)J"(y)dy 

We have calculated not only the pr,ce for X, but also a statm hedge which is 
• hold J(0) umts of  cash, 
• hold f ' (0)  umts of  stock, and 
• h o l d / " ( v ) d y  umts o f  the call struck at t~. 
(In practme, some approximat ion to the cont inuous  density J"(y)dy will be 
required ) We have already seen how I,near terms can be statmally hedged hke a 
forward Now we see the convex terms being hedged with optmns.  

If  interest rates were non-zero,  the formula still holds wflh the single change 
that we hold e-'r/(O) umts of  the cash bond, wh,ch is worth e-~(r- ')f(0) at time t. 

Note that this does not prme all opUons, such as lookbacks or  exot,cs (For  
example, a put at the maxmaum price attained by the stock, X = suPt<TS ~ --St ,  
or an down-and-out  call whmh only pays off tf the stock never went below a pre- 
set threshold, X = (St - k)+l(mf,<r & > c).) 

The formula 's  advantages are not only that ~t Is a statm hedge, but also that it 
~s completely model independent we make no assumptmns about  how S, or 
C,(T, k) evolve, or even whether the market  is complete But we can still hedge 

This example is actually evidence of  a deeper idea o f  Dup~re (1993) Given the 
opUon prices 

ct(r,  y) = I~((ST - -  Y ) + l  .-~t). 

thmr partm] derivative with respect to y ts 

O C,(T, y) = - Q ( S r  > Yl ~-,), 
Oy 
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and dlfferentmtlng once more Dyes 

0 2 
0 v ---2 C,(T, y)dy = Q(ST ~ dyl :G), 

which ,s the marginal density o f  ST given .T', Then the time t value of  any claim 
X = f(Sr)  wdl be 

/0 /0 Q(ST ~ dy I .T , ) f (y )  = --02 C,(T, y ) f ( y ) d y .  
Oy 2 

Integrat ion by parts t ransforms this into the Breeden and Litzenberger formula 

C o n v e x  payo f f s  

There is a special case of  terminal-value options with a convex payoff, which is 
particularly interesting. For  instance, we can use Jensen's mequahty (see, for 
example, 6 6 o f  Wdllams, 1991) to show that 

Vo = E~(e-rr / ( sr ) )  >_ e-r'f(F~, 

where F is a forward price F = e r r S o  = Ea~(ST). We can also use the convexity of  
f o n c e  more to show that 

Vo >_ e - ~ F )  >_f(Sol - (~ - ~ rW)f~OI. 

So that i f / (0)  = 0, for perhaps a call option, the opt ,on value V0 is always worth 
at least as much as its current ,ntrinslc value /'(So), and smldarly V, > f(S,) 
American options, which Dve the right to the mtrlnsm va lue r (&)  at any tmae t up 
to maturi ty T, have no add, tmnal  worth for such convex payoffs null tit 0. 

We can also see how volatdity and convexity make prices higher The price o f  
a convex optmn ~s increasing in the volatlhty of  the asset. For  instance, ~f 

S'~ = gexp(o- Z - ½ o'2), 

where Z is a normal N(0, I) g l v l ngE (S~)  = F ,  then forc~ 2 < r  2, 

Yr = S~exp(e~2 - ½c~2)for 2, an independent N(0, 1), 

where ~2 = r 2 _ o..2 Then again by Jensen's mequahty  

E(; (s;.)) = E(E~ (S.~) [S~)) > ~(f(S~)) 

Call prices, for instance, increase with the volatlhty of  the asset (as per the Black- 
Scholes formula), but also m general models This fact, coupled with the Breeden 
and Litzenberger formula, shows how volatility and convexity work together to 
Dye value That  ~s, the opt ion 's  non-linear terms have worth 

.f~J0 C,(T, y)f"(.,,)dy, 
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which increases both with the volatility of  the asset (whmh increases all the call 
prices) and the convexity o f J  (whmh increases J") .  

Hobson (1996b) umtes exmtmg results, using couphng, to show that convex- 
option prices, even for d~ffusion models, increase with volauhty and that the 
optmn value is itself a convex function of the current asset price 

A new result generahses the Brecden and Lltzenberger formula to higher 
dmaenslons Suppose we have a vector of  assets St m R n, such that tSiI is square- 
integrable and that optmns on all fixed portfohos (hnear combinations) of  ST are 
traded That is, the call ((0, ST) -- y)+ is traded, for all vectors 0 m IR n and all real 
y, and has current price C,(T, O, y) 

Now for any f r o  C "+3, whmh satisfies the boundedness condmon that IW'+3Jl 
is mtegrable over ~ ,  then f has a Fourier transform ](0), 

= d.,-, 

wh,ch ,s bounded by ~0) [  _< clO1-1'' 3 , for some constant c We recall the Fourier 
reversion formula 

f(,-) = 

We can also use an adapted versmn of the existing one-dlmensmnal hedging 
representatmn apphed to the complex functmn d:, evaluated at the portfolio 
value z = <0, ST), thus. 

e,(0 s t ) =  1 +  t(0, S T ) -  /2 b'l(Y-' <0, S,r)- l)+e ' ' d). 

We can substnute this expression into the Fourier mverston formula above, to 
deduce that 

J(ST) = f ( 0 ) +  {Vf(0), ST) -- (2r~)-"~o ~ I:'l(y-'(o, ST>--,)+e"~o)ayao 

This expression can be re-expressed, by changing variables to @ = y 10, to gwe 

f(ST) = f ( 0 )  + (Vf(0), S7) + J~, ((~b, ST) - l)+Ff(qS) d~. 

where F . / {~ )=- (2 r r ) - "  Ref~.[y["+le"fCVqS)dy Thus the time I price of such a 
claun f(Sr) 2S 

V ,  = f ( 0 )  + (W(0),  St) + : C,(T, (b)Ff(qb)dq3, 
J~ n 

where C,(T, 6)= C,(T, qS, 1) And thus when our claim, X = ~ S - / ) ,  is the 
terminal-tune evaluation of a smooth function f ,  then the clam1 has a static hedge 
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of  cash, stocks, and generahsed calls. As such functmns are dense m the space o f  
all measurable functmns f, with f ( S r )  mtegrable, then all such clmms can be 
approximated with static hedges 

6. SUPERHEDGING 

In incomplete models, where we cannot  hedge, and we are pricing exotms 
(insusceptible to Breeden and Ltzenberger) ,  we must try something else Work by 
El Ka rom et al (1996) has brought  forward the concept  of  superhedgmg. 

A clear treatment of  the El Karom results can be found m Hobson  (1996b), 
and Frey (1997) Is a good revmw of  the current hterature and developments in the 
superhedglng field 

Suppose as an example, a stock prme behaves under some martingale measure, 
as a martingale dlffusmn with volatility ~rt, 

dS, = ~7,StdW, 

Suppose further that a, is either dependent on a new source o f  randomness 
d~stmct from W, or simply uncertain - we.just do not have a rehable model for it. 

Given an upper bound OM on the volatlhty, that is o-, _< OM, we can bound the 
price o f  convex terminal value claims f (S r ) .  We can even allow am to be non- 
constant ,  as long as Om = aM(S,, t) only depends on tnne and the current stock 
price. If  we hedge as t f  the actual volatility is oM then, as the theorem below 
shows, our  hedge's final value will always be at least as large asff(Sv). The clam1 
has been superhedged. So the super-price of  the claim is the theoretmal price of  
J'(Si)  given the stock's  volatlhty ms cv,vt. Simdarly concave payoffs are superhedged 
by lower bounds on volatihty. 

T H E O R E M  (El Ka rom et al ) Let  Cr = C(S,,  t) be the worth oJ the convex clatm 
f ( S r )  assuming the volatthty ts ~TM, and let V, be the worth o f  the a t tempted  hedge 
Then C(.v. t) ts convex m x and the trackmg error el = VI - C~ ts gtven by the posl- 
ttve quanttty 

[' 2, ..2 02 C = ½ ( G  - 

In the special case where f (x )  is the call payoff  (x - k) +, then C, = C(St, t) is 
the Black-Scholes call price, assuming constant  volatfl,ty er,vt, where C = C(x, t) is 

, , 2 o g ~ - ~ t ( T - I )  
C(x, t ) = x ~  ° g ~ : + 2 r T M ( T - I ) .  - k O  

G -  r -7 " 

and the hedge ~, Is equal to 4~1 - oc i S t), where 
- -  0 2 ,  k t~ 

o c  = 

O x ¢ ' \  ~,v~ x /Y  -z- i 
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, !  

Then the worth of  the hedge at tmle t is Co + Jo cb,,dS,,. Crucially, C is convex m x 
so that the tracking error ~s always positive as aM as an upper bound for a, At 
tmae T, Vr is the worth of  the hedge and CT is the option worth ( S r -  k) +, so a 
positive tracking error means the option has been superhedged 

A pleasing synthesis between the opt ion-hedging of  section 5 and super- 
hedging has been achmved by Paras (1997), a description of  which we close wath 

Following Paras, we let P be the set of  all measures that might model the asset 
price. These measures might not be eqmvalent,  for instance they might 
correspond to all possible Markov  volatility processes o-t lying in a band 

O" m ~ O t ~ O-M: 

where Crm, O'M can be functaons o f  t.me and asset price Then the superhedge price 
o f  a claim X will be the (supermartmgale) process 

Vt = s u p E ~ ( X  I fi',), 
P e P  

where interest rates have been set to zero for smlphclty. The superhedgmg 
strategy will be to behave as if volauhty  as 

o'at when ~Yv > O, Iocallyconvex,  

o- = o-,,, when ~ > O, Iocal lyconcave 
OS" 

Suppose also that there are currently traded instruments, such as vamlla options, 
which pay offX,  at time T a n d  are currently worth C,(t). We might not be able to 
write X entirely m terms of  a combinat ion o f  the X,, but we could do the best we 
could. If  we used a hedge of  A, umts o f  X,, our  valuation for X would be 

As we are completely (super)-hedged for any choice o f  A, we could choose A to 
mmlmise Lt(A), and quote the sharpest price possible. As Lt(A) is the supremum 
of  linear functions o f  A, it is a convex function of  A, and so susceptable to 
opmmza t lon  techniques. 

Interestingly, thas problem Is the Lagranglan dual of  the constrained 
optmalzatlon problem which maxumses the expectation o f  X over measures 
whmh produce the market  price for every X, That  is the problem 

s u p E ~ ( X  I.T') ,  subJect to E?(X, II Y , )  = C(t) ,  ~ ~ 7~ 

This is really just affirms the intuitive observation that measures m P which do 
not reflect the current price o f  traded instruments cannot  be the measure we need 
to price So wc have a duahty  between the best superhedge of  the clam1 over all 
measures, allowing hedging with traded instruments, and the best superhedge 
over all measures wh,ch price the traded instruments to market 
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INSU RANCE C O N T R A C T S  
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Umver~tt v of Copenhagen 

A BSTRACT 

A unlt-hnked hfe insurance contract ~s a contract where the insurance 
benefits depend on the price of some specific traded stocks We consider a 
model describing the uncertainty of the financial market and a portfoho of 
insured individuals simultaneously. Due to incompleteness the insurance 
claims cannot be hedged completely by trading stocks and bonds only, 
leawng some risk to the insurer. The theory of risk-mlmmization Is briefly 
reviewed and apphed after a change of measure. Risk-minimizing trading 
strategies and the associated intrinsic risk processes are determined for 
different types of umt-hnked contracts By extending the model to the 
situation where certain reinsurance contracts on the insured lives are traded, 
the d~rect insurer can ehmlnate the risk completely The corresponding self- 
financing strategies are determined. 

KEYWORDS 

Incomplete market, Martingale representation, Minimal martingale measure, 
Intrinsic risk, Reinsurance. 

I ] N T R O D U C T I O N  

Traditional actuarial analysis of life insurance contracts focuses on 
calculation of expected values of various discounted random cashflows; 
the fundamental principle of equivalence states that discounted premiums 
and benefits should balance on average for any contract. Tile corresponding 
premium is called the equivalence premmm. Similarly, at any tmae during the 
insurance period, the prospective reserve ~s defined as the conditional 
expected value of all discounted future benefits less premiums, gwen the 
available Information. The development of the reserve is described by 

ASIIN BULLETIN Vol 28. No I, 1998, pp 17-47 
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Th~ele's differential equation, which originally dealt with constant determi- 
nistic interest and deterministic benefits, but has been widely generalized, see 
e.g. Norberg (1995) and Norberg and Moller (1996). 

With a unlt-hnked hfe insurance contract, benefits depend exphcltly on a 
specified stock index. Typically, the policyholder will receive the maximum 
of the stock price and some asset value guarantee stipulated in the contract, 
but other dependencies may be specified These contracts have been analyzed 
by Brennan and Schwartz (1979), and more recently by e g. Delbaen (1990), 
Baclnello and Ortu (1993), Aase and Persson (1994) and Nielsen and 
Sandmann (1995). The last of these authors allow the risk-free interest rate 
to be stochastic. Various exoUc types of contract funcUons are considered m 
Ekern and Persson (1996). Aase and Persson (1994) derive a partial 
&fferenUal equaUon for the value of the reserve of a umt-hnked life 
insurance, which is compared with Thlele's differential equation They also 
present duphcatmg strategies that minimize the risk of the Insurance 
company in a sense. 

All the papers menUoned consider mortality Nsk as &verslfiable or 
assume that the insurer ~s "risk neutral w~th respect to mortahty'" and 
replace the uncertain courses of the insured hves by the expected. In this 
way, the actual insurance claims, depending on uncertainty w~thm the 
portfolio of insured hves and the financml markets, are replaced by similar 
clamls which only include the financial uncertainty. These clamls are then 
priced using standard no-arbitrage pricing theory. In the present paper we 
provide and examine a model where the uncertainty of a portfolio of lives to 
be insured and a certain financial market are described simultaneously, and 
consider the problem of hedging the actual claims which depend on both 
sources of uncertainty. 

The insurance company ~ssues hfe insurance contracts with insurance 
benefits linked to the price of a specified stock. This stock and one risk-free 
asset are traded freely on the financial market without transacUon costs. We 
then consider the problem of defining optimal investment strategies. This 
situauon differs from the case of standard hfe |nsurance, where the insurance 
company should try to maximize trading gains in order to compete with 
other companies on re&stribuUons of bonus With unit-hnked contracts, 
benefits are already linked exphcltly to the development of the market, and 
hence are not influenced by the [hctual gains generated by the investment 
strategies of the insurance company. However, by issuing these contracts, 
the insurer is exposed to a financial risk, and our objecuve here will be to 
minimize this risk. In this paper we will measure the risk associated with the 
contracts using the expected value (tinder an adjusted measure) of the square 
of the dlft~rence between the insurance benefits to be paid and the gains 
obtained from investments. 

The insurance contracts are characteNzed as contingent claims in an 
incomplete model, such that the insurance clmms cannot be perfectly 
duphcated by means of self-financing strategies The theory of nsk- 
mlnHmzat~on for incomplete markets introduced by F611mer and Sonder- 



RISK-MINIMIZING HEDGING STRATEGIES FOR uNrr-LINKED LIFE INSURANCE CONTRACTS 1 9 

mann (1986) and developed further by F611mer and Schwelzer (1988) and 
Schwelzer (1991, 1994 and 1995) Is reviewed and then apphed after a change 
of measure. W~th ~ts present formulation, this theory deals with the problem 
of hedging contingent claims that are payable at a fixed time only. The 
analysis of more general claims with intermediate payment umes would 
require an extension of the original theory of Follmer and Sondermann 
(1986), a problem which will be addressed m a forthcoming paper by Moiler 
(1998) Thus, insurance contracts with payments occurring only at fixed 
times are analyzed within the original setup of Follmer and Sondermann 
(1986), whereas some modifications are needed in order to deal with 
contracts where the sum insured falls due immediately upon the death of the 
insured. In the present paper, we assume that premiums are paid as single 
premiums and that all benefits are deferred to the term of the contract. In 
this way optimal investment strategies minimizing the risk (under the 
mlmmal martingale measure) associated with the assigned contracts are 
determined. Since the model is incomplete, risk cannot be ehmmated 
completely by applying these strategies, leawng some minimum obtainable 
risk (called the intrinsic risk) to the insurer. This minimum risk process Is 
determined for different types of standard contracts and is taken as a 
measure of the non-hedgeable risk inherent m the contracts. 

In Secuon 2 we present the combined model and brzefly mention some 
basic results from the theory of mathematical finance. We also introduce the 
basic types of insurance claims to be analyzed in the paper Secuon 3 ~s 
devoted to a rewew of the most m~portant concepts of nsk-minim~zauon. 
Umt-linked hfe insurance contracts by single premium are analyzed m 
Section 4. Section 5 deals with the s~tuatlon where reinsurance contracts are 
traded fi'eely on the market. Finally, some numerical results are presented m 
Section 6 

2 THE M O D E L  

In th,s sect,on the two basic elements of the model, the financial market and 
a portfoho of indw~duals to be insured, are introduced. We set out by 
presenting the financial market and reviewing some well-known results from 
the theory of mathematical finance for complete markets. When extending 
the model by also including a portfolio of individuals to be insured, the 
market ~s no longer complete. 

Throughout, we let T denote a fixed, fimte hme horizon and consider a 
gwen probablhty space (~2,.Y, P). 

2.1. The financial market 

We consider a market consisting of only two traded assets: a stock wtth 
prices process S and a bond with price process B. At any tmle t these assets 



20 THOMAS MOLLER 

are traded freely at prices St and Bt, respectively. The price processes are 
defined on a probabi l i ty  space (f~,.T, P) and are given by the P-dynamms 

dS, = c~( t, S, )S, dt + ~r( t, S, )StdW,, (2 1) 

dBt = r(t, S,)Btdt, (2 2) 

So > 0, B0 = 1, where W = ( Wt)0<t<r is a s tandard Browman mot ion  on the 
time interval [0, 7]. The  f i l t ra t ion-G-= (•,)0<r<T generated by this economy 
is given by 

~, = ~{(S,,, B,,), ,, < t} = ~{S,,, ,, _< t}. 

A solution to the equat ion (2 1) exists provided that the functions c~ and c~ 
satisfy certain regularity condmons ,  see e.g. Duffle (1996, Appendix E). 
These condi t ions are assumed to be fulfilled henceforth.  Fur thermore ,  we 
assume that r,dt exists and is fimte almost surely. 

The process c~ IS interpreted as the mean rate of  return of  S, and cy as the 
s tandard  deviation of  the rate of  return. Similarly r IS called the short  rate o f  
interest and denotes the rate of  return o f  the risk-free asset The process u 
defined by u, = (o~, - r,)/~7, is known as the market  price of  risk process 
associated with S. In addit ion to the assumptmns above,  we assume that u 
satisfies the integrabllity condit ions from Duffle (1996, Chapte r  6). With 
constant  coefficients c~, o- and r, all condit ions are satisfied, and we have the 
celebrated Black-Scholes model where S and B are given by 

S, = So exp((c~ - ~a2)t + oW,) , 

Bt = exp(r  t). 

The  model above has been thoroughly  investigated in the literature of  
mathematmal  finance, see e.g. Duffle (1996), B.Iork (1996) and Lamber ton  
and Lapeyre  (1996). Thus some concepts  and results from the theory of  
finance, needed repeatedly in the sequel, wdl be quoted without  explicit 
reference. Also Aase and Persson (1994) gwe a brief  survey o f  this theory. 

Recall that two measures P and P* are said to be equivalent ~f, for each 
set A E .T, we have that P(A) = 0 f fand  only if P*(A) = 0. By definition, the 
p robabdl ty  measure P* defined by 

-- ( fo T " ~-- ) l f o Y ( C ~ " ~ r " ) 2  ) dP* f c~,, r,, 
dP exp - \ a ,  dW,  - 2 \ or, du ~ UT (2 3) 

tS eqmvalent  to P. It can be verified that the discounted price process S*, 
defined by 

• i '  ) S, = S,/B, = So exp (c~,, - r,,) du + a,,dW,, , (2.4) 
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is a P*-martmgale.  Thus P* is called an equtvalent martingale measure In the 
above model,  the martingale measure is unique. 

A trading strategy or portJolio ~ttategy is an adapted process cp = (~, r/) 
satisfying some lntegrablhty condit ions (a precise defimtlon will be given m 
Section 3). At any time t E [0, T], s c, and r/, represent, respectively, the 
number  of  shares and the number  of  bonds held in the portfolio. The value 
process f/to assocxated with cy is defined by 

~','0 = ~,S, + ,7,B,, (2.5) 

and the strategy is said to be self-financing if 

/ 0 '  /0' f/7 = V~ + ~,clS,, + 7l, dB, , (2 6) 

for all 0 < t < T According to (2 6), any change in the value of  the portfolio 
is generated by changes In the underlying price processes S and B. A 
contingent claret with maturi ty  T is a random variable X that is Gr- 
measurable and P*-square lntegrable In particular, X is called a stmple clatm 
whenever X = g ( S T ) ,  for some function g R+---, R. We say that a 
contingent claim X can be perfectly duplicated if there exists a self-financing 
portfol io c~ such that I)'~- = X P-a.s In this case the claim is called attainable. 
If all contingent claims are attainable,  then the market  is said to be complete; 
otherwise the market  is referred to as incomplete. A self-financing strategy ~o 
,s an arbm'age if (/g < 0 and 9~ _> 0 or if (/~o _< O, V~ ~ 0 P-a.s. and V~ > 0 
with positive probabil i ty It ~s well-known that the market  defined by 
(2.1)-(2.2) and filtration G is complete  and free or arbitrage under the above 
mentioned assumptions 

Note  that if cp -- (~, 71) is self-financing and duplicates the clmm X, then 
we have the following representation from (2 5) aim (2 6)' 

/0 /0 X = ~oSo + 7]oBo + (.dS,, + 'q~,dB. (2 7) 

The arbitrage-flee price process (F(t,  St))ii<t<7- associated with a simple 
claim specifying the payment  g (S r )  at time -T~an now be characterized by 
the partial differential equat ion (PDE) 

1 ) 2  - , ( , , s )F( t , s )  + F,(t,s) + r(t,s)sF~(t,s) + ~cr(t ,s)-s F,~(t,s) = 0, (2.8) 

with boundary  value F(T, s) = g(s) Here, exemplifying a general notational 
convenUon adopted  throughout ,  Fs(t,s) denotes the partial derivative of  
F(t, s) with respect to s, F,,(t ,a) denotes the second order partial derivative 
w)th respect to s, and so on. 
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The arbitrage-free price process associated with the claim g(ST) is also 
given m terms of  the unique eqmvalent  martingale measure by 

) 1 F ( t , S , ) = E *  exp - , ' , ,du g(sr)l ;, • (29)  

(Throughou t  E* denotes expectat ion with respect to P*). Thus,  the price is 
determined by discounting the T-payment  with the asset B and then 
calculating the condit ional  expec tauon under  the mart ingale measure P*. 

2.2. The insurance portfolio 

In this paragraph we will introduce a model to describe the hfetlmes in a 
group of  individuals. For  simplicity, we assume that the lifetimes are 
mutual ly independent  and identically distributed. The 11 d. assumpuon 
mlplies that the individuals are selected from a cohor t  of  equal age x, say, 
and we denote  by l, the number  of  persons in the group Mathematical ly,  
this is described by representing the individual remalmng lifetimes as a 
sequence Ti, .., Tt, o f  i.i.d, non-negative random variables defined on 
(f~, . f ,  P). Assuming that the distr ibution o f  T, is absolutely cont inuous  with 
hazard rate function/_L,+t, the survival functIon is 

( / 0 ' )  ,p, = P(T ,  > t) = e x p  - l , , + , d r  . 

Now define a un ivana te  process N = (Nt)0<,<r count ing the number  of  
deaths in the group;  

/, 

N, = ~ I (T ,  _< t) , 
t--[ 

and denote  by H = (7-/t)0<,<r the natural  filtration generated by N, 
i e 7-/t = cr{N,, u <_ t} By ct6-finmon, N is cadlag (r ight-continuous with 
left-hmlts) and, since the lifetimes 7", are i l d., the count ing process N is an 
H - M a r k o v  process. The (stochasnc) intensity process A of  the count ing 
process N can be informally defined by 

E[dS ,  [~ ,_ ]  = (/, - Ut_)~,.,+tdt - A,dt, 

the hazard rate function FL,+, Umes the number  of  individuals under  
exposure just before hme t. The compensated  counting process  M defined by 

/0' Mt = Ni - A,,du (2.10) 

is an H-mart ingale  
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2 .3 .  T h e  c o m b i n e d  m o d e l  

N ow introduce the filtration F = ('~',)0<t<TT generated by the economy and 
the insurance portfolio,  that is 

• f'r = gt V 7-it. 

We assume th roughou t  that ~TT and 7 t r  are independent  and take 

.T=GTVCr{I (T ,_<u) ,  0 < u <  T, i = l ,  . . ,  /.,}. 

At tm~e 0 the insurance company  ~ssues an insurance contrac t  for each o f  the 
/, individuals. These contracts  specify payments  o f  benefits and premiums 
that are cont ingent  on the remaining hfet~me o f  the pohcyholder ,  and are 
linked to the development  on the financial market .  During the period [0, 7] 
the company  IS allowed to trade the assets B and S freely (without  
t ransact ion costs, taxes and short  sales res tnctmns)  based on the complete  
m fo rm a tmn  F Fur thermore ,  we allow for cont inuous  rebalancmg of  the 
portfol io  of  stocks and bonds m order  to hedge against the insurance clamls 

in the following, we present the two basra forms of  insurance contracts  to 
be analyzed m this paper: the pure endowment and the term insurance. W~th a 
pure endowment contract ,  the sum insured ~s to be paid at the term T If the 
insured is then still alive. The sum ~s o f  the form g(ST) for some cont inuous  
functmn g stipulated m the contract ,  thus depending on the price o f  the risky 
asset at tmae T. Some specific functions will be considered as examples,  e g. 
g(s) = s and g(s) = max(s, K) whmh are known from the literature as pure 
umt-hnked and umt-linked with guarantee insurance pohcms, see Aase and 
Persson (1994). For  each insured person the obhgatmn of  the insurance 
company  is gwen by the pesen t  i,alue 

H, = I(T, > T)g(gr)B r' = I(T, > T)g(g . r )e - f (  ,,,,I,, (2.1 I) 

Here we have adopted  w~dely accepted actuarial  usage of  the term present 
value, it is taken to be the payments  discounted using the bond price process 
described by (2.2) Thus,  the present value is an YT-measurable  random 
variable. This usage may be at varmnce with the econommal one, where 
present vahle typically refers to an 5%-measurable vahle. The entire por t foho  
generates the discounted claim 

I, 

H=g(Sr)BTr l  ~-~I(T,  > T ) = g ( S r ) B T ) ( I , -  Nr) ,  (2 12) 
t= l  

where (/, - NT) IS the number  of  survivors at the end of  the insurance 
period It should be noted that the und~scounted insurance claim HBr taken 
from (2.12) is a functmn of  S r  and N.r only. Insurance claims that are 
payable  at time T and are functmns of  ST and N'r only will be called rumple 
T-clatms, whereas more general ,nsurance claims payable at time T are 
denoted (general) T-clareTs 
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The term msurance states that the sum insured is due immediately upon 
death before time 7'. In this case, we consider a time dependent  contract  
function gl = g(t, $1). By the def inmon o f  the contract ,  payments  can occur 
at any time during [0, 7] and obligations generated by such contracts  do not 
form T-claims without  introducing special assumptions.  A simple way o f  
t ransforming the obligations into a (general) T-claim is to assume that all 
payments  are deferred to the term of  the contract  and are accumulated with 
the risk-free rate o f  interest r. With this specific construct ion,  the heirs of  a 
pol icyholder  who died at time t would receive the benefit g(t, &)BTB[ l at 
time T. The deferred payments  could as well be accumulated differently, for 
example by using some deterministic first order  interest rate/5 or by investing 
g(t, St) according to a predefined strategy. These ways of  modifying the 
contracts  by deferring the benefits might seem most reasonable for contracts  
with short  time horizons,  say one year Al though tune horizons associated 
with t radmona l  hfe insurance contracts  are typically much longer, we will 
assume that the benefits are actually deferred to the end of  the insurance 
period. The insurer 's hablhties in respect of  a por t foho  of  term insurance 
contracts  w~th payments  that are deferred and accumulated using the rlskless 
asset B are now described by the discounted general T-clmm 

/ ,  / ,  r T 

Hr = B 7' Zg(T~,Sr,)Brr 'BrI(T~ < T) = Z [ g(u ,S , )B; 'd l (T ,  < u), 
/ = l  1=1 ' / 0  

which can be rewritten as an integral with respect to the count ing process N: 

HT = g(,,S,,)B,~LdN, (2.13) 

Various other  insurance contracts  can be obtained as combinat ions  of  the 
pure endowment  and the term insurance. For  example,  with the endowment 
in,surance, the sum insured is payable at the time of  death of  the insured 
persons or maturi ty ,  whichever comes first• The present value o f  this claim is 
a sum of  (2.12) and (2 13). Throughou t ,  we assume that premiums are paid 
as single p remmms at time 0. Thus,  the present value of  all premiums ~s 
simply -U = / ,  . lr l ,  where ~l is the single p remmm paid by the insured. 

In Section 2 1 it was pointed out  that m the complete  market  every 
cont ingent  claim can be represented as an integral with respect to the price 
processes S and B, see (2.7). As we will show later, this proper ty  ~s not 
preserved when the model consists of  the assets (B, S) and filtration F 
Intumvely,  this follows from the fact that the claims (2 12)-(2 13) are not 
generated by the price processes (B, S) alone since the uncertainty 
concerning the insured lives contr ibutes  essentmlly to the fna l  ou tcome of  
the claims 
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We end this section by discussing choice of martingale measure in the 
combined model. For any H-predictable process/7, such that h > -1 ,  define 
a likehhood process L by 

dLt = Lt-hflMt, (2.14) 

and initial condmonal L0 = 1 Provided that EP[Lr], a new probability 
measure P can be defined by 

d-'-P = UT" LT, (2 15) 

where UT IS gwen by (2.3). Using the defimtlon of  the measure ]' and the 
independence between N and (B, S) under P we see that S* defined by (2.4) is 
also a P-martingale: for u < t we have 

E[STUTLrI.~,, ] E[S;UTIT,] E[LTI.T.] 
E[S, I..T,] = E[UrLrlSC., ] E[UrlY,]  E[LrlT,,] = E*[S2IY,,] = S,;, 

using that S* is a P*-martlngale, and so each £' ~s an eqmvalent martingale 
measure. Due to this non-uniqueness of the equiwdent martingale measure, 
contracts cannot in general be priced uniquely by no-arbitrage pricing theory 
alone Actually, all prices 

~(P) = Ek[H] 

for the clanns (2 12)-(2.13) obtained by admissible choices of h are consistent 
with absence of arbitrage. Furthermore, (B. S) and N are independent under 

and, by the Girsanov theorem, the process M h defined by 

/0' M I' = N, - A,,(1 + h,)du 

~s an (F, ~b)-martlngale. The term Lr  in (2.15) essentially changes the hazard 
rate in the model to iL,+,(1 +h,) .  In particular, the measure P* defined by 
(2.3) can be obtained froln (2.15) with h = 0 Note that the change of 
measure form P to P* does not affect the dlsmbutlon of N and that M is an 
(F, P*)-martlngale. 

Throughout this paper we will apply the specific martingale measure P* 
defined by (2.3) which is also known as the mmunal martingale measure, cf 
Schwelzer (1991, 1995) This pamcular  measure is normally apphed to 
pricing of  unit-linked contracts, the motivation being the insurer's risk 
neutrality with respect to mortahty, see e.g. Aase and Persson (1994). Thus, 
we consider the probability space (fl,.T, P*) endowed with the filtration F. 
Note that F is eqmvalently generated by the P*-martmgales S* and M: 

7 ,  = M,,), 0 < u < , } .  
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In the analysis below, we could equally well apply any of the martingale 
measures P defined by (2.15) for admissible choices of h in this case we 
would obtain similar results with the hazard rate function iL replaced by 
(1 +h)/_~ and M replaced by M h. However, there do exist martingale 
measures which do not preserve independence between (B, S) and N, and 
such choices of martingale measures would certainly comphcate calculations 
in Section 4 greatly. 

3. A REVIEW OF RISK-MINIMIZATION 

In the previous section, a model describing a financial market and an 
insurance portfolio was introduced. It was pointed out that this market is 
incomplete in the sense that contingent claims cannot in general be perfectly 
duplicated by means of  self-financlng strategies. In this section, we briefly 
review some results on the theory of  rlsk-mlnumzatlon, dealing with 
incomplete as well as complete markets. 

F611mer and Sondermann (1986) extended the established theory for 
complete markets to the case of  an incomplete market. By introducing the 
concept of mean-selJ-financmg strategies they obtained optimal strategies m 
the sense of minimization of  a certain squared error process. In Follmer and 
Schweizer (1988) a discrete time multlperlod model was examined within this 
set-up, and they obtained recursion formulas describing the optimal 
strategies The theory has been further developed by Schwelzer (1991, 
1994). F611mer and Sondermann (1986) originally considered the case where 
the original probablhty measure P is in fact a martingale measure. Schwelzer 
(199 I) introduced the concept of local rtsk-mmmTizatwn for price processes 
which are only selnllnartlngales and this criterion was slmdar to performing 
risk-minimization using the minimal martingale measure P* 

Recall the space (f~, .Y, P*), filtrauon F and the (F, P*)-martingales S* and 
M. The deflated value process V ~ is defined by 

V~ = V~B~ t = ,~,S, + r h , (3.1) 

where ~'~ is given by (2 5) From Follmer and Sondermann (1986) and 
Schwelzer (1994) we have a slightly modified definition of strategies and the 
value process. Introducing the space £2(p))  of F-predictable square- 
integrable processes ~ satisfying 

they state' 
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Definition 3.1 An F-strategy is any process g~ = (~, 7]) wtth ~ E £ 2 ( p ) )  and 71 
F-adapted such that the (deflated) value process V ~° ts cadlag and 
V[ E £2 (p*)Jor  all t. 
The cost process C ~° assoctated wtth the strategy 79 Is defined by 

fO 
c ,  ~ = v 7 -  ¢,,dS,;, (3.2) 

and the risk process R~ o f  ~ is defined by 

R~ = E* [(C.~ - <)21.7", ] . (3.3) 

In this definition, the notion ~tsk process ~s attached to the condit ioned 
expected squared value of  future costs. This usage differs from the 
traditional actuarial one, where "risk process" would typically denote the 
cash flow of  p remmms and benefits 

The cost C e is the value of  the por t foho less the accumulated income 
from the asset S. The total costs C~ incurred in [0, t] decompose  into the 
costs recurred during (0, t] and an initial cost C~ = V~, which typically is 
greater than zero. A strategy Is said to be mean-self-financing If the cost 
process C p = (C,~)0<,<T is an (F, P*)-martmgale. Fur thermore,  It should be 
noted that the strategy ~ = (~, 71) is self-financing if and only ff 

/0' Vt ~ = V~ + ¢,,clS,;, 

that Is, if and only if C~ = C~ = V~' P*-a.s. 
Let us now turn to the problem of  characterizing the optmaal strategies. 

We consider a general contingent clmm specifying the .Y'T-payment H at 
tmae T and focus on admtsstble strategies ¢p satisfying 

V~- = H a.s. 

By means of  admissible strategxes, the hedger ~s able to generate the 
contingent claim, but only at some cost defined by C~-. In particular, for 
at tainable claims, C~- = C~ ° = V~ is known at time 0. 

As a first result, admissible strategies mimm~zmg the mean squared error 
R0 ~ defined by (3 3) are determined. For  any admissible ¢p we have 

/0 /0 T C~- = V~ - {,,dS,; = H -  {,,dS,;, (3.4) 

hence 

I/ T /21 = E * [ ( c ; -  2] = E* H -  - Co , (3.5) 
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and so R~ ,s mimm,zed for C~ = g*[H] (= E*[C~]). Thus, we should choose 
so as to mlntm~ze the variance 

E* [ ( C ~ -  E*[C~]) 2] (3.6) 

This criterion does not yield a umque strategy, but it characterizes an enUre 
class of  strategies all mmmuzlng the mean squared error (3.5). The non- 
uniqueness of  the opUmal admissible strategy ~s a natural consequence of the 
simple critermn of minimizing (3.5), whmh revolves only the value of the cost 
process C:  at Ume T, given by (3.4) Furthermore, note that H = { r S }  + 71r, 
which does not depend on (r/,)0<,<T. Thus, we should not expect the 
mm~m~zatmn criterion associated vfith the squared error (3.5) to impose any 
constraints on the number of bonds held m the Ume interval (0, T). 

The construcUon of the strategies is based on an apphcauon of the 
Galtchouk-Kumta-Watanabe decomposition, see F611mer and Sondermann 
(1986). Defining the mtrincic value process V* by 

I/', = E * [ H I Y ,  ] , 

and noting that V* ~s an (F, P*)-martmgale, the Galtchouk-Kumta- 
Watanabe decomposmon theorem allows us to write I,I, umquely in the 
form 

fo r :ridS, H (3.7) 1/',* = E* [HI + .,, .__,, + Lt , 

where L H It =(Lr  )0<_i<7" xs a zero-mean (F, P*)-martmgale, L H and S* are 

orthogonal, and ~H iS a predmtable process in E2(p~). By applying the 
orthogonahty of the martingales LIt and S*, and using V~ = H, Follmer and 
Sondermann (I 986, Theorem 1) prove. 

