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EDITORIAL

It 1s now almost 2 years since | took over from David Wilkie as a co-editor
of ASTIN Bulletin. It was indeed a great honour for me to have been
appointed to the editorial committee and certainly 1t is my intention to work
hard to maintain and enhance the excellent reputation that ASTIN Bulletin
has.

As with my predecessor, my primary responsibility lies on the AFIR side
of the journal. It 1s now, I think, almost 10 years since AFIR was formed. As
a consequence the scope of ASTIN Bulletin was broadened to encompass
not just non-life research but also actuarial problems dealing with financial
risk. As most readers of ASTIN Bulletin will realise we still have a long way
to go before we get a good balance in the journal between ASTIN-type and
AFIR-type papers

Perhaps this reflects how well the AFIR colloquia have been orgamsed in
the past and no doubt the future also. In particular, the success of the
meeting depends upon the papers presented and, in consequence, the
proceedings produced for the meeting. For many authors the publication of
a paper m a colloquium proceedings 1s a satisfactory endpoint. I would
argue that this 1s not good enough! For every one AFIR member who
attends an AFIR colloquium there are ten who do not. It is important that
we cater for these members by ensuring that the best of the colloquia papers
get through to ASTIN Bulletin. What, then, do I regard as a paper in the
core of AFIR? AFIR translates as Actuarial Approach to Financial Risks.
Here there 1s something of a two way flow. On the one hand actuarics have
the ability to apply well known actuarial mcthods to purely financial
problems On the other hand actuaries also need to import the best of
financial economics into the traditional actuanal problems of risk manage-
ment (for example, of an insurance company) 1 would say that this flow of
ideas is essential for us to mamtain our position as the leaders n this field.
Thus actuaries already active in this field need to take on board, and adapt
as appropriate, financial economic theory Furthermore our systems of
education will also need to adapt to equip the actuaries of tomorrow with
the necessary tools to cope with tomorrow’s problems. Those who insist that
we already have the tools will be left behind

There are a number of arcas which I would like to see flourish within the
pages of ASTIN Bulletin. asset-hability modelling; securitization of
insurance risks; models for long-term financial risk analysis; value at nisk,
to name but a few. However, I would like to concentrate here on the need for
papers which work towards a reunification of the financial economic and
traditional actuarial theories. I use the word “reunification” here intention-
ally, since 1t 1s only in the last 20 to 30 years that financial economics (as it
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2 EDITORIAL

might be applied to actuarial problems) has sphit off and become a major
field of study in its own right In the process actuaries were left behind, the
majority preferring to stick with their tried-and-tested tools. Before that
actuaries could be regarded as being as much at the forefront of financial
economic thought as any other group. Indeed, recently I found 1n one of the
earliest volumes of the Journal of the Institute of Actuaries (1855) a paper
proving a now-well-known result in stochastic interest. If that doesn’t prove
that we were once at the forefront of financial economic thought 1 don’t
know what else could.

Over the last few years | have watched and become involved 1n some
heated debates over which approach 1s the right one In my view both
approaches are correct and that they are compatible Differences of opinion
arise because of misconceptions about what the other approach 1s
attempting to do. On the one hand we have problems which require a fair
value or price to be put on a set of habilities (for example, 1n setting a
premium rate or in defining the liabiliies which appear in company
accounts). In my view the financial economic approach here is the night one.
On the other hand we have, for example, problems of reserving A reserve
may be some sort of anticipated present value of future net cashflows often
calculated along deterministic hnes However, reserves may be based on
more sound stochastic principles. For example, reserves may be calculated
according to the principles of value at risk. This means determining the level
of reserve which will have a 95% probability, say, of being sufficient to take
care of the future net cashflows as they arise when these are subject to
uncertainty (such as stochastic habilities and assets, parameter uncertainty
and model risk). It is immediately possible to tie the two approaches together
by describing a value-at-risk reserve as the fair or market value of the future
net cashflows plus a contingency margin for future uncertainty.

Papers which do attempt to pull these approaches together are starting to
appear and I very much hope that their authors will choose ASTIN Bulletin
as the right home for their work.

ANDREW CAIRNS



THANKS

Attentive readers will have noticed that Harry Reid’s name no longer
appears on the front cover of ASTIN Bulletin This follows Harry’s
retirement from the editorship of the journal after fifteen years Harry
provided a very valuable link with the industry. As a testimony to his
achievements we only need to refer readers to a recent survey by Colquitt
(1997) on the significance of actuarial journals 1n which ASTIN Bulletin
ranks very high.

On behalf of the readership we would like to wish Harry a long and
happy retirement

All members of ASTIN and AFIR will, by now, have received the
cumulative index for vofumes | to 27 of ASTIN Bulletin. This index would
not have been produced without the hard work of Marc Goovaerts and his
colleagues for which we are extremely grateful

L.L. Colquitt (1977) Relative significance of insurance and actuaral
Journals and articles: a citation analysis. Journal of Risks and Insurance
64 505-527.
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HEDGING IN FINANCIAL MARKETS'

By MARTIN BAXTER

Stanstical Laboratory, Cambridge University

ABSTRACT

This (mostly) expository paper describes the importance of hedging to the pricing
of modern financial products and how hedging may be achieved even when the
traditional Black-Scholes assumptions are absent

KEYWORDS

Derivatives; hedging; option-pricing, superhedging; volatility

1 OVERVIEW

Any market practitioner who sells dertvatives on his own account will say that
hedging is the key to pricing If a contract 1s not hedged, one can sell 1t at any
price, even the right one, and still lose money. The price of the contract must be
the cost of the hedge, plus margin, and the profit/loss of the deal will depend
crucially on the hedge being effective

From the earhest days of the rigorous hterature, such as Harrison and Pliska
(1981), hedging has been used to derive prices in the absence of arbitrage. Text
books for practitioners. such as Chapter 14 of Hull (1997) and Baxter and Rennie
(1996) stress the centrality of hedging to securities trading The essence of the case
being that hedging allows the derivative writer to minimise his exposure to market
risk without reducing his profit, thus allowing him, in the words of one banker,
‘to quote a price with a view of making a profit through his intermediation rather
than by taking a directional view’ (Bogni, 1997).

Hedging may be performed on a wide variety of markets for arbitrary
derivative products. In simple cases, an option 1s hedged by trading in the
underlying securnity (stock, currency or bond), but it is equally possible to
construct a hedge for a derivative in terms of simpler derivatives, such as forwards
and calls Duptre (1993) has donc interesting work in developing this area of
option-hedging, which we will study in section 5

On the other hand, 1t might be attractive to work with a model in which 1t 1s
not possible to hedge. Such incomplete markets can appear intractable, but,
following work by El Karour et al (1996) are now amenable to the tool of

' This paper was dehivered at a meeting on ‘Financial Mathematics and Derivatives’ at the
International Centre for Mathematical Sciences in Edinburgh on 21 January 1997
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6 MARTIN BAXTER

superhedging. This technique produces a strategy that dominates the option
payoff That 1s, the hedge will produce at least as much as the contract requires,
and may produce a surplus Elminating down-side market risk (in theory at least)
1s achieved at the expense of the loss of two-way pricing Finally, the
superhedging of derivatives using other options gives even better results, and
creates an elegant duality between the option-hedging and the superhedging
approaches

2 STATIC HEDGING

We begin with the simplest case

Consider the contract to forward purchase at time 7 one unit of a stock S for
a pre-set price k. Imagine that interest rates are constant at a (continuously
compounded) rate r and there are no transaction costs payable nor dividends due
from the stock At what price k& should we sell the forward contract?

At time T, the contract has the (now certain) value of

X = ST - /\',
so we might expect its time-zero discounted worth to be
]E(e”TX) =e TE(S7) —ke'T.

and then the price k& required to give the contract nil net present value would be
k =E(S7) More generally, we might discount equities at a different rate, u, than
the cash discount rate r. In that case, the appropriate forward price would be
k = ¢~“-"TE(S7). Either way. this seems to make some sense 1f Sy 1s expected to
be large, the forward price should be correspondingly large Paradoxically
however, this price 1s wrong

The actual forward price, in this model, 1s k = ¢'7Sy That 1s, the price 1s just
the current stock price Sy scaled up by the time value of money over the period
The price does not depend at all on whether St 1s expected to be high or low The
reason for thisis a hedge The contract X can be hedged 1f we,
e buy one unit of stock for price Sp, and
e borrow ke™"" umits of cash

This has itial cost Sy — ke~ 7 By time T, the stock has evolved to be worth
St and the debt has grown to —k, giving exactly the same net worth as the
forward X. So the initial worth of X 1s the imtial cost of the hedge, which 1s zero
only iIf k=¢S5

The hedge 1s essentially to buy one unit of the stock and wait, so that it 1s
ready to be handed over at ume T We are unconcerned whether the stock price
rises or falls, or indeed whether 1t is valued ‘correctly’ at either time 0 or time 7. It
1s enough for us to have 1t, because we are now unexposcd to market risk, in the
form of stock price movements

This example demonstrates a static hedge, which can be put on at the start of
the contract and left unchanged till the end
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Example: forward borrowing The interest-rate market can be described
through the behaviour of zero-coupon discount bonds The T-bond pays one
unit of cash at time T, and at time ¢ before then has a value (typically) less than 1.
written P(1, T7) This allows us to lend £ 1 to a customer from time zero to time T
by selling 2~'(0. T) units of the T-bond nto the market now for a price of £1,
which we loan to the customer At tume 7, the customer pays us back P~'(0, T
which we usc to meet our maturing 7-bond hability We could also accept term
deposits from the customer, by changing all the signs and buying 7-bonds
instead.