Theorem 3.2 (F611mer and Sondermann) An a&mss;ble strategy ¢p = (~, r/) 
has minimal vartance 

t f  and 0,70' i f  { = ~H. 

Note that if, furthermore, the number of bonds held at ume 0 ~s determined 
such that the mltlal value of the portfoho equals E*[H], i.e 

7o = E* [ H ]  - ¢ 0 s ~ ,  

then Ro:= E*[(C.~-E*[C~])2].  Thus, the varmnce is interpreted as the 

minimal obtainable risk. 
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A more precise result is obtained by looking for admissible strategies, 
that is V.~ = H, minimizing the remaining risk, defined by R~' at any tune t. 
Such strategies are said to be rtsk-mmtmizmg. Now fix some admissible 
strategy ¢p When considering the remaining risk R~ at some point in time t, 
only admissible strategies @ coinciding with ~ m the interval [0, t) should be 
compared. This condition ensures, that the cost processes are given by the 
same value C~ = Ct 0 at the time of consideration In this case the strategy 
is said to be an acbmsstble continuation of g) at t~me t, see F611mer and 
Sondermann (1986) for more details. The risk-mlnlnaizlng strategy, 
minimizing the risk process (R~)0<t_< r is determined by Follmer and 
Sonderlnann (1986, Theorem 2). 

Theorem 3.3 (Follmer and Sondermann) There exists a umque admissible 
risk-nmumtzhTg strategy g) = (~, ~l) given by 

,7,) = v ,  - o < t < r 

The associated r,sk process ts giI,en by R; = E* [(Lr H - L]')II.F,] 

The risk process associated with the risk-mlmmizing strategy is also called 
the intrinsic risk process 

4. U N I T - L I N K E D  CONTRACI'S WITH SINGLE PREMIUM 

In this section, we apply the technique of risk-minimization in the 
investigation of the insurance contracts introduced in Section 2. An 
important step will be the construction of the decomposition (3.7) of the 
present values (2.12)-(2.13). Having determined this, risk-minimizing 
strategies and the intrinsic risk process associated with the pure endowment 
and the deferred term insurance contract can be determined by Theorems 3.2 
and 3.3. 

From the classical actuarial theory it is known that in the case of fixed 
premmms and sum insured, the "relative risk" associated w~th the portfolio 
decreases as the size/., of the portfolio increases. More precisely, this means 
that the ratio between the standard devmtlon of the present value of all 
payments and the size of the portfolio l, wdl converge to 0 as l, is increased 
In the present set-up, we cannot expect such results since the payments 
associated with different insul'ance contracts are now linked to the same 
asset and hence are no longer stochastically independent. However the initial 
intrincls risk R0 can be taken as a measure of the risk associated with 
the non-hedgeable part of the claims, and we will accordingly examine 
the r a t i o  v/~/I, 
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4.1. The pure endowment 

Consider the claim with present value H in (2.12); 

H --- g(ST)BTI(I, - NT), (4 1) 

and define the (deflated) mtrlnsm value process V* = (V~*)0<~< v by 

V,* = E*[HI.T,], 

for all t E [0, T]. Due to the stochastic independence between N and (B. S) 
under P*, we get 

(4.2) I,~ = E*[(/, - NT)I.Tt]B;'E* Ig(ST)B,B~' I~,] . 

Here, the first factor is easdy determined as 

= Z Y-'P"+' = (/' - N ' ) r - 'P"+" 
t T , > t  

that ~s, at any t~me t the expected number ofindw~duals ahve at the time of 
maturity T is simply the number of surwvors at time t multiplied by the 
probabdlty T-tP,+t of survival to T for an mdwldual, condlhonal on his/her 
surwval to t. The second factor m (4.2) corresponds to the representation 
(2.9) of the umque arbitrage-free prme process associated with the simple T- 
clmm g(ST) in the complete model with filtration G. In the present model, 
the insured hves are included m the filtration F, and arbitrage-free prices are 
m general not umque. However, as N and (B, S) are stochastically 
independent, the condmonal d~strxbutlon of (B. S) gwen Yt does not depend 
on information concerning the insured hves 7-ll and thus 

E* [g(Sr)B,B T' 17,] = ]~* Ig(ST)B, BT' IF,] = Fe(t, St), 

where the function Fg(t,s) satisfies the same second order PDE as m the 
complete case (2.8). Consequently, we arrive at the expression 

Vt* =- ( [ ,  - Ut)r_tP,+tBtIFg(t, St). ( 4 . 3 )  

The process V* can be interpreted as the market value process assocmtcd 
with the entire portfoho of pure endowment contracts, using the pricing rule 
P*. In particular, the mmal value V~--I,Tp,Fg(O, So) is a natural 
candidate for the single premmm for the enhre portfoho. This specific 
choice of single premmm would be m accordance with the well estabhshed 
actuarml principle of eqmvalence (stating that premmms and benefits should 
balance on average), but exercised under the martingale measure P* 
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Applying the It6 formula to (4.3), we get 

/0' v~ =v~ + (/, - N,,_)B2~Fg(u,S,,)r_,p,+,,#,+,,du 

/0' + (/,-N,,_)T_,p.,+,,a(~2,'F~(N,S,,))+ ~ (g , ; -  V,;_/. 
0<u~t  

To determine the integral involving d(B21Fg(t, &)), recall the definmon of 
the deflated price process S~ = &B~ -l, implying that 

dS, = S~dB, + BtdS~ = Strtdt + B, dS 2. 

Using the It6-formula and the PDE (2.8). it ~s seen that 

d( B;'  Fg( l, St)) = -r( t ,  & )B~" Fg( t, S,)cll 

( 1 St)2S~dt ) + B? I \Ftg(t, st)at + F~'(t, &)dSt + ~Fg~(t, &)or(t, 

= g~(t, S,)dS; 

Also, since 

1' (V,; - V,:_) = - B~-'Fg(u,S,,)r_up.,+,, d N , ,  
0<u_<t 

we obtain. 

Lemma 4.1 For the contingent clatm H m (4.1) the process V* defined by 
Vt* = E*[HIU,] has the decomposttton 

/o' /oo' v 2 = v~ + ~,,F'dS*_,, + .~dM,, ,  

where (~n j I )  are given by 

~[~ = (/, - N,_)r_,p.,+,F,~(t, S,), (4.4) 

u[ 4 = -B71Fg(t, S,)T_,p_,+,, 0 < t < T. (4 5) 

Admissible strategies minimizing the variance 

E* [( C~- - E*[C~]) 2] (4.6) 
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can now be characterized by applying Theorem 3.2 and Lemma 4.1. By use 
of the Fubxm theorem, the associated minimum obtainable variance is 
rewritten as 

= T-,,p_,+,,S [(/, -- N,,)p,.,+,,] du 

: T-,P~+u I~ ,,p.~ ~*~+,, du 

=,,Tp,.forE*[(B,TIFg(u,S,,))2lr_,,p_,+,lL,+,,du (47 )  

Thus we have obta ined 

Theorem 4.2 ConsMer the pure endowment  gtven by the contingent clatrn H in 
( 4 1 ) .  Admtss tble  strategtes ~o* mmhn t z ing  the i,arlance ( 4 6 )  are determined 
by 

(7 = (/, - N ,_)  r ,p,+tFX, (t, St) ,  0 < t < T,  

= - {TST  • rlT H 

The m t m m a l  variance is gn,en by (4 .7)  

The insurance company ~s able to reduce the total risk associated with the 
portfolio of  umt-linked insurance contracts to the "intrinsic risk" R~', by 
following a strategy according to Theorem 4 2  whmh also satisfies 
C~ = E*[H] In partmular, it is seen that R0 ~ is proportional to 1,, implying 

that the ratio between v/R~ and l, converges to 0 as 1, converges to infinity 

Before determining the unique risk-minimizing strategy, we present one 
specific strategy from Theorem 4 2, see Follmer and Sondermann (1986, 
Example 1). 

Example 4.3 We shall present one strategy ~ that does not require any extra 
investments during the tune interval (0, 7)). It is self-financing on (0, T), 
followed by a possible extra payment at time T Define the strategy by 

~, = ~ ,  0 < t < T, (4.8) 

fo' " 7h = E*[H] + ~,dSi; - ~,S, , 0 <_ t < T,  (4.9) 
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and `tlr = H -  {TS}. By defimtlon, this strategy is self-financing on the 
interval (0, 7). Substituting the decomposition of H from Lemma 4.1 into 
the expression of r/T, we get 

~o T f o T ~ t d M , , ~ T S T  r/r = H - ~TS~. = E*[H] + .,,,F/tdS * _ _ , ,  + v - * 

Likewise we have from (4.9) that 

`tlr- = E*[H] + ~,,clS,~ - -  ~T_ST_ [H] + ~,,dS,] - -  ~TST, 

which proves that 

/0 7IT - -  ' t iT -  = v~l dM,, = L~ 

Thus, the loss L~ is an extra payment/investment to be made at ume T m 
order to sausfy the condmon of adm~ss~Mhty. 

The varmnce-mlnlmmng trading strategy in Example 4.3 represents a very 
simple dynamic portfolio strategy from the point of view of the insurer. 
According to this strategy he ~s to make an mmal investment at time 0 m 
stocks and bonds. Dunng the time interval (0, 7") this portfolio IS then 
adjusted continuously without any addmonal Inflow or outflow of capital as 
defined by the equations (4.8)-(4 9) At the term T the insurance company 
now provides the difference L~ between the claim H and the value V~. of 
the portfoho However, there are reasons why th~s strategy should not be 
applied. Indeed, ~t does minimize the variance or the lmtlal intrinsic risk, but 
at any time t during the insurance period the value Vf of the portfoho will in 
general not equal the conditional expected present value of the claim V~*. 
Since this difference may be substantml due to adverse development within 
the insurance portfolio, one should at least reqmre that the value of the 
portfoho equals I/1' m order to enhance the solvency of the insurer This 
addmonal requirement, m addmon with the minimal variance criterion, ~s 
actually sufficient to determine the umque nsk-mmlmmng strategy ¢p. The 
assocmted intnnslc risk process ~s described m Theorem 3 3, and we get 

E* [ (L;  - L~/)2 I .T,] = E* r v,•dM,, = E* 

= (/, - N,) E* (v[,')21.Tr ,,-tP,+,/A,+,, du. (4.10) 
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F r o m  Theorem 3.3 we now have' 

Theorem 4.4 For the pure endowment gtven by the contingent clatm (4.1) the 
untque admtsstble risk-mmtm~zmg strategy ts given by 

~" = (/, - U,_) r_tp,+_,Fg(t,S,), 

r/7 = (/, - U,) r_,p.,+,gTIFg(t, S,) - ~;S 2, 0 < , < T 

The mtrmsw risk process R ~" ts given by (4 10) 

In the model the insurance company  ~s allowed to trade the assets S and B 
continuously,  thus being able to hedge all contingent  claims involving these 
assets only. This eliminates a part of  the total uncertainty,  leaving only the 
uncertainty of  "no t  knowing how many of  the insured persons will d m m  the 
insurance per iod" .  The latter is described by the martingale M, which 
generates the insurer's loss L H. 

dL(/ = u/tdM, = - B , ' F g ( t , S , )  r_,p, .+,(dN,-  A,dt). (4.11) 

The insurer adjusts his trading strategy according to the condit ional  
expected number  o f  insured persons surviving the insurance period. During 
the infinitesimal ume interval [t. t + dr) the insurer will expermnce the gain 
dM, multlphed by the term B;-IFg(t, S t )v- ,P,+,  . the latter denot ing the 
price at time t o f  one security with payment  g ( S r )  at time T contingent  on 
the survival of  some individual That  is, a death will produce an lmmedmte 
gain for the insurer due to the downwards  adjustment  o f  the expected 
number  of  survivors, whereas no deaths will cause a small loss The 
expressmn (4.11) for the loss ~s s~mllar to the one obtained by Norberg  
(1992) for general payment  streams, using a quite &fferent approach.  With 
this terminology,  the term (u/IBt) is recogmzed as the sum at risk at time t. 

We now turn to some examples in the case of  constant  deterministm short 
rate of  interest, constant  drift  term c~, and volatility parameter  ~ on S. We 
will investigate three &fferent cont rac t  funcUons: pure unlt-hnked,  where 
g(s) = s; unlt-hnked with guarantee,  where g(s) = max(s, K); and the case of  
deterministic benefits, g(s) = K 

Example 4.5 Consider  a s tandard Black-Scholes market ,  where all 
coefficients r, c~ and cr are constant .  Let the contract  function be o f  the 
simple form g(s) = s, i e. the insured is to be paid the value o f  the stock at 
the maturi ty  date. In this case, the process (Fg(t, St))o<t<T IS easily 
determined as 
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implying that F~(t, S,) = 1. The intrinsic value process ns 

V 7 = (/, - N,) T-tP_,+, e -r'S, = (/., -- N,) T-,P,+, S;, 

and m part icular  V~ =/ . ,  7"P, St.  From Theorem 4.4 we have the unique nsk- 
mmnm~zmg strategy 

(,~,,u,) = ( ( 6  - N , _ )  T - , p , + , , - A N ,  T- ,p . ,+ ,ST)  , (4.12) 

where AN, = Nr - N,_. Finally, we have the aggregated loss 

= - S , ;  T - , , P , + , , , / M , , ,  

and the mtrmsm risk process 

• 2 
R~ = (/, - N,) T-,P,+, E* (S.)  I.~, t - . P , + .  ~L,+. du 

= (1, -- N t )  T - t P , + t ( S ; )  2 e ~ ( u - t )  r- , ,P. ,+, ,  I t ,+,,  du  

The  risk-mmtmszing strategy gwen by (4.12) ss easy to interpret:  at any tmae t 
the insurance company  should hold a number  o f  stocks, corresponding to 
the expected number  o f  surwvmg in&vnduals Since the number  of  stocks is 
control led by a predmtable process {, some adjustments are made each tnme 
a death occur within the portfol io  in order  to ensure that V~ = V~ for all t. 
Th~s is described by the adapted process 7/, which denotes the amoun t  to be 
cashed by the insurance company  in connec tmn with the observed death. 

Example 4.6 Now consnder the contrac t  function g(s) = max(s, K), where K 
~s some non-negaUve constant .  Note ,  that K = 0 ~s just the case treated 
above in Example 4.5 As m the previous example,  prices are described by a 
s tandard Black-Scholes market .  

W r m n g  the contract  functmn max(s, K) on the form K + (s - K) +, the 
process (Fg(t, S/))0<,<r can be evaluated by means o f  the well-known Black- 
Scholes formula 

Fg(t ,&) = E* [e- ' ( ' r - t ) (K + ( S t -  K)+)[7,] 

= Ke-r(r-t) 'I>(-z, + o T ~ - t )  + S,~(z,) ,  (4 13) 

where ~ ~s the s tandard normal distr ibution function and 

_ _ l o g ( & / K )  + (r + o 2 / 2 ) ( T  - t) 
at - -  f f ~ -  t 
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In partmular, the first order pamal  denvanve  is FEe(t, S,) = ,.I,(z,). Thus, the 
nsk-mimmlzmg strategy Is given by 

{, = (/, - N,_)  T_,p,+,c~(Z,), (4 14) 

r h = (la -- N,) T-,P.,+, e - "Fg(  t, S,) - (/., - U t ) T- tP ,+,~(z , )S;  

= (I, - N,) T_,p,+, K e - r T ~ ( - - z ,  +crx/T-Z-7)  

-- ZXN: T-tPx+t~(zt)S; ,  (4 15) 

and the intrmsm risk process R ~ ~s now g~ven by 

R~°= (I, - Nt) r_,P,+t f r E * [ ( e - r " F g ( u , S , , ) ) 2 1 f ' , ]  T_,,p,÷,, p,,+,,du, 

with F g defined by (4.13). 

Example 4.7 As a last example, consider the case of  determmlstm benefits, 
that is g ( S r ) =  K for some non-negative K. Here, the risk-mlmmizmg 
strategy ~s given by 

(~t, rh) = (0, ( / , -  U,) r_ ,p ,+ ,Ke- ' r )  , (4.16) 

and the intrinsic risk process ~s 

R~ = (/, - N,) T-,P,+1 K2e-2rr T-uP,+,, l~,+,, du 

= (/, - N,) T-,p,+,(I -- r - , p , + , ) K 2 e  ->r .  

In Example 4.5-4 7, we have determined risk-minimizing strategies for three 
d~fferent contract functions, in the setting of  a s tandard Black-Scholes 
market.  The strategies are associated with an entire port foho /,; smgle-hfe 
strategies are obtained by speclahzmg to /., = 1. For example, the strategy 
(4 14)-(4.15) for a single life becomes 

~, = l (T i  > t) T-,p.,+,~(Z,), (4.17) 

= I (T ,  > t ) r _ , p . , + , K e - r r ~ ( - z ,  + av '~-Z-7)  rll 

- I (Ti  = t) T_,p,+,~(z,)S~,  (4.18) 

and the intrinsic value process is 

The process V* ~s m a sense slmdar to a t radmonal  prospective reserve. First, 
an mdmator  function appears, whmh guarantees that the reserve is only 
different from zero as long as the pohcyholder ~s still ahve. The rest of  the 



RISK-MINIMIZING HEDGING STRATEGIES FOR UNIT-LINKED LIFE INSURANCE CONTRACTS 37 

terms are interpreted as the conditmnal expected present value of the 
insurance benefit, gwen the policyholder is alive at t. Provided that the 
policyholder survives to the maturity date, that is T~ > T, the risk- 
minimizing strategy (4 17)-(4 18) for a single hfe reduces to the strategy 

= ), 

which is exactly equal to the corresponding duphcatlng strategy obtained by 
Aase and Persson (1994). The result (4.17)-(4.18) Is to be interpreted as 
follows: As long as the policyholder is alive, the insurance company should 
hold a portfoho, where the number of stocks is determined as the probabdlty 
T-,P,+, of survlal to Tcondmoned on survival to t tmles the factor ~(z,); the 
latter is recognized as the hedge from the Black-Scholes formula of a 
European Call Optmn. If the policyholder dins before the maturity date T, 
the insurer ~mmedlately cashes the reserve, as ~s apparent m the definition of 
71. These interpretations are easily carried over to the s~tuahon where the 
insurance portfoho consists of more than one individual In this case, the 
numbers of stocks and bods held are adjusted m accordance with the 
con&tlonal expected number of survivors to T, that is ( /~ -  Nt)T_tP,+, 
Thus, the risk-mlmmlzmg strategms reflect the actual development m the 
insurance portfolio, and bring to the surface the uncertainty associated with 
the insured lives. For example, we obtain expressions for the mtnnsm risk 
processes, whxch serve as characterizations of the non-hedgeable risk 
inherent in a portfolio of umt-hnked contracts. In Section 6 we present 
some numerical results in the set-up of Examples 4.5 and 4.6 obtained by 
Monte Carlo simulation. 

4.2. Term insurance 

Now consider the term insurance with single premmm re' paid at lame 0. The 
payments generated by this contract are described by the discounted claim 

/0 HT = g(u,S, ,)B,7'dN, (4.19) 

An important step is the construction of the decomposition for the lntrlnsm 
value process for Hr First of all, observe that 

/0' ] v7 ~ = E*[HTIY',] = g(u, S,,)B,7'dN,, + E* g(u, S,)B,7'dN,,IU , 

/0' = g(u, S,,)B~,'dN,, + S?lFg"(t, S,) (/,- - N,) ,,_,p,+, ft.,+,, du, 
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Fg,,(t, St) E*[e - f''rTd~" " ] = ~, g~u, S , , ) l ~ t  

is the unique arbitrage-free price at time t of the smaple u-clam1 g(u, S.) m 
the complete model with filtration G. Secondly, by calculations similar to the 
ones in the previous section, we see that 

d(B?'  Fg"(t,S,))  = F~g"(t,S,)dS7 

Using the general It6 formula and the Fublm Theorem for It6 processes, see 
Ikeda and Watanabe (1981), V* can now be rewritten as 

I' v;  = g~ + (--8;'F~T(~-,ST)~.,+,(/,  -- NT)) d~- 

+~ot(g('r, ST)B;l--.frB;IFg"('r,  ST),,-Tp,+T#_,+,,du)dN~ 

+.£' (fTBT' Fg"(r,S~) ,,-~p,+~#,+,,d,,)(I., - NT-)#.,-+~dr 

+.fo' ( ( l , - N ~ - )  frF~"('r,S~),,-~P,-+r#.,-+,,du) dS *. 

Upon gathering terms, and using Fg'(t, St)= g(t, Sr), we obtain a decom- 
position corresponding to Lemma 4 I: 

Lemma 4.8 For the claim Hr m (4.19) the process V* defined by 
V~ = E* [HTI.Tt] has the decompositton 

I' I' • • H • u~dM,, v~ =v~;+ ~,,as,,+ 
where (~H, utt) are given by 

~ = (/, - N,_) ,,_,p.,+, ~,,+, f ? ( t ,  S,)du, (4.20) 

u~' =g(t,S,)B~ -I - Fe"(t,S,)Bj-',_,p,+, #,+,,du (4.21) 



RISK-MINIMIZING IIEDGING STRATEGIES FOR UNIT-LINKED LII-E INSURANCE CON'I RACTS 39 

Using Theorem 3.3 we have now proved: 

Theorem 4.9 For the term ms'mance given by the contingent clatm (4.19) the 
umque admtss/ble r lsk-mmtmtzmg strategy ts gtven by 

S {; = (/, - Nt_) Fg,"(t, St),,-rP,+, #,+ ,  du, 

/o' ~; = g(u ,&, )B21dN.  + (/, - N,) B21Fg"(t,&),,_,p.,+,~t,+.du 

- o < t < T .  

The trill mstc risk process R ~°" is given by 

R~" = (/, - N,) E* (u,H)2].Y', ,-tP,+, /t,+,, du, 

where u II is taken.fi'om (4 21). 

To give the resulting portfol io an anterpretatmn, note that ~ = ({,7/) is 
determined such that 

Vt ~ = g(u,S,)B,7~dU,, + E * g (u ,S , )B~ldU,] .T t  . 

Thus,  V[ is determined as the sum of  the benefits set aside to deaths already 
occurred and the expected discounted value of  payments  assocmted with 
future deaths 

As in the case of  the pure endowment ,  the term u/t denotes the immedtate  
loss due to the death of  one of  the insured persons• Here, the insurer has to 
set asade the sum insured g(t, St) immedmtely upon a death wathin the 
por t foho  at time t. In connect ion wath the recurred death,  the insurance 
company  adjusts tts expectat ions regarding the further  development  of  the 
insurance por t foho.  Since the number  of  survwors  has been reduced by one, 
the insurer now reduces his reserves by the amoun t  

"r Fg" ( t, S,  ) B;  - t ,,-rP., +t #,+,, du, 

whmh as the expected dascounted value of  future payments  condmona l  on 
surwval to t tme t .  

Example 4.10 Consider a umt-hnked term insurance contrac t  wath guarantee 
an the case of  a s tandard Black-Scholes market .  Let the contract  function be 
on the form g ( u , s ) =  mmn(.~,Ke6"), that is the guarantee  is adjusted in 
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accordance with some constant  force of  inflation 6 The functions FX"(t,s) 
are determined by 

( ) . . . .  (,,) Few(t, St) = Ke~"e-r("-t)@ -z}  ") + c r v /~ - t  +,3,wtz, ) ,  ( 4 . 2 2 )  

with 

_ l o g ( S t ~ X : " )  + ( , .+  d / 2 ) ( .  - ,) 
at -- O"k/'U-- I 

Using Theorem 4.9 we find the nsk-minlmlzlng strategy 

,7" (.) 
~t ---- (/,, - Nt_)  , ,-tP,+, # ,+ , ,~ ( : t  )du, 

• T vo-(r-~).m:_-(") av/u du rl, = (/., - N , )  , ,_ iV . ,+ ,  ~,-+,,' . . . .  ~ - ,  + - t) 

+ N(u,S,)B2~dN,- AN, ,,-,p,+t #.,+,I,(-t  )Stdu. 

The intrinsic risk process ~s also determined by that theorem upon inserting 
the functions F g" from (4 22) m (4.21). 

5. EXTENDING THE FINANCIAL MARKET 

In the previous sections we have analyzed a model where the financial 
market  consists of  two assets only, namely a risk-free asset B (the bond)  and 
a risky asset S (the stock). Tha t  model,  which also describes the development  
of  a given portfol io  o f  insured hves, is incomplete• We considered two 
d~fferent basic types o f  insurance products ,  and in both cases risk- 
minimizing strategies were constructed and the corresponding intrinsic r,sk 
processes were determined.  Due to incompleteness, the risk could not be 
eliminated completely and thus some uncertainty regarding the course of  the 
insured lives in the portfol io  (the intrinsic risk) remains with the insurance 
company.  

The present section is devoted to a brief  mvesugat ion of  the situation 
where the financial market  ~s extended by a th,rd tradeable asset that is 
related to the specific insured lives. As in Sechon 4, focus will be on the pure 
endowment ,  but all results can be repeated for the term insurance and the 
endowment  insurance as well. Fu r the rmore  we restrict the analysis to the 
case where the risk-free interest rate r IS assumed to be constant .  

In addit ion to the assets (B, S) with pr,ces processes defined by (2 1) and 
(2.2), respectively, we introduce an asset with price process Z = (Zt)o<t<T, 
where 

Zt = (/, - N,) v-tP,+t e -r(v-'). (5.1) 
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The initial value Z0 = / ,  rP_, e - ' T  Is  equal to the price at time 0 of/,- s tandard 
pure endowment  contracts with sum insured 1 calculated on a valuation 
basis consisting of  the mor tahty  hazard function/L, and the risk-free interest 
rate r. Assuming that premmms are prod as a single premium at time 0, Z, 
represents, at any t~me 0 < t < T, the traditional prospective reserve for the 
portfoho. This reserve is calculated as the conditional expected value of  
future benefits, Dven the current number  of  survwors ( / , -  Ni). The 
mtroductmn of  this extra investment posslb~hty is motivated by the existence 
of  reinsurance markets, where the direct insurer ~s able to reduce his total 
risk by selhng some part of  the insurance portfoho. Trading on the 
reinsurance markets wdl typically be controlled by certain restncnons such 
as short-selhng constraints and upper hm~ts for the amoun t  reinsured. 
However, m the present formulat ion we do not impose any restr~chons on 
the trading of  any of  the three assets 

As an example, let us now consider an insurer facing the contingent clmm 
arising from the portfolio of  pure endowment  unit-hnked contracts with sum 
insured g(ST) for the portfoho,  that is 

H = (/, - Nv)BTrlg(Sr) ,  (5 2) 

and assulne that the insurer ts allowed to trade continuously on the extended 
market  (B, S, Z) Note that the asset Z depends on the uncertainty from the 
insured hves only and evolves independently of  the other assets (B, S). The 
insurance clmm H, however, depends on both sources of  uncertainty. 

Define the deflated price processes S* and Z* by S * =  S / B  and 
Z* = Z / B ,  respectively. In this new setup a trading strategy is a sufficiently 
integrable process ~p = (~,0, r/), where ~ and 'O are F-predictable and 71 is 
F-adapted. At any time t, ~,, ~r and 'th are the number of  units held of  
s tandard pure endowment  contracts, stocks, and bonds respectively, and the 
(discounted) value process V~' is now Dven by 

v, = + o , z ;  + 

We set out by verifying that the measure P* defined by (2 3) is a martingale 
measure for S* and Z*. It already follows from the calculanons m Section 4 
that S* ~s an (F, P*)-martlngale, and the process Z* Is obwously also an 
(F, P*)-martingale, since 

(/, - N,) T-,P,+, = E*[(/., - N r ) l f ' , ] .  

From the decomposmon for the intrinsic value process V* for (5.2) and a 
s~mdar representation result for Z* with respect to M, we obtain 

/o' fo' * H * v ,  = v; + ~,,FH--,,dX* + ~,, dZ,,, 
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with 

( ~ ,  ~9~') = ( ( I .~ -N1_)r_ tp ,+ ,Fg( t ,S , ) , e~(r -1 )Fg( t ,  S1)).  (5.3) 

The intrinsic value process V* has now been rewNtten as a sum of  two 
Integrals with respect to the price processes S* and Z* This imphes that the 
cont ingent  claim H associated with the pure endowment  can be rephcated by 
means of  self-financing strategies m terms of  the three assets (B, S, Z). We 
can summarize this result by 

Theorem 5.1 ConsMer the pure endowment with present value (5.2) and 
assume that standard p m e  endowment contracts wtth sum insured I are traded 
Jreely on a financtal market  wtth con.stant short rate o f  interest. A self- 
f inancmg admtsstble (rtsk-mhumizhTg) strateg), g~* ts gtven by 

~; -= (I, - N,_) r_tp ,+tgg( t ,S , ) ,  (5 4) 

0, = e'l v S,) ,  (5 5) 

'1 ;= V/ - { ;S;  - O;Z;,  O < t < T (5.6) 

Furthermote, the h~trmsic rtsk procesa R ~" ts tdentically O. 

The insurer ms now able to ehminate  the risk associated with the insurance 
clamls completely by following a strategy in accordance with Theorem 5 1 
According to this result, the insurer should not only adjust the portfol io  of  
stocks and bonds cont inuously  - also the por t foho  of  reinsurance contracts  
should be cont inuously  rebalanced. By some simple calculations involving 
(5.4) and (5.5), formula (5.6) can be rewritten as 

r/, = - ( / ,  - N,_ ) r  tP, ~tFg~ ( t, S,)S,  L = -~ ,  St 

Fur thermore ,  ~p* satisfies V/ = O~Z;. Thus,  the self-financing (and rlsk- 
Imnlmlzlng) strategy consists of  a number  '0" o f  shares of  s tandard pure 
endowment  contracts  on the portfol io of  insured hves, which is adjusted 
such that the value #TZr exactly equals the intrinsic value process Vt* at any 
time t E [0, T] When allowing trading of  reinsurance contracts,  the criterion 
of  r isk-minimization simply states that all risk should be surrendered to the 
reinsurer. Fur thermore ,  the number  of  stocks ~* to be held is the same as in 
the s l tuanon where s tandard insurance contracts  are not traded. By the 
above calculations, we see that this position ~s financed by an equivalent 
short  position 77* in the risk-free asset, that is, i11 = -~t  St- 

We end this section by ment iomng that P* would not be a martingale 
measure for Z* had we defined the price process Z = (Z,)0<t<7- by 

Zi = (I, - N1)T_lp,+le -alv-O. 
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Here, the risk-free interest rate r has been replaced by some first order  
interest rate ,5 -¢ r. In this case, a martingale measure P for (Z*, S*) could be 
defined by (2.15) wxth h, = (6 - r)/F~,+,, p rowded  that h, > - 1  for all t. Th~s, 
m turn, would mapose umque arbitrage-free prices for the umt-linked 
contracts  that differ from those computed  using the minimal martingale 
measure P* 

6. N U M E R I C A L  RESULTS 

We round off by presenting some Monte  Carlo simulation results We 
consider the pure endowment  where the sum insured is due at the maturi ty  
date if the insured ~s then still ahve. Premiums are assumed to be paid as a 
single premium at time 0 The contrac t  funcUons from Example 4.5-4 6 will 
then be examined by evaluating the initial value o f  the intrinsic risk process 
V~, the mltml intrinsic risk R0 and the risk-increase associated with some 
simple (plecewlse constant)  strategies. Since these quant lues  are propor t ional  
to the size of  the portfol io /.,, recall e.g. (4.3) and (4.10), we consider an 
insurance portfol io  consisting o f  only one mdwldual ,  that is, we take l, = 1. 
Fur the rmore  we take the age of  the pol icyholder  to be x = 45 upon issue of  
the contract ,  and fix the term of  the contrac t  to be T = 15 years. We use the 
G o m p e r t z - M a k e h a m  hazard function as mor tah ty  law of  the policyholder  

t5,+, = 0 0005 +0.000075858 1.09144 '+~, t > 0, 

which is used m the Damsh 1982 technical basis for men. With this mortal i ty  
law, the condit ional  probabil i ty 15P45 of  surviving another  15 years given 
survival to age 45 is 0 8796 The basic financial market  is s tandard Black- 
Scholes with parameters  a = 0 25 and r =  0.06, that is, the de termmlsuc  
risk-free interest is 6% and the volatility of  the stock is 25% Fur thermore ,  
we take So = 1 and B0 = 1 The impor tance  of  the volat lhty parameter  ~s 
illustrated by considering, m addit ion,  the case of  small market  volatility 
(or = 0 15) and large market  volatility (a = 0 35). 

The value at Ume 0 of  the intrinsic value process V*, given by 

V~ = I, Tp,Fg(O, So), (6. I) 

is evaluated by simply inserting the parameters  (r, a) and So = 1 m the 
function Fg determined m Example 4 5 and 4.6. Results are hsted m Table  I 
for different choices of  guarantees,  the pure unit-linked insurance 
corresponds  to guarantee  K = 0 The mmal intrinsic risk R0 is given by 

Ro = E" I, TP, (e-~"Fg(u, S,,)) 2 T-,,P,+,, I'.,+,, du , (6 2) 

and since we have no explicit expression for the expected value o f  
(F~'(u, S,))  2, we apply Monte  Carlo simulation combined with numcncal  
mtegraUon m order  to evaluate (6.2) 
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The price process for the stock S under P* 

St = e (~-~)'+°W' (6.3) 

can be simulated by simply simulating a s tandard Brownlan mot ion 
and inserting this m (6.3). Let n = 100 be the number  of  time intervals 
per time unit (one year) and denote  by zSt = l/n the mesh of  this par tmon.  
Also let M denote  the number  of  paths o f  S to be stmulated and let 
ej , r e = l ,  . , M , j =  1,. . . ,  T n be a sequence of  smmlated independent  
s tandard normal variables The simulated versions S('") o f  (6.3) are 
determined as 

~(m) ,,) ~k = e x p  r - -  k. A t+  cr , k = l ,  . , T - ~ l , m = l ,  , M ,  
j-i / 

where S(k ''') has same dis tr lbutmn as SkLxl. The mmal risk R0 ~s now 
approximated  numerically by applying Monte  Carlo s~mulation for the 
integral (6.2) which is discretlzed using the so-called summed Simpson rule, 
see e.g. Schwarz (1989). In all computa t ions  we apply the step size 
~ t  = 1/100 In Table  1 we have also presented the estimate for R0 and the 
s tandard error  on this estimate based on M = 300000 simulated paths for 
~r = 0.15 and 0 25 and M = 500000 for o- = 0 35. 

TABLE I 

THE INITIAL INTRINSIC VALUES AND RISKS ASSOCIATED WITH L'NIT-LINKFD PURE ENDOWMFNT CONTRACTS 
FOR VARIOUS CHOICFS OF GUARANTEF AND VOLATILITY 

Guarantee (K) I,~ Ro (~td.dev.) v/~/V~ 

a = 0  15 0 08796  0 131 0411 

0 5 exp(rT) 0 8996 0 134 (0 0002) 0 407 

cxp(rT) 1 0807 0 173 (0 0002) 0 385 

(M = 300000) 2 cxp(rT) 1 7993 0 446 (0 0001) 0 371 

cr = 0 25 0 0 8796 0 194 -- 0 501 

0 5 exp0  T) 0 9580 0 205 (0 001) 0 474 

exp(i  7") I 2066 0 261 (0 001 ) 0 422 

(M = 300000) 2 exp(rT)  I 9161 0 5 3 8  (0001)  0 3 8 3  

cr = 0 35 0 0 8796 0 365 0 687 

0 5 exp(rT) 1 0255 0 380 (0 005) 0 608 

exp(rT) I 3213 0 449 (0 005) 0 513 

(M - 500000) 2 exp(rT) 2 051 I O 743 (0 005) 0 423 
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The unrestricted nsk-mimmxzmg strategies are not apphcable m practice, 
since they are based on the assumption of contmuously adjustable 
portfohos. However, the expressions can be used as a guide m practxcal 
portfoho administration. For example, the insurer could apply a plecewlse 
constant strategy on the form 

J 

~t = Z I ( t  E ( t j - i ,  t j ] )~  ~, (6.4) 
. /=1 

where ~ denotes the unrestricted r~sk-nammaizing strategy determined in 
Section 4. Thus, the portfoho of stocks as adjusted at fixed times 
0 = to < tt < < tj_~ < tj = T, as an approxmaat~on to the continuously 
adjustable nsk-mmmalzmg strategy. Here, we have chosen tj = j  and 
t: =. / /12 ,  which maphes trading once a year and once a month, respectively. 
In Table 2, we have lasted the risk-increase assocmted with the p~ecew~se 
constant strategies (6.4), obtained by evaluating the expression 

J [ f t j  t/ ] 2 9 ,~ 
- , )  . 

J = l  1 

In Moiler (1996) optmaal smaple strategies are derived by means of some 
heuristic calculatlons 

TABLE 2 

TIlE RISK INCREASE ASSOCIAq El) WITH qlMPLE ~,I RATEGIFS WITII YEARLY AND MONTHLY ADJUSTMENTS 
FOR UNIT-LINKLD PURE ENDOWMI NT CONTRA~I'S 

K Ro Yearly (ltd. dev.) Monthly (~td. dev.) 

a = 0 15 0 0 131 0 0015 0 00012 

0 5  exp(rT) 0134 00014 (15  10 -6) 000012 13 10 -7) 

exp(rT) 0 173 00011 (I 6 I0 6) 000009 I 3 10 -7) 

(M = 1000000) 2 exp(rT) 0 446 0 0004 I 4 10-6) 0 00003 I I 10 -7 ) 

cs = 0 25 0 0 194 0 0060 0 00051 - 

0 5 e x p 0 T )  0205 00058 19 10 -5 ) 000050 16 10 -6 ) 

exp(rT) 0261 00051 19 10 -5 ) 000044 I 6 10 6) 

(M = 1000000) 2exp( rT)  0538 00040 19 10 5) 000034 (16  10 6) 

o r =  0 35 0 0 365 00225 - 000187 - 

0 5 e x p 0 7 " )  0380 00218 (31 10 4) 000186 (26  10 -5) 

exp(rT) 0449 00209 (3 I 10 4) 000178 (26  10 -5 ) 

(M = 1000000) 2exp( rT)  0743 00193 (3 I 10 -4) 000160 (26  10 -~) 
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With volatility parameter cr = 0.25, the ratio between the square root of the 
initial intrinsic risk ~ and the intrinsic value process V~ is 0.5 for the pure 
unit-linked life insurance, see Table I. By increasing the size l, of the 
portfolio to 100, say, the corresponding ratio is reduced by the factor 
lv'T00/100 = 0 1 to 0 05. As mentioned in the previous sections, V~ can be 
interpreted as a natural candidate for the single premium In non-hfe 
insurance premiums are often increased by adding a safety loading, typically 
twice the standard deviation of the total liability This procedure would lead 
to a safety loading about 2- 5%, that is 10% when l, = 100. Furthermore, it 
is noted that the minimal risk associated with the simple strategy (6 4) with 
trading once per year is only 0.006 higher than the minimum obtainable risk 
R0 = 0.194. This corresponds to an increase of 3 1% Thus, the uncertainty 
associated with the death of the policyholders seems to be by far the most 
important 

The results obtained for the unlt-hnked contract with guarantee different 
from 0 indicate lower values of the ratio between the square root of the 
minimal obtainable risk R0 and the intrinsic value process V~ than in the 
pure unlt-hnked case. Furthermore, the ratio seems to be decreasing as a 
function of the guaranteed amount Also the relative risk increase associated 
with simple strategies is smaller than the corresponding results for the pure 
unlt-hnked life insurance. These properties could be partly explained by 
considering the exact form of the sum insured, described by the underlying 
derlvauve 

m (Sr, K) = K + (ST - K) + 

Obviously, the probabdlty of the European Call Option (ST  -- K )  + being in 
the money will converge to zero as K converges to infinity. In this way the 
relative uncertainty associated with the sum insured should decrease when 
the guaranteed amount increases. 

Table 1 also gives indications of the consequences of possible ires- 
specification of the volatility parameter or. It is seen that all quantities hsted 
here seem to be non-decreasing functions of the volatility. In particular, 
calculahon of premiums based on the initial intrinsic value V~ only would 
neglect the increase in the ratio x,"~/V~ as a increases. Thus, this principle 
could result in premiums which are not adequate to cover the insurer's 
hablhtles to the insured 
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WITHDRAWAL BENEHTS UNDER A DEPENDENT DOUBLE 
DECREM ENT MODEL 

BY JACQUES F. CARRIERE 

Dept of Mathematical Sctences 
Umvets,ty of Alberta 

A B S T R A C T  

This artmle presents an exphcit formula for the value of a withdrawal benefit 
when the times of death and withdrawal are dependent. The denvauon is 
based on an actuarml eqmvalence principle. As a specml case, we show that 
m the fully continuous case, the withdrawal benefit is the reserve when the 
decrements are independent We also present a definmon of ant,selecUon 
and prove that the withdrawal benefit will be smaller under antxselection. 

K E Y W O R D S  

Dependent decrement theory, withdrawal 
equivalence principle, varying hfe insurance. 

benefits, anhselecuon, the 

1. INTRODUCTION 

In some markets, hke the Umted States, life insurance products have a 
withdrawal benefit when the policy is terminated. This artmle will examine 
the lmphcatmns of dependent probaNhtles of withdrawal and death on 
withdrawal benefits for hfe insurance m discrete time. Specifically, we will 
give an exphcit expression of the w~thdrawal benefit under a dependent 
decrement model thus allowing us to characterize the withdrawal benefit 
under anUselectmn 

In the book, Actuarml Mathemaucs (1986), the authors state that 'qf  the 
withdrawal benefit in a double decrement model whole hfe insurance, fully 
continuous payment basis, is the reserve under the single decrement model 
whole hfe insurance, the premium and reserves under the double decrement 
model are equal to the premmm and reserves under the single decrement 
model " This incredible result is not always true. The reason that the reserve 
~s not always equal to the w~thdrawal benefit was given by D.R. Schuette 
(reported by Nesbnt (1964)), who found the withdrawal benefit is not the 
reserve m the discrete model because "the probability of withdrawal depends 
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on the force of  mor tah ty . "  Thus,  th~s article delves into the issue o f  
dependent  mor tah ty  and withdrawal m a discrete model For  an mtroduc-  
non to the mathematms of  dependent  decrement  theory,  consult C a m e r e  
(1994). 

2. THE SINGLE-DECREMENT MODEL 

In this section, we present the classmal single-decrement model for hfe 
insurance pricing and reserving Let Ta denote  the hme and death for some 
hfe aged x. Next,  let 

Sa(l) = Pr(Tg > l),t >_ 0, ( l )  

be the surwval function of  T~. Th roughou t  the discussion we will assume 
that this survival functxon is absolutely cont inuous  with a density denoted as 

fa ( t )  and a force of  mor tah ty  equal to jttd(t)=J'I(t)/S~I(I). Thus 
S " ( t ) = e x p { - . f ~ t g ' ( . : ) d z } .  Now cons,der the probab ,h ty  that the hfe 
survived to time t + s Dven that it surwved to time t. This survwal function 
~s denoted as , p ' / and  it is equal to. 

, p r = P r ( T d > t + s , T , , > t )  S " ( t + s )  { / ' + ~  } - Sa(t ) - exp - a ,  #a(z)dz . (2) 

It wall be convement  to define T,/(t) as the r andom variable induced by 
.,p'/ so that sp~ I = P , ( T , t ( t ) > s )  Note  that Td = T,i(O) and ,p0 d = S' l(t) .  
Moreover ,  if Td > t then Ta(l) = Ta - I, otherwise Ta(t) as undefined. It is 
instructwe to note that ff the expectatmn E[g(T,t(I))] exasts for some functmn 
g(s), then 

E[g(Ta(t))] = E [ g ( T a -  t)lTa > t]. (3) 

This last fact wall be used repeatedly. 
Usually we will assume that p remmms and death benefits are paid at the 

discrete times t = k/m where k = 0, 1, 2 . . . .  and m > 0 Therefore ,  it is 
convenient  to define the discrete random vartable 

K 2 - L'"T"-----J-, (4) 
m 

where L-J is the floor functaon In other  words, LyJ is the integer part  of  r. 
Thus,  a f y > 0  then [yJ = k  if and only f f k < y < k +  1 Note  that T,i is 
smaply equal to K'~' when m = oo and so any discussion about  the 
cont inuous  model is subsumed within the discrete model. 

In thas amcle ,  we assume that the life insurance has a varying death 
benefit equal to b(/), ff death occurs at time t. Typacally, b(t) = 1 for all t 
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Next, let 

(5) 

denote the interest discount functmn Tradit ionally,  actuaries have assumed 
that ~: = ~5 is constant  thus implying that v(t) = e -~t Using the equivalence 
prmmple and the funcUons v(t) and b(t), we define the net single prelmum at 
tmae I for the future benefits from the hfe insurance as 

A;~'(t) = E[b(K,':' + l/m)v(K:}' + 1/m)/v( t ) lTa > t] 

= E[b(LmZ.  ÷ IJ/m)..(Lmr. + ]3/m)/~(t)lZ. > t] (6) 

-- E[b(Lm(ra(t ) + t) ÷ l J /m)v(Lm( T,l(t ) + t) + I ] /m) /v( t )]  

Note that the last equality m equation (6) follows from equation (3). Now, 
let us focus on the valuation of  the premmm payments. Assume that 
payments  of  1/m are made at the tmaes t = 0, I/m, 2/m, .  Then the present 
value at time t = 0 of  all the payments  made m the period [r,s) will be 
denoted as a[r,s) and calculated as' 

oo 

air, s) = _1 Z ~:(k/m) l(r <_ (k /m)  < s) (7) 
I?T 

,~=0 

In this definition, l(e) is an indicator function that Is equal to I if the event e 
is true and 0, otherwise. It is mstrucuve, to verify that a[r,s)= a [ 0 , s ) -  a[0,r) 
Using this annmty-certain formttla and the eqmvalence principle, we find 
that the net single premmm for the future payments from the hfe annuity at 
t i m e  t is. 

a',7(r) = E[ . [ , ,  K:7 + 1/m)/v(t) lT.  > t] 
= E[a[e, LmZ, z ÷ l j /m) / v ( t ) lZd  > t] (8) 

= E[a[t, L,.(T.(t) + t) + l]/m/'.(t)]. 

Under  the single decrement model, the net level prem]um for the life 
insurance is denoted as pm and It is equal to. d 

l)l 111 P;'/= A a (O)/a,i (0), (9) 

under the eqtnvalence principle. Thus, we can define the hnk functmn as. 

£ ( , ,  s) = b(s) v(.~)/',(,-) - ~'a[, ' , . , ' ) /v(, ') ,  (10) 

This link function will be useful when the w~thdl'awal benefit is derived for 
the double-decrement model m the next secUon. This hnk funcUon can also 
be used to define the prospective loss at tmae t, whmh ~s 

L'"(t) = £(t,K~;' + l /m)  (11 
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Note  that  E[L"'(0)] = 0. Finally, we find that  the prospective reserve at any 
time t is: 

V'"(t) = f[Zm(t) lTd > t] = E[£(t ,  LmT,: + l j/m)tT,~ > t] (12) 
= E[£(t,  [m(Tj( t )  + t) + l ] /m) ]  = A',}'(t) - P~}'a',}'(t) 

Note  that  the r a n d o m  variable  Lm(Ta(t) + t) + I J im  has a central  role. Thus  
it will be convenient  to define 

E','/(t) = [m(r,l(t)  + t) + lJ /m.  (13) 

With this nota t ion,  we can write 

t H  /11 DI  A a (t) = E[b(/C a (t))v(/C a (t))/w(t)], 

a',}'(t) = E[a[t, IC',}'(t))/v(t)], (14) 

v"(t) = E[C(t, 
Let S'l(slt, m) denote  the survival function of  IC'j(t). Let us derive this 
function.  Consider  the fact that xf y > 0 and x > 0, then [yJ + 1 > x if and 
only if y > kxj. Using this result we find that  IC',~'(t) > s If and only if 
Ta(t) > ( [ m s J / m )  - t. Therefore ,  

Sd(slt, m) = e x p  - a t  i J ( z ) d z  . (15) 

3 THE DOUBLE-DECREMENT MODEL 

In this section, we present  the probabfl ls tm st ructure  for a dependent  double-  
decrement  model .  This will al low us to derive an expressmn for the 
wi thdrawal  benefit, W'~,' (t), that  represents the benefit that  is returned to the • ap~. 

pol icyholder  at t ime [mt + l J / m  when withdrawal  occurs at time t 
Let T,,, denote  the time at wi thdrawal  f rom a life insurance cont rac t  for a 

life aged x, where j " ( t )  is the density, S"( t )  ~ "' - - = fl f (_)dz is the survwal  
funct ion and tL" (t) = J "  (t)/S'"(t) Is the force We will find it useful to define 
the discrete r a n d o m  varmble  

K~[,' -- [m r,,,J (16) 
m 

General ly ,  we assume that  Ta and T,, are not stochastically independent  
Therefore ,  let us consider  the c o n d m o n a l  density o f  Ta given that  7",, = t, 
whmh is denoted asfalw(t,llt). Also, let Sal"'(ta[t) = ft,~ ff:l"'(z]t)dz denote  the 
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condit ional  survival function of  Ta given that T., = t. Hence,  the condit ional  
force o f  mor tah ty  ~s 

IlJl"'( t,llt) -- f 'llw( t'llt) (17) 
Sdl'"(t,tlO 

Thus sdl"'(t,, t) = e x p l  , -  fie l,'ll"'(z t )dz} .  In the case of  independence,  we get 
j a  " ( ta l l )=j ' l ( t , i ) ,  S'¢"(ta'[t)= Sa(ta), and #dlw(Ijlt ) = iLa(t,;). It is impor-  
tant to note that the ensuing &scusslon and results assume that we know the 
density falw(talt ). However ,  esnmating this density is not a trivial exercise 
because we can only observe the mimmum of  the random variables T,t and T,.. 

Now consider the probabil i ty  that the life survived to time t + s given 
that ~t surwved to time t and w~thdrawal occurred at ttme t This survwal 
function is denoted as sp'/I"' and it is equal to. 

,p,/i,,,= p,.(T,t > t + s l T ,  l > t , T , , , = t )  = P,'(T,i > t - t -s ,T , i  > tlT,, = t )  
Pr(Td > t iT.  = t) 

s " ' " ( ,+s l l )  { f + '  } 
- Sdl,,.(tlt ) - exp -.,, t~+'(zlt)dz . (18) 

dill' It will be convenient  to define Tdlw(t) as the random variable reduced by sP, 
so that ,p ' / l ' "=Pr(T,  i i . , ( t )>s) .  Note  that ,p~=adl"'(tlO). We let 
Tab,,(O) = Tall .... It is instructive to note that if the expectat ion E[g(T,&,(t))] 
exists for some functmn g(s), then 

E[g(T,o~,,(t)) ] = E[g(T,i - t)lT, t > t, T.. = t] (19) 

This last fact will be used repeatedly In the definition of  the withdrawal 
benefit, the random variable [m(Tal,,.(t) + t) + l J / m  has a central role Thus  
it will be convenient  to define 

= L m ( r +  (,) + *) + (20) 

With this notat ion,  we can write 

A',',;,,(,) = E{b(lC,',i,,.(t)~,(/C',',i,,.(0)/~,(0], 
'/,L'(') = E[@,/c ' ,L( , ) ) /~( , ) ]  

(21) 

Let s'tl'"(slt, m) denote  the survival function of  K'~i,,(t ). Note  that K m tt'~ d]w',  J > S 
If and only If T,&,.(t) > Lmsl /m - t. Therefore ,  

{l } s'tlw(slt, m) = exp - a, i, 'llw(z) de . (22) 

We are now ready to state our  first theorem. 
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The o r em 3. I. Let £.(t,s) be the lmk functton I f  the equtvalence princtple holds, 
then under a double-decrement model where the premtums are equal to pm the 

t l  ' 

withdrawal benefit fimctton ts 

W~'l',,.(t ) = E[E(Lmt + lJ/m,/U'//], , (t))] 

= E[E(Umt + l J/m, [m(Talw(t) + t) + lJ /m)]  (23) 

= E[E([mt  ÷ I J /m,  [mTd -F lJ /m)lT, /> t, Tw = t] 

= E[C(Lmt + lJ/m, K:~'+ 1/m) l r ,  l > t. T,,, = t] 

Wm (t) Proof.  If .. alw~ J is the withdrawal  benefit, then under  the eqmvalence 
principle, 

U,,~' E[a[O, K:'~' + l / m ) l ( Va <_ 7,,.)+a[0,K//' + l / m ) l ( Ta > V,, )]-- 

E[b(K~'+ 1/m) 'o(K:" I + 1/m) 1 ( rd  <_ T, ) + W~'i, ,, ( 7,, ) v(K,','.' + 1/m) 1 (Td > T,,)]. 

Therefore,  

P~)'E{a[0, K:7' + l / m ) ] +  

I~'/E[[a[O,K,',',' + l /m) - a[O, Ki'j' + l /m)]l(Tn > T,,,)] = 

E{b(K;7'+ l / m )  v(K:'~' + l / m ) ] +  

E[[W~;[,,,(T,,) v(K(,'.' + l /m)  - b(K~' + I/m) ~2(K~' + l / m ) ] l ( T j  > rw)] 

But 

" ' "  E b '" 1 / m )  '" g', × E[a[0, K:t + l /m)]  = [(X:l + v(K,, + 

For  slmphc,ty,  let Y = l(Ta > T,,.) v(K,','.' + 1/m). Then 

E[YW m r T  +,,, ,,)] = 

E[Yb(K~' + l /m)  v(K:'~' + 1/m)/v(K;[' + l / m ) ] -  

E[ YP~'(a[O, K',~' + l /m) -a[0,  K,',:' + 1/m))/v(Km + 1/m)]. 

Note  that  a[O, l (~ '+l /m)-a[O,K, ' , ' , '+l /m)=a[Kf[ '+l /m,K'" , /+ l /m) ,  
hence the r ight-hand side of  the last equanon  ~s equal to 

E[ YE(K[I' + 1/m, K~ '+  1/m)] = E[ YE[£(K,'~'+ 1/m, K~j' + 1/m)[Ta > T,,, 7",,,]] = 

E[ YE[£Lmt+ lJ /m ,Kj '+  l /m)[  T,i > t, 7",, = t]],_ r,,] = E [  .vWmdl,,,~. , t ' r  )] 

Hence,  the result is proved [] 

W m Now,  let us compare  the wxthdra al benefit W .  ,(t), as defined m 
equat ion  (23), w~th the reserve formula  V'"(t), s h o ~  in equat ,on (12). 
Clearly, they are different, even when Td and 7",,, are stochastically 
independent .  In the case of  independence,  Ta(t) and Tdl,,,(t) are ldenUcally 
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distributed Let W~':'(t) denote  the withdrawal benefit under  the independent  
decrement  model,  then 

Wj'(t)  = E[g(Lmt + l Jim,/c'//(t))]. (24) 

Thus  

tH lira V'"(t) = lira W:~lw(t ) = E[C(t, Td(t) + t)]. 

In o ther  words, the withdrawal benefit is equal to the reserve m the 
cont inuous  model,  thus confirming a well-known fact 

4. W I T H D R A W A L  BENEFIFS UNDER ANTISELECTION 

In this sectmn, we g~ve a def inmon of  ant~selectlon and we show that the 
w~thdrawal benefit under antlselect~on is smaller than the benefit under  the 
single-decrement model,  as expected. We are now ready to give a def inmon 
o f  anttselectton We say that hfe insurance is subject to antlselectmn at 
withdrawal,  if 

#dl"'(tdlt,,,) < #d(td) Vtcz ~ t.. (25) 

If  we reverse thls lnequahty,  then we have antlselectlon for hfe annuities. 
Using our  definition of  antlselectmn, we lmmedmtely find that 

s"l,, (sit, m) _> #(t i t , , , , )  (26) 

for alls s > 0. 
Rrst ,  we &scuss the maphcatlons of  ant~selectmn to the valuation of  the 

Ill~ insurance. Assume that g ( s ) =  b(s)v(s) is an absolutely cont inuous  
functmn with g'(s) _< 0 so that 

/o g(s) = g(O) + g ' (z )d:  

Actually, this is a weak assumptmn because the assumption is obviously true 
when b(s) = 1 and v(s) = c x p ( - 6  s) 

L e m m a  4.1. Suppose that g(s) = b(s) v(s) for s >_ 0 Is absolutely continuous 
and g'(a) < 0 lJ g(s) ts mtegrable wtth re.spec't to the cumulattve dtstrtbutton 
f lmcttons 1 - sdlw(slt, m) a , d  1 - Sd(sl t ,m),  then zmder the a,ttselectton 
condttton l~'ll"'(tdltw) < itd(ta) attd the equtvalence principle, we get 

A',;],,,(O _< <7(0 
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Proof First, note that 

D1 tH III ,,(OA,~ (,) = E{b(K:,~ (0)  ~,(1C,~ (0)1 

= .~o ee)g(s)d(1 - S't(slt, m)) 

£,ao) [g(O) +,fo'g'(z)dz] d( I - S'l(slt,m)) 

= g(O) + d ( l  - S '~(sl t ,m))  m 

= g(O) + g'(z)Sd(~l,, m) J_, 

Next, under antlselecuon SalW(zlt, m ) > S'l(zlt, m) and so g'(z)S al" (zlt, m ) 
J(z)sa(zlt, m). Integrating both sides of the mequahty yields the result. [] 

Next, we present a lemma on the lmphcatmns of anUselectmn to the 
valuation of hfe annumes. 

Lemma 4.2. Under the eqmvalence principle and the anttaelectton condttton 
~Jlw(6tltw) < Y(t,z), we get 

ProoJ. F~rst, note that 

~,(,)~,',~'(t) = E l < t i t ,  Ic',~'(t))] 

m Z  v(klm) l(t _< kl,n < / ~ ' ( t ) )  
I~-0 

= v(k/m)l(t  < k/re)Ell(kin, < ~',)'(t))] 
171 k-O 

± OC 

= ~ v ( k / m ) l ( t  < k/m)S~t(k/mlt, nT). 
1?1 k=O 

But under antiselectton sdl"'(slt, 177) > Sd(s]t,m). Summing both sides of the 
mequahty ymlds the result. [] 

Applying Lemma 41 and 4.2, we immediately find that under 
annselectmn the w~thdrawal benefit under the classical independent 
decrement model ~s too large We summarize this result with the following 
theorem. 
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Theorem 4.3. Under the conditions m Lemma 4.1 and 4.2, we get 

W;7[, , (t) < W~7'(t ). (27) 
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ABSTRACT 

In this paper we investigate multlvariate risk portfolios, where the risks are 
dependent. By provMlng some natural models for risk portfohos with the 
same marginal d~stnbut~ons we are able to compare two portfohos with 
d~flierent dependence structure with respect to their stop-loss premiums. In 
particular, some comparison results for portfohos with two-point dlstribu- 
tmns are obtained The analysis ~s based on the concept of the so-called 
supermodular ordering. We also give some numerical results whmh indicate 
that dependencies m risk portfohos can have a severe impact on the stop-loss 
premmm. In fact, we show that the effect of dependencies can grow beyond 
any gwen bound. 

K E Y W O R D S  

Dependent risks; Stop-loss premmm, Supermodular order; Stop-loss order; 
MajonzaUon, Comonotomc~ty, Exchangeable Bernoulh random varmbles 

1. I N T R O D U C T I O N  

In traditional risk theory for means of tractability, indwMual risks are 
usually assumed to be independent. Recent research has shown, however, 
that a positive dependence between risks leads to underestimatmn of the 
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stop-loss premium for the aggregated loss. To the best of our knowledge, 
Hellmann (1986) and Hfirhmann (1993) have been the first authors, who 
demonstrated the impact of dependencies on stop-loss premiums More 
recently, Dhaene and Goovaerts (1996) investigated the effect of blvarlate 
dependencies on the related stop-loss premium and gave an upper bound by 
determining the riskiest portfolio Dhaene and Goovaerts (1997) made a first 
attempt to treat multivariate dependencies They considered a special life 
insurance portfolio with two-point distributions. Their results were general- 
lzed by M011er (1997) who characterized the mskiest portfoho under all 
portfolios with equal marginals for arbitrary distributions. Wang (1997) 
suggested a set of tools for concrete modeling of dependencies in rusk 
portfohos using the information g~ven by the correlation coefficients. 

In this paper we now propose some natural models for multivariate risk 
portfohos with d~fferent degree of dependence and same marginal 
d~stmbutxons The assumption about equal margmals is crucial here since 
our focus lies on comparing dependencies only The results can of course be 
extended to unequal margmals by adding stochastic dominance. The models 
are defined m such a way that it is possible to compare two portfohos from 
the same class of models with respect to their stop-loss premiums. More 
precisely, we consider the classical indiwdual model from risk theory, where 
the aggregate claim amount of a portfoho in a period is given by 

S =  ~ X , ,  
I=1 

where X~ is the random claim amount caused by policy i, t = 1 . . . .  n 
Throughout the paper we assume that the random vamables X, are non- 
negative with finite expectation. In a first model (model 3 1 m section 3) we 
assume that the rusks can be divided into several groups, where each risk of a 
group is influenced by a global rusk factor, a group specific risk factor and an 
individual risk factor. We show how the group structure of the portfolio 
affects the stop-loss premium and determine the safest and riskiest portfoho 
m this model class. On that occasion, we use the notion of majorlzatlon m 
order to compare the group structures 

In a second model (model 3.2 in section 3) we compare two portfohos, 
where both are subject to the same economic/physical enwronment, but the 
second portfoho contains an additional global risk factor which influences 
the risks of this portfolio in the same direction. Again, the marginal 
distributions are assumed to be equal for both portfolios. | t  can be proved 
that the stop-loss premium m the second scenario ~s greater than m the first 
one. This result is used later on to construct a portfolio, where the rusks have 
two-point distributions and the portfolio can be characterized by a 
dependence parameter p E [0, 11. The construction Is such that increasing 
p leads to a higher correlation in the portfolio and the two extreme cases 
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p = 0 and p = I correspond to independence and comonotomcity respec- 
uvely. We show that the stop-loss premium ~s increasing m the dependence 
parameter p. 

In another model we compare portfolios which are given by exchangeable 
Bernoulh random variables Here it can be shown that stop-loss order of the 
imxing distribution implies more riskiness for the aggregate claims. 
Moreover, m this setting, we prove that the ratio of the stop-loss premium 
in the riskiest scenario divided by the stop-loss premium of an arbitrary 
portfolio is increasing in the retention level. 

Our models are very general and cover most of the specific parametric 
models considered by Wang (1997) There is one main difference between 
Wang's paper and thJs one We mainly lnvesugate, how dependencies affect 
the riskiness of portfohos, whereas Wang focuses on algorxthms for 
s~mulauon and efficient computation of concrete parametric models for 
correlated risks. Thus the two papers are complementary m so far as his 
algorithms for smaulat~on can be easily adapted to our models. 

Most of the comparison results we provide m this paper are based on the 
so-called supermodular order, rig. This concept has recently proven to be 
valuable for comparing dependencies in random vectors in a wide range of 
applied probabdJty models For detmls see Bauerle (1997a), Shaked and 
Shanthlkumar (1997) and the references thereto. 

At the end of the paper we give a numerical example for model 3.1, which 
shows that dependencies can have a severe effect on the stop-loss premmm. 
In particular we demonstrate that whenever the retention level exceeds the 
expected aggregate clmm amount, the effect of dependence can be arbitrary 
w o r s e  

The paper is orgamzed as follows section 2 contains some basic 
definitions and results about stochastic ordermgs and dependence which we 
will use in the sequel. SecUon 3 covers model 3.1 and 3.2 and section 4 is 
dedicated to the specml case of risks with two-point dlsmbutlons. The 
numerical results are snmmanzed in secUon 5. 

2. STOCHASTIC ORDERINGS AND DEPENDENCE 

Let us first fix the notauon. A portfoho of risks is a random vector 
X = ( X i ,  . . ,  Xn) ofn  individual risks, where an indwidual risk X,, 1 < t < n 
is a non-negative (univanate) random variable with a finite mean. For 
arbitrary unlvarlate random varxables Y we denote the distribution function 
by F r ( t )  = P ( Y  <_ t), t E IR and F y ( t ) : = P ( Y >  t) = I - F v ( t )  shall be 
the corresponding survival function. We will also frequently use the stop-loss 
transform try(t) .= E( Y - t) + = J t  P ' v ( x ) d x ,  t E IR. For a random vector 
X = (Xi, ., X,,) we similarly define the distribution function 

F x ( t )  = P ( X  <_ t) = P ( X i  <_ t , ,  ..., X,, <_ t,,), t =  (tt, ., t,,) C /R" 
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and the survwal function 

i x ( t )  .= P ( X  > t) = P(X~ > t l ,  ., iv,  > t, ,) ,  t = ( t~,  , t , )  E ~ "  

Note  that for mul twar la te  distributions m general f 'x( t )  :~ I - Fx(t). I f  two 
random yanables  or vectors X" and Y have the same dis t r ibuhon,  we will 
write X ~ Y. X ~, F should be read as: X has the distribution F. 

Now we will introduce some stochastic order  relations, which are well- 
known concepts  for c o m p a n n g  risks. 

Definition 2.1 Let X, Y be real random vat'tables wtth fimte means 
a) We say that X precedes Y m stochastic order, wrttten X_<st Y, t f  

Fx(t) > Fv(t) [or all t E IR. 
b) X precedes Y m stop-loss order, wrttten X _<~1 Y, t f  Trs(t) < Try(t)for all 

t E E .  

Remarks 
a) If X _< Y, where ~ may be any stochastic order  relanon,  then we will also 

write Fx -< Fy whenever  it is convenient.  
b) If  we have a family Fo, 0 E (9 C /R of  dls tr lbunons,  then we say that Fo is 

stochastically increasing in 0, if Fo <_,t Fe for 0 < 0'. 
c) Stop-loss order  means, that the stop-loss reinsurance p remmm for the 

risk Y Is hJgher than that for  X for any retention t. 
Now we collect some impor tan t  propert ies of  these ordermgs,  which we 

will use frequently.  They can be found e.g. in Shaked and Shanth lkumar  
(1994) or Goovaer t s  et al. (1990) 

Theorem 2.2 
a) The following condmons are eqmvalent. 

1. X<_~.t Y, 
2. E',f( X )_< E~J ( Y ) fior all non-decreasing f u n .  q ,ons  f ,  
3. There at e random vat'tables }( ~ X and ~" & Y such that )( < f" ahnost 

St l l 'e .  

b) The following condtttons are equtvalent 
1. X < , i Y ,  
2. E f (X)  < E f ( Y )  Jar all non-decreasing con vex functions f ,  

- -  ~ d ~ d - ~ 

3. There are random vartables X =  X and Y - -  Y such that E[ YIX] > 5( 
ahnost sure. 

As stated before, the mare topic of  this paper  is the compar ison of  the 
riskiness o f  portfohos.  In order  to do so we need notions of  s tochasnc order  
relations for random vectors. We say that a portfol io X = (X1, ..., X,,) ~s 
less risky than a portfol io  Y = (Yl, , Y,,), if the corresponding aggregate 
clamls S = ~ , ~ t  X, and S' = Y]~,~i Y, are stop-loss ordered,  i.e S _<~/S'. It 
will turn out  that a sufficient condit ion for this Is given by the so-called 
supermodular ordering or the symmetric supermodular ordering These 
stochastic order  relations have recently been considered m apphed 
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probability by Bauerle (1997a, b), Bfiuerle and Rleder (1997), Shaked and 
Shanthikulnar (1997) and others. In the actuarml literature the super- 
modular ordering has been introduced by Moiler (1997) It is based on the 
comparison of  integrals of (symmetric) supermodular functions, which are 
defined as follows 

Definition 2.3 
a) A f imc t ton  f IR" ---+ IR ts satd  to be supermodular, (/ 

f ( x l , . . ,  x , + e ,  .., .~)+6, , x , , ) - f ( x l ,  , x , + e ,  . . ,  .~3, . . ,  x,,) 

_> f ( x l ,  . , x, ,  ..., a) + 6 ,  ..., x , , ) - J ( x l ,  . , x, ,  . , x:, . ,  x,,) 

holds f o r  all x E IR", 1 _< i < j _< n and all e, 6 > 0 
b) A f imc t i on  )c. IR" ---+ 1t? is called symmetric, 

permuta t tons  I-Ix o f  x .  

( l) 

,f  f ( x )  =f( l - lx)  f o r  all 

An mtumve explanation of  the notion of  supermodularlty can be given as 
follows: Let rl, , ,c, be the individual claim anaounts o f n  policy holders 
and l e t / (x j ,  ..., x,,) be the loss for the insurance company caused by these 
clanns Then supermodularlty of the function [ means that the consequences 
of an increase of a single claim are the worse, the higher the other claims are. 

Symmetric functions do not depend on the order of the varmbles. This 
means m our context that the pohcy holders are indistinguishable 

The following properties of  supermodular ftmctions are well-known. 

Theorem 2.4 
a) I f  f ts twtce dtf ferentiable,  then J is super modular  t f  and  only i f  

02 
Ox, Or j J  (x)  >_ O f o r  all x E IR", I < t < j < n 

b) l f  gl ,  ..., g,, 9~ ---, 97 are tncreasmgJunc t ions  and f ts supermodular ,  then 
f ( g l ( ' ) ,  .., g,,( ')) ts also supermodular .  

A proof  of this theorem and many examples can be found m Marshall 
and Olkm (1979, p. 146ff). Now we will introduce the supermodular 
stochastic order relation. 

Definition 2.5 
a) A random vector X = (Xi, , X,,) ts s a m  to be smal ler  than the random 

vector Y = ( Yi ,  ., Y , )  m the supermodular ordering, wrtt ten X <~,,, Y ,  i f  
EJ ( X )  < EJ ( Y )  Jot" all supermodular  Junct fons  f such that the expec ta t ions  
e¢ist.  

b) A random vector X = (X i ,  , Xn) ts 9ald to be smal ler  than the random 
vector Y = ( Yt ,  ..., Y , )  m the symmetric supermodular ordering, wrtt ten 
X <¢~,,,,~,,, Y ,  t f  E f ( X )  < E f ( Y )  f o r  all s y m m e t r t c  s u p e r m o d u l a r f i m c t t o n s f  
such that the e.x'pectattons extst .  
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Supermodular ordering is a useful tool for comparing dependence 
structures of random vectors. Since any function f . / R "  ~ / R  that depends 
only on one variable (i.e. f ( x l ,  ..., Xn) = g(x,) for some g .  ~ --~ /R and 
some z C {1, , n}) is supermodular, it follows immediately from the 
definition that only d~stnbutlons with the same margmals can be compared 
by supermodular ordering Moreover, all functions f ( x ) =  x,.x/, i # j  are 
supermodular. Hence X <~,,, Y imphes Corr(X~, Xj) _< Corr( Y~, Yj), t # j .  

The usefulness of these concepts in our setting ~s shown clearly in the next 
result. 

Theorem 2.6 Let X = (Xi,  ..., X, )  and Y = ( Y I ,  . . . ,  Y,) be random vectors 
with X <_,,,, Y ( X  <_~.,,,~,,, Y )  and let 

S=~X, and S'=~Y, 
t -I i=l 

Then S _<,1 S'. 

Proof" For the supermodular ordering thas has been shown m Mfiller (1997, 
Th. 3.1). The case of symmetric supermodular ordering can be shown along 
the same lines, as the function x --, ~ x, ts obwously symmetric. [] 

The Theorem says that stronger dependence in the sense of supermodular 
ordering leads to more risky portfolios. Next we will construct a specm] 
random vector w~th gwen marginals, which exhibits a very strong form of 
dependence. Let U be a random variable uniformly distributed on [0,1] and 
let Fi, .., F,, be n marginal distributions. Define X = (X1, .., X , , ) =  
(F~-I(U), , F , / I (U)) .  Using the well-known fact in simulation that 
F - I ( U )  ,~F ,  we see that X in fact has the marginal dlstnbuuons 
Fi, ..., F,,. Since F~ -I is increasing for all i it follows that X,(wl) < X,(w2) 
implies Xj(oJi) _< Xj(w2) for all j # t. Schmeidler (1986) and Yaarl (1987) 
Introduced the notion comonotonieity for this property. An easy calculation 
shows that the distribution function of X is gwen by Fx(t )  = mini'__ I F~(t,). 
Summing up, we can give four equivalent definmons of comonotonlc~ty. 

Definition 2.7 The distribution F with marginal distributions Fi , ..., F, ts called 
comonotontc, t f  one o f  the following four  equivalent conditions ts Jul~lled 

I I  

1. F(t)  = mm F,(t,), t E #T', 
t=[ 

2. The random vector X =  (F,-I (U),  , F~-t(U)), where V is umformb; 
distributed on [0,1], has the distribution F, 

3 There ts a untvarmte random variable Z and there are mcreasmgfimction.s 
f , ,  ., f , ,  such that X = ( f l ( Z ) ,  ., f , ( Z ) )  has the distribution F. 

4. There Js a random vector X ~  F, such that X~(wt)< X~(w2) tmphes 
Xj(Ca)l) ~ )0(k)2)  J~gr all s ¢ t .  
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The c o m o n o t o m c  d l smbut ion  F is also called upper Fr&het  bound, s i n c e  

Fr~chet has shown that for any distribution function G with marginals 
Fi, . , F,, we have G < F. An even stronger result is the so-called Lorentz-  
inequality. It can be found e.g. as Theorem 5 in Tchen (1980) and can be 
stated as follows. 

Theorem 2.8 Let X be an arbitrary random vector and let Y be the 
comonotomc random vector with the same margmals as X. Then X <_,,,, Y. 

This means that comonoton lc l ty  is the strongest possible dependence 
structure and hence by Theorem 2.6 the corresponding por t foho  is the 
riskiest one under  all portfol ios with the same marglnals. 

3. T H E  M O D E L S  

In this section we consider several posslbdltes of  modehng  dependencies in 
risky portfolios.  In our  first model we assume that the portfol io  consists of  
different groups,  such that there is a strong dependence between the 
members  of  one group,  but much less dependence between members  of  
different groups.  As a typical example where this is very reahstm imagine a 
ca tas t rophe risk like ear thquakes  or hurricanes, where the groups are 
specified by geographic regions. There  is certainly a strong dependency 
between the expected losses of  people from the same region, but the losses 
will be nearly independent  for people who hve far from each other  For  such 
situations we suggest the following model.  It was introduced by Tong  (1989) 
and was further  considered by Bz-iuerle (1997a). 