Our customer may wish nstead to borrow later (from time S to time T), but
agree on the price now, at ime zero Suppose hc wants to borrow £1 at ime S
How much should we demand back at time 77

The answer 1s, we should get back P(0, §)/P(0,T) and here 1s the hedge
e sell P(0, S)/P(0,7) units of T-bond, and receive P(0, S) now, and
s buy one unit of S-bond, for cost P(0, S) now.

These mitial transactions have zero net cost At time S, we receive £1 from
our S-bond which we can loan to the customer as agreed. At ume T, we receive
P(0, S)/P(0,T) from the customer which exactly cancels our maturing 7-bond

liability
In other words, the forward price to scll the T-bond at time S 1s
P(0
o PO.T)
P(0, S)

Away from the special case of forwards, static hedging can still be beneficial,
even 1f 1t 15 not perfect. For instance, a static hedge to approximate a claim X can
be made by holding ¢ units of stock and ¢ units of the cash bond The expected
square error of this hedge (to choose a stmple loss function), 1s

E((x - g7 - ye'T)?)

We can minimise this, to begin with, over the cash holding, with the optimal
choice of ¢ bemng ¥ =¢"TE(X —¢Sy), and the minimal value being
E(¢) = Var(X — ¢Sr) This nself can now be minimised over ¢ at the value

_ COV(X, ST)
¢ N Var(ST)

with value E(¢) = Var(X)(1 — p?), where p 1s the correlation between X and S .

Example In the particular case where S71s normally distbuted as a N{p, o%)
and X 1s the call payoff X = (S7— p)™, then the optimal ¢ = %, and

_ T2
T -2

a reduction 1n the error variance of over 73%

E(¢) £(0),



8 MARTIN BAXTER
3. SIMPLE HEDGING

In a sense, forwards are a special case and their hedge has been known for a long
time. In fact, any payoff which 1s a linear function of the stock price has an exact
static hedge. The hedge for the claim X = S+ + b, where ¢ and b are constants, 1s
to hold « units of stock and e~"Th units of cash, with imitial value aSp + ¢~ "7b.

This exact answer for simple claims n general markets also holds for general
claims 1 simple markets For instance, take the single-period market with zero
interest rates (so there 1s a constant cash bond B, = 1) and one nisky asset S;. The
stock evolves as shown 1n figure |

=1

B=1 0 B=1

FIGURE | Single-period securities market

The stock price etther doubles or halves, and cash stays constant at | A call
option on Sy, struck at £1, with time 1 value of X = (S, — 1)*, will pay off £ 1 f
the stock goes up and nothing 1f 1t goes down. The paucity of possible values for
S enables us to write X as

2 ]
X==8-=
37073
That 1s, X has the same payoff as a forward to buy 2/3 units of stock at the price
of £0 50 per umit Applying our methods of section 2, we see that the ime zero
price for X 1s
2 I
V = — —_— = -
3507373
So the price of X 1s actually 1/3 and the hedge 1s to
e buy 2/3 unts of stock for cost 2/3
e borrow an additional 1/3 umts of cash,
which has initial cost of 1/3 and terminal value of X

We could have performed this calculation for any claim X which paid x, after

an up-jump and xy after a down-jump Such a claim would be worth

1 2
V= 3Nt 3%
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This has the form of the expected value of X under a probability measure which
assigns 1/3 chance to an up-jump and 2/3 chance to a down-jump. This fiedging
measure (g, 1 —¢) 1s given by the formula

So — Sy e Sy — sq
q= Lo g=—2""1rr0,
—

S — 84 Su

where S| takes the value s, after an up-jump, and s, after a down-jump. To sce
why this actually 18 an expectation, see Chapter 2 of Baxter and Rennie (1996)

Although the model 1s very simple, 1t can be used as a basic building biock of
more complex models We can combine many individual branches into a tree
(figure 2).

It just takes 10 layers in this tree to produce a final layer containing over 1000
nodes Options can still be priced by working back recursively through the tree
from the final layer. See, for example, Chapter 15 of Huli (1997) or Chapter 2 of
Baxter and Rennie (1996).