Model 3.1 
Consider  a portfol io  X = (Xi, ..., X,,), consisting of  t7 risks Xt, ..., X,,. We 
assume that the risks can be divided into r_< n groups according to an 
n-dimensional vector k = (kl, ..., kr, 0, .. , 0), k,, E ~N, }--~',,=l kv = n, where 
r lskX,  l s t n g r o u p v i f a n d o n l y l f k l +  ... +k , . - i  < t _ < k l +  .. + k , . . E a c h  
o f  the risks m the portfol io  is influenced by three risk factors which will be 
modeled as Independent random variables V, G,. and Z, 
1 an overall risk factor V which is due to global environmenta l  changes and 

concerns all o f  the risks in the portfol io m the same fashion, 
2. a group specific risk factor  G,, which influences only the risks in group v, 

1 < v < r and has no effect on other  risks in the portfol io,  
3. an lndwidual risk factor Z, which reflects the individual share of  risk X,, 

I < i < n  
Moreover ,  we assume that there exists a function g :/R 3 -+ /R such that 

the i-th risk is given by X, = g( V, G,,, Z,) whenever t is in group v. Since we 
associate higher outcomes of  a risk factor  with higher risk in the por t foho,  
we suppose that g is increasing. This situation Is typical for a lot o f  insurance 
portfol ios  In private health insurance for example,  the risk caused by an 
individual person depends on an overall risk factor  which collects 
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environmental  aspects (e g pollution,  greenhouse effect, epldemms), on a 
group specific factor like profession and on an individual risk factor which 
summarizes health condmons .  In car insurance, the group risk factor could 
be interpreted as the local area of  the pohcy holder• Assuming this kind o f  
dependence within a por t foho  ~t ~s now interesting to investigate the effect, 
the constel lat ion of  group sizes has on the aggregate claim of  the por t foho,  
since it is well-known that positive correlat ions in a risk portfol io increase 
the payable  amoun t  of  the insurance company ,  see e.g. Dhaene  and 
Goovaer t s  (1996, 1997) or Mtiller (1997)• Obviously it Is qmte hard to 
compare  two risky portfol ios when for example the number  and sizes of  the 
groups change. However, m some cases this is possible as we will show m the 
next theorem In order to state ~t, let k and k' be two n-dimensional vectors with 

k = ( k , , . ,  kr ,  . . . ,  O, .., 0 ) ,  k I = (ktl , , kll, O, ..., O) 

l_<r, I_<n, k, ,k' ,E iN for all / and 2 ' , ' : , k , : E ' , ~ , k ' , = n .  
n-&mensmnal  risky portfol ios X and Y be given by 

Let two 

X I = g ( Z [ ,  G i ,  V) YI = g(Ul ,  GI, V) 

Xk. = g(Za-,, G], V) 

X&+i = g(Z/,.+l, G2, V) 

Xk.+k, = g(Zk.+k,, G2, V) 

r< = g( U<, G,, v) 

Yk',+l = g(Ukq+l ,  GI ,  V) 

v< = g(U< +<, <,, v) 

X n : g ( g n ,  Gr, V )  r,, = g(U,,, 6/, v) 

where the individual risk factors Zl ,  , Z,,, U t , . ,  U,, are i.i.d, r andom 
variables, the group specific risk factors G1, ..., G.n,~{rj} are I.I.d random 
variables and the environmental  risk factor V is a random variable 
independent  of  {Z,}, {U,} and {G,.}. g . / R  3 ---, /R is an increasing function. 
Denote  S = ~','=l X, and S' = ~,~1 Y, respectwely. 

Moreover ,  we need an appropr ia te  order  relatmn for vectors to compare  
the group structures k and k'. It turns out  that the notion of  majorlzat lon is 
best suited for this purpose.  The defimtlon is as follows. 

Definition 3.1 Let x , y  E IV~ and denote hy X[ll _> --- _> x[,,] the decreasing 
rearrangement of \', analogously Tot" y. We say that y majorlzes x (x -4 y) tJ 
and only if 

x[~] < Y[~I' r = 1, . . ,  n -  1, and x[,] = y[t]. 
I=l t - I  l=l z=l 
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A host o f  results and applications of  this order  relation can be found m 
Marshall  and Olkm (1979) Intuitively speaking k-< k' means that m k' 
the groups are larger and /o r  more unequal.  Some examples are given m 
section 5 Now we are able to state the mare result for  this model 

Theorem 3.2 I f  k --< k', we obtain under the assumpttons o f  model 3.1 
a) X <_~v,,,~,,, Y, 
b) S <,1 S'. 

Proof  A complete  p roo f  of  s tatement  a) can be found in Bauerle (1997a). 
The  mare ideas are as follows' in a first step we show that  for a sequence 
{G~,} of  1.1 d random variables and 

X = (Gi, , Gi, G2, . . ,  G2, , G,, ..., G~) 

Y = (Gi, . . . ,Gi, G2, .., G2, ..., G/, .., G/) 

where the block of  G,'s m X(Y)  has length k, (k',), the relation k -..< k' implies 
that X _<~,,,,,~,,, Y. Applying p r o p e m e s  o f  symmetric  supermodular  functmns 
we obtain a) Part  b) then follows from Theorem 2.6. [] 

In this setting ~t ~s easy to determine the riskiest and the safest portfol io  
with respect to the stop-loss order ing of  aggregate clmms. In order  to do so 
we only need to determine the minimum and m a x m m m  with respect to 
majonza t lon  under  all vectors k with ~ k ,  = n It is nearly obvmus that the 
minimum is given by k s = (1, 1, .., 1) and the maximum is given by 
k' = (n, 0, , 0). This yields the following result. 

Corollary 3.3 Let U = (n, 0, . , 0) and k -~ = (1, ..., 1) be two n-dimensional 
vectors and denote by S r and S ~ the aggregate clatms of  the correspondmg rtsk 
portfolios as m model 3.1 Then we obtain for arbitrary k C ~N~ wtth 
~','=1 k, = n and respecttve aggregate claim S 

S' <~l S <~1 S'.  

Hence the rlskmst portfol io  is given, when there is only one group and the 
safest portfol io  is obtained,  when each individual forms his/her own group. 

Our  model 3.1 is strongly related to the componen t  models Introduced in 
chapter  9 of  Wang (1997). As another  impor tan t  class of  models he considers 
common mtxture models, whmh we will investigate now. 

Model 3.2 
The intuition behind this model ~s as follows The  model for X as well as the 
model for Y is a so called common  mixture model This means that there are 
some external mechanisms, described by random variables, which have 
influence on all the risks Given these environmental  parameters ,  the 
individual risks are independent.  The parameters  can be some state o f  nature 
(weather condit ions,  ear thquakes,  ...) as well as economic  or legal 
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envi ronments  (inflation, cour t  rules etc ) which have a c o m m o n  impact  on all 
risks. In cont ras t  to model  3.1 we will now compare  the portfol ios  with 
respect to the nu m ber  of  external mechanisms  which affect them. 

The  following model  for this s~tuatlon has been considered by Bauerle 
(1997a) (cf. also Shaked and Tong  (1985))  Suppose  there are two n- 
dimensional  r a n d o m  vectors  X and Y with the s tructure 

..., x , , )  = w), .., g,,(z,,, w)) (2) 

( ) ' , , . ,  Y,,) = v,  w ) ,  , D,,(m,,, v,  w ) )  (3) 

where Zi ,  ..., Z,, are l.i.d, r a n d o m  variables,  Ui, ..., U,, are i.l.d r andom 
variables  and (V, W) is a r a n d o m  vector  independent  o f  Z, and U,. 
Moreover ,  the funct ions g, /R z ~ / R  and D, : /R 3 ---, /R are such that  for 
every fixed w and all i = 1 . . . .  , n we have 

g, (Z,, w) a= ~,, ( U,, V, w), (4) 

i.e. they have the same d)stribut~on. 
We will show now, that  the por t foho  Y = (Yi, ..., Y,,) is more  risky than 

the po r t foho  X = (Xl, ..., X,,), if the functions ~, are increasing in the 
second argument .  In fact, let S = ~2,','. X, and S' ' =  ~ ' , ' ,  Y,. Then the 
following holds. 

Theorem 3.4 I f  the functions ~,, are increasing m the second argument, then 
aJ X <s,,, Y, 
b) S <,: S'. 

Proof  a) can be found as T h e o r e m  3 1 in Bauerle (1997a). Part  b) then 
follows immedia te ly  f rom a) by T h e o r e m  2.6. [] 

The  model  for Y contains  an addi t ional  envi ronmenta l  variable V, which has 
an influence on Yi, . . ,  Y,, in the same direction. Hence there is more  
dependence  in Y than m X, since the external mechamsm~ which has a 
c o m m o n  influence on all risk, is more  impor t an t  in Y. This will become more  
explicit m the special case we will t reat  now. 

Let us assume that  W is cons tant  Hence  Y, = ,~,(U,, V) and X, = g,(Z,). 
This means  that YI, , Y,, are condi t ional ly  independent  given V = v and 
the monotonlc~ty o f  ~, in the second a rgumen t  means  that  the condIt ional  
dis t r ibut ion o f  Y, glven V = v IS stochastically increasing in v for all t = 
1 . . . .  n. Moreover ,  Xl, . . ,  X,, are independent  r a n d o m  variables,  which by 
(4) have the same marginal  dis t r ibut ions as Yl, ..., Y,,. Summing  up, we get 
the following corol lary  o f  T h e o r e m  3.4. 

Corol lary 3.5 Let V be any random vartable and let Y = YI, , Y,, be a 
random vector such that Yt, ..., Y,, are condittonally independent gtven V = v 
and such that the condittonal dtstributtons P( Y, E "1V = v) are stochasttcally 
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increasing m v for  all i = I . . . . .  n Moreover, let X = (-~1, . ,  X,)  be a vector 
o f  independent random vartables with the same marginal distributions as Y. 
Then 

X <_,,, Y and S = Z x ,  <,l S' = Y,. 
I~ ]  I= l  

Another  application of  Theorem 3.4 will be given in the next section. Man y  
more  examples can be found m chapter  7 of  Wang (1997) 

4. RISKS WITH TWO-POINT DISTRIBUTIONS 

Now we consider the impor tan t  specml case o f  portfol ios consisting of  risks 
X~ having a two-point  distr ibution in 0 and a, with P(X~ = O) =p~. This 
occurs e.g. in the individual life model.  Dhaene  and Goovaer t s  (1997) 
determined the riskiest portfol io  with given margmals for this case and 
especially considered por t fohos  w~th dependencies only between couples. 

The riskiest por t fol io  has the proper ty  that if a policy holder with a low 
morta l i ty  dIes, then all policy holder with higher mor tah ty  also die with 
probabdi ty  1 We think that this is very unreahstic. It would be desirable 
to have a parametr ic  model with a dependence parameter  p, which 
cont inuously  varies between independence and maximal dependence as 
described above. 

We investigate here two such models, one for the case o f ind i s tmgmshable  
indwiduals and one for the case that the probabdl ty  for no clmm differs 
between the individuals. 

Indistinguishable individuals 
We say that the individuals in a portfol io  are indistinguishable, if tile joint  
distr ibution of  the random vector o f  their risks is not affected by 
permutat ions  o f  the risks In probabdt ty  theory a sequence of  such random 
variables is said to be exchangeable (or interchangeable),  see e.g. Feller 
(1966, p. 228ff)  or Chow and Telcher  (1978) Of  course this implies that all 
risks have the same marginal distribution,  I e. there is a p E (0, l) and some 

> 0 s u c h t h a t P ( X ~ = 0 ) = p =  1 - P ( X , - - c ~ )  for a l l t  -- l, . , n  Without  
loss of  generality we can assume c~ = l, so that the r andom variables 
Xi, X2, . form a sequence of  exchangeable Bernoulh variables. 

Therefore  let us assume that S,, is the total clama amoun t  of  a portfol io  o f  
n risks, which stem from a sequence o f  exchangeable Bernoulli variables. A 
well-known theorem of  de Fmetti  (see e.g Feller (1966, p 228)) states that in 
this case S,, is a mixture o f  binomml distributions,  i.e. 

P(S ,  = k) = '0k(l - zg)"-k'F(dO) 
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for some mixing &stnbut lons  F. Thus, the &strlbutlon of  S,, is completely 
determined by the m~xmg distribution F In fact, it ~s completely determined 
by the first n moments  of  F. For  a survey on exchangeable Bernoulh 
varmbles, including many examples and methods for eshmatmg their 
parameters we refer to Madsen (1993). 

Now we want to show, how the m~xmg &stributlon F affects the riskiness 
of  the port foho S,, We have the following result. 

Theorem 4.1 Let S,  (S~,) be the total elatm amount o f  a portfoho of  n rtsks, 
whtch stem from a sequence oJ exchangeable Bernoulh vat'tables wtth mtxmg 
dtstrtbution F (F'). Then F <st F' tmphes S~ <_~1 S~. 

Proof  This follows directly from Corollary 3.7 in Lef6vre and Utev 
(1996). [] 

Remark: From Theorem 4.1 it follows easily that the least risky portfoho of  
exchangeable Bernoulh variables with g~ven marglnals ~s the one that 
consists of  independent risks and the riskiest portfolio is the one with mixing 
distribution concentrated on {0, I}, which means that the risks are 
comonotonlc  In fact, this means that the portfolio consists of  ~dentlcal 
risks X = (Xi, Xi, . , Xi) and the dlstr ibuhon of  the total claim amount  
S,, -- n Xl is a two-point &stnbut ion  with P(S ,  = O) = p = 1 - P(S,, = n). 
If  we compare the stop-loss premiums of  this portfoho with an arbitrary 
other portfolio of  bi(I, p)-distributed risks, then we can strengthen Theorem 
4 1 to the following result. 

Theorem 4.2 Let X = (Xi, .., Xn) be a portfoho of  bl(l, p)-dtstributed rt6ks 
wuh an arbitrary dependence structure and let Y = ( YI , ..., Y1) be a portJolio 
o f  tdenttcal rusks with the same dtstrlbutlon. Let 7rx(t) "= E ( ~  X~ - t) + be the 
net stop-loss reinsurance premtum of  portfolio X and define Try(t) simdarly. 
Then the ratto 7rv(t)/Trx(t) is increasing on its range [0, n) 

Proof. Since ~ Y, = n Yl is a two-point distribution on {0, n}, the function 
try is affine hnear. Since any stop-loss transform is decreasing and convex 
(see e.g. Muller (1996)) thls implies that g(x):=TrxOTryl(X)  is a convex 
function. Differentiation y~elds that 

Cx o (x) 
g ' ( x )  - o ( x )  

is increasing, and hence ~ x ( x ) / ~ r ( x )  Is decreasing, since 7r T) Is decreasing. 
This can be written equwalently as 

>_ for  llt < s 



MODELING AND C O M P A R I N G  DEPENDENCIES IN MULTIVARIATE RISK PORTFOLIOS 71 

and hence 

~ is increasing 

[] 

Remark. Computa t iona l  results indicate that Theorem 4.2 may be true for 
arbi t rary  distributions. We are, however,  not yet able to give a p roo f  for this 
conjecture.  

Distinguishable individuals. 
N ow  we propose a model where the individuals in the portfol io  may 
have different probabil iues for claims and different claim amounts .  We 
want to construct  a por t fol io  of  risks X, with P(X,--O) =p, and 
P(X, = c~,) = q, = 1 - p ,  where 0 < p, < 1 and c~, > 0 are arbi trary.  More-  
over we want to introduce a dependence parameter  p E [0, 1] such that p = 0 
corresponds  to independence and p = 1 corresponds  to comonotonlc i ty .  A 
very simple model with this proper ty  would be to take some mixture o f  the 
independent  and the c o m o n o t o n e  case. We think, however,  that this is not 
very reahstlc. We propose some sort of  an additive damage model,  which is 
well known in reliablhty theory.  Assume that there are two sources, that 
cause some normally distributed dainage. One source influences all 
individuals m the same manner,  whereas the other  source depends on the 
lndtvldual behavior  o f  each individual. A claim of  amoun t  cx, occurs, if the 
sum of  these two damages exceeds SOlne level z,. 

The  formal construct ion will be based on model 3.2 with distributions 
and functions, which assume only two values• We denote  by N(# ,  o2) the 
unlvarlate normal  distribution with mean /L and variance o-2 > 0 For  
convenience we extend the def inmon to the case o2 = 0, where N(FL, O) 
denotes the one-point  distr ibution m /_L. The p-quantl le o f  the s tandard 
normal distr ibution will be denoted by z ,  I.e if X ~ N(0,  1), then 
P(X _< zp) = p. Now assume that 0 _< o2 < ~-~< 1 and consider model 3.2 
with W ~  N(O, cr2), V,,~ N(O,r 2 - ~ ) ,  Z, ,-~ N(0,  1 - o 2 )  and U, ~ N(O, 1--T 2) 
All random variables shall be independent  We define 

g,(z,w)=~,.l{z+W>Ze,}_ ={c~,,0, z+w>_ZP,else 

and 
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Recall that X, = g , ( Z , ,  W) and Y, =~ , (U , ,  V, W) for i = 1 . . . . .  n. Since 
U, + V ~ Z ,  ~ N(0, 1 - o66), condition (4) is fulfilled. Moreover,  
Z ,+  W ~ U , +  V+ W,,~N(O, 1), so that P(X,=c~, )=P(Z,+ W>zp,)=q, and 
P ( X , = 0 )  = P ( Z , +  W<zp,)=p, .  Similarly P ( Y , = O ) = p , =  1 -P (Y ,=c~ , ) .  By 
Theorem 3.4 X <~,,, Y and hence X ~s less risky than Y. 

Now let us write X ( a ) =  (Xl(a), ., Xn(cr)) for the above defined 
portfoh 9 X to make the dependency on o- exphclt The definition of  Y imphes 
that Y "- X('r 2) which can be seen by interchanging the roles of  Z, and U, as 
well as the one of  W and V + W. Hence we obtain the following result. 

Theorem 4.3 L e t 0 _ < p < p ' _ <  1 Then X(p) <_ .... X(p') and hence 

n 

x, lp) Z z,l#). 
i=1 ~-I  

It ~s easy to see that X(0) is a port foho of  independent risks and X(I) is a 
portfolio of  comonotomc risks, which is the r~sklest portfolio under all 
portfolios with given margmals,  as has been shown by Muller (1997) for 
general dlstr~butlons and m Dhaene and Goovaerts  (1997) for the case of  
two-point distributions as considered here Now we will show that we can 
get any positive dependence structure by varying p continuously between 
these two extreme cases. In fact, we have the following result. 

Theorem 4.4 The function p---~ Corr(X~(p), Xl(p) ) is non-negattve and 
contmuously increasing for all l, j = 1, , n, i C j. 

Proof: The marginal distribution of  X,(p) and hence also the variance of  
X,(p) is independent o f p  for t = 1 , . . ,  n Thus we only have to examine the 
covarmnce. A straightforward calculation shows that 

Cov(X,(p), Xj(p)) = c~,% (P(X,(p) = c~,, Xj(p) = crj) - q,qj). 

Hence ~t ~s sufficient to consider the expression 

P(X,(p) = e~,, Xj(p) = %) = P(Z, + W > Zp,,Zj + W >_ zpj) =: Fp(zp,,Zp,) 

where Pt, is the survival function of  a blvarlate normal distribution with 
s tandard normal margmals and correlation coefficient p. It follows from 
Sleplan's mequahty  and its p roof  as given e.g. m Tong (1980, p. 8if)  that 
p ~ / ~ p  is increasing and continuous.  Hence p ~ Corr(X~(p), Xj(p)) ~s also 
increasing and continuous.  Non-negativity then follows from the fact that 
X(0) Is a vector of  independent random variables [] 
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5. NUMERICAL EXAMPLE 

Let us now illustrate the effect o f  dependencms m model  3.1 by a numerical  
example.  In order  to keep the c o m p u t a t i o n  simple, we have chosen g(v, y. z) 
= y. The  sequence of  r a n d o m  varmbles  {G,.} ~s m.d. with a two-poin t  
d l s t n b u t m n  on 0 and 4, where the value o f  4 occurs with probabi l i ty  0.06. 
The  por t fo l io  consists o f  20 risks. We have compu ted  the relative stop-loss 
p r e m m m s  for 8 different scenarios whmh are given by their g roup  structures  
k , , t  = 1 . . . . .  8 h s t e d i n t a b l e  I. 

T A B L E  I 

~cenario I k,  

(I, I, I, , I, I, I) 
(4, 3, 3, 2, 2, 1, 1, I, 1, I, 1) 

(8,2,2,2,2,2,2) 
(4.4, 4, 3, 3. 2) 
(15, 2, I, 1, I) 

(5, 5, 5, 5) 
(io, 5, 5) 

(20) 

Scenario I co r responds  to the safest po r t foho  with 20 independent  risks and 
scenario 8 is the riskiest por t fol io ,  where the same risk occurs 20 times. In the 
next table we summar ize  the order ing relatmns of  these vectors w~th respect 
to the m a j o n z a t l o n  ordering.  

T A B L E  2 

k l  

k2 
k, 
k4 
ks 
k6 
k7 

kl k2 k~ k4 ks k6 k7 ks 

--K --~ -.< 

.-< ~ ..< ..< 

7/( ..-< .-< 
..< 

• -< -R ~ -< 

-< -< 

The symbol  7~ indmatcs that  the vectors cannot  be c o m p a r e d  The  following 
table now conta ins  the relative s top-loss  p remiums  (divided by the 
independent  case t = 1) mul t iphed by 100 for several re tentmn levels. No te  
that  the expectat ion o f  the aggregate  claims equals 4 8 and the ou tcomes  
range between 0 and 80. 
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TABLE 3 

3cenarto 

re ten t ton  k I k2 IX3 k4 k5 Ix6 Ix7 ki4 

0 

I 

2 

3 

4 

6 

8 

10 

100 100 100 100 100 100 100 100 

100 105 109 II0 II I  112 113 116 

100 113 121 124 126 129 132 139 

100 124 140 145 150 155 161 173 

100 144 173 182 191 200 210 233 

100 174 210 229 272 272 295 347 

100 270 330 385 537 506 572 717 

100 327 478 480 830 700 834 1128 

Because of  Theo rem  3.2 we know that  given a re tennon level, the relative 
s top-loss  prernlum increases in k. Table  3 shows that the increase is modera te  
ff k, and k) are nl some sense nearby  as for example  k6 and k7. In the cases 
where we were not able to es tabhsh the compar i son  theoretically hke for 
example  for scenario 5 and 6, we find that  the order  can change when the 
retention level increases T h e o r e m  4 2 explains the monoton lc l ty  of  the 
relative stop-loss p remium with respect to the retention in scenario 8. The 
nulnerical data  suggest that this is also true for the other  scenarios.  This was 
a l ready observed by Dhaene  and G o o v a e r t s  (1996). To  our  knowledge this is 
still an open problem.  

A very impor t an t  conclusion that  we can draw from the COlnputatlon ~s 
that  the increase in the relative stop-loss p r e m m m  can be d r a m a u c  in the 
presence of  posi twe dependence  Even manor occurrence of  dependence  like 
m scenario 2 has a severe effect. Moreover ,  ff a por t fo l io  contains  posltlve 
dependence  between the risks, the s~tuahon deter iorates  m the number  of  
insured risks. 

Suppose  Y, X~, . . ,  X, are i i.d. r andom varmbles  (w.l o g we assume 
that  they are concent ra ted  on [0,1]) and we are interested in the stop-loss 
p r e m m m s  o f  the safest por t fo l io  rgJ:(t) = E(~ ' , '_  I X, - nt) + and the riskiest 
one 7r].(t) = E(n Y - nt) +, where t E (0, 1) gives the retention percentage.  In 
this setting we obtain  

Theorem 5.1 The ratto 7~{,(t)/~],(t) t.s increasing in the number  n o f  aggregate  
rtsks and the hmtt  is equal to E ( Y  - t ) ÷ / ( E Y  - t) ;/ t < E Y  and +oc  t~ 
t > E Y  

P r o o f  We obta in  that  

_ 

E(n  Y - ,71) + E( Y - t) + 

E(Z'; , x, - EC!  V - . . . .  , - I  X ,  t) + 
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Hence it suffices to prove that E( ,~ ' , '= i  X , -  t) + is decreasing in n. Since 
Xl, ..., X,, are H.d. it follows from Theorem 4 m Arnold  and Vfilasenor 
(1986) that 

1 .+ l 

n +  1 ~ X '  _<~/ 
I = l  

and the monotonic l ty  follows. 

I // 7,Zx, (s) 

Since the random variables Xi, X2 . . . .  are independent  and identically 
distr ibuted with a fimte mean, the assumptmns of  the strong law of  large 
numbers  are fulfilled Therefore  

hm X~ = EXi = EY (6) 

Hence the stated Illlllt follows. [] 

Remark '  Arnold and Vlllasenor (1986) have shown that for Equat ion  5 it is 
sufficmnt, that X~, X2, are exchangeable Hence the mono tomcl ty  part of  
Theorem 5.1 remains true for the more general case o f  exchangeable random 
variables, but in that case the hnm will be different. In fact, there is also a 
versmn of  the strong law of  large numbers  for sequences o f  exchangeable 
random variables. It states that m thin case 

I1 

n m  - x ,  = E [ X ,  le], 

where 0 is the random variable, whmh describes the mixing mechamsm m 
de FmettFs Theorem (cf. Feller (1966) and Chow and Temher  (1978) for 
more details) Hence m this case we get 

lira rd~,(t) _ E(  Y - t) + 
, ,~#jc( t )  E(E[YIO ] - t )  + 

F r o m  Theorem 5.1 we see that the relative stop-loss p remmm can be 
arbi t rary  high, when the retentmn exceeds the expected aggregate clama 
Altogether  we can conclude that the usual assumption of  independence m 
risky portfol ios leads to a dangerous  underest imat ion of  the risk Hence the 
adequate  naodehng of  dependent  risks will remain an impor tant  task for 
future research. 
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SOME APPLICATIONS OF LI~VY PROCESSES TO STOCHASTIC 
INVESTMENT MODELS FOR ACTUARIAL USE 

By 

TERENCE CHAN 

Dept of Actuartal Mathemattcs and Stattsttcs 
Hertot- Watt Umverstty 

ABSTRACT 

This paper  presents a con t inuous  t ime version of  a stochasUc investment  
model originally due to Wdkle. The  model is const ructed via s tochasuc  
d~fferenual equat ions.  Exphclt  dis tr ibut ions are ob ta ined  m the case where 
the SDEs  are driven by B r o w m a n  mot ion ,  which is the con t inuous  ume 
ana logue  of  the ume series with white noise residuals considered by Wflkle 
In ad&t lon ,  the cases where the driving "no i se"  are stable processes and 
G a m m a  processes are considered.  

KEYWORDS 

L6vy process; Browman  moUon; stochasUc investment  model  

1. INTRODUCTION 

Wilkie (1986) presented an investment  model  based on t ime series, which has 
since been updated  and extended m Wilkie (1995) This  paper  presents some 
con t inuous  t ime w m a n t s  of  Wflk~e's original model  usmg stochast ic  
differenual  equat ions  driven by a p p r o p r m t e  L6vy processes. There  is no 
single correct  con t inuous  ume equivalent  to the model  in Wdkle  (1986), the 
mm of  this paper  ~s to suggest some poss,ble ways of  const ruct ing the 
ana logous  cont inuous  time models  and to analyse these mathemaUcal ly .  It  
seems that  whatever  one takes to be the " r igh t "  cont inuous  ume equivalent  
o f  the Wflk~e model ,  similar methods  to those presented here can be used to 
analyse it. 

One reason one might be interested m a con t inuous  time model  ~s that  m 
a cont inuous  t ime setting one ,s free to choose  any  umt  o f  Ume and to model  
the state of  the var ious investment  variables  at any t~me, not  just  at discrete 
instants.  However ,  the rnaln a t t racUon of  cont inuous  ume models  ~s the,r 
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mathematical tractablhty; whereas the Wflkle model is mainly Intended for 
computer simulations, in the continuous tIme setting here many questions 
admit explicit answers which can be obtained in a simple way. Here, we 
concentrate on obtaining explicit &strlbutlons but other questions can 
undoubtedly be answered 

The model introduced in Wilkxe (1986) only makes use of  Gausslan 
(white noise) series, for our model the driving noises are allowed to have 
other distributions. 

2. DESCRIPTION OF THE MODEL 

In many ways, the model described here is the most direct and obvious 
continuous-time version of the model in WiIkle (1986), although some 
modifications are necessitated by the transition to a continuous time scale. 
We do not make any special claims about its appropriateness to practical 
situations beyond pointing out its similarity to the original Wflkle model 
whxch has by now gained w~de acceptance, at least m the world of insurance. 
The two main guiding principles behind the construction of the continuous 
time model presented here are firstly the analogy with the corresponding 
time series and secondly the similarities between certain features of the 
Wllkle model and other models which feature widely In different areas of 
financial modelling, occasionally we shall depart from an exact analogy wlth 
the time series to emphasise these similarities because the qualitative features 
common to all these models are of potentmlly greater interest Thus, it would 
be more approprmte to refer to the continuous time model presented here as 
respired by the Wllkle model, rather than "the continuous time Wllk~e 
model" The model should be treated as a "first draft" rather than a final 
version. As with the original Wllkle model, the model here is based on four 
processes (although these are not exactly the same as the ones in Wllk~e 
(1986)) and we describe each of  these in turn. 

Let Zi,  Z2, Z3 and Z4 be four Independent (not necessarily continuous) 
processes. Exactly what kind of processes are the Z, wdl be discussed later. 

1.1. Retail prices index and inflation 

Consider first a retail prices index, Qt ~ exp{Pt} We use an Ornsteln- 
Uhlenbeck type model for the process P. 

dPt = Ridt 
(1 1) 

dRt = -a~Rtdt  + qh(t)dt + o ' ldZ  1 (t) 

where al > 0, al E ~ and ~ is a (deterministic) positive periodic function 
with period h > 0. Here the process R plays the role of the continuous force 
oflnflatton. A direct translation of Wflkle's model would have ~ ~ constant, 
but in passing to continuous time it may be desirable to take into account the 
seasonal fluctuations in inflation over a year. The period h here corresponds 
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to a year m our umts of time (see Remark (i0 below) (To spell things out in 
a little more detail, supposing ~ constant, the process RI m (1 1) 
corresponds to Wflk~e's V logQ(t), the parameter al corresponds to the 
parameter WiIkle calls I - QA, ~ corresponds to QMU(I - QA) m Wilkie's 
original paper and cq plays the role of QSD). 

Because (I.1) is a hnear equauon, it ~s easy to solve exphcJtly, whatever 
our choice of drlwng noise Zj. The general version of lt6's formula for 
discontinuous semlmartmgales X states that f f f  ~s a continuous function 
w~th the necessary derlvauves, 

/0' /0' '/0'/,,Ix J(X,, t) - f (Xo,O) = /'(X,, s)ds+ J'(X,_,s)dX~ + 5 ,s)d[X]; 

+ Z ( X ~ , s ) - f ( X , _ , s ) - f ' ( X , _ , s ) A X , - g f  ( ,~ s)(AX,) 2 
O<,~_<t 

where AXe = X~ - X,_, J ~ Of /Ot, f '  -= Of /Ox etc. For th,s and other 
aspects of the general theory of stochastic integrahon with respect to 
senmnartmgales, we refer the reader to Protter (1990) and Roger and 
Wflhams (1987), wh,ch approach the subject in different ways. (Note that X 
is assumed to be right-continuous and can only have countably manyjumps,  
so the sum above is actually a sum over countably many values of s). 
Consider now the case that ] ( x , t ) = # " X r  We have f " _ = 0  and 
ff(X~_,s)AX~ =J(Xs, s)-J(X, ,_,s) ,  so the terms lnvolwng the jumps of X 
m It6's formula all vanish Therefore applying lt6's formula to e¢'~IR,, we 
obtain an exphclt formula for Rt: 

f0' /,,' R, = e-"~' Ro + e "'('-~)qS(s)d~+ ~le-"'('-')dZi(s). (1 2) 

From (1.2), we can find P~ = Po + fl  R¢ts and the resulting double integrals 
can be handled by interchanging the order of mtegraUon (e g. see Lemma 3 1 
m the sequel) 

1.2. Share yield process 

Wllkie (1986) next considers two inter-related processes: an index of share 
dividends and the d~wdend y~eld process. Let Yt denote the share dividend 
yield The continuous tune analogue of Wilkle's model would be 

It = Y, exp{X, + (R,}, 

w h e r e  dX, : - a 2 X t d l  + bldt  + cr2dZ2(t) 



80 TERENCE CHAN 

(Here,  Y, = Y0e-(A'0+~R0). In the sequel, this notat ion will be frequently used 
to denote  this kind o f " m o d i f i e d  lnihal con&t~on".)  Equat ion (1.3) admits an 
explicit solution similar to (1.2), namely 

= ---  + or2 e-azl '  " d Z 2 ( s ) .  (1 4) 
a2 / 

1.3. Share dividend process 

We next turn to the index o f  share dividends. Dr Our  model follows Wllkle 
in using an exponential ly &scounted "sum of  inflation effects". 

( f0' ) d ( l o g D , ) =  b2+/3A e-X'Rr_~ds+TR, dt+~lzdZz(t)+Tl3dZ3(t ). (1.5) 

In Wilkie's tmle series model,  the noise has a simultaneous as well as a 
lagged effect which is captured by moving average m the no~se. There  is no 
sensible equivalent  in the cont inuous  time context  for such a moving 
average. Another  feature of  the model (inherited from Wllkle) is the mixing 
o f  the driving noises for Yr and Dr. 

The share price St IS related to the dividends and the yield by $I = Dt/Yr 
it is interesting to note that the process St satisfies an equat ion o f  the form 

dSt = ctStdt + St(61 dZj (t) + 62dZ2(t) + 63dZ3 (t)), 

which has exactly the same form as the ubiqui tous geometric Browman 
mot ion  model of  share prices, except that the coefficient c, here takes a rather 
complicated form which revolves the whole path o f  the force of  inflation R 
up to time t, as well as the usual constant  drift terms 

Interchanging the order  of  integration, ~t ~s easy to see that 

/0'/0' /0' A. e a"R,_,,duds = (1 - e-a(t-"))R,du , 

therefore from (1 5) we have 

D, = D, exp{'q2Z2( t) + ' q 3 2 3 (  l)  + / 3 . f 0 ' ( l - e  ~('-"))R,,du+ T f 'R , , du+b2 t }  . 

(1.6) 

where D, is a constant  determined by Do and R0 in a similar manner  to Y, 
(see Remark  (iv) m §1.5 below). 
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1.4. Consol yield process 

Finally, we have the yield on consols C;, 

/o' Ci = ~p e -° '  R1-sds + C.e  v,, (1.7) 

dVt = - a 4  Vtdt + cradZ4(t), Vo = v 

The equat ion for V in (1.7) admits an exphclt  solution for the same form as 
(1 2) 

1.5. General remarks on the model 

(:) We do not clam3 that the method in (1.1) is the most appropr ia te  way to 
model seasonal effects m inflation - it ~s one simple and obvious way to do ~t 
without  destroying the most  a t t ractwe features of  the Ornste ln-Uhlenbeck 
process but we could equally plausibly let cr~ be a periodic function as well 
and we would still be able to obtain an exphc~t solution as before 

(ii)  Some remarks on the time scale of  the cont inuous  time processes here 
and their relationship with their dlscrete-tmle counterpar ts  in Wflkle (1986) 
might be useful Typically these cont inuous  time processes run at a much 
faster speed than their dlscrete-txme eqmvalents:  for example,  ff the unit of  
time in Wflk~e (1986) is years, the unit o f  time here might be centuries, so 
that h = 0.01 would correspond to a year. This is essentially an artifact of  
the dlscreuzat lon in passing from cont inuous  time to discrete time. If we 
were to dlscreuze (1.1) in multiples of  h using first-order Euler approxima-  
tion together with the approximat ion  P t -  Pt-h = f,t_h R s d s  .~ hR,_h and 
noting that 4~(t)= q~(t-  h ) =  q~ = constant ,  we would recover the Wilkle 
model provided we rescale time by defining R~ := R;,;. For  example,  
assuming that Z~ ~s Browman motion for simphc~ty, the first-order Euler 
discretlzatlon o f  (I.  1) is 

R; - R, -h  = - a l h R z _ h  + Oh + ~1 (Z~ (t) - Z l  (t - h)), 

which can be rewritten as 

R, = (1 - alh)Rr-h  + qSh + aj ~ Wr 
(1.8) 

+ - , )  + w , ,  

where we have put  a = 1 - alh, # = ~ /a l  and W, = (Zi (t) - Zi (t - h)) /x /h .  
Note  that W;,, W2;,, W3;, . . . .  are i.~.d, s tandard Gausslan random variables. 
Defimng R, := R;,, we obtain from (1.8) the AR(1) time-series model of Wllkle: 

R, =/L + a(R;_, - It) + 6-, W,, (1.9) 
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where al = ~lx/h. The calculations at (2.5) and (2.6) below and the 
subsequent  discussion illustrate this point in greater detail Observe that the 
corresponding paralneters  m ( I . l )  are rescaled in the appropr ia te  way with 
this time change'  hi = hal and a'l = al,v/h Because the parameters  are 
automatical ly  scaled accordingly once a time scale has been chosen, such 
comparisons  with the discrete time-series are usually irrelevant from a 
practical point  of  view; in practice, one would choose a suitable time scale 
and then fit the model to data directly without  reference to any discrete-time 
model and if one wished to do simulation, one would choose a dlscretlzauon 
for its numerical efliclency rather than for its consistency with another  
discrete-rime model.  The same comlnent  apphes to all the other  processes 
discussed above 

(ui) For  our  choices ofZi, the process R will have a s tat ionary distribution. 
Th r oughou t  this paper, we assume that the imtial condi t ion R0 is some fixed 
number  as in (1.2) However ,  it is also possible to let R0 be a random 
variable with the s tanonary  dis t r ibunon,  m which case R would be a 
s ta t ionary process. The same can be said of  all the other  processes which 
have s ta t ionary distributions. 

(iv) Because the processes X and R in (I.3) are not spatially homogeneous ,  
the initial values X0 and R0 cannot  be absorbed Into Y, and so separate 
parameters  for the initial values are needed The same applies to the 
processes D and C. Also, Wdkm (1986) has an extra drift term of  the form 
c dt appearing in the equat ion for Vt in (I.7) but we have omitted it here 
because ~t is clear from the explicit formula for Vt that c can be absorbed 
into the two parameters  v and C,, and so serves no addlnonal  purpose 

1.6. L6vy processes 

We are mainly interested in the case where the "no ise"  processes Z, are 
symmetric L6vy processes, that is processes with s tat ionary independent  
increments ( "Symmet r ic"  m this context  just means that Z and - Z  have the 
same law.) We end this section by briefly recalhng some results about  L6vy 
processes which we shall need in the sequel. Let Z be a ( symmemc)  L~vy 
process. Since Z has s t anonary  independent  increments, its characteristic 

, WZ, t~ (0) function must take the form E [e ' J  = e ' for some function ~, called 
the L&v evponent of  Z. The L6vy-Khlntchlne forlnula says that 

") 
~(0)'-~0"-02-~-1('10-~-2 ./{Iq<l} / (1 -c  t°*-lOX)l/(dx)-{-/{'],]>l} (1 -c  '°v)I/(dx) (] 10) 
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for a, ~ E R (if Z is symmetr ic ,  a = 0) and for some o--finite measure  u on 
\{0} satisfying . / m i n ( l , x 2 ) u ( d x )  < oo. The  measure  u is called the Ldvy 

measure of  Z. (To put  readers on more  fmmhar  ground,  consider  the 
s~tuatlon when o- = a = 0 and suppose that the total mass A of  u, .~ = f ~ u ( d x )  
is fimte. Then the LOW process Z with such a L~vy measure  is just  an 
ord inary  c o m p o u n t  Po~sson process whzch j umps  occurr ing as a Polsson 
process of  rate k and whose jump-s ize  dis t r ibut ion is ~ - Iu (dx ) .  In the case 
that the integral o f  u dwerges  near  0, Z wdl have mfimtely m a n y  small j umps  
m a finite tlrne-interwll At  the other  extreme, If u ~ 0, there are no j u m p s  so 
we just  have Brownlan mot ion  and ~,b is the same as the exponen t  for a 
normal  d l s t n b u t m n  ) 

F r o m  the L 6 v y - K h m t c h m e  formula  we can deduce the exact form Z must  
take. it turns out that  Z must  be a hnear  combina t ion  of  a Brownlan  mot ion  
(the cont inuous  part)  and a pure - jump process independent  o f  the Brownian  
part .  Specifically, let Q (dr, d.v) be a Pmsson  measure  on (0, cx~) x R {0} with 
expec tahon  measure  & x u (here d; denotes  Lebesgue measure) ,  then 
(assuming a = 0 m (I.10)) we have the L6vy d e c o m p o s m o n  

Z, = ~rB, + J, + A, ( 1.11 ) 

where, co r responding  to each of  the three terms in (1.10) respectively, B is a 
Browman motmn,  J is the pure-jurnp martingale J, = ~  w __ . _ "  -' x(Q((O,t],dx)-tu(dx)) Jim <l  
a n d  A Is the f imte-vanatmn jump process A, =j]l.,.,,,xQ((O, tl, dx). The 
processes B, J a n d  A are independent A more detaded t'?ela-'t'~ent can be found in 
Protter  (1990) and Rogers and Wdllams (1987) also contains a race direct 
construction o f ( l . l  1). Because of  independence, we lose no generality m treating 
separately the cases where Z is a Brownlan mouon  and where Z ~s a pure-jump 
process We do th~s m the next two sectmns 

3 EXPLICIT DISTRIBUTIONS IN THE Brownlan  CASE 

I f  the Z, are all Brownlan mot ions ,  all the processes described m the previous 
section are either Ga us s m n  processes or exponent ia ls  o f  Gauss lan  processes 
Since in order  to specify the law of  a Guass lan  process one only has to 
specify the mean and the covar lance,  the results o f  this section are essentially 
trivial. 

Recall that  for a Brown,an  mot ion  W, f~f(s)dWa = B(J~J(s)2ds) where 
B is some other  Brownlan m o t m n .  Applying  this result to (I .2)  gw6s 

f0' ( e2¢'tt- 1-) (2.1) R, = e-""Ro + e-"'(t-')dP(s)ds + °le-"'tBl \ 2-cq 
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where Bi is a Brownian motmn.  Hence, Rt has Gausslan distribution with 
mean 

[' #R(I) = e-°'tRo + e-a'(t-;)fb(s)ds (2.2a) 

and variance 

-R(,) =~C- e-2°") -27  ' (2.2b) 

(In 2.2a,b) we have used the fact that  B, is Gaussmn with mean 0 and 
variance t). Similar results hold for the other  Ornste ln-Uhlenbeck type 
processes X and V introduced in Sectmn 1. 

F rom (I.6) and (1.7), it is clear that the key to finding the distributions q 
of  D, and CI hes m obtaining the dls t r lbunon of  ]of(S)R~ds for 
statable (deterministic) functions f .  Since R IS a Gaussian process, so is I t ~ fdf(s)R; ds and so all we need to do is work out  the mean and variance fv 
of  d~f(s)R, ds. The mean is trivial: by interchanging the order  of  integration 
it is easy to see that the mean is just  d~f(s)/~R(s)ds We now turn to the 
variance Since the mean ~s irrelevant here, the variance is simply gwen by 

 ol/:o = :o' 1 
where we have put 

(e 2' ' ' -  1.) 
H, = crle-"~t Bi \- -~[t 

and we use the superscript in E ° to emphaslse that H0 = Bi (0) = 0. Using 
the covarlance of  Brownlan morion 1E (B;B,,) = min(s, u) and interchanging 
the order  of  lntegratmn, we get 

IE° [.£t fo'f(s)J (u)H,H,,du ds ] 

/o' /o = 2 f(~) f ( . )E (H .H , , )  d.d~ 

9 ~0t ~0 ~ ( e2atu- | )  = 2<. J (s)e-"" f(u)e-"'" \- 27,; au ds 

P u t t l n g f  ~ 1 in (2.3) gives the variance o f  1~ Rs ds to be 

_~._(t 2e "'t e -20'' 2~12) 
al 7 "q" a f  2a12 " 

(2.3) 

(2 4) 
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At thas point, at may be instructive to compare these results wath the 
analogous ones for the AR(I)  tune series (1.9) The rnean and variance of  
~ i - i  R, has been obtained by Hurhmann  (1992) and Wnlkm (1995). Keeping 
to our no tanon  estabhshed in (1.9), the mean of  the accumulated force of  
mflatnon E l= ,  R, as 

ta  + (k0 - / 0  a(l  - ~,') (2 5) 
l - a  

while an the continuous model the mean J~ R~ ds as (assuming ~b = const.) 

• i Ro - It ltR(s)ds = l.a + [1 - e -a''] , (2 6) 
. a l  

where IL = ~/al as before. We see ammedlately that (2 5) and (2.6) have the 
same form. To check that they tn fact agree, recall that to obtain the tame- 
series (_1.9) from (1.1), we dascretlzed tune into steps of  size /7 Therefore x-,r/h e__,,=l hR, ns precisely the Rtemann-sum approx~maUon to f~ R~ds. According ~-.t/h tO the formula (2.5), the mean of  z_.,=l hR, is 

#t + (Ro - It)h a(1 - a '/h) 
l - a  

= lit + (Ro-#) (1  .-2fflh'~ I i -  ( 1 -  alh)r/hl 
al / 

Ro - l~ e-,,r] ILt + [1 - 

as h ~ O, which as precasely the mean of  f~I~ds given by (2 6). Slmdarly, 
Hurhmann  (1992) gives the variance of  ~,_~ R, as 

~ [ 2 a ( l -  a t ) +  a2(l - a2')] 

(1 2 ) 0 2  t 1 - ~, i - - 7  J ' 

whmh has the same form as (2 4). 
It as just as easy to obtain the dtstr ibutmns of  the other processes m our 

model Putting f ( s ) =  pe-P('-') m (2 3) we get that j~e -r'l'-')& ds has 
Gaussmn distribution wath mean 

't Pe-P('-r) ILR(S) ds (2.7a) 

and variance 

P°'~( (a ' -p)2-(a '+p)(pe-2a' t+a'-~-2-[ ' t )+4atpe-(a '+') t )al  2T~ 7 ~ a l  + p) (2.7b) 
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Putting f = ~3+7- f i e  -'x(~-~) also gives an exphclt expression for the 
I 

variance of ~.]o ( 1 -  e a('-~))R, ds+ 7 ]o R, ds, although this ls too messy 
to write down here - the formula is simphfied somewhat by choosing 7 = 0 
and slmphfied considerably by choosing 7 = -/3, for this would then reduce 
to (2.7b). The full covanance structure of the process t ~ JoJ(s)R, ds can 
also be obtained m this way 

Armed with these results, we can now state the dlstnbuuons of interest. 
We have already found the distributions of Rt and Pt = fo R, ds (see (2.2) 
and (2.4)). Applying the results (2 2) to the process X, we get from (1.3) and 
(1.4) that log I"1 has Gaussmn dlstrlbuhon with mean 

and variance 

log Y, + Xoe-a2, + bl ( 1 -  e-"2t~ -~ / + ¢~(,)  

¢2vR(O + ~ )-~ # • 

For the dwldend index D, the result (2.3), with J ( s ) = / 3 + ~ , - / 3 e  -:<t-'), 
together with the analogous results (2.2) for U gwe that log Dr has Gaussmn 
dlStrlbtmon with mean 

/o' log D, + b2t + (/3+3,-/3e "\('-'))#R(s) ds 

and variance 

Applying (2 2) to Vr shows that it is Gausslan wtth mean 

/Lv(t)  = r e - " '  

and variance 

duds. 

vv(,/=d C - e-2"4"~2~ j 

The dmtributlon of C, ~s the convolution of normal and log normal 
dmmbunons and the results (2.2) and (2 7) show that Ct has mean 

~0 I pe-PU-s) ~R(S) ds + C,e #v(t)+''v(t)/2 
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and variance 

p~ o~ _(a, - p)2 _ (at + #)(____pe__~2"E'__+ a.2e-2P' ) + 4a,pe -(''+p)r 
al 2(al - p)2(al + p) 

-F C,2e2"v(r)+vv(r)(e w(r) - 1). 

It iS also possible to specify the full mulnvarmte structure of R, Y and D using 
the methods here. Since R, Y and D are rather Gaussmn or log Gaussmn, thmr 
joint law ~s specified once we have the covanances Cov(Rr, log Y~), 
Cov(Rr, logD,) and Coy(log Yr,logD,). For the most part, we only need to 
know the covarlance stucture of the process I~--..+R1, whmh is given by 

,) E[R,R~] = ttR(OttR(S) + E[H,H,,] = ItR(t)itR(S ) + cr~e-a"\ 

If s < t Thus, for example, 

1' E[R, log Dr] = p,R(t)(log D, + b21) + (fl + ~ - ~e-X('-'))E[e,e,] ds 

and we can then subsmute  the relevant prewous results into the above 
expressmn. In addmon,  we also need the covanance  of  X~ and Zx(t), whmh is 
given by 

[ e,,2 , _ ) 
- ~  ~ [ ~0[..J(/Z2(l)] 0"2 e-a2' ll]ln~- 2c~ 1 

using the covariance of  Browman motmn.  The detailed computat ions  of  the 
covariances are left to the reader. 

4. EXPLICIT DISTRIBUTIONS IN THE DISCONTINUOUS CASE 

There have been some suggestions that Gaussmn no~se terms are not enUrely 
appropriate for these models and that more reahstmally, the noise should 
have jumps In this secuon, we perform the same analysIs as in Secnon 2 on 
the assumpUon that the Z, are symmetric pure-jump L6vy processes. 

From the analysis m SecUon 2, It ~s clear that once we know what the law 
"1 

of J0 [ (.s')Z~ ds is for fixed t (where jr(s) orJ(t ,  s) Is a statable funcnon and Z Is 
a generic L6vy process), we can obtain the necessary exphc~t d~stnbutmns. It 
all turns out to rest on the following smaple lemma allow|ng the interchange 
of  order of  integration. 

LEM M A 3.1 : Let J and g be Rwmann-mlegrable Juncltons. Then tile laws o/ 

/o',/o /o' f ( s  g(,,) dZ .  ds and g(u) J(s)  (Is dZ.  
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are the same for each ftxed t and the common law ts gtven by 

E [exp{-iOfolg(u)f~f(s)dsdZ,, }1 = e x p { - f 0 ' , ( 0 g ( u ) [ F ( t ) - F ( u ) ] ) d u  } 

(3.1) 

where ~b is gtven by the L6vLI,-Khintchme formula (1.10) and F(u) = f~' f(s) ds 

The proof, although not very pretty, uses only well-known standard results 
in the theory of stochastic integration and L6vy processes and is presented an 
the Appendix. 

Remarks 
(t) The above lemma as trlvml if Z has fimte variataon, for then the antegral 
fo'g(s) dZs extsts as an ordinary Raemann-Staeltjes antegral. Changing the 
order of lntegrauon as for ordinary antegrals, we actually have the much 
stronger result that 

• I ~" t .I 1P (jof(s) fog(u)dZ,,ds= fog(U) L,f(s)dsdZ,, Vt) --  1. 

When Z has infinite variation, the integral with respect to Z as a "'genuine" 
stochastic integral. In thas case, we have to emphasase that Lemma 3.1 holds 
only for fixed t; the two integrals clearly cannot have the same law as 
processes since the former is a process of fimte varmtaon whale the latter has 
infinite variation. 

(u) Since t as a fixed parameter ua the present context, Lemma 3.1 holds 
equally if we a l lowfand  g to also depend on t, whach we need to do for some 
of the processes considered earher. 

(m) Note that a simple special case of (3.1) is that 

E[exp{-iO fo'G(t,u) dZ,}l  = exp{-  fo'~/~(OG(t,u))du } (32) 

for any (Rlemann-mtegrable) function G. 
Consider now the model described in Section I where the Z, are 

symmemc L6vy processes with jumps. From the explicit formula (1.2) for R, 
we see that to find the law of Rr we can apply (3.2) with G(t, u) = ~rle -"'(t-''), 
In which case we obtain 

FE[e-'°l~'] = exp{-tO#R(t) - f'~(Ocrle-a'(t-")) du} , 

where #k(t) is as defined by (2.2a). In a slmdar way we can obtain the laws of 
the processes X, U and V introduced m Section 1. For the law of f l  R~ ds, we 
can apply Lemma 3 1 with g(t,u)=crle-"~I1-"l,f - 1 and for the law of 
.loPe /'(I-")R, ds we can take g(t,u)=ffle-al(t-"),f(t ,S)=pe pC' s). In this 
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 Eexp{ 
and 

way, we obtain the distributions of  Rt, St, C, and log D, in a similar manner  
to Section 2 However ,  the joint  distribution is much more difficult to obtain 

We end this section with a brief word on some specific examples of  L~vy 
processes one might choose to use m these models. We .just mention two 
commonly  used L~vy processes. One is the symmetric c~-stable process, 
whose L~vy exponent  is "4b(0) = 101 <~ and whose L~vy measure is 

- d.¥, x # 0, 
I xl,-  

where C~ = 7r-JF(I + a)  sin(rr~/2). (Here 0 < a < 2; a = 2 corresponds to 
the Gaussian distribution and a = i g)ves the Cauchy distribution). Stable 
d l s tnbutmns  are examples of  so-called heavy-tailed distributions One of  the 
disadvantages of  stable processes )s that they do not have h)gher order 
moments  than I (for a _< 1 they do not even have a first moment)  which may 
cause awkward  problems, for example, when we take exponentials of  stable 
processes as we are frequently doing in these models 

Another commonly used class of L~vy processes whmh overcomes this problem 
is the Gamma process. A L6vy process Y ~s said to be Gamma with parameters 
(a,/3 where a , ~  > 0 if IP (Yi _< x) = F(a)-Jfl  '~ fo'y<'-ie-/~."dy. Hence 

( , 0 ' - ~ , ~ t  e x p { - a l l o g ( l + - ~ )  . '~ lE[e-'er,] 
= j 

Note  that such a process is non-decreasing, so to obtain a symmetric process, 
we simply take two independent  copies Yand  Y and define Z = Y -  Y. The 
process Z ~s therefore a symmetric L+vy process with L6vy exponent  
g,(0) = o~log(l + 02/fl 2) and L6vy measure u(dx) = a]xi-le-~l-'ldx. Looking 
at the LO W decomposit ion,  since f~, . Ixll/(dx) < cx~, we see that Z has finite 
v t / al< / arlatlon and since J/I.'-,* [ x] u(dvl < ~ ,  g,  has finite moments  of  all orders. 

Applying Lemma"3'~l'~we obtain (replacing 10 with 0 for convenience) 

Although in general it is not possible to give explicit formulae for the 
integrals in (3.3) and (3 4) for our choices of  J and g as in the preceding two 
sections, the Laplace transforms (3 3-4) do give relatively simple expressions 
for the moments ,  involving integrals which can be readily evaluated by 
numerical means. 
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5. CONCLUDING REMARKS 

We have concent ra ted  here on obta ining explicit formulae,  both  in the case 
where our  SDEs  are driven by B rowm an  mot ions  and m the case where they 
are driven by symmetr ic  L6vy processes with jumps .  O f  course,  m a n y  other  
quest ions - which we have not considered - do not admi t  explicit answers 
and one must  then resort  to numerlcal  solutions.  It is not our  retention here 
to give a detailed quant i ta t ive  analysis o f  numerical  s imulat ions of  the 
models  presented in the preceding sections, as this could well const i tute  a 
paper  in its own right. We simply present some examples  o f  numerical  
smaulatlons to give a feel for what  these processes look like In the case of  
SDEs  driven by Brownlan mot ion ,  great advances  have been made  in recent 
years in numerical  methods  for solwng them. Fo r  a comprehenswe  survey of  
these techniques as well as an extensive b lbhography  on the subject, we refer 
the reader to Kloeden and Platen (1992) By contrast ,  numerical  methods  for 
SDEs  driven by processes with jumps ,  such as stable processes, have received 
far less a t tent ion until recently and the l i terature on this subject ~s more  
bruited: a systematic  t rea tment  in book  form can be found in Janick~ and 
Weron  (1993). 

Fo r  simplicity, we present  some s imulat ions for the inflation process Rt 
only since of  the four componen t s ,  this is closest to the time-series model  o f  
Wdk~e Figure I shows three trajector,es of  the process Rt, I n  the case where 
the noise Z, is Brownlan mot ion.  The scaling used is such that  the time 
interval [0, I] co r responds  to a period of  50 years Specifically, in the context  
o f  R e m a r k  01) in Section 1, we have used h = 0.02 and m equat ion  (1.2) our  
choice of  q5 is O(t)  = b + ccos (27r t /h ) .  Since the picture is only intended to 
give a quahta t ive  indication of  how the process behaves,  the actual  
numerical  values on the vertical axes are not o f  any great importance:  the 
pa rame te r  values in Wllkle (1986) are used as a rough guide to the sort  o f  
values which might  be appropr i a t e  for the pa ramete r s  here - in part icular ,  
the pa rame te r  values of  Wdkle  are rescaled in the manner  discussed in 
R e m a r k  (il) o f  Section 1 

Th roughou t ,  we have taken the var ious  pa ramete r s  in our  models  as 
given quanti t ies  and we have said nothing abou t  the p rob lems  o f  their 
es t imat ion.  There  is some discussion of  this quest ion in §6.4 and §13.2 of  
Kloeden and Platen (1992) which IS especially relevant to the linear 
equat ,ons  which appea r  repeatedly in our  models.  
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FIGURE I SAMPLE PATH REALIZATIONS OF THE FORCE OF INFLATION PROCESS R, 

A P P E N D I X  P R O O F O F  L E M M A  3 I 

Cons ider  first the integral l (s)  = J'~ g(u) dZ,, Take  a sequence  o f  p a r t m o n s  
(u~,0 001 ttk+ ,j o f  the interval [0, t], such that supk 1.~'~, - t,~;')[ ~ 0 as n ~ oo. 

It is k n o w n  that,  as n ---, oo,  

I . ( . )  . dZ,, = g~uk ) t L U ' k + , ) -  Z(,,~' ~ g(, ,)  

m probabi l i ty  u m f o r m l y  in s over the tn'ne interval [0, t] (see Protter (1990)) .  
Therefore ,  there is a subsequence  (n,) such that / , , , ( s )  ---, l (s)  a lmos t  surely as 
l + oo and wnthout  loss o f  general i ty  we can assume that / , , ( s )  + I (s )  a lmost  
surely.  Next ,  take a dnfferent sequence  o f  successwely  refining part~tmns o f  

r (,,,) (.,)~ [0, //] and call this [5 , 5 + 1 ) '  Put 

t > , -  
~(~) >.(.)  
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" (") t) -~ F ( t )  - F(u~ '')) as n ~ oo.) (Of course, FmtUk , 

hfn. lira ~ - ~ J ( s S ' " ) ) / "  ('') (,,,)N .... . o , , _ ~ - - . - . t ~ ; + , - ~  ) Z 

= f ( s )  g(u) dZ,, Us 

and so for fixed n, 

t Sj+I __~,n)) 
• "') <l 

We then have 

gc"k ) 

= E  exp ~ - ,0  Z / (''}'~ f ' - "  (') " 
f 
< gtu~ ) t~ t . ,+ , ) -z(&))  
t u~ ") _< t g.,l_>.l?l 

_ - r [  e x p , ' _ /  ( , 1 ) ( , 1 )  (.,) (.) 

u{~. ") _< t 

u(/, n) < t 

as m----, oo. In the above calculation, we have used the s ta t ionary 
independent  increments proper ty  o f  Z and the fact that 
IE[e -m(z'-z,)] = e -(t-gO(O). Letting n --+ ~ m (AI)  then gwes the r ight-hand 
side of  (3.1). 

For  the integral f g g ( u ) £ f ( s ) d s d g , ,  we know that 

'''' Jo' I mtUk+ , -- Z(u~'0)) --+ g(u) f ( s )  dsdZ,, 
k 

almost surely as n --+ oo (passing to a subsequence if necessary) A similar 
calculation as m (A l) easily yields the identity (3. I). 
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ABSTRACT 

The Cox regression model ~s a standard tool m survival analysis for studying 
the dependence of a hazard rate on covariates (parametrically) and time 
(nonparametncally). This paper is a case study intended to indicate possible 
applications to non-life Insurance, particularly occurrence of claims and 
rating 

We studied indiwduals from one Danish county holding policies in auto, 
property and household insurance simultaneously at some point during the 
four year period 1988-1991 in one company The hazard of occurrence of 
claims of each type was studied as function of calendar time, time since the 
last claim of each type, age of pohcy holder, urbamzation and detaded type 
of insurance Particular emphasis was gwen to the technical advantages and 
disadvantages (particularly the comphcated censoring patterns) of consider- 
nag the nonparamemcally underlying time as either calendar time or time 
since last claim. In the former case the theory is settled, but the results are 
somewhat complicated The latter choice leads to several ~ssues still under 
active methodological development. We develop a goodness-of-fit criterion 
which shows the lack of fit of some models, for which the practical 
conclusions might otherwise have been useful. 

1. I N T R O D U C T I O N  

Indtvtdual rating m non-hfe msurance may be based on exogenous variables 
(age of policy holder, urbanization) but m auto insurance various schemes 
for dynamical individual rating based on endogenous iiaformatlon (previous 
claim career) are well established. A possible further development of such 
procedures would be to base rating on endogenous variables for more than 
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one type of  non-life Insurance. This would - as all such schemes - require an 
extenswe knowledge base, and to focus Ideas we studied the example of  
household, property and auto Insurance. The joint development m time of 
the occurrences of clmms of these three types is conveniently phrased in 
terms of the theory of event history analysis which has developed rapidly 
during the last decade, cf, Blossfeld et al (1989) and Blossfeld and Rohwer 
(1995) for good surveys with social science apphcatlons and Andersen et al 
(1993) for a general treatise with many pracUcal examples, primarily from 
biostatistics. 

In this report we indicate some initial posslbllmes as well as difficulties m 
carrying out such a programme Restricting attenUon to claim occurrence 
(i.e disregarding claim size) we want to capture the occurrence in time of 
claims as function of  fixed exogenous covanates (age of  pohcy holder, 
urbanizaUon) and several time variables: calendar tame and tames since 
recent claims of each type. There as an active current literature on choice of 
time scales in stat~sUcal models for repeated events, cf. Lawless and 
Thmgarajah (1996), Lawless (1998) and Oakes (1998). 

Our mare tool wall be versions of  the Cox (1972a) regression model for 
event history data, see Andersen et al. (1993, Chapter VII). In this 
"semaparametric" model, one tame variable as selected as "underlying" and 
modelled "nonparametracally" while other time variables as well as fixed 
exogenous covariates are modelled parametrically See Prentice et al. (1981) 
for an early exposmon of alternatwe time scales in Cox models for repeated 
events and Oakes (1998) for an excellent concise survey. The Cox model is 
introduced in SecUon 3 and two alternahve choices of underlying time 
varaable are considered m SecUon 4 (calendar time) and 5 (ume since last 
claim). Whereas calendar time as underlying tune variable leads to a 
relatively standard application of  Cox regression methodology, it will turn 
out to be rather less standard to consider tame since last claim. A brief 
discussion is contained m Section 6. 

The methodology is illustrated on data from a Damsh insurance 
company, introduced in Section 2. 

2. DATA 

The present case study is based on data from a Danish insurance company. 
Between 1 January 1988 and 31 December 1991, 15,718 persons across 
Denmark at least once simultaneously held household, property and auto 
policies in this company. We study the 1,904 persons from the county of  
Fyn, in which Odense is by far the largest city. For each person and each 
type of policy is known 
• the start and the end of the policy if within 1988-1991. If there were 

several policies of  the same type within 1988-1991, only the latest was 
kept in the routine records on which we work. 

• age (but not sex) of policy holder 
• urbanization 
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• for household: coverage (amount)  
• for auto: coverage 
• date and size of  claims. 

In this study we focused attention on claims that led to payments  This 
means that we removed clmms of  size 0. We made no other use of  claim size. 

3. T H E  C O X  REGRESSION M ODE L  FOR EVENT HISTORY ANALYSIS 

For  each type h = 1,2, 3 (household, property, auto) and pohcy holder l the 
intensity of  having a claim at time t is denoted Ah,(t). Here t can be calendar 
time (cf. Section 4) or time since the last claim of  a similar type (cf. Section 
5), with a special definition necessary if there has not (yet) been such a claun. 
A third possibility would be that t was time since taking out the policy. We 
explain later why we do not consider the latter possibility relevant here. 

The Cox regression model now postulates that 

Ah, (t) = CV0h (t) exp [flt',Zh, (t)] Yh, (t) 

where c~oh(t) IS a freely varying so-called underlying intensity function 
common to all policy holders t but specific to insurance type h The mdmator  
Yh,(t) 1S 1 If policy holder i Is at risk to make a claim of  type h at time t, 0 
otherwise The covanate  process Zh,(t) mdmates fixed exogenous as well as 
t ime-dependent endogenous covarlates. The fixed covanates  considered are 
year of  birth of  policy holder and urbamzat lon of  residence, which m 
practice equals 1 for city (Odense) and 0 for rural (rest of  Fyn). The tmae- 
dependent covanates  indicate durat ion since last claim of  each type (which 
can and will be parameterized in various ways). Finally the vector /3/, 
contains the regression coefficients on the covanates  Z/,(t) 

Statistical inference in the Cox regression model is primarily based on 
maximum partial likelihood, which in the generality necessary for this 
application was surveyed by Andersen et al. (1993, Chapter  VII) in the 
framework of  counting processes. The regression coefficients/3h are estimated 
by maximizing the partial hkehhood 

exp 
L(/3h) 1-1" 

I . [  ~ ,  Yh,(r,,,)=, exp(/3~,Z,,,(Th,)) ./ 

where T m <  T/,2 < ... are the times of  claims of  type h, policyholder i(j) 
claiming at time Thj. Large sample results are available to justify the 
application of  the inverse Hessian of  the log partial likelihood as 
approximate covanance matrix for ,Sh" Because of  the time-varying 
covariates the necessary algorithms are rather elaborate, a l though we were 
able to perform all computat ions  on a medmm-slzed PC using StatUnlt  
(Tjur, 1993). The computat ions  may also be performed in s tandard packages 
such as BMDP,  SAS or S-plus, or via the Polsson regression approach of  
Lmdsey (1995). 
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For the underlying intenstty ceo/,(t) it is well-established that a natural 
estimator of the integrated intensity 

/0' Ao/,(t) = aoh(u)du 

is given by the step function (the "Breslow" estimator) 

Ao/,(t) = Z 1 
T~,_<, E exp(3~,Zh,( T,v) ) 

t Yh,(rh,)=l 

where Th= < Th2 < ... are the times of  claims of type h and ~, the maximum 
partial likelihood estimator of  3/, 

Unfortunately Aoh(t) is less than opUmal in communicating important 
features of the structure of  ~0h(t); it is often desirable to be able to plot an 
est,mate of  o~0/, itself We shall here use kernel smoothing (which in the 
context of estimating the intensity in the multlphcatlve intensity model for 
counting processes was inctdentally pioneered by the actuary Ramlau- 
Hansen (1983)). This estimates &oh(t) by 

J t-h<Thl<t+h 

where b is the bandwMth, K a kernel function, here restricted to [-1, 1] and 
A Ao/,(T/v) = iioh(Tt,:)- ~io/,(T/,j_l), T/,o = 0. We choose here the Epa- 
nechnikov kernel K(x) = 0.75(1 - x2). For more documentation, see again 
Andersen et al. (1993, pp. 483 and 507-509). 

Despite its considerable flexlblhty, the Cox regression model is not 
assumption-free, the most important assumptions being that of proportional 
hazards and that of log-hneartty of effect of regressors. There is a well- 
developed battery of goodness-of-fit procedures available, cf. Andersen et al. 
(1993, Section VII.3), and several of  these methods have been used in the 
present case-study (never indicating deviation from model assumptions). 
However, space prevents us from documenting these here. 

4 Cox REGRESSION OF CLAIM INTENSITY 

C A L E N D A R  TIME AS UNDERLYING TIME VARIABLE 

Our first choice of underlying time scale is calendar thne, which is always 
observable and whose association with variations in claim intensity may 
form an interesting object of study. Technically, the counting process 
approach elaborated by Andersen et al. (1993, Section Ill.4) easily allows for 
entry and exit of policies from observation (the "Aalen filter") in this 
situation. 
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However, an important purpose of this study was to ascertain the 
observability and possible extent of the association of claim intensity to the 
duration(s) since earher claim(s), and it is less obvious how to account for 
these. Because of the relatively limited period of observation (4 years) it was 
necessary to make several pragmatic choices. First, the dependence on earher 
claims was operationahzed as dependence on duration since latest claim, and 
this was achieved by defining the indicator covarlates 
[1-90]: There has been a claim less than 90 days ago. 
[91-180]: The latest claim was between 91 and 180 days ago. 
[181-270]' The latest clama was between 181 and 270 days ago. 
[271-360] The latest claim was between 271 and 360 days ago. 
[> 360]  There has been no claim during the past 360 days. 

Since the database contains no information on claims before 1988, these 
covarlates would not all be observable early m the period. We therefore decided 
to use 1988 as run-in year, only for collecting information on earher claims. 

A further problem was the many instances where a new pohcy was taken 
out within 1988-1991 In case no claims happened, the above covarlates 
would remain unobservable for 360 days, which forced us to add the 
covarlate 
[no inf.], policy (of this type) was taken out less than 360 days ago and 

during that time there were no claims. 

4.1. Household claims in calendar time 

For household claims the relevant covarxates were: year of birth of 
pohcyholder (categorized in three groups separated by I January 1938 and 
1 January 1948), urbanization (Odense vs rest of Fyn) and duration since 
last claim of each type as described above All groups of covariates were of 
statistical significance and the estHnated model had regression coefficients as 
given in Table 4.1. 

It is seen that compared to the "no information" situation when no claim 
has happened after a recently taken out policy, knowledge of a recent 
household claim during the recent 0-9 months increases the risk of a new 
household claim by a factor ranging from e °562 = 1.8 to e °s°s = 2, 2, i.e, a 
factor of about 2. On the other hand knowledge of claim-free career of one 
year decreases the risk by the (statistically insignificant) factor of 0.9. 

Past property claims have effects according to a SHnllar pattern, although 
the effects are smaller, except for very recent property claims (e ° 629 _~_ 1.9), 
some of which may be caused by the same events that caused the household 
claim. Unfortunately the database cannot Identify such cases, which would 
in principle violate the proportional hazards assumption of the Cox 
regression model 
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TABLE 4 I 

REGRESSION COEFFICIENTS IN REDUCED COX MODEL FOR HOUSEHOLD CLAIMS 

Covariate Estimate S t a n d a r d  e r r o r  P 

Household[no ,nf ] 0 - 

Household[l-90] 0 562 0 277 0 043 

Household[91-180] 0 725 0 275 0 008 

Household[I 81-270] 0 808 0 275 0 003 

Household[271-360] 0 206 0 303 0 496 

Household[ > 360] - 0  105 0 243 0 665 

Property[no mr] 0 

Property[I-90] 0 629 0 197 0 001 

Properly[91-180] 0 178 0 219 0 416 

Property[l 81-270] 0 107 0 225 0 663 

Property[271-360] 0 287 0 225 0 202 

Property[> 360] - 0  132 0 161 0 413 

Auto[no mf]  0 - 

Auto[I-90] 0 224 0 209 0 284 

Auto[91-180] 0 301 0 208 0 148 

Auto[181-270] 0 258 0 217 0 234 

Auto[271-360] - 0  187 0 260 0 473 

Auto[> 360] - 0  144 0 148 0 330 

Born[> 1947] 0 - - 

Born[1938-1947] 0 015 0 086 0 860 

Born[ < 1938] - 0  406 0 100 0 000 

Rural 0 - 

City 0 381 0 076 0 000 

Past au to  claims show overall significance, although the effect of each 
period is small, generally in a similar pattern as for the other types of 
insurance. 

The age pattern has a decreased intensity for older pohcy-holders 
(intensity factor e -°4°6 = 0.7) while the two younger groups are very similar; 
finally urbanization generates the expected gradient with an increased risk in 
the city (e ° 381 = 1 . 5 ) .  

The underlying intensity is estimated as described in Section 3, using 3 
different bandwldths for illustration, see Fig. 4.1 It is not easy to conclude 
much from the somewhat irregular pattern except perhaps a slight general 
decrease. The boundary effects at the start and the end of the studmd period 
are staustmal artefacts deriving from the kernel estimation approach. 

It may be noticed from Table 4. I and the following tables that several of 
the patterns of dependence on time since last claim might be s~mphfied. As 
an example in Table 4.1, the regression coefficients Auto[I-90], Auto[91-180] 
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and Auto[181-270] look rather simdar, as do Auto[271-360] and 
Auto[> 360]. However, there is no obviously consistent pattern across 
types of claims and types of risk indicators, so we have refrained from 
conducting what would xn any case be post-hoe attempts at staustical 
ldenUficat~on of such patterns. 
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FIGURE 4 I Kernel smoothed underlying intensities for household clduns 

4.2. Property claims in calendar time 

For property insurance there is a series of optional additional coverage 
possibilities, which are all included as specific indicator covarlates fire, glass, 
insects, wash basins, pipe, rot 

The estimates of the reduced model are given in Table 4.2. Note that 
urbanization is staustlcally inslgmficant and that there IS an unusual age 
pattern, the middle-aged having a somewhat lower risk than the young and 
the old. In the interpretation of the age effect it is however particularly 
important to keep in mind the specially selected population each person 
must have had all three types of pollcles simultaneously at some point during 
1988-1991, this restricts consideration to better situated people. 

Of the optional additional coverage, only glass and pipe coverage are 
retained as risk variables, both clearly increasing the risk. That fire does not 
appear is related to the fact that almost all policies chose that option. For 
duration since last claim the general pattern IS similar to the earher one, 
although one must nouce that there is never a significantly lower risk than 
that of [no inf.], which (as we shall discuss more fully below) will limit the 
practical applicablhty of the results. 
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TABLE 4 2 

REGRESSION COEFFICIENTS IN REDUCED COX MODEl. FOR PROPERTY CLAIMS 

Covariate E~timate Standard error P 

Household[no mr] 0 

Household[1-90] 0 485 0 229 0 034 

H ousehold[91 - 180] 0 302 0 240 0 208 

Household[181-270] 0 345 0 240 0 151 

Household[271-360] 0 032 0 260 0 902 

Household[ > 360] - 0  080 0 192 0 676 

Property[no mf] 0 

Property[I-90] 0 524 0 206 0 01l 
Property[91-180] 0 334 0 217 0 124 

Property[I 81-270] 0 206 0 224 0 357 

Property[271-360] 0 281 0 224 0 210 

Property[> 360] - 0  180 0 181 0 320 

Auto[no mf] 0 

Auto[l-90] 0 501 0 184 0 006 

Auto[91-180] 0 262 0 202 0 194 

Auto[181-270] 0 182 0 210 0 387 

Auto[271-360] 0 267 0 21 I 0 205 

Auto[> 360] 0 026 0 141 0 851 

Born[> 1947] 0 

Born[1938-1947] - 0  196 0 079 0 013 

Born[ < 1938] - 0  061 0 079 0 438 

Glass 0 411 0 140 0 003 

Pipe 0 185 0 072 0 010 

The underlying intensity is estimated in Ftg 4 2 and shows a dramattc peak 
in early 1990, apparently traceable to extreme weather c o n d m o n s  

4.3. Auto claims in calendar time 

In addttion to the standard covariates, auto claRms are expected to depend 
on whether or not  there is auto comprehensive coverage and whether or not 
a certain "free claim" al lowance is included m the pohcy.  

The eshmates o f  the reduced model  are given m Table 4 3, where tt is 
tmmedlately nottced that, perhaps contrary to expectation,  auto compre- 
hensive coverage does not increase risk o f  claim for this populat ion of  
insures. Note  also the age pattern, generally unusual  for auto insurance with 
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FIGURE 4 2 Kernel smoothed underlying intensity for prope[ty c.la]ms 

maximal risk among the middle-aged pohcy-holders. (Note that there are no 
data to account for size of household, and note once again the specially 
selected population.) 

TABLE 4 3 

REGRESSION COEFFICIENTS IN REDUCED COX MODEL FOR AU ro CLAIMS 

Covariate E~ttmate Standard error P 

Household[no mf]  0 

Household[l-90] 0 388 0 245 0 114 

Household[91-180] 0 303 0 251 0 226 

Household] 181-270] 0 304 0 252 0 227 

Household[271-360] 0 493 0 244 0 043 

Household[> 360] 0 001 0 193 0 995 

Auto[no mr]  0 

Auto[1-90] 0 730 0 259 0 005 

Auto[91-180] 0 862 0 257 0 001 

A uto[181-270] 0 738 0 264 0 005 

Auto[271-360] 0 618 0 273 0 024 

Auto[> 360] 0 294 0 231 0 203 

Born[> 1947] 0 - - 

Born[1938-1947] 0 100 0 079 0 209 

Born[< 1938] - 0  140 0087 0 106 

Free claim I 048 0 083 0 000 
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The patterns regarding duration since last claim show no overall effect of 
recent property claims and some effect (increase) on Nsk of recent household 
claim. As expected, recent auto claims considerably increase the risk of a 
further auto claim, as does the "free claim" option (no penalty m premium 
scale after a claim) 

The underlying intensity (Fig. 4.3) indicates some seasonality with peaks 
m the winter and the summer, however this pattern is rather irregular. 
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FIGURE 4 3 Kernel smoothed underlying intensity for auto clam~s 
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4.4. Preliminary conclusions: calendar time as underlying variable 

Two problems are common to all analyses so far. First, the unstable nature 
of the populauon of pohcles during the relatively short observation window 
of four years make the desired allowance for time since earlier claims difficult 
to achieve in practice. The general reference category of [no inf.], meaning 
that a policy of the relevant type was taken out less than a year ago and there 
have not yet been claims to that policy, in all cases carries a very low risk for 
new claims of the type under study This relative low-risk behavlour of new 
policyholders is obviously difficult to integrate into a reward system for 
faithful customers In this connection it must be emphasized that the routine 
nature of our database (which may well be typical of such databases) did not 
allow the dlstmcuon between genuinely new policies and "bureaucratlcal" 
renewals mluated by the company or the policyholder m order to update 
conditions. 
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Secondly, some o f  our  concrete results point  to the rather  special 
selection procedure  underlying the present database: all policyholders were 
required to have held all three types simultaneously at least once in 1988- 
1991 As an example,  think o f  the rather  biased selection of  young 
policyholders! 

5. C o x  REGRESSION OF CLAIM INTENSITY: 

U S I N G  DURATION RATHER THAN CALENDAR TIME AS BASIC TIME VARIABLE 

In the discussion so far it has become obvious that we need to reason in 
several hme variables: ca lendar  time as well as durat ion(s)  since recent 
claim(s). At least because o f  the possibility that there have not  yet been any 
claims, we may also need the time since the policy was taken out. When 
using the Cox regression model such as introduced in Section 3 

A,,,(t) = c~ot,(t)exp[13/',Z/,,(t)] Y/,(t) 

one may choose one of  these time scales as "'basic" ( =  t) and handle the 
other(s) as ( t ime-dependent)  covarlates Z/,,(t). An impor tan t  criterion for 
choosing between these posstbihtles is the addit ional  flexlbdlty in the 
description offered by the " n o n p a r a m e t r m "  under lymg intensity ceoh(t). We 
actually saw in Section 4 that various indications regarding seasonal pat terns 
appearcd in the graphs of  Figs. 4.1-3 

Another  criterion is ease o f  handhng special observat ion plans. When 
calendar  time is used, the exact time is always known for each policy-holder,  
in contras t  to what  ~s the case for dura t ion since last claim. We discussed the 
latter problem at the beginning o f  Section 4, where we constructed time- 
dependent  covarlates to account  for durat ions since earlier claims. 

However ,  both prior  expectat ion and our  experiences so far point  to the 
impor tance  o f  time since last claim as decisive time varmble, for which the 
maximal modell ing flexlbllity offered by the nonparamet r lc  part  of  the Cox 
model would be useful. To  discuss an adequate  statistical analysis m this 
time-scale, consider first the simple situation without  covarmtes,  which is a 
renewal process. 

5.1. Estimation of  renewal processes observed in a fixed time window 

Let Xi, X2, be independent  random variables (durat ions)  with distribu- 
tion functions Fi,  F2 = F3 = .  = F, assumed to have finite expectat ions 
l*l and IL and density functions f l  = Fi and f = F' .  Let 
S,, = Xl + ... + X,,, n = I, 2, .. and the stochastic process (a renewalprocess) 

N, = ~ I{S,, < t}, 
I1 = ] 
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the number  of  durat ions since time 0. I f  f l  = ( 1 -  F ) / #  the process is 
stanonary Observing a renewal process in an interval [t~,t2] amounts  to 
observing the renewal times (claims) Tj E [t,,t2] or eqmvalently 
( N t  - Nt ,  t E [ t l ,  t2]) .  Let Tj be the first renewal after tl, i.e. 
N~ 5 = Nt. + 1. Then T j -  tl is called the Jbrward recurrence tune, and if 
the process is stationary, this has denstO, function (1 - F ) / #  

Observing a renewal process m an observation window [tl, t2] involves 
four different elementary observations 
1. Times x, from one renewal to the next, contributing the dens i ty f (x , )  to 

the likehhood. 
2 Times from one renewal to t2, right-censored observations of  F, 

contributing factors of  the form I - F ( t 2  - T j )  t o  the hkehhood 
3 Times from tj to the first renewal (forward recurrence times), 

contributing, in the stat ionary case, factors of  the form 
(1 - F(Tj  - tl))/~L to the likelihood. 

4. Knowledge that no renewal happened in [tl, t2], being right-censored 
observations of  the forward recurrence time, contributing m the 
stat ionary case a factor 

f ~ (I - F(u) )du /# .  
- - I  1 

In the stat ionary case the resulting maximum likelihood estimation problem 
is well understood. Vardl (1982) derived an algorithm (a special case of  the 
EM-algori thm) in a discrete-time version of  the problem, and Soon and 
Woodroofe  (1996) gave an elaborate and very well-written discussion in 
cont inuous time. McClean and Dewne (1995) condit ioned on seeing at 
least one renewal m [tl, t2], excluding observations of  type 4 and restricting 
attention to observahons of  type 3 right-truncated at t 2 - t l ,  i.e. w~th 
density 

Again an EM-type algorithm is feasible. 
In our situation we need to be able to generahze the estimation method 

from nd variables to the Cox regression model, and we would also prefer to 
avoid the statlonarlty condition required for Inclus,on of  the (uncensored 
and censored) forward recurrence times of  type 3 and 4. 

This is possible by restricting attention to (uncensored and censored) 
times since a renewal, that is, observations of  type 1 and 2. As discussed 
repeatedly by Gill (1980, 1983), see also Aalen and Husebye (1991) and 
Andersen et al. (1993, Example X.1 8), the likelihood based on observations 
of  type 1 and 2 is identical to one based on independent uncensored and 
censored life times from the renewal distribution F. Therefore the standard 
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estimators (Kaplan-Meler, Nelson-Aalen) from survival analysis are 
apphcable, and their usual large sample properties may be shown (albeit 
with new proofs) to hold. 

The above analysis is sensltwe to departures from the assumption of 
homogeneity between the rid replications of the renewal process. Restricting 
attention to time since first renewal will be biased (in the direction of short 
renewal times) if there is unaccounted heterogeneity, as will the re-use of 
second, third, ... renewals within the time window. As always, incorporation 
of observed covanates may reduce the unaccounted heterogeneity, but the 
question is whether this will suffice 

5.2. Cox regression of duration since last claim 

The Cox (1972a) proportional hazards regression model for survival analysis 
was implemented by Cox (1972b) in the so-called modulated renewal 
processes, for which the hazard of the renewal dlstribuhon is assumed to 
have a su33dar semlparametrlc decomposition. This model has received much 
less attenhon than the surwval analysis model and its event history analysis 
generalization (Prentice et al., 1981, Andersen and Gill, 1982, Andersen et 
a l ,  1993, Chapter VII), although Kalbflelsch and Prentice (1980) and Oakes 
and Cm (1994) discussed estimation. Careful mathemahcal-statlstical 
analysis was provided by Dabrowska et al. (1994) and Dabrowska (1995), 
who showed that if the covanates depend on no other tmle variables than the 
backward recurrence times, then the 'usual' asymptotic results of the Cox 
partml (or profile) likelihood may be proved. 

In the present case we have the additional complication of observing 
through a fixed (calendar) time window. Inclusion of likelihood factors of 
types 3 and 4 is then intractable, but if the model were true (in particular, ~f 
the observed covarlates sufficiently account for indwldual heterogeneity), 
valid inference may be drawn from the reduced likelihood based on time 
since first claim (factors of types 1 and 2) 

Finally, we want to incorporate time-dependent covanates not depending 
on the backward recurrence time only (for example, m the analysis of 
household claims we want to incorporate times since the last property or 
auto claim) and the analysis is then no longer covered by Dabrowska's 
asymptotic results. 

As pointed out at the end of the last section, if there is unaccounted 
heterogeneity the expected bias by restricting attention to time since first 
renewal will be in the direction of short renewal times, and this will be even 
worse if times since second, third etc renewal times are also included. We 
build a goodness-of-fit criterion on this intuition, as follows. 
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5.3. A goodness-of-fit criterion for the Cox modulated renewal process 
observed through a fixed time window 

We assume that the occurrence of  claims of  type h for pohcy holder ; at 
durat ion t since last claim of  that type is governed by a Cox regression model 
with intensity 

,xj,,(t) = o,,p [9;',zh,(0] rh , (0  

with interpretation as before. For  this model Dabrowska (1995) proved 
asymptotic  results for the 'usual '  profile hkelihood based inference, under 
the crucial assumption that the covariates Zh,(t) depend on time only 
through (the backwards recurrence time) t. (Obviously a full model will 
require an additional specification of  occurrence of  the first claim of  type h 
after the policy is taken out.) 

The claim occurrences are viewed through a fixed time window, but under 
the model valid inference may be based on the likelihood composed of  the 
product  of  contributions from the distribution of  time from first to second 
claim, second to third claim, and so on, the last being right-censored The 
expected deviation from the model is that time from claim j = 1 is longer 
than times from cla~msj = 2, 3, We therefore extend the model to the 
Cox regression model 

In practice the regression coefficients /3/,j and the underlying intensities 
c~0&(t) after c la lmj  are assumed identical fo r j  = 2, 3, .... A good evaluation 
of  the fit of  the Cox model can be based on first assessing ~dentlty of  
regression coefficients (~4;,1 =/3/,2) and then, refitting in a so-called stratified 
Cox regress]on model with identical /3/v but freely varying a;,~(t) over j,  
comparing the underlying intensities (~0hl (t) = c~0/,2(t)) after first and after 
later claims. For  the first hypothesis a s tandard log partial hkehhood ratio 
test may be performed, for the second we use graphical checks as surveyed 
by Andersen et al. (1993, Section VII. 3) Further  development of  this 
goodness-of-fit approach might follow the lines of  Andersen et al (1983) 

5.4. Household claims by duration since last such claim 

The relevant covarlates are the same as listed m Section 4 1 except of  course 
that durat ion since last household claim is now described in the non- 
parametric part of  the Cox model rather than by time-dependent covanates.  
Table 5.1 shows the final model after elimination of  non-significant 
covanates  It is noted that the result is rather simpler than that represented 
by Table 4 1 since in addition to time since last household claim, also time 
since last auto claim and age have disappeared. 
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0 0014 

Co~,artate E~tunate Standard error P 

Proper ty[no mf ]  0 - - 

Property[I-90] 0 659 0 199 0 001 

Property[91-180] 0 118 0 243 0 623 

Property[181-270] 0 281 0 238 0 237 

Property[271-360] 0 211 0 266 0 428 

Proper ty [>  360] - 0  140 0 165 0 3 9 4  

Rural  0 - 

Ci ty  0 251 0 103 0 015 

The remaining covariates, time since last property clmm and urbamzation, 
have similar effects (particularly for the former) as betbre, and similar 
remarks apply. 

The underlying intensity is estmaated m Fig. 5.1 for the first three years 
(thereafter the random variation dominates) A clear decrease is seen: the 
longer the duration since the last household claim, the lower the intensity of 
a new one. 
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TABLE 5 t 

RkGRESSION COLFFICIENTS IN REDUCI:D CoY. MODEL FOR HOUSEHOLD CLAIMS 

FIGURE 5 I Kezned ,,moothed underlying mtensay for household clawns (bandv:ldth 50 days) 
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Fitting the stratified model specified in the previous section to the covariates 
of Table 5.1 leads to insignificantly different regression parameter estimates 
after first and after later claims (X 2 = 8.87,f  = 6). To compare the estimates 
of underlying intensities Cq, oj(t) between times since first claim and Umes 
since later claims, Fig. 5.2 shows integrated intensity estimates against time, 
whereas Fig 5.3 shows integrated intensity estimates against one another 
Both plots indicate good agreements so that the model, and hence the above 
interpretation, would seem acceptable 
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FIGURE 5 2 Esttmated Integrated underlying mtensmes for household clatms 

5.5. Property claims by duration since last such claim 

In a similar fashion Table 5.2 shows the final model after elimination of non- 
significant covariates. (A hkehhood ratio test for no effect of time since last 
household claim gave P = .01.) 

TABLE 5 2 

R E G R E S S I O N  C O E F F I C I E N T S  IN R E D U C E D  C o x  M O D E L  F O R  P R O P E R T Y  C L A I M S  

Covariate Est imate Standard error P 

Household[no mf]  0 

Household[I-90] 0 198 0 208 0 340 

Household[91-180] 0 321 0 213 0 131 

Household[181-270] 0 110 0 236 0 634 

Household[271-360] - 0  140 0 269 0 602 

Household[> 360] - 0  253 0 157 0 106 
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FIGURE 5 3 Eshmated integrated underlying mlensmes for household claims based on du ra tmns  following 
second clam1 plotted against  those based on tile (possibly right censored) d u r a n o n  from first to second clalrn 

As for household claims, we get a much simpler descnpuon m the present 
rime-scale, the only remaining covarlate being time since last household 
clmm The effect or this covanate in qualitatively similar to what it was m 
Table 4.2. The underlying intensity (Fig. 54) is decreasing. The gradmnt 
between best and worst customers (expressed by range of varmtmn of 
regression coefficmnts) is smaller than for household clawns, corresponding 
to common expectation. 

For tile goodness-of-fit test tim ldenuty of regression coefficmnts was again 
easily accepted (X2= 0.73, f = 5), but here the unfortunate bias in the 
direction or shorter durations after second and further claims is clearly 
wslble from Figs. 5.5 and 5 6. The model must be judged as not fitting and 
the above conclusmns cannot be sustained 
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5.6. Auto claims by dura t ion  since last  such claim 

Final ly ,  T a b l e  5.3 d o c u m e n t s  the result  o f  f i t t ing the C o x  regress ion  m o d e l  to 
t ime stnce last a u t o  c la im,  us ing the c o v a r l a t e s  hsted m Sect ion 4, 
parucularly Section 4.3, and ehminating stattstlcally mstgnlficant covarmtes 

TABLE 5 3 

Regression coefficients m reduced Cox modcI for auto claHns 

Covariate E~timate Standard e~ rot P 

Household[no mr] 0 - 

Household[I-90] 0 304 0 205 0 139 

Household[91-180] 0 295 0 218 0 175 

Household[I 81-270] 0 053 0 240 0 826 

Household[271-360] 0 032 0 251 0 897 

Household[> 360] - 0  334 0 155 0 031 

Auto comprehensive --0 405 0 148 0 005 

Free clatm 0 320 0 121 0 008 
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Compared to Table 4.3, we necessarily have lost time since last auto clmm, 
but furthermore, age ~s no longer significant whde, most surprisingly, auto 
comprehenswe coverage seems to decrease the risk of the next auto claim by 
a factor of e-40s = 0.67 We can only interpret the latter phenomenon with 
reference to a pecuhar selection of pohcyholders who choose comprehensive 
coverage. The underlying intensity (Fig. 5 7) shows a clear decrease. 
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0 0012 

0 001 

o 0008 
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0 0OO4 
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0 365 73O 
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PIGURF 5 7 Kernel smoothed underlying intensity for auto el,urns (bandwidth 50 days) 

1095 

The result of the goodness-of-fit test is very slmdar to that for household 
insurance above: regression coefficients are easily identical (xZ= 2 26, 
J = 7), but the expected bias is mlme&ately obvious from Figs. 5.8 and 5.9 
The model must thus be considered poorly fitting, and the results cannot be 
sustained. 

5.7. Preliminary conclusions: duration as underlying time variable 

The two basic d)fficulties ment)oned )n Section 4 4 were not removed by 
changing to duraUon as bas)c time vat)able. Furthermore, techn(cal 
problems of estimation (as well as reluctance to postulate stauonanty) 
forced us to omit all duraUons already runmng at the start of observation 
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1 January 1988 or when a new policy was taken out. Even based on 
these reduced data, we were able to construct a goodness-of-fit criterion that 
rejected the Cox regression model for property and auto claims, while 
household claims seemed to be amenable to analysis by this approach. 

In any case the analys~s performed m th~s secuon ~s in practice 
restricted to what happens during the first three years after a claim, and it 
~s ~mposslble to extrapolate from here to the situation before the first 
claim or long after a clmm, both of which carry an important weight m 
practice. 

6. DISCUSSION AND CONCLUSION 

The purpose of this report was to demonstrate some posslblhtles of recently 
developed tools in event history analysis in describing routinely collected 
data on non-life insurance claim histories, with the long-term aim of 
individualizing rating To simplify matters we Ignored claim size but 
attempted to handle such presumably reahstlc difficulties as relatively short 
collection period (4 years), many bureaucratic renewals and the special 
selection pattern arising from the desire to simultaneously study household, 
property and auto insurance m the same company. 

Our basic tool was an event history generahzatmn of the proportmnal 
hazards model due to Cox (1972a) for survival data, see Andersen et al 
(1993, Chapter VIi) for a detailed exposition 

A central feature has been the chome of Ume origin. The primary choice 
was to use calendar time as underlying time in the Cox regression model, 
which necessitated a run-in period for assessing time since last claim but 
otherwise allowed detailed identification of effects of fixed (exogenous) and 
time-varying (endogenous) covarlates, in most but not all cases yielding 
results in good accordance with expectation. 

A more experimental choice was to use time since last claim as underlying 
time in the Cox regression model, tying to Cox's (1972b) modulated renewal 
process The mathematical-statistical theory of this model ts rather less 
settled (Dabrowska, 1995). We develop m Sectmn 5 a necessary (but by no 
means sufficient) goodness-of-fit criterion which, for property and auto 
clauns, is violated even for our restricted data after first claim. Although the 
use of time since last claim as underlying time varmble does have advantages, 
partmularly m leading to much smlpler regression models, it will so far have 
to be considered to be under development. The goodness-of-fit investigation 
indicated residual unaccounted heterogeneity, for whmh some kind of frailty 
modelhng (Oakes 1992, 1998, Hougaard 1995, Schelke et al. 1997) might be 
fruitful. 

Several of the difficulties and shortcomings listed m Sections 4.4 and 5.7 
refer to the routine nature of the database that we used (and whmh we 
beheve to be typical). Further attempts at employing such techniques m this 
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context should perhaps make an effort to obtain better tuned databases, to 
further calibrate and explain the tools before they are released with practical 
ambmons. 
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ON STOP-LOSS ORDER AND THE DISTORTION PRICING PRINCIPLE 

BY WERNER HURLIMANN, 

Wmterthm 

A B S T R A C T  

A number of more or less well-known, but quite complex, characterizations 
of stop-loss order are rewewed and proved m an elementary way. Two recent 
proofs of the stop-loss order preserwng property for the distortion pricing 
principle are invahdated through a simple counterexample A new proof is 
presented. It is based on the important Hardy-Littlewood transform, which 
~s known to characterize the stop-loss order by reductmn to the usual 
stochastic order, and the dangerousness characterization of stop-loss order 
under a fimte crossing condmon Finally, we complete and summarize the 
main properties of the distortmn pricing principle. 

K E Y  W O R D S  

Pricing theory, d~stortmn function, quantile 
stochastm order, Hardy-Littlewood transform 

function, stop-loss order, 

I . ]NTRODUCTION 

Since its introduction by Biahlmann (1970), the functional approach to 
premmm calculation in insurance has seen an lmpresswe development. A 
first general and rather elementary method to generate valuable prmlng 
principles consists of the class of quantlle premium calculation prmc,ples by 
Denneberg (1985/90/94) Several recent contributions around this theme 
have been made m actuarial science and finance, among others Hurhmann 
(1993), Wang (1995a/b/c, 1996a/b), Wang et al. (1997) and Chateauneuf et 
al. (1996). 

For a given set S of non-negative random variables X >_ 0 with finite 
means, defined on some probability space, and which represent random 
losses of insurance contracts, a pt tcmg principle is a non-negative real 
function P • S + R, which depends on the distribution F.,(x) of X, and 
whIch ~s interpreted as price of the Insurance risk From an axiomatic point 
of view, it ~s well accepted that a pricing principle should satisfy a certain 

AS I IN BULLETIN, Vo[ 28, No I, 1998, pp 119-134 
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number of desirable properties. Without repeating all well-known inter- 
pretations, the following propertles are qmte reasonable: 

(PI) P[X] _> E[X], for all X E S 

(P2) P[X] _< sup[X], for all X E S 

(P3) P [ a X + b ] = a P [ X ] + b ,  for all a ,b ,  a > 0 ,  for a l I X E S  

(P4) P [ X +  Y] <_ P[X]+P[Y],  for all X, Y E S s u c h  that X +  Y E S  

(P5) P[.X] ~ P[ Y] If X ~sl Y and X, Y c S 

The last property says that the price functional preserves the stop-loss order, 
or equivalently the increasing convex order (see Kaas et al. (1994) and 
Shaked and Shanthikumar (1994) for fundamentals). Requiring that the 
price functional preserves the usual stochastm order <_~t only, is a less 
stringent property since stochastic order implies stop-loss order. Though the 
stop-loss ordering preserving property of the Swiss family of premmm 
calculation prmoples has been known since its actuarial consideration in 
Bfihlmann et al. (1977), the recognmon of _<s/ as a sound ordering of risk 
seems more recent. For example, the order preserving axiom (P5) Js 
considered in Hmlmann (1987) but without mention of a specific and 
accepted pamal order, which could be used as selected ordering of risk. 
Furthermore, the absolute deviation pnnciple and the Gin1 principle, 
introduced by Denneberg (1985/90), and which satisfy propemes (PI)-(P4), 
and the weaker stochastic order preserwng property, also satisfy (P5), 
(consequence of our main result m Section 3.2). Previously two qmte similar 
but different proofs of (P5) have been proposed by Wang (1996a/b), but 
both contain an error (see Secnon 3.1). 

In view of the above discussion, It seems useful to present a short 
chronological rewew of some mare non-mvml pricing functmns, which 
preserve _<s/, and respect whether the remaining axioms (PI)-(P4) are 
satisfied. 

The Swiss family is positively homogeneous if, and only if, ~t is the net 
principle (see Schmldt (1989), simpler proof by Hurhmann (1997), Example 4.1 
(connnued), p. 9). The first genuine pricing prinoples, which satisfy (PI)-(P5), 
are the absolute devlauon prlnople P[X] = E[X] + O. E[tX - mx]], 0 < 0 < 1 
(Denneberg (1985/90)) and the a im pnnc.ple P[XI=E[X]+O aim[X], 
0 < 0 < 1 (Denneberg (1990)). These functlonals are special cases of the 
class of distortion pricing principles. 

/0 /0' /0' P[X] = g(~'x(x))dx = F~'(I  - u)dg(u) = gxl(u)d3,(u), (1 1) 

where g(x) is an increasing concave function such that g(0) = 0, g(l)  = 1, 
F x ( x ) =  l - F x ( x )  is the survival function, 7 ( v ) = l - g ( l - x )  is the 
&stortion of probabilities in Denneberg's setting, and Fx I (u) is a quantlle 
function of X. The second equahty ~s obtained through partial integration, 
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and shown by elementary calculus in case g(x) is differentlable. The right- 
hand side representation has been introduced by Denneberg (1990) and 
ItS equivalence with the first integral (up to an alternative appropriate 
definition of the inverse) has been used by Wang (1996a) (see also Wang 
et al. (1997)). 

Another attractive special case of (1.1) is the PH-transform principle 
studied by Wang (1995a/95b/96a/96b). Previously to the last example had 
appeared the Dutch principle (see van Heerwaarden (1991), van Heerwaar- 
den and Kaas (1992), Kaas et al. (1994) and a shght generahzatmn of it (see 
Hurhmann (1994/95a/95b)). A pricing principle from the Dutch family 
satisfies (Pi)-(P5) if, and only if, It is of the form 

P[X]=E[X]+O E[(X-E[X])+] , 0 < 0 <  1. (1.2) 

The Dutch family is a special case of the class of  so-called "quasHnean value 
principles" considered recently by the author. However, only sporadic 
members of this class define feasible price functlonals satisfying (P1)-(P5), of 
which one may mention the interesting Example 11 1 in Htirlimann (1997a) 

A generahzatlon of  the class of  d~stortlon pricing principles is the class of  
Choquet pricing principles in Chateauneuf et al. (1996), which is based on 
the theory of capacltmS and non-ad&tive measures (exposed in Denneberg 
(1994)), and breaks with the traditional probabilistic foundations of  
actuarml science and finance. Finally, let us mentmn that one misses still 
feasible price functmnals along the economic approach lnitmted by 
Buhlmann (1980/84) (see the critical cornments by Lemmre (1988)). 

In the present paper, we invalidate Wang's proofs of the property (P5) for 
the dxstortion pricing principle through a simple counterexample, and focus 
on a new proof  of  this important property. Using a two-stage hmmng 
argument (dominated convergence theorem and continuity property of the 
distortion pricing functmnal), it ~s possible to restrict the attention to risks, 
whmh belong to the following large set 

S consists of  all non-negative random variables with 
fimte means, such that the distribution functions of any 
two of them cross finitely many times (finite crossing conchtton) (1.3) 

For completeness, we show also that (1 1) satisfies the other properties 
(PI)-(P4), where our expos~ is intended to be essentially accessible from an 
elementary perspective. 

The paper is organized as follows In Section 2, a number of more or less 
well-known, but quite complex, characterizations of  stop-loss order are 
reviewed and proved in an elementary way. Since no such proofs have been 
found m the original and other papers (and books) consulted by the author, 
the present supplement to the existing hterature will hopefully be helpful for 
future workers m this area (as It has been to the author). Section 3 is devoted 
to a derivation of the main propemes of  the distortion pricing principle. In 
Section 3.1 two recent proofs by Wang of the stop-loss order preserving 
property for the distortion pricing principle are mvahdated through a sample 
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counterexample A new proof  is presented in Section 3.2 It IS based on the 
important Hardy-Littlewood transform, which is known to characterize the 
stop-loss order by reduction to the usual stochastic order (Theorem 2.3), and 
the dangerousness characterization of stop-loss order under the finite 
crossing condmon (I .3) (Theorem 2.2) Finally, we complete and summarize 
the main properues of  the distortion pricing principle m Section 3.3. 

2. SOME EQUIVALENT CHARACTERIZATIONS OF STOP-LOSS ORDER 

Capital letters X, Y, ... denote random variables with dlstnbutlon functions 
Fx(x), Fr(x),  ... and finite means #x, /.tv . . . .  The survival functions are 
denoted by F x ( x ) =  l - F x ( x )  . . . . .  The stop-loss transform of a random 
variable X is defined by 

f 7rx(x) := E[(X - x)+] = Fx(t)dt, x in the support of X (2 1) 

The random variable X is said to precede Y in stochasttc order or stochasttc 
dominance o/first order, a relation written as X _<st Y, if Fx(x) _< Fr(x) for 
all x In the common support of  X and Y. The random variables X and Y 
satisfy the ,stop-loss order, or equivalently the increasing convex order, written 
as X _<~/ Y (or X < , ,  Y), if 71"X(X) < 71"y(X) for all x. A suffioent condition 
for a stop-loss order relation is the dangerousness order relation, written as 
X _<O Y, defined by the once-crossing condition 

Fx(x) <_ Fr(x)  for all x < c, 
(2.2) 

Fx(v) > Fr(x) for all x _> c, 

where c is some real number, and the requirement ~tx _< # r  (Lemma 2.1). By 
equal means #x = #v,  the ordering relations _<~t and _</2 are precised by 
writing _<,/.= and _<o,-. The partial stop-loss order by equal means is also 
called convex order and denoted by _<~,. The probablhstlc attractweness of 
the partial order relations _<~t and _<s/~s corroborated by several mvarmnce 
properties (e.g. Kaas et al. (1994), chap 11.2 and III.2, or Shaked and 
Shanthlkumar (1994)). For example, both of _<st and _<,/ are closed under 
convolution and compounding, and _<s/is additionally closed under mixing 
and conditional compound Polsson summing 

In apphcaUons, to establish stop-loss order comparison properties, one 
reqmres some fundamental facts and equivalent characterizations. First of 
all, the following well-known elementary equivalent statements hold: 

(SL1) X _<~/ Y 

(SL2) E[~(X)] _< E[~( Y)] for all increasing convex functions ~o(x) 

(SL3) E[max(x, X)] _< E[max(x, Y)] uniformly for all x E R 
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A famous and widely known sufficient condit ion for stop-loss order is 
summarized m the following property. 

Lemma 2.1. ( Karlin-Novikoff (1963) once-crossing condttion, Lemma o f  Ohlht 
(1969)). Let X and Y be random variables with dlstr ibunons Fx(x), Fy(x) 
and suppose that X _<D Y, as defined xn (2.2). Then the stop-loss order 
relahon X _<~/ Y is satisfied 

Proof. By assumpnon,  one has the mequahnes  

max(x ,X)  _< max(x, Y), x > c, 

min(x ,X)  _> rain(x, Y), x _< c. 

In parhcular,  one obtmns E[max(x, X)] < E[ma~-<(x, Y)], x > c By (SL3) 
above, it remains to show the last inequahty for x _< c. This follows 
immedmtely from the identity 

max(x ,  x )  = x + x - mi, (x, x )  

using the assumpnons.  [] 

A generahzed versmn of  the Karhn-Nov~koff once-crossing conditions 
yxelds the following sign-change characterization of  the stop-loss order. 
Without  proof, one finds the relevant condmons  m Taylor  (1983), which 
attributes them to Stoyan (1977) However, the previous result by Taylor  has 
not been formulated as a full charac tenzanon of  stop-loss order 

Theorem 2.1. (Karlm-NovikoJ-J-Stoyan-Taylor crossmg conditions for stop- 
loss order). Let X, Y E S be random variables with means #x, #Y, 
distributions Fx(x), Fr(x)  and stop-loss transforms 7rx(x), Try(x). Suppose 
the distributions cross n > 1 tmaes m the crossing points t~ < t2 < • < in. 

Then one has X _<,/ Y if, and only if, one of  the following is fulfilled: 

Case 1 The first sign change of  the difference F).(x) - Fx(x) occurs from - 
to +,  there ~s an even number  of  crossing points n = 2m, and one has the 
mequahnes 

7rx(t2j-l) ~ 7 I ' y ( t 2 j - I ) ,  j = 1, ,m (2.3) 

Case 2 The first s,gn change of  the difference Fr(x) - Fx(x) occurs from + 
to - ,  there ~s an odd number of  crossing points n = 2m + 1, and one has the 
mequahties 

#X ~ FLY, 71"x(t2j) ~ 7rr(12j), J = 1,.. . ,m (2.4) 
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Proof. Two cases must be distinguished. 

Case 1 The first sign change occurs from - to + 

If  X_<s/ Y, the last sign change occurs from + to - (otherwise 
7rx(x) > lrv(x) for some x > t,,), hence n = 2m is even Consider random 
variables Z0 = Y, Z,,,+l = X, and Z j , j  = I, . . ,m with distribution functions 

= J" Fx(X), X < 12y_l, F~(x) (2 5) 
t Fy  (X), X > 123-[ 

F o r j  = 1, ,m, the Karhn-Novlkoff  once-crossing condition between Zj+~ 
and Z/ is fulfilled with crossing point tzj. A partial integration shows the 
following mean formulas: 

# j : = E [ Z j ] = # x - T r x ( t 2 / _ . ) + T r y ( t 2 j _ l ) ,  a = l ,  ,m (2.6) 

Now, by Karhn-Novlkoff ,  one has Zj+l <_D Z / , J  = 1,.. ,m, af, and only if, 
the inequalities #j+l _< #j are fulfilled, that is 

¢cx(t2j- i)-  7ry(t2/_~)_< 7rx(tzj+j)-lry(t2j+l),  j =  l , . . . , m -  1, and 

~x(t2,,,-I)--'n'y(t2,,,-I) _<0, (2 7) 

which as eqmvalent to (2.3). Since obvaously Zi _<~t Y, one obtains the 
ordered sequence 

x = Z,,,+~ <D Z,,, <D < o  Z~ <,,  Z0 = Y, (2.8) 

which as vahd under (2.3) and imphes the result. 

Case 2 The first sagn change occurs from + to - 

If  X _<~/ Y, then the last sign change occurs from + to - ,  hence n = 2m + 1 
is odd. Smaflarly to Case I, consader random variables Z0 = Y, Z,,,+i = X, 
and Z j , j  = 1, , m ,  with distribution functIons 

Fx(x ) ,  x < t2j, 
F 6 (x )  = Fa,(x), ~,- > t2j. (2.9) 

,m, the once-crossing condition between Zj+l and Zj is For  j = 0, 1, 
fulfilled with crossing point t2j+j. Using the mean formulas 

#/ = E[Z/] = / tx  - Trx(tzj) + Try(t2j), j =  [ , . . . ,m,  (2.10) 
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the condit ions for Zs+l _<D Zs, that is ~j+~ < Izs,J = O, 1, ...,m, are therefore 

- , Y  _< - 

rrx(t2j) - rcr(tzs) <_ rrx(t2j+z) - rr},(t2j+2), j = 1, .. ,m - 1, and (2, 11) 

7rX(t2m) -- 7ry(/2m) ~ 0, 

which is eqmvalent  to (2 4). One obtains the ordered sequence 

X = Zm+ I ~ O  Zm _~D • -~D ZI -<,9 Z0 = Y, (2.12) 

which is valid under (2.4) and imphes the result. []  

It is instructive to relate this result with another  (apparent ly simpler) known 
crossing charactenzatmn.  Instead of  crossing points, which describe the sign 
change properties of  the distr ibution functions, consider slightly more  
general crossover points, which are defined as follows A pair {~, u} of  real 
numbers  is a cros'sover point of  the pair {&(x),F2(x)} of  distribution 
functions if for i C j  E {1,2} one has 

F,(~-) < Fj(~-)  < ~(~)  < F,(~) and u = Fj({), 

or equivalently 

F,-'(u) < FZ ' (u  ) _< FT' (u+) _< F,-' (u +) and ~ = Fj-' (u). 

H o w  are the crossing points related to the crossover points? Clearly, every 
crossing point  is a crossover point. Addmonal ly ,  there are two crossover 
points, associated to the end points o f  the supports  of  Fi (x), Fz(x), where no 
actual sign change between the distributions occurs Let (a,,b,), 
- o o  < a ,  < b ,  _< oo, be the open suppor t  o f  F,(x), l =  1,2, and set 
a = mm{al ,a2} ,  b = max{bl ,b2}.  Then (a,D) is the open support  of  the 
pair {F. (x), F2(x)}, and {c_t, 0}, {/~, I} are the remaining crossover points. 
The following characterization has been used by Kertz and Rosier (1992), 
again without  proof. 

Corollary 2.1 (Crossot,er point characterization of the stop-loss order) For  
t = 1,2, let X, E S be random variables with finite means #,, distr ibutions 
F,(x), and stop-loss t ransforms rr,(x). Then one has Xi <_~1 )(2 If, and only if, 
for all crossover points {~,u) of  the pair {Fl(x),Fz(x)}, the inequality 
71" I ({) ~ 71"2({) IS fulfilled. 

Proof. It suffices to show that the condit ions are su/JJctent. One needs the 
following addit ional criteria' 

( b )  _<  2(6) _< 62, 
(2.13) 

_< ,, _< m. 
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The first one follows immediately from the integral representation 
rr,(x) = f ~  F,(t)dt.  For  the second one, we dastingmsh between two cases. 
If  a_ > - o o ,  then the equivalence follows from the fact that rc,(c_t) = #, - _a, 
t = 1 , 2 .  If c_t = - o o ,  the inequahty 

/o /_o /o O /_o ct~l ~- El (x)dx - F, (x)dx ~ F2(x)ax -- F2(x)dx = I<2 
OO , CX2 

can be rearranged to the mequahty  

F /5 = ( x ) J x  <_  2(a) =  2(x)dx, 
O o  O o  

and vice versa. Since the set C of  crossover points equals 

C = {crossing points} U {_a, O} U {b, 1 }, 

the mequahtms lrl (~) _< ~r2(() for all {(, u} E C imply by the above cnterm 
that the mequahties (2.3) and (2.4) required m Case 1 and Case 2 of  the 
Theorem 2.1 are fulfilled. []  

The simpler but less precise characterization by crossover points is often 
sufficient from the theoretacal point of  view (an example as Theorem 2 3 
below) From a practical point o f  vmw, Theorem 2.1, together with the 
ordered sequences (2.8) and (2.12), yields the maximum amount  of  available 
reformation for a stop-loss order relation. In thas respect, a detailed 
apphcatmn of  this result shows that Xi _<~l X2 if, and only if, the set C of  
crossover points is given as follows: 

Case 1" n = 2m 

C = {{a1,0}, {tt, Fi (tl)}, {tz ,Fz( t2)} ,  {t3, FI (t3)},..., {tzm, F2 (t2,,,)}, {b2, 1}}, 

Case 2. n = 2 m  + l 

C =  { {a2,0}, {11, F2 (/i)}, { 12,Fi (t2)}, {13,F2(13)},..., { t2m+ i, F2 (12,,,+ i )}, {b2, 1}}. 

Some applicatmns, whmh use the explicit characterization Theorem 2.1, are 
given in Hfirhmann (1998a). 

The once-crossing condit ion of  dangerousness order formulated m 
Lemma 2.1 as not a transatlve relation Though not a proper  partml order, 
it as an important  and main tool used to establish stop-loss order between 
two random variables In fact, the trana#tn,e (stop-loss)-closure of  the 
order _<o, denoted by _<o., which as defined as the smallest partial order 
containing all pairs (X, Y) with X _<o Y as a subset, identifies wath the stop- 
loss order. To be precase, X precedes Y an the t ransmve (stop-loss-)closure of  
dangerousness,  written as X <_o" Y, if there is a sequence of  random 
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v a r i a b l e s  Z i ,  Z2 ,  Z3 ,  , such that X = Zi, Z, <_o Z,+l, and Zt ~ Y m stop- 
loss convergence (equivalent to convergence m d~str~bution plus convergence 
of the mean). The equivalence of  _<D" and _<~t IS described in detail by Mtiller 
(1996) (see also Kaas and Heerwaarden (1992)). In case there are finitely 
many sign changes between the distributions, the stated result s~mplifies as 
follows. 

Theorem 2.2. (Dangerousness characterzzatton of stop-loss order) Let 
X, Y E S be random variables with finite means such that X <_,t Y. Then 
there exists a fimte sequence of random variables Z~, Z2 . . . . .  Z,, such that 
X = Zi, Y = Z,, and Z, ___o Z~+l for all i = 1,...,n - 1 

Proof. This is Kaas et al. (1994), Theorem Ili.1.3 Alternatively, the ordered 
sequences (2.8) and (2 12) yield a more detailed constructive proof  of  this 
result. [] 

Other characterizations of the stop-loss order can be obtained by 
transformmg the random variables, which must be compared A simple 
such result reduces a (degree one) stop-loss order comparison to a degree 
zero stop-loss order or usual stochastic order comparison by means of the 
Hardy-Llttlewood maximal distribution. For any random variable X with 
finite mean and quantlle function Fx l(u), the Hardy-Littlewood trans/orm 
X tt of X is defined by its quantlle function on [0,1] through the formula 

(Fff) - ' (u)  = T Z u .  F~ l(v)dv, u < 1, (2 14) 

F ; ' ( 1 ) ,  u = l 

Its name stems from the Hardy-Llttlewood (1930) maximal function The 
random variable X H ~s the least majorant with respect to _<~t among all 
random variables Y _<st X (eg. Meflljson and Nfidas (1979)). Its great 
importance in applied probability and related fields has been noticed by 
several further authors, among others Blackwell and Dubms (1963), Dubins 
and Gflat (1978), Riischendorf (1991), and Kertz and Rosier (1990/92). A 
recent actuarial use has been proposed by the author (1998b) 

Theorem 2.3. (Reduction of stop-loss order to .stochastzc order) For i = 1,2, 
let X, C S be random variables with fimte means #,, distributions F,(X), and 
stop-loss transforms 7r,(x). Then one has Xi _<s/X~_ if, and only if, one has 
x," _<s, 

Proof. (Kertz and Rosier (1992), Lemma 1 8) The basic Idea rehes on the 
following geometric property. For each crossover point {~, u}, the identity 

{F, (t) - Fz(t)}dt = {Fz-I (v) - F~-I(v)}dv 
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expresses the fact that the area between Fi and Fz to the right of, ,  c equals the 
area between Fl -~ and F2 -t to the right o f u .  From this and the Corollary 2.1 
one obtains the result by means of  the following equivalences: 

Xl _<~/::2 

~ 71"1 (~)  = El (t)dt <_ F2(t)dt = 7r2(~) for all crossover points {~, u} 

{f t ( t )  - F2(t)}dt  > 0 for all crossover points {~,u} 

fl 
~ {F~'(v)  - F~-I(v)}dv _> 0 for all crossover points {~,u} 

~=~ (FI t ) - '  (u) _< (F~') -t (u) for all u E [0, 1] 

x," <,, [] 

By existence of  a common mean #~ --//,2, the resulting characterization of  
the convex order Xl <,~ X2 '~  X~ 1 _<~, X~ 4 is found in equivalent form in 
van der Vecht (1986), p. 69, which attributes the result to D. Gllat In this 
situation, there exists also the well-known higher degree stop-loss order 
reduction property of  the Integrated tall t ransform considered by van 
Heerwaarden (1991), p. 69, whose importance lies in actuarial ruin models 
(see e.g. Embrechts et al (1997)). For  completeness, one may mention a 
further characterization of  the convex order by means of  Markov kernels, 
which goes back to Blackwell (1953), and still another  one by means of  
fusions for probability measures as studied by Elton and Hill (1992). For  
this, the interested reader is referred to Szekli (1995). 

3. P R O P E R T I E S  OF THE DISTORTION PRICING PRINCIPLE 

First, we invalidate S. Wang's  proofs of  the stop-loss order preserving 
property (P5) for the distortion pricing principle through a simple 
counterexample Then we focus on a new proof  of  this important  property. 
For  completeness and convenience of  the reader, elementary proofs of  the 
other properties (P1)-(P4) are also provided, where reference is made to 
related results in the literature. 

3.1. A diatomic counterexample 

For real numbers 0 < a2 < al < bl < b2 and for i = l, 2 let Xz be a diatomlc 
random variable with support {az, b,} and probabilities {p,, 1 - p,}, 0 < p, < 1, 
and mean/L~ = a, + (I - p~)(b, - a,). Assume tzl <-- /tz and P2 < Pl Then the 
dangerousness order relation X~ _<o )(2 (a sufficient condition for <~/) holds 
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because #l _< #2 and the survival functions sansfy the Karlin-Novikoff once- 
crossing condmon (known as Ohhn's Lemma in actuarial science). 

~', (x) > tt2(x), x < c, 
(3 1) 

k, (x) _< k2(x),  .," _> e, 

I 

with c = al. Set g(x) = xa, p >_ 1, in (1) to get the PH-transform principle 

f0 
0 0  ~ I 

Ilo[X ] = F(x)?dx. In the notation of Wang, one has 

1 RHS(p) = Fz(x)~- ~'l (x)~ d x = ( l  -p2)~(b2' - a l ) -  (1 -p,)a(b,  - a,) 

Wang (1996b), proof of Theorem I, stptes that RHS(p) > F2(al ),~-I RHS(I ), 
J--I - - 1  

or equivalently (1 --P2)" > (1 --Pl)" This is not c~rec t  because x~-" is 
decreasing over ( 0 , ~ )  for p > l  and ( I - p z ) > ( l - p l )  by assumption. 
S,mllarly, Wand (1996a), proof of Theorem | ,  >st(altes tJaat 
RHS(p)>[:z(al)~ -I RHS(1), or equivalently ( 1 - p 2 ) ;  -I - p l ) ~ - ,  
whmh Is false for the same reason DesDte this, one has 

YIp[X,] al + (I p,)~(b, a,) < a2 + (1 ' _, = - -  - -  _ - -  p 2 ) 7 ( b 2  - 6 1 1 )  = I . £ p [ X - ~ ]  

and therefore a correct proof of (P5) must be given. 

3.2. An elementary proof of the stop-loss order preserving property 

In a first step we suppose that X, Y E S. The idea of the proof is simple. For 
each X > 0, let Xg be the dtstortion transform with survwal function 
P~(x) = g(Fx(x)) By Theorem 2.2 it suffices to show that X _<D Y imphes 
Xg <_~1 Yg, whmh m turns implies that P[X] = E[xg] < E[ Ygl = P[ Y], hence 
(P5). Furthermore, by Theorem 2.3 it suffices to show that X _<D Y imphes 
(xg) u <_~t (yg)n. (Note that the distrlbunons of (xg) It and (xH) g differ m 
general ) 

Suppose that X _<o Y, that is E[X] <_ ElY] and there exists q E (0, 1) 
such that 

g x ~ ( . )  _> F ; ' (~ , ) ,  0 < ,, < q, 
(3 2) 

Fxl(U) <_ F~l(u), q < u < 1. 

For simplicity, assume that g(x) (resp. "7(x)) is dlfferenhable and has an 
inverse g-I  (x) (resp. "7-1 (x)). Then the distortion transform X g has quantlle 

g - 1  - I  - function (F~c) : ('70 Fx) , and using (2.14) one obtains for the Hardy- 
I 1  Lttlewood distortion transform (Xg) the relationships 

g,H-I _ _  1 l 1 I 
(FOx) ( u ) - ~ _ u f  ('7oFx)-l(v)dV=l_uf_,(,)Fx'(v)d'7(v),O<_u<l (3.3) 
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Similar expressions hold with X replaced by Y One must show that 
~,1t -I H)-[ (F~v)  (u) <_ (F~. (u) for all u E [0, 1], or equivalently 

f ' {F-~l(v)-Fx'(v)}dT(v)>_OforallwE[O,l] .  (34)  
J 

If iv_> q this is trivial by the second inequality in (3.2) Let now 
0 _< iv < q < 1 Since 7(x) is convex, the derivative 7'(x) is increasing, in 
particular -),'(iv) _< 7'(q) -< -'/'(1). The affirmation follows from the following 
chain of  equalities and inequalities 

f,,,I {F~'(v)  - Fxl(v)}dT(v) 

/ I  ~0 1 -> 7'(q) • {F,~' (v) - Fxl(v)}dv > 7'(q) " {F~'(v)  - F~t(v)}dv 

= 7'(q) {ELY] - E[X]} _> 0 

(3 5) 

This achieves the proof  of  the stop-loss order preserving property for the 
distortion pricing principle in case the finite crossing condition (I.3) holds. 

In case X <~/ Y and there are infinitely many crossing points, the 
equivalence of  <s/ and _<D' shows that there is a sequence of  random 
varmbles Zl,  Z2, Z3 .. . . .  such that X = Zl,  Z, <_D Z,+t, and Z, ~ Y m stop- 
loss convergence For each n _> 1 one has X _<~/Z,, by Theorem 2.2 From the 
preceding first step, one obtains that P[X] <_ P[Z,,]. On the other side, the 
relation Zl <--D Z,+l Imphes ram(Z,,  d) --<D min(Z,+l,  d) for all d, from which 
one deduces by the first step that P[mm(Zm, d)] _< P[min(Z,, ,  d)] for all d, all 
m > n. Using this, the result follows from the inequality 

P[Z,,]= lim P[mm(Z,,,d]< lira ~f hm P[min(Z,,,,d)] "~= lira P[mm( Y,d)]=P[ Y] 
d--* oc - - d ~ k m ~ c c  J d----~ oo 

The first and third equality is a continuity property satisfied by the Choquet  
integral, and a fortiori by the distortion pricing principle, which is a special 
case of  it (see Denneberg (1994), or Axiom 4, Theorem 1 to 3 in Wang et al. 
(1997)). The second equality is an application of  the dominated convergence 
theorem, which is allowed for risks with finite support  
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3.3. Other properties of the distortion pricing principle 

It Js now poss,ble to complete and summarize the main properties of the 
distortion pricing principle Up to (P5) an advanced proof of this is in 
Denneberg (1994), pp. 64 and 71. 

Theorem 3.1. (Mare properties oJ the distortion pricing principle) Let X 
be a non-negative random variable with surwval function f',(x), and 
quantde function Fx I(u). Let g(.Q be a different,able increasing concave 
function on [0,1] such tpat g ( 0 ) = 0 ,  g ( l ) = l .  Then the functional 

P~eX] ~o ~ r  ti gJP~xl)]dx ; f°5 F x l ( u ) d T ( u ) w i t h ' / ( x ) = l - g ( l - x ) ' s a t ' s f i e s  
p p ( ) - (  ) 

Proof. (PI)-(P3) are easdy shown as follows (see also Denneberg (1990)). 

(PI) Since g(x) is increasing concave on [0,1] and g(0) = 0, g(1) = 1, one has 

g(v) >_ x and therefore P[X] _> F(x)dx = E[X] 

(P2) One first shows that P[X] preserves _<,t, which is obvious because 
X_<,r g is equivalent with F~l(u) <_ F~l(u) for all u E (0,1) Since 
X _<~r Y '= sup[X], the property follows. 
(P3) This property follows from the facts F~_h(u ) = F~l(u)+b and 
F~;,l,(u ) = a F~;'(u) for a > 0. 
(P4) That this holds when 7(x) has a bounded density is mentioned by 
Denneberg (1990). Using Wang (1995a), Appendix, one relaxes this 
condit,on as follows, where differentiabihty of g(x) is here not assumed 
(The idea of proof is attributed to O. Hesselager). A simple property of 
concave functions is required. 

Lemma 3.1. Let 0 < a < b and suppose g(x) is concave for x _> 0. Then for 
any x _> 0 one has the lnequahty g(x + b) - g(x + a) <_ g(b) - g(a). 

Proof. It is well-known that g(x) is concave if, and only if, one has 

g ( y ) - g ( x ) _ > g ( z ) - g ( y )  for all0_< v < y < z .  
y - x z - y  

Two successive applications of this criterion to a < b _< x + a < x + b, 
respectxvely a < x + a < b < x + b, yields the desired inequality. [] 

It suffices to show (P4) for arbitrary Y and a discrete X taking values in 
{0, ,n}. Indeed, applying (P3), the result holds then for X E {k, ,n + k} 
and X E {kh, . . , (n+k)h},  k E N+, h > 0 arbitrary. Since any random 
variable can be approximated closely by a discrete random variable with 
small enough h, the property will hold for arbitrary X. One uses 
mathematical reduction. For n = 0 the affirmation is obvious. To show 
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the induction step n + n + 1 for (X, Y) with X E {0, ..,n + 1}, let (X', Y') 
be dlstr .buted as (X, YIX > 0) Since X' E { l , . . . , n +  1} the induction 
hypothesis  states that P[X' + Y'] < P[X'] + P[ Y']. With e = P r ( X  = 0) and 
/~Vl0(X) = P r ( Y  > x I U = 0) one has for x > 0: 

[:x(x) = (1 - e)F):,(x), 

iCy(x) = c/7),10(x ) + (1 - e)F'y,(X), 

v(x) = cFvlo(X) + (1 - E)f'x,+v,(x). 

According to Lemma 3 1, one obtains for x > 0 that 

g([Cx+r(x)) -g(~'x(x))g(Fv(x)) < g((1 - e)~'x,+r,(x)) - g ( ( l  - e)/~'x,(x)) 

- g ( ( 1  - e)P'r,(x)). 

Observe now that k(x) g((1 - e)x) ' -  g(1 - e) Is mcreas ingconcave  on [0,1]such that 

k(0) = 0, k ( l )  = 1. Integrate on both sides of  the last lnequahty and use the 

reduct ion assumption for the function k(x) to see that 

P[X + Y] - P[X] - P[ Y] 

{ 

This shows (P4) 
Since the proper ty  (P5) has been shown m Section 3.2, the p ro o f  Is complete 

[] 

Note added in proof. At the time this paper  has been accepted for 
publication,  the au thor  has received a related paper  by Dhaene  et al. 
(1997). These authors  present in part icular  an alternative p ro o f  of  the stop- 
loss order  preserving proper ty  o f  the distort ion functional,  whose Idea is due 
to A. Mfiller Moreover ,  their Theorem 3 characterizes stop-loss order  using 
the dis tor t ion functional  in a way dual to the classical character izat ion 
(SLI)-(SL3) based on the expected value functional.  Finally, the au thor  is 
grateful to A. Miiller for pointing out an error  m the elementary p ro o f  of  
Section 3.2. 
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ABSTRACT 

The generahzed Polsson dlsmbution with parameters 0 and A was 
introduced by Consul and Jain (1973) and has recently found several 
instances of apphcation 111 the actuarial literature. The most frequently used 
version of the distribution assumes that 0 > 0 and 0 < A < 1, m whmh case 
the mean and variance are 0 / ( 1 -  A) and 0 / ( 1 -  A N, respectwety. These 
simple moment expressxons, along with nearly all of the other theoretical 
results avadable for this d~stnbut~on, fad when A < 0 or A >1  (e.g., 
Johnson, Kotz, and Kemnp, 1992, page 397). In these cases, even the 
definmon of the probabihty mass funchon usually gwen in the hterature as 
not properly normahzed so that ~ts values do not sum to unity. For this 
reason, ~t ~s common to truncate the support of the d~stnbut~on and 
exphcltly normahze the probability mass function. In this paper we discuss 
the estimation of the parameters of this truncated generahzed Po~sson 
dlstnbuhon using a Bayesmn method 

KEYWORDS 

Bayesian; Nvarmte: generahzed Po~sson; Langrangmn Poisson; truncated; 
Markov chain Monte Carlo. 

I. INTRODUCTION 

A great many distributions are avadable for modelling discrete data arising 
in the insurance field. A large number of these discrete distributions are 
described m Chapter 3 of Klugman, Panjer, and Wilhnot (1997). Recently, 
some authors have also explored the use of Consul's Generalized Polsson 
D~smbutlon (GPD) m actuarial settings. Consul (1990) demonstrated that 
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the GPD, sometimes also known as the Lagranglan Po~sson distribution, is a 
plausible model for claim frequency data, Goovaerts and Kaas (1991) and 
Ambagaspltxya and Balakrlshnan (1994) presented recurslve methods to 
compute the total claims distribution for certain compound GPD models, as 
did Hesselager (1997) for a class of compound Lagrangian distributions 
including the compound GPD; Scollnlk (1995a) used the GPD, and its 
extension to a regression context, in order to model various sorts of claim 
frequency data and showed how Markov chain Monte Carlo (MCMC) 
methods could be used to implement Bayesmn posterior and predictive 
analyses of these models (see also Scollnlk, 1995b and 1995c); Famoye and 
Consul (1995) introduced a version of blvarlate GPD (BGPD), discussed 
parameter estimation by the method of moments and double zero frequency 
and by the method of maximum likelihood, and fit the BGPD to a data set 
on accidents sustained by a group of shunters, Vernlc (1997) considered the 
same BGPD as did Famoye and Consul, and used method of moments 
estimation to fit this BGPD to the aggregate amount of claims lbr a 
COlnpound class of policies submitted to clamas of two kinds whose yearly 
frequencies are a priori dependent. 

The purpose of this paper is to clarify some points relating to the GPD 
which are frequently misrepresented in the literature and to discuss how 
Bayesian posterior and predictive analysis of the truncated GPD and of a 
truncated BGPD can proceed using MCMC methods. We begin with a 
discussion of GPD models. 

2. GENERALIZED POISSON DISTRIBUTION MODELS 

The probability mass function of the basic untruncated GPD is commonly 
given by 

0 0 nA ,,-lexp(-o-,,~) P r ( N = n ) = p , , ( O , A , m ) =  ( + ) ;7 f o r n = O , l , 2 , . . . , m  (I) 
0 Jorn > m when A < O, 

and zero otherwise, where 0 > 0, ram<(- 1, - O / m )  <_ A < 1, and m is usually 
taken equal to the largest possible positive integer such that 0 + m A  > 0 
when A is negative. Often it is explicitly further required that m >_ 4 (e.g., as 
in Vernlc, 1997) in order to ensure that there are at least five classes with 
non-zero probability when A ~s negative (see Consul, 1989, page 4), but this 
obviously need not be the case. At this time, we will review a few of the 
properties associated with (1) Most of these properties are documented in 
Consul's (1989) treatment of the GPD. Additional references will be 
introduced as required. The reader is forewarned that some authors switch 
the roles of the parameters 0 and A. We have adopted the parametrlzatlon 
found in Consul (1989) and Johnson, Kotz and Kemp (1992, page 396). 
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To begin with, suppose that 0 < A < 1 and the value of m is taken equal 
to oz. For this case it is known that 

0 0 
E(N) - i _ A and Var(N) - (i _ A) - - - - - - ~  ' (2) 

so the variance of the GPD is always larger than or equal to the mean. It is 
apparent that this instance of the GPD reduces to the standard Poisson with 
parameter 0 when A = 0. The two moment expressions m (2), along with 
simple formulae for skewness and kurtosls and virtually all of the other 
theoretical results obtained relating to the GPD (e.g., Consul and Jam, 1973; 
Ambagaspltlya and Balakrlshnan, 1995; Vernic, 1997), are only valid for the 
case of the GPD presently under cons~deratlon, i.e. when 0 > 0, 0 < A < 1, 
and m = oo. 

Henze and Klar (1995, page 1877) make the claim that this fact has not 
been emphasized enough In the literature, and point to a paper by Alzald 
and AI-Osh (1993) in which it is tacitly assumed that (2) also holds for 
negative values ofA. Famoye and Consul (1995, page 128) recently made the 
same errant assumption, w~thout alerting the reader as to its nature. It is also 
very common for authors to estimate the GPD parameters by equating 
empirical moments to the theoretical moments obtained in the special case 
described above, even when the sample variance is strictly less than the 
sample mean so that negative estimates of A result (e.g., Consul, 1989, see 
also Vernlc, 1997). 

Actually, in order to permit cases where the variance is smaller than the 
mean, Consul and Jam (1973) had proposed to admit negative values of A. 
However, when the value ofA ~s negative the probability mass function (1) is 
no longer normalized. To see this, suppose that 0 = 1.6, A = - 0 . 7 5  and 
m = 2 .  Then P r ( N = O ) = 0 . 2 0 1 9 ,  P r ( N = l ) = 0 . 6 8 3 9 ,  P r ( N = 2 ) =  
0.0724, Pr(N > 2 ) =  0.0, and the sum of these supposedly exhaustive 
'probabilities' IS only 0.9582. This problem was not recogmzed m the early 
literature concerning the GPD (e.g., Consul and Jam, 1973) until Nelson 
(1975) indicated that a cautious approach was warranted in the use of the 
GPD model with negative values of A. One solution to this problem is to 
simply normalize the function in (1) when A < 0. In fact, (1) will generally 
need to be normalized except in the special case that 0 > 0, 0 _< A < 1, and 
m = oo Accordingly, Consul and Famoye (1989) defined the probability 
mass function of the truncated GPD to be 

P r ( N = n ) = q , , ( O , A ,  nT) -pn(O'A 'm)  f o r n = O ,  1,2, . . . ,m (3) 
K(O,A,m) 

and zero otherwise, where 0 > 0, -vo  < A < oo, 

I I I  

K(O,A,m) = Z p , , ( O , A , m )  
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and m is any positive integer such that 0 + mA > 0. Usually, m is taken equal 
to the largest such value. Note that the definition of the truncated GPD 
extends the permitted range of the parameter A to the entire real lane. 

When class frequencies are inappropriately calculated using (1) instead of 
(3), an error of truncation is said to occur Consul and Shoukri (1985) and 
Consul (1989, Section 9.1.1) have made an analysis of the error of truncation 
when -1 < A < 0. The simulation study they conduct is not exhaustive, but 
it does appear to indicate that the error of truncation may be serious when 
the number of non-zero probability classes is 3 or 4 and the value of 0 is 
approximately between 0 7 and 4.5. The reader can easily verify that the 
error of truncation may also be serious when A < - !  or A > 1. 

Consul and Famoye (1989) studied the truncated GPD in some detail and 
discussed parameter inference using maximum hkelihood (ML) estimation 
and estimation based upon the empirical mean and the ratio of the first two 
empirical class frequencies. Their main conclusion was that the ML 
estimates determined using (3) as the basis of the likelihood function are 
generally closer to the true values of the population parameters than are the 
ML estimates determined on the basis of (1) Hence, even though the error 
of truncation associated with using (i) may be small in some cases, they 
suggested that one should estimate the values of the parameters 0 and A 
using the truncated GPD model (3). It should be noted that the estimation 
methods persued by Consul and Famoye (1989) are implemented in such a 
way so as to determine estimates of 0 and A condmonal upon a presumed 
known value of re. Since m IS not known, Consul and Famoye (1989) simply 
set it equal to the value of the largest observation. 

Bayesmn estamahon as a hkehhood based style of inference that 
incorporates prior reformation on the unknown variables ML estimates 
are eqmvalent to the nodes of the Bayesian posterior &stributlon, when the 
prior distribution for the unknown variables is flat. However, the goal of a 
Bayesmn analysas as generally not just a point estimate like the posteraor 
mode (or mean or median), but a representation of the entire distribution for 
the unknown parameter(s) (Gelman, Carhn, Stern, Rubln, 1995, page 301). 
In the next Section, we discuss how a Bayesian analysis of the truncated 
GPD with an informative prior distrabution can be accomphshed using a 
MCMC approach. We emphasize that the Bayesian estimation method 
yields a posterior dlstrlbutaon for all of the unknown parameters, including 
m (cf. Consul and Famoye, 1989). 

3. A BAYESIAN ANALYSIS OF THE TRUNCATED G P D  MODEL 

Consul and Famoye (1989) argue that any discrete probability model for a 
random variable N defined on the set of non-negative integers is 
automatically truncated in real life situations because the sample size is 
always finite and the probabdities for large values of N become so small so as 
to be unobservable. This is particularly true m an insurance setting when the 
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number of  claims per pohcy is small Assuming this context, we suppose that 
the samphng model is taken to be approximately truncated G P D  as in (3) 
with parameters 0, A, and  m, so that 

P r ( N  = J lO, A, m) = qj (0, A, m) - p/(0, A, m) K(O,A ,m)  for j = 0 ,  1,2, . ,m ,  (4) 

and zero otherwise, with 0 > 0 and - o o  < A < oo, with m equal to some 
positive integer such that 0 + mA > 0, and with 1 < m _< M so that there is 
at least one non-zero class with non-zero probability. Setting M equal to a 
value between 5 & 15, say, will generally suffice when tile number of  clamas 
per pohcy or accidents per mdxvldual Js small. We recognize that the value 
selected for the parameter  M is formally an expression of  a prtori knowledge 
This is further discussed m the next paragraph. If  the data  consists of  
observed class frequencies n/, j  = O, . . ,  M ,  with n = no + ... rim, then the 
likehhood function is of  the form 

• -,m "0 
l (O,A,m)  o( qj(O,A,m)'" = ],la=0Pjt ,A,m)'" 

j=0 K(O, m)" (5) 

If  the data  includes some grouped class frequencies, then the hkehhood 
function is modified in the obvious way. For  example, if we observe the first 
two class frequencies no and n~ along with the grouped class frequency 
g2 = #12 -4- ... -4-- nat, then the likelihood function is of  form 

n0 {1 -- qo(O, A, m) - q, (0, A, m)}  g2. I(0, A, m) ¢x qo(O, A, m) ql (0, A, m)"' 

In order to complete the definition of  a full probability model, ~t is now 
necessary to specify a prior distribution for the unknown parameters 0, A, 
and m The reader is free to use any reasonable prior specificatmn as befits 
the expert opinion that is available to him or her. For  our  presentation, we 
will consider 3 different forms of  prior density specification (PDS). For  the 
first PDS, we w,II assume that the parameters are distributed a prtort In the 
following way: 

p(O, A, m) ¢x p(O)p(A)p(m) when 0 + mA > O, (6) 

and zero otherwise, with 

p(O) ~ Gamma (1, 2) ,  (7) 

p(A) ~ Normal  (0, 0 .1) ,  (8) 

p(m)  ~ Uniform {I, .., M } .  (9) 

The Gamma distribution in (7) is parametrized so as to have mean and 
s tandard dewation both equal to 0.5, and the Normal  distribution in (8) has 
s tandard deviation equal to 0.1 With respect to the Umform distribution in 
(9), we are free to attach a hyper-prior dlstr lbutmn to the parameter  M. We 
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have not pursued this pamcula r  avenue, al though m Sectmn 5 we will 
compare the use of  several different values of  M in the context of  a particular 
data  analysas 

Another  approach is to forgo the mtroductmn of  M entirely, and rather 
specify a dlstr lbutmn p(m) on the entirety of  the non-negatwe integers (m 
effect, M = ~ ) .  In this case, equatmns (6), (7) and (8) would be unchanged, 
and (9) might be replaced with 

p(m) ~ Poisson (/_,) , (10) 

for some specified value # > 0 The parameter restrictions m effect would be 
0 > 0, - o c  < A < cx~, and 0 + mA > 0. An analysis of  the truncated GPD 
model incorporating this second form of  PDS will also follow in Section 5. 

Our third PDS wall be samalar to the two above, with the added restriction 
that m = M, for some specified value M < oo. That  as, our thard analysas wall 
be condmonal  on a fixed value of  m < (x~. 

By multiplying the hkehhood and prior density functaons together, we 
obtain the form of  the posteraor dlstnbutaon up to a normahzlng constant,  
that as 

p(O,A, mlno, .,n,,,)ocp(O)p(A)p(m)l(O,A,m) w h e n 0 + m A > 0 ,  (11) 

and zero otherwise, wath 0 > 0 and - o e  < A < ~ .  If  we let n* denote the 
value of  the largest observation, then we also require that m E {n*, .... M}. 
Here, either the value o f M  < e¢ is known as in the case of  our  first PDS, or 
else M = oc as in the second. In the case of  our third PDS, M as assumed to 
be known and we further condition upon the assumption that m = M < co. 
At thas stage, the complete probabdaty model can be analysed using a 
numeracal method. We propose the use of  a M C M C  method in order to 
complete the analysis of  the posterior and predictive dasmbutions. 

4. COMPLETING THE BAYESIAN ANALYSIS USING A M C M C  METHOD 

In order to complete the Bayesian analysis of  the truncated G P D  model, we 
adopt  a M C M C  method.  In particular, we implement a 'single-component 
Metropohs-Hast ings '  (Gllks, Richardson, and Splegelhalter, 1996, page 10), 
or 'variable-at-a-time Metropolis-Hastings '  (cf. Chan and Geyer 's  discussion 
of  Tierney's 1994 paper, page 1748; also, Haastrup and Arjas, 1996, page 
156), algorithm. This algorithm simulates a realization of  a Markov chain 
which has the posterior distribution of  the unknown parameters 0, A, and m 
as ItS equilibrium distribution The algorithm generates a sequence of  
simulated parameter  values, 0/°), A (°), m (°), O0), A(I), m(l), . , whose empiri- 
cal distribution converges towards the posterior distribution of  the unknown 
parameters. The posterior distribution can thus be approximated on the 
basis of  these values, and the approximation can be made as exact as we 
desire by simply increasing the length of  the simulation. Note that 
predictions can also be obtained by samply averaging the truncated G P D  
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probability mass functmn over the sampled parameter values. That is, the 
probability mass function for a future observation Nf, given the observed 
class frequencms no, ., nm, can be estimated using the result that 

e r ( U f  = J  ] n0, ..., , , , )  (12) 

= ,~ / / Pr(Ns =J l O,~,m)p(O,~,m l no, ..., n,,,) dO d~ 

B+L Pr(Nf  I 0('), ,~(') ~ = j  ,m(')) 
£ 

t = B +  1 

Here, B represents the number of iterations for which the Markov chain is 
allowed to 'burn-In' and L represents the number of  lteratmns the Markov 
chain is run thereafter. A method for checking the convergence of the 
Markov chain by comparing several different and independently simulated 
sequences IS given in Gelman, Carhn, Stern, and Rubin (1995, pages 330- 
333) If several different and independently simulated sequences are 
available, then the sample average in (12) should be taken over all of  the 
available sample paths. 

There are many ways of implementing the Markov chain described 
above. We proceed in the following manner. Let 8 (°), k (°), and m (°) denote 
arbitrary starting values for the 3 random variables under examination In 
this context, the tth iteration of the single-component Metropohs-Hastlngs 
algorithm consists of 3 updating steps. 

Step I 
We enter the first step of  the ith iteration with values 0 ('-I), A ('-I), and m 0-1) 

In this step, we update the value of  0 by generating a candidate value 0* from 
a proposal dlstnbutmn indexed by Ot,-I) with density qo(O[O('-I)). The 
candidate value is accepted with probability 

P(O*'A( ' -Z) 'm( ' - ' )[n° '  "'" n"')q°(O('-I)lO*) "~ (13) 
mm 1, p(0(,_l),A(,_j),m(,_l)[ n0, ..., n,,,)qo(O*[OO-t))J ' 

where the density p(O,A,m[no, . . . ,  n,,,) is as given in equation (I 1). If the 
candidate value is accepted, we assign 0(') equal to 0* Otherwise, 0(') is set 
equal to 0('-~); 

Step 2 
We enter the second step of  the ith iteration with values 0('), A ('-I), and 
m 0-1). In this step, we update the value of A by generating a candidate value 
A* from a proposal distribution indexed by A ('-I) with density q~(AIk('-l)). 
The candidate value ~s accepted with probability 

p(O(,),A.,m(,_t)]no,., n,,,)qx(A('-l) I A* ) "~ 
mm 1, p(O(,),A(,_l),m(,_l) [ no, ..., n,,,)q.~(A* l A('-I))J , (14) 
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If the candidate value is accepted, we assign A (0 equal to A*. Otherwise, A(') is 
set equal to A('-'), 

Step 3 
We enter the third and last step of the ;th iteration with values 0('), A('), and 
m ('-~). In this step, we update the value o fm by generating a candidate value 
m* from a proposal distribution with density q,,,(m[m('-I)). The candidate 
value is accepted with probability 

p(O(O,A('),m * In0, ..,nm) qm(m ('-') !m*) "~ 
mm 1, p ( ~ i ~ i m ~ - - ' i [ n 0 ,  ..., n,,,)q,,,(m* [ mO-'))J ' (15) 

If the candidate value is accepted, we assign m(') equal to m*. Otherwise, m(;) 
is set equal to m ('-I). This concludes the third step of the tth iteration, and we 
exit from it with the updated values 0('), A('), and m('). 

The specification of the proposal distributions q0(.].), qa(.[.), and q,,(I ) 
appearing in the steps above still remains. This is discussed in Section 5. It 
should be emphasized that the algorithm given above describes only one 
possible implementation of the single-component Metropolis-Hastings 
algorithm. A fuller discussion of this algorithm and other MCMC methods 
will not be presented at th~s time, since several such discussions are readily 
available m the texts by Carlin and Louis (1996, Section 5.4), Tanner (1996, 
Chapter 6), and Gelman, Carhn, Stern, and Rubin (1995, Chapter 11). 
W~thln the actuarml literature, the recent articles by Haastrup and Arjas 
(1996) and Scollnik (1995d) may prove instructive to a reader unfamiliar 
with these methods. Also, Pal (1997) discusses the use of MCMC to perform 
a Bayesmn analysis to scrutinize the compound loss distribution. 

5 NUMERICAL ILLUSTRATION 

The data we analyse is taken from Adelsteln (1949, p. 379) and gives the 
observed number of accidents in the age-group 26-30 years during the first 
year of service for a group of rallyard shunters. The data appears in Table 1, 
and is underdlspersed with a sample mean of 0 5815 and a sample variance 
of 0 5719. Consul and Famoye (1989) previously fit a truncated GPD model 
to this data and obtained the ML estimates 0 = 0.6115 and )~ = -0.0676. 
However, Consul and Famoye (1989) proceeded by grouping the last three 
of the class frequencies appearing in Table I into a single class of frequencles 
greater than or equal to 4 and also appear to have set m = 4 for the purposes 
of estimation even though one worker experienced 6 accidents. Conse- 
quently, their ML estimates are adversely affected. Our own analysis will use 
the original form of the data presented by Adelsteln. 
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TABLE I 

ADELSTEIN'S (1949) SIIUNTERS ACCIDENTb DATA 

FIRST YEAR OF SHUNTING AGE 26-30 YEARS 

143 

Number of  Accidents Number of  Men 

0 121 

I 8 5  

2 19 

3 1 

4 0 

5 0 

6 I 

We proceed to analyse Adelstein's data using the truncated GPD model 
along with each PDS introduced in Sect.on 3. We Utdlse the MCMC method 
described m Section 4. A few specxfics concerning the implementation of the 
Markov chain are worthy of note. For the univanate proposal distributions 
assocmted with the parameters 0 and A, we found that normal &strlbut~ons 
centered at the current value of the parameter m question and with standard 
deviation of 0.05, that is 

qo(O[s) ~ N o r m a l  (s, 0 05) and qA(A[s) ~ N o r m a l  (s, 0.05), 

yielded acceptance rates m the 50 to 75 per cent range. The proposal 
distribution for the parameter m was taken to be Potsson  with mean ~t in the 
case of the analysis incorporating the second PDS, that is 

qm(mls )  --= qm(m) ~ Potsson  (~L) . 

This makes Step 3 of the algorithm an independence sampler (Gdks, 
Richardson, and Spxegelhalter, 1996, page 9; also, Tterney, 1994, page 1706) 
since q, , , (mlm ('-1)) no longer depends on the value ofrn ('-I). For the analysis 
incorporating the first PDS, exact draws of m from its full con&tional 
posterior &stributlon were used. In this case, the acceptance probability (15) 
is always equal to 1. For the analysis incorporating the third PDS, no draws 
of m were required since this analys|s assumed that the value of m was fixed 
and known. 

For each analysis, four realizations of a Markov chain were simulated 
Each chain was permitted to run for 10,000 Iterations. The results of the first 
5,000 iterations were discarded as 'burn-in', and convergence of the Markov 
chains for each analysis was formally momtored by applying the diagnostic 
of Gelman, Carhn, Stern, and Rubin (1995, page 330-333) to the output of 
iterations 5001 through 10,000. The behawour of the realised Markov chain 
sample paths associated with one of the simulations (corresponding to the 
second PDS with ~ = I0) is illustrated in Figures 2, 3 and 4. In these plots, it 
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is apparent that the simulated Markov chains are well on their way towards 
convergence by the 100th iteration in each case. Estimated posterior 
distributions for the parameters 0, A, and m are presented in Figures 5, 6 and 
7. These posterior distributions are estimated on the basis of the 20,000 
(4 times 5,000) simulated draws for each parameter from ItS posterior 
distribution. 
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(Second PDS with /L = 10) 

Summary results for all of  our analyses appear m Tables 2 through 7. 
From Tables 3, 5, and 7, one can observe that predictive inferences are 
largely unaffected by the particular choice of  PDS. 

TABLE 2 

ESTIMATED POSTERIOR glEANS AND SDs FOR THE PARAMETERS 0, .,~, AND /71 
RESULTING UNDER THE FIRST PDS FOR 3 VALUES OF M (m < M) 

Parameter M -  6 M =  10 M = 25 

0 0 5837 0 5861 0 5807 

(0 0556) (0 0541) (0 0536) 

0 0034 0 0009 0 0085 

(0 0353) (0 0340) (0 0316) 

]11 6 8 0016 14 9864 

(0) (I 4196) (5 7347) 
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TABLE 3 

T I l E  ESTIMATED PREDIC r i v e  DISTRIBUTION Pr( N f  = 11f1.9, , IG,,) 
RESULTING UNDER THE FIRST P D S  FOR 3 VALUES OF ,A[ (771 < .AI) 

149 

n f  M = 6  M = 1 0  M = 2 5  

0 0 5587 0 5573 0 5603 

I 0 3237 0 3251 0 3213 

2 0 0951 0 0953 0 0952 

3 0 0190 0 0189 0 0194 

4 0 0030 0 0029 0 0032 

5 0 0004 0 0004 0 0005 

6 0 0001 0 0001 0 0001 

m e a n  0 5857 0 5867 0 5858 

(atO (0 7711) (0 7697) (0 7749) 

TABLE 4 

EgTIMA [ED POSTERIOR MEANS a, NI) SDs I'OR TIlE PARAMETERS 0,  A, AND I l l  

R E S U L T I N G  UNDER THE SECOND PDS I OR 4 D IFFERENT VALUE.S OF I t  

P a r a m e t e r  /L = 2 t~ = 5 It = 10 IL = 2 5  

0 0 5810 0 5831 0 5828 0 5774 

(0 0529) (0 0544) (0 0531) (0 0529) 

A 0 0034 0 0032 0 0051 0 0150 

(0 0346) (0 0350) (0 0335) (0 0291) 

.7 6 32473 7 2713 10 3290 24 6669 

(0 6319) (1 4242) (2 7903) (5 0021) 

TABLE 5 

THE ESTIMATED PREDICFIVE DISTRIBUTION P , ' ( N  I = r i l l . o ,  . n , , , )  
R E S U L T I N G  UNDER t H E  SECOND P D S  FOR 4 D I F F E R E N T  V A L U L S  OF I L 

nf  , /1=2 i t : 5  i t =  I0 / t = 2 5  

0 0 5602 0 5590 0 5591 0 5621 

1 0 3231 0 3236 0 3230 0 3184 

2 0 0945 0 0949 0 0951 0 0953 

3 0 0188 0 0189 0 0192 0 0201 

4 0 0030 0 0030 0 0031 0 0034 

5 0 0004 0 0004 0 0004 0 0005 

6 0 0001 0 0001 0 0001 0 0001 

m e a n  0 5830 0 5849 0 5858 0 5863 

(w/) (0 7692) (0 7704) (0 7724) (0 7803) 
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TABLE 6 

ESTIMATED POSTERIOR MEANS AND S D s  [ OR THE PARAMETERS 0, A, AND m 

RESULTING UNDER THE THIRD PDS ~OR 3 VALUES OF M(m = M) 

Parameter M = 6 M = I0 M = 25 

0 5844 0 5838 0 5748 

(0 0532) (0 0545) (0 0511) 

0 0025 0 0029 0 0160 

(0 0343) (0 0333) (0 0279) 

m 6 10 25 

(0) (0) (0) 

TABLE 7 

THE ESTIMATED PREDICTIVE DI'gTRIBUTION Pr(N.f = n fit;o, , 11.,) 
RESULTING LNDER THE THIRD P D S  FOR 3 VALUES OF M ( m  = M )  

nf M = 6  M =  10 M = 2 5  

0 0 5583 0 5586 0 5636 

I 0 3243 0 3238 0 3175 

2 0 0951 0 0951 0 0948 

3 0 0189 0 0189 0 0200 

4 0 0030 0 0030 0 0034 

5 0 0004 0 0004 0 0005 

6 0 0001 0 0001 0 0001 

mean 0 5857 0 5854 0 5842 

(~d) (0 7700) (0 7703) (0 7796) 

6. F U T U R E  RESEARCH T H E  C O R R E L A T E D  T R U N C A T E D  B G P D  M O D E L  

Famoye and Consul (1995) and Vermc (1997) have both considered a BGPD 
(bivanate GPD) formed by applying the method of tnvarmte reduction. This 
method proceeds as follows: let Ni,  N2 and N3 be independent GPD random 
vanables with respective parameters (01,A1), (02, A2), and (03, A3). Then the 
random vector (X, Y) as stud to have a correlated BGPD ff X = Ni + N2 and 
Y = N2 + N3. Unfortunately, both Famoye and Consul (1995) and Vermc 
(1997) tmphc~tly permit the parameters A,, t = 1, 2, 3, to take on negatwe 
values but fall to correct the defimtions of  the affected GPD and BGPD 
&stnbutions by appropriately truncating and normahzmg them. 

In order to correct this problem, we define a correlated truncated BGPD 
by the method of tnvanate reduction. Let Ni, N2 and N3 be independent 
truncated GPD random variables with respectwe parameters (01,Ai,ml),  
(02, A2, m2), and (03, A3, m3). Then the random vector (X, Y) will be said to 
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have a correlated truncated BGPD if X = Ni + N2 and Y = N2 + N3 as 
before. It should be possible to mlplement Bayesmn posterior and predictive 
mferences for this distribution by using an extension of  the MCMC method 
described in Sectmns 3 and 4 along with a data augmentation method to 
simulate the unobserved values of  Nl, N2 and N3, given the observatmns X 
and Y along with the current simulated values of the parameters (0,, A,, rn,), 
i = I, 2, 3. This procedure will be further explained, and also apphed to a 
numerical example, in a paper to follow. 

ACKNOWLEDGEM ENTS 

The author wishes to thank the referees for thmr comments and suggestmns. 
This research was partially supported by a grant from the Natural Scmnces 
and Research Counctl of Canada. 

REFERENCES 

ADELSTEIN, A M (1949) Acctdent Proneness A Crltmlsm of the Concept Based Upon an 
Analyszs of Shunters' Accidents Journal o / the  Royal Stattatscal Society, A 115, 354-410 

ALZAID, A A ,  and AL-OSH, M.A (1993) Some Autoregresslve Moving Average Processes with 
Generahzed Pmsson Marginal Dlstmbutlons Ann In~t Statist Math 45, 223-232 

AMBAGASPlTI'¢A, R S and BALAC.RISHNAN, N (1994) On the Compound Generahzed Pmsson 
Dlsmbuuons A S T I N  Bulletin 24 (2), 255-263 

CARLIN, B P,  and LOUIS, T A (1996) Bayea and Emplrtcal Bayes Methods for Data Ana 0 ~tr 
Chapman and Hall, New York 

CONSUL. P C  (1994) Some Blvarmte Famlhes of Lagrangmn Probablhty DIstmbutlons 
Commumcattons m Stattsttcs Theory attd Method 23, 2895-2906 

CONSUL. P C (1990) A Model for Distnbutmn of Injuries m Auto-Accidents Mittetlungen der 
Sehwetz Veremtgung det Verst~ herungsmathemattket I, 161-168 

CONSUL. P C  (1989) Genetahzed Potason Dtstrtbuttotts Ptopettie~ and Appheattanv Marcel 
Dekker Inc, New York 

CONSUL. P C and FAMOYE, F (1989) The Truncated Generahzed Pmsson Distnbutmn and its 
Estmmtmn Communicattotis m Stattsttcs Theotv and Method 18 (10), 3635-3648 

CONSUL, P C ,  and SI-IOUKRI, M M (1985) The Generahzed Polsson Distrlbutmn when the 
Sample Mean ~s Larger than the Sample Varmnce Commttmcattons m Stattsttts Stmttlatton 
and Computatton 14 (3), 667-681 

CONSUL, P C ,  and JAIN, G C  (1973) A Generahzatmn of the Pozsson DIslrlbuuon 
Tel hnomettlcs 15, 791-799 

FAMOVE, F and CONSUL, P C (1995) Bivarlate Generahzed Pmsson Distnbutmn with Some 
Applications Met~tka 42, 127-138 

GELMAN, A ,  CARLIN, J B,  STERN, H S,  and RUBIN, D B (1995) Ba)'e~tan Data Anal~'sts 
Chapman and Hall, New York 

GILKS, W R ,  RICHARDSON, S and SPIEGCLHALTER, D J (1996) Introducing Markov Chain 
Monte Carlo In Markov Chain Monte Cwlo m PraLttce Edited by Gflks, W R ,  
Richardson, S , a n d  Spmgelhalter, D J  Chapman and Hall, New York 

GOOVAERTS, M J ,  and KAAS, R (1991) Evaluating Compound Generahzed Pmsson 
Distributions Recurslvely A S T I N  Bulletin 21, 193-197 

HAASTRUP, S , and ARJAS, E (1996) Clamas Reserving m Continuous Tm~e a Nonparametrm 
Bayesian Approach A S T I N  Bulletin 26 (2), 139-164 

HENZE, N and KLAP,, B (1995) Bootstrap Based Goodness of Fit Tests for the Generahzed 
Pmsson Model Communtcattons m Statlsttcs Theory and Method 24 (7), 1875-1896 



152 DAVID P M SCOLLNIK 

HESSELAGER, O (1997) Recurslons for a class of compound Lagranglan d~stnbuhons Swtss 
Assoctatton of Actuartes Bulletin I, 95-101 

JOItNSON, N L .  KOTZ. S , and KEMP, A W (1992) Umvarlate Dis~rete DtMrtbuttons Second 
Edition John Wdey & Sons Inc, New York 

KLUGMAN, S A ,  PAN~ER, H H ,  and WILMOr, G E (1997) Loss Models From Data to 
Oectslons In press 

NELSON, D L (1975) Some Remarks on Generahzatlons of the Negative Blnomml and Po~sson 
Distributions Technometrws 17, 135-136 

PAl, J S (1997) Bayesian Analysis of Compound Loss Distributions Journal of Econometrtca 
79, 129-146 

SCOLt.NIK, D P M (1995a) The Bayesian Analysis of Generahzed Po~sson Models for Claim 
Frequency Data Utdlsmg Markov Chain Monte Carlo Methods Actuarial Research 
Clearing House 1995.1, 339-356 

SCOLLNJK, D P M  (1995b) Bayesmn Analysis of Two Overdlspersed Polsson Models 
Btometrics 51, 1117-1126 

SCOLLNIK, D P M (1995c) Bayesmn Analysis of Two Overdlspersed Polsson Regression 
Models Communications m Statt~ttcs Theorl and Method 24 (I 1), 2901-2918 

SCOLLNIK, D P M (1995d) Simulating Random Varmtes from Makeham's Dlstnbutton and 
from Others with Exact or Nearly Log-concave Densities (with discussion) Transactions of 
the Soctetv of 4etuaries 1995 XLVII, 409-454 

TANNER, M A (1996) Tools fo; Statistical Inference Methods fi)r the Ewloration o/Posterior 
Distlibuttons and Likelihood Fimction.s Third Edition Sprmger-Verlag, New York 

TtERNE¥, L (1994) Markov Chains for Exploring Posterior Distributions (with d~scuss~on). 
AnnaLs of Stattsttc~ 22, 1701 - 1762 

VERNIC, R (1997) On the Bwanate Generahzed Pomson Distnbutton AMin Bulletin 27 (I), 23-31 

DAVID P.M. SCOLLNIK 

Depar tmen t  o f  Ma thema t i c s  and Stat ts t tcs  

University o f  Calgary 
Calgary,  Alberta,  Canada 
scollntk (a~ acs. ucalgarv, ca 



A NOTE ON THE NET PREMIUM FOR A G E N E R A L I Z E D  LARGEST 
CLAIMS R E I N S U R A N C E  COVER 

By RAOUL M BERGLUND 

Desoartment of Mathematics 
Abo Akademt Umverstty 

A BSTRACT 

In the present paper the author gwes net premium formulae for a generahzed 
largest clmms reinsurance cover If the clmm sizes are mutually independent and 
idenhcally 3-parametric Pareto distributed and the number of clmms has a 
Polsson, binomial or negaUve binomial dlstnbuuon, formulae are gwen from 
which numerical values can easily be obtained The results are based on identities 
for compounded order stat~sucs. 

K E Y W O R D S  

Net premmm; Reinsurance, LCR; ECOMOR, Compounded order stausucs 

] I N T R O D U C T I O N  

An expression for the pure premmm for the largest clmm reinsurance cover was 
already introduced by AMMETER (1964a) and for the p largest claims reinsurance 
cover by AMMETER (1964b) Simple formulae were presented under the 
assumpUons that the ckum sizes obeyed a one parametric Pareto dlstnbuUon 
and the number of clmms was Poisson dmtr~buted For the same clmm s~ze 
distribution KUPPER (1971) gave a formula for the largest clmm reinsurance when 
the number of clamas was geometrically dlstnbuted and CIMINELLI (1976) 
considered a negauve binomial d~stnbut~on BERLINGER (1972) extended the 
results by AMMETER and deduced the varmncc for the p largest claims reinsurance 
cover Net premmm for a general clmm size and clmm number d~stnbuuon was 
gwen by KREMER (1985) and for some generahzed clmm number distributions 
and a gcncral clmm size distribution by KREMER (1988a). The results m the latter 
were, however, not so prachcal for a specific clmm size d~stnbut~on. The author of 
thIs paper gwcs net premium formulae for a gcnerahzed largest clmms reinsurance 
cover, assuming that the clmm s~zes are mutually independent and ~dent~cally 
3-parametric Pareto distributed and when the number of clmms has a Polsson, 
binomial or negauve bmomml dlstrlbuuon The formulae presented m this paper 
are simple and easily calculated. 

ASTIN BULLETIN. Vol 28, No I, 1998 pp 153-162 
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2 PRELIMINARIES 

From now on, let X i ,  X2 ,  , X N  denote non-negative, mutually independent and 
identically distributed claim sizes, which are independent of  the number of  claims 
N that occur m a Dven time period. Denote by 

XN I ~-- XN 2 ~ ~ XN N 

the clmms ordered in a decreasing size. The t-th largest claim is called the t-th 
ordered claim or more generally the t-th compounded order statistic Let 

f, [0, ~ )  ~ [0, ~ )  

(I _> 1) be measurable functmns, that satisfy 

f,(o) = O~i~d li(y,) ~ O, y, 
t=l t:l 3 

for all 0 < 34, <_ <_.I'2 <_ ) ' t  This representanon was first made by KREMER 
(1982) and the following main definitmn by KREMER (1984)' 

Definition. The reinsurance treaty defined by 

N 

RN(XN I, XN 2, , XN N) = RN = Z £(XN 1), 
i-I 

N 
whmh determlns the reinsurers share of  the total Joss Z X, ,  is called a r e i n s u r a n c e  

treaty based on ordered claims ,=1 
We are especially interested m the case 

f ( x )  = a, x, 

where a,, t >  1, are real constants. This reinsurance treaty is defined as the 
generalized largest clamas cover (KREMER 1988b) We get for 

a l = a 2 =  = a p = l , a , = O V t > p  

the so called LCR(p) treaty covering the p largest claims and for 

al  = a2 = = at,_ I = 1, ap = 1 - p ,  el, = 0 V t > p 

the so called ECOMOR(p)  treaty covering all claims in excess of  the p-th largest 
claim 

We will subsequently use some special functions. The incomplete gamma 
funcnon is defined as 

F(a. v) = / e - "  u " - l  du  , a > O, ~x > 0 

0 
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and the complete gamma function as }12,~F(a, x ) =  r ( a )  
funcUon is defined as 

/ / B(a, b, x) = u a - l ( [  - u ) b - l d u  = t t a - I ( l  -Jr- tt) -(a+b) tht 

0 o 

The incomplete beta 

,a ,b>O,O<x<l  

and the complete beta funcuon as lim B(a,b,x)= B(a,b). The complete beta 
~ l  

funcuon and the complete gamma funcUon are related by 

r(a)r(b) 
B ( a ,  b)  - -  I"(a + b) 

3 FORMULAE FOR TI4E NET PREMIUM 

The two most common risk loaded premium principles, the variance principle and 
the standard devlauon principle, are based on the expectation and the varmnce of 
a certain risk For a generahzed largest clamas reinsurance cover the expectation ts 
gwen by 

E[RN] = £ a, E[XN ,] 

and the variance by 

= a, E[XTv ,1 + 2 a,ajE[Xu ,XN j] - a,E[XN ,] 
t=l g=2 t=l k i=1 

The following theorem is due to CIMINELU (1976) and KREMER (1985), where 

¢(s) = £ P(N = n).C 
n=O 

denotes the probabdlty generating funcuon of N, whmh is assumed to have 
derivatives ¢(')on (0,1) of  each ordcr t > / 

Theorem ! If the claim sizes Xz, X2,  , XN have a continuous distribution 
function F the density funcUon of tile t-th ordered claim ~s given by 

1 
P ( X N , = X ) = ; z - 7 - T J ( x ) [ I - F ( x ) I ' - Z ~ ( ' ) ( F ( x ) ) -  " - - - -  

J - t l )  

and the joint density function of the t-th and j-th ordered claims (0 < t < j )  is 
gwen by 

1 [ / -  F(x,)] '  ' [ F ( x , )  - F(a))]J-'-/+O)(F(a)))f{x,)f(r,) P(XN, = x , ,  X N ,  = : t ) )  - z )  
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Theorem 2 If the claim sizes X/, X2, ., XN have a cont inuous distribution 
function F the k-th moment  a round  the origin of  the i-th ordered claim is given by 

/ ' /  E[2G,] = ~ F- '( ,1)k[: - , ,] ' - '~O~(, , )d.  

0 

and the expectatmn of  the cross product  of  the t-th and j-th ordered claims 
(0 < l < j )  Is given by 

E[XN ,XN j] = 
I 1 

1 

0 0 

Proof  The first part of  the statement follows from theorem I after the 
substitution u=F(x) For  the second part we have for O < l < j  and 
0_<X,v:<_X,v, that 

E[XN ,XN j] = 
O 0  

C - - / :  .v, a ) [ l -  F(x,)]'-'[g(x,)- F(A))] j-'-/qbc')(F(.vJ))f(.x',)j(.x)) dx, dxj, 
, 1 "  ,J 

0 xj 

where 

1 
C =  

r ( , )PO - ,) 

and v = F(xl) we obtain After substituting u = I-F(,,) 

E[Xu  , XN :] = 
I I 

C /  f F - I ( l - u ( ] -  v ) ) F - I ( v ) l t ' - I [ l - v y - l [ l - u y - ' - l f b ( l ) ( v ) d u d v  = 

o o 
I I 

c f F '(v)I1 - ,,~ ,~o~(,,) f F-'(~ - . ( :  - ,,)).'-'[: -.y-'-'~:.d,, 
0 0 

[ ]  

From now on we will focus on the case where the ctmm sizes are d~stnbuted 
according to the 3-parametric Pareto distribution 

F(x) = 1 - \ ~ - ~ - ~ j  x >__ d > O, (3 I) 
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where the parameters c~, ¢3 and d satisfy e~ > 0 and b > - d  The distribution (3 I) 
is the most used claim size distribution, especially if there is a poss~bflity o f  large 
claims In the hterature the 3-parametric Pareto distribution is sometimes also 
called the "shif ted" Pareto distribution (RYTGAARD 1990) or the complete Pareto 
distribution (DAYKIN et al 1994). Since 

F - ' ( x ) =  U+/~ /~ 
( I  - x )  z 

the expectations of  theorem 2 becomes after binomial expansion and slmphfica- 
tlons 

/ 

1 ~ (k)(d+fl)~-h(-/3)/'i(I-u)'-k,,"-h-tq3(O(u)du 
e[x~v ,l = ~ ,,:o I, 

0 

and f o r c ~ >  t I 

1 
E[)(N tXN Jl - -  r(I) 

Ei i i A~ (1 - v)s-~-%o)(v)dv- A2 ( / -  ,,)J-~-%O)(v)</,, + A3 (s - v)'-%('/(,,)a~, 
0 0 

where 

, r ( ,  - ~) 
A, = ( a +  n ) - ~ =  ~) 

rF(,) ~(,- ~] 
A;=~m+/J)L~-' to, ~)j 

A3 = ~2 r(~) 
r0)  

The restriction on the parameter  cv is needed to get a finite expression Assuming 
further that the number  of  claims N is Polsson distributed 

/V I P(N= n) = - - e  -~ A > 0, n > 0, (3 2) 
1l! 

negative blnomlally distributed 

( r, A > 0 ,  n > 0  (3 3) 
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or binomially distributed 

/m', q. 1 q) ...... P ( N = n ) =  ~n ) ( - O<_q< I , n = O , l ,  ,m, 

where m IS a non-negative integer, we have the following corollaries 

(3.4) 

Corollary 3. Assume that the claim sizes Xi,X2,  ., XN are Pareto distributed 
(3 1) and that the clatm number  N is Po~sson distributed (3 2) Then the k-th 
moment  a round the origin o f  the t-th ordered claim IS, for c~ > ~ gwen by 

t 

and the expectation of  the cross product  of  the t-th and j- th ordered claims 
(0 < t  < j ) , s ,  for ce > m,~x{-~,}}, given by 

1 [A,X~PO ' a -  - -  A,F(/ ,A)]  
< x N  v -g5  " " 

Proof  Since the j- th derivative o f  the probab,h ty  generating function ~b for a 
Poisson distributed random variable (3 2) is gwen by 

q3 O) (s) = A:e ~(s- t) 

we have, for 7 > O, that 

/ / 

. f  ( l -u) ' - :oO)(u)du  
0 0 

= A: . f ( l  - u)~'-Ie~("-/)du 

After the substitution t = A(1 - u) we obtain 

/ A 

/(]--lt) '~-IcsO)(u)du : AJ- 'Y/  t ~ le-tdl 

o o 

which gives the result. 

= r ( - r ,  

[] 

Corollary 4 Assume that the claim sizes X/, )(2 , XN are Pareto distributed (3.1) 
and that the claim number  N is negative binomially distributed (3 3). Then the 
k-th moment  a round the origin o f  the t-th ordered claim is, for ~ > ~ given by 

l" 
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E[X~ ,] B(,,r) ,,=0 h 

and the expectat ion of  the cross product  o f  the t-th and j-th ordered claims 
(0 < t < j )  is, for eL > mt~.'.: { 7'71 2}, given by 

1 r 0 )  
E[XN ,X~ ~] - BO, ,') r(,) 

[ 2 , .  , ~ ] A I A ] B O -  a, +~,7-4S) _ A2A~BO_ I_,,,r +-d,7~)1 A -F A3B(J;,,i--~) 

Proof Since the j - th  denvahve  of  the probabi l i ty  generat ing function ~ for a 
negatwe bmomlal ly  distributed r andom variable (3 3) is given by 

~Ul(s) r ( r  
- r ( r )  J) ~'[z - x(~ - 1)] -(r+~) 

+ 

wc have, for "t' > 0, that 

/ / 

0 0 

After the substi tution t = A(1 - u) we obtain 

/ A 

F(r  + j )  A2_ ~ . f  p _ l (  1 + t)_(r+1)d t (1 - F  (r---~-- 11) 7-  l ~(J) ( lg)dll 

0 0 

_ r ( r  + j )  Aj_~ B ( 7 ; ,  + j  - ,y, 7 ~ 0 ,  
r ( , )  

from which the result follows after smlphficatlon 
[ ]  

Corollary 5. Assume that  tile claml sizes Xi,  X2 , X N are Pareto distr ibuted (3.1) 
and that  the claun number  N Is bmomla l ly  distr ibuted (3.4) Then the k-th 
momen t  a round the o n g m  of  the t-th ordered claun is, for oe > ~ given by 

\ I / 11=0 h 

and the expectation of" the cross product of the t-th and J-th ordered claims 
(0 < I < j )  is, for ~ > m ~ {  7, ;} ,  given by 

E[XN ,~N j] - -(~') V(J+ I)" 2 B. ~, _ , , = ~ lAlq ~ (j _ 7  m - j  + 1, q) A2q~B(j - ~ ,,1 - j  + I; q) 

+ AsB(j; m - j  + 1, q)] 
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Proof 
bxnomlally distributed random variable (3 4) is gwen by 

Since the j-th derivative of the probability generating function 

Oc,)(~ ) _ r ( m  + l )  
F(m - j  + 1) ql[qs + 1 - q]'"-/ j _< m, 

we have, for 3' > 0, that 

1 

P ( m +  l) / ( 1  u) '~- ' (qu+ l q)m-Jdu 
l " ( m  - j  --t- l )  qJ .  - 

o 
. f ( l  - .y-~(~)(.)a. - 

After the substitution t = q( l  - u) we obtam 

1 q 

r ( , .+  J) q,-.f 
P(m - g  + 1) 

0 0 

r(m + / )  
~-~ B ( % m - j +  l ,q) ,  

F(m - j  + 1) 

from which the result follows after slmphficatlon 

~ f o r a  

[ ]  

I f0  < ~ < 1, which indicates a very heavy tailed distribution, we have according 
to the results above that the first moment around ongm of a certain number of 
the largest ordered claims does not exist We could therefore consider the number 
of ordered claims, for which the first moment around the orlgm does not exist, as 
a measure for how dangerous a Pareto distribution is Smce many computer 
programs have built-in routines for computmg the complete gamma, incomplete 
gamma and the incomplete beta function, the expectations m results above can be 
calculated easily 

If the claim sizes obey an exponential distribution 

F(x) = 1 - e -'~l'-'l fl > O, x > a, 

we cannot get useful expressions for the moments around the origin and the cross 
product by applymg theorem 2 Usmg well known results from order statistics for 
a determmlstlc number of clmms (DAVID 1970) and then the iteratwlty of the 
expectation operator, expression for the pure premium can be constructed. 
Exponentially distributed clama sizes have been studied by KUPPER (1971) and 
KREMER (1985 and 1986). 

4 A N U M E R I C A L  E X A M P L E  

Let the distribution for the claim sizes be Pareto distributed (3.1) with d = 0 For 
the insurance line under consideration the method of moments gives the following 
parameter estimates 6 = 2.3401 and /3 = 13692. Smce the most import claim 
number distributions are the Polsson and the negatwe binomial, we will restrict 
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the example to them. Using the same est~matmn method we have the following 
parameter estimates. Polsson ~ = 79667, negative bmomml ~ = 1 0865 and 

= 73 326 We have the following numerical results 

Expectatmn of LCR(p) and ECOMOR(p) treatms 

p Po~sson negatwe bmomml p Polsson negattve bmomml 

1 124 597 124 368 1 0 0 

2 190 099 189 738 2 59 095 58 997 

3 238 679 238 215 3 92 937 92 783 

4 278 390 277 837 4 119 548 119 350 

5 312 395 311 763 5 142 369 142 133 

LCR(p)-treaty ECOMOR (p)-treaty 

Standard deviation of LCR(p) and ECOMOR(p) trcatms 

p Polsson negauve bmomml p Potsson negative bmomml 

I 178 069 178 129 1 0 0 

2 191 632 191 860 2 134 587 134 549 

3 198 847 199 254 3 182 222 182 206 

4 203 797 204 389 4 188 799 188 815 

5 207 581 208 363 5 193 255 193 405 

LCR(p)-treaty ECOMOR (p)-treaty 

The difference between the numerical values for Potsson and the negatwe 
bmomml cases ts qmte small. If we assume that m the incomplete beta function b 
~s large and a ts bounded we have the foltowmg asymptouc representatmn 
(ABRAMOW~TZ and STEGUN 1972) 

_FkIa'X(2b+a-2~ 1)) 
B(a;b;x) 

+ O(b-2). 
B(a;b) C(a) 

This explains the s~mdanty m the numerical results above. This suggests, that the 
Polsson dtstnbutmn might be the right claim number model ff the parameter 
value r IS large and ~ is small m the negatwe bmomml distribution 
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BOOK REVIEWS 

S.A KLUGMAN, H.H. PANJER and G E. WILLMOT (1998). Loss Models. 
b)'om Data to Dectsions. Wiley, New York. 

Hogg and Klugmann (1984) gives an excellent introduction into the 
stochastic modehng of insurance losses. A key feature of that book is the 
attention given to the special character of insurance data. Rather than 
having embarked on a second (revised) e&tion, the present three authors 
have decided to write a new text, keeping the main ideas of Hogg and 
Klugman (1984), but adding numerous topics which every actuary, whether 
prachclng or academic, ought to know 

Loss Models "Is organized around the principle that actuaries build 
models in order to analyze risks and make decisions about managing the 
risks based on conclusions drawn from the analysis". It is to be stressed that 
the text mainly looks at the llablhty side ot" insurance' the losses. These are 
put together in a global risk model where uncertainty may enter at the claim- 
size level (Chapter 2) and at the claim-frequency level (Chapter 3). 
Combining these two levels leads to an aggregate model (Chapter 4). The 
premium side of the corn is treated through credibility theory (Chapter 5). 
Long term stability questions are discussed via the classical limit theorems 
for ultimate rum (Chapter 6). 

So far, various existing texts present, at least from a chapter heading 
point of view, similar material Where are the novelties? First of all, this text 
~s extenswe m its 644 pages. That means that all of the above topics are 
treated in a fair amount of detail. Secondly, numerical examples together 
with accompanying exercises and case studies are abundant. On each topic 
introduced, the reader is asked to calculate actual numbers (i e take 
decisions) based on data Many of the exercises presented stem from 
actuarial examination papers. Answers to selected ones are given. 

This brings me to the key question' "What  is the intended readership?" 
As the book assumes no specific prerequisites beyond basic courses in linear 
algebra, analysis and elementary probability and statistics, the readership IS 
broad. Anyone interested in acquiring the basic stochastic techniques which 
practicing actuaries use daily will find this text useful. The necessary 
staUstxcal and probablhst~c techniques are introduced if and when needed 
Computability ~s always a concern, no theory w~thout numbers The style of 
writing ~s relaxed, yet also concise. A slight loss of conciseness is present 
towards the end of the text where basic results of Polsson processes and 
Brownian motion are derived' for instance the proof of the interarrlval-hme 
characterlsatlon of the homogeneous Polsson process leaves the crmcal 
reader a bit in the cold when it comes to achieving independence (the usual 
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step-by-step "proof"'), also the reader could have benefited from a warning 
that the reflection principle for browman motion (figuring on the cover!), 
though mtumvely clear, needs a proof (strong Markov property). Simdar 
warnings could have been made m the chapter on ruin theory. Also, I found 
the Index, and to some extend the References a bit wanting. These -flaws" 
however should not dJmmlsh my admaration for thas book: at as a most useful 
addmon to the actuarial literature Especmlly from the more apphed, 
mdustrml side: If ! were recruiting a new, young actuary of which 1 would 
know that he or she had a through knowledge of the material treated in Loss 
Models, I would be most glad As such, this book wdl no doubt become a 
classic reference. 
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THOMAS MACK (1997): Schadenverstcherungsmathematlk. Sonderauflage von 
Heft 28 der Schnftenrelhe Angewandte VerslcherungsmathemaUk der 
Deutschen Gesellschaft ftir Versicherungsmathematlk e.V Verlag Verslche- 
rungswlrtschaft e.V. Karlsruhe, 1997 IISN 0178-8116, ISBN 3-88487-582-5 

The more I was reading in this book the more ! got interested m ~t and at 
the same time I found ~t was a pity that it is not written m English because 
there is no doubt a great number of potential readers not mastering the 
German language sufficiently. So let's hope that it will soon be translated 
into Enghsh 

Thomas Mack's present book on actuarial sciences in Non-Life insurance 
Is sub&vlded into the four main parts 

Part I Basics 
Part 2 Pricing 
Part 3 Reserving 
Part 4 Risksharmg 
In the first part both the classical individual and collecnve model of risk 

theory are dealt with, complemented by a third approach where the portfoho 
is assumed to consist of a number ofsubportfohos in which each risk has the 
same clmms degree distribution. In the same first chapter there Is already a 
section on pricing where the author proposes the so-called covariance 
principle, i.e., the total security loading is distributed onto the individual 
risks proportionally to the covarlance between the claims potential of that 
risk and the one of the entire portfolio. Furthermore there ~s an interesting 
part discussing the practically important fact that a company can still 
underwrite a certmn share of a risk even if the total premium for it Is less 
than what according to the company's standard would be required as a 
technical minimum. 

In the second part on pricing there is at the begmmng an extensive 
discussion on how to define-more or Icss homogenous-risk categories as a 
basis for the construction of a tariff Several staustical procedures are 
proposed for this like cluster analysis, maximum likelihood and mimmum 
square procedures as well as some parametric approaches. Next comes 
credibility theory, experience rating and the construction of bonus malus 
systems followed by a small section on the truncation of large individual 
claims that distort the normal claims statisUcs. 

Part three on clmms reserves ~s ws~bly lhe chapter where the author could 
draw most from his vast practxcal experience. Among many other things also 
a credtbdity approach for assessing claims reserves is &scussed here. But 
basically this chapter deals with three different statistical procedures, namely 
two non-paramemc ones (one additive and the other multlpllcatwe) and a 
parametric approach which is called "cross-classified". Although most of 
th~s chapter Is very much pracUcally oriented (last but not least, I think, 
because of the proposed separations "clmms frequency/severity" on one 
hand and "IBNR/IBNER" on the other), there ~s this theorem on page 279 
whmh is of remarkable theoretical interest and which would read m English: 
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"The maximum hkehhood estimator for the clmms reserve within the cross- 
classified Poxsson model with posmve increments is identical with the chain 
ladder reserve." 

The last chapter is on risksharing, i e., on comsurance, reinsurance and 
retrocession and right at the begmmng the important d~stmctlon between 
proporuonal and non-proportional rlsksharmg is made The chapter closes 
with some general observations on risk management and solvency. 

! found reading in this book refreshing because of  many original thoughts 
and approaches which are not commonly known and I would just hke to 
express my hope again that it should be translated into Enghsh soon. 

ERWIN STRAUB 
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