FIGURE 2 Binomial tice

4, BLACK-SCHOLES

The simplest continuous-time model for a stock price 1s the Black-Scholes model,
S; = Socxp(aW, + pur),

where W, 1s a Browman motion, and o and p are constants In this model,
log(S;/So) 1s normally distributed with variance ¢t and mean i, The varable o
1s called the volatility of the process

We can also see S as the hmit of discrete trees, as in scction 3, with current
value Sy evolving to

S, — So cxp(a\/5+ 1161) if up-jump,
" So exp(—a\/E-i— 161) if down-jump
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The time increment 61 over one step of the tree 1s going to get ever smaller. Then
log(S,/So) 1s equal to jut + /61X (2/61), where X,, 1s a simple symmetric random
walk, with X, distributed as a function of a binomal, 2 Bin(n, 1/2) — n, with zero
mean and variance n. By the Central Limit theorem, the distribution of log(S,/So)
converges to that of the Black-Scholes, namely N(ut, 0%)

Choosing ¢ to be the hedging measure

erbr_‘,~m//>_r+/:b1 ~1<l _\/—5—’</t+%0'2—r>>
2 i)

- eﬂ\/ﬁﬂ:él _ e~r7\/b_l+ubl o

then now log(S;/Sp) 1s asymptotically distributed as a normal N((r — 302)1, 0*1)
The hedging price at time zero of any claim X payable at time T will then be
Eg(e™""X), where the behaviour of X under Q 1s governed by the ncw asymptotic
normal distribution Evaluating this for the European call claim X = (S — k)"
gives rise to the celebrated Black and Scholes (1973) call option pricing formula

= (AT (2T

where Fis the forward price F = Soe’T, and @ 1s the normal distribution function

Agaimn we do not use this price because 1t 1s an expected value of the claim, but
because this 1s the value which lets us hedge In this case the hedge we need at time
01s Z'; For a general option X we can also price and hedge 1n the same way

In fact the Black-Scholes formula 1s not just true for the Black-Scholes model.
It 1s enough that the stock St and cash bond By are jomntly log-normally
distributed under the hedging measure @. The formula will then sull hold with
2T replaced by Var(log(Sr/So)), e'T replaced by Eg(B;'), and the forward
price F equal to F = Sp/Eq(B;')

For a good introduction to Black-Scholes from the actuarial point of view, sec
the comprehensive review paper by Kemp (1996)

Also Hobson (1996a) reviews the extensions possible from the constant
volatility assumptions of the basic Black-Scholes model That paper describes
hedging in a stochastic volatility framework, as well as considering discrete-time
ARCH and GARCH models, and provides a good introduction to the more
advanced techniques

S. OPTION-HEDGING

The above formula does depends crucially on some aspects of the Black-Scholes
model, namcly that
e volatility 1s constant (or at icast deterministic)
e the market generated by the asset 1s complete

In practice, these can not be relied upon One solution 1s Lo recognise that, say,
vanilla call options arc so frequently traded as to be hquid assets in their own
right As such. they are not priced per se by the Black-Scholes formula, but they
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can themselves be used 1n hedges to pricc more complicated products This is, to
coin a phrase, option-hedging using options as a hedge for other derivatives, as
opposed to the classical hedging of options

As an example, suppose we have a traded stock S, and traded call options,
where C,(T, ») is the time ¢ price of a call on Sy struck at yv. For simphaity, take
interest rates to be zero, so that

CAT, ») = Bg((Sr— »)*| F))

A particular case, orniginally due to Breeden and Litzenberger (1978), 1s that of
a terminal value payoff X' = f(S7), for some twice-differentiable function f. A
simple variant of Taylor’s theorem says that

flx) = f(0) + x/"(0) + /0 N (x =) /"(y)dy, foral x> 0,

which can be proved by integrating by parts. Substituting S for x and taking
expectations under @ gives the time ¢ value of the option, V,, as

Vi=A0) + Sl/,(o) + /0N Ci(T, }")/”(.V)dy

We have calculated not only the price for X, but also a static hedge which s

e hold f(0) units of cash,

o hold /7(0) units of stock. and

o hold /”(v)dy units of the call struck at y.

(In practice, some approximation o the continuous density f”(v)dy will be
required ) We have already seen how linear tcrms can be statically hedged like a
forward Now we see the convex terms being hedged with options.

If interest rates were non-zero, the formula sull holds with the single change
that we hold T f(0) units of the cash bond, which 1s worth =790} at ime .

Note that this does not price all options, such as lookbacks or exotics (For
example, a put at the maximum price attained by the stock, X = sup,.rS, — S,
or an down-and-out call which only pays off if the stock never went below a pre-
set threshold, X = (Sy — k)" I(nf.<7 S, > ¢)))

The formula’s advantages are not only that 1t 1s a static hedge, but also that 1t
1s completely model independent we make no assumptions about how S, or
C,(T, k) evolve, or even whether the market 1s complete But we can stll hedge

This example 1s actually evidence of a deeper 1dea of Dupire (1993) Given the
option prices

CAT, y) =Eo((Sr - y)*| F,).
their partial derrvative with respect to yis

0
b—yC,(T, v) = —-Q(Sr >y F),
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and differentiating once more gives
02
a 7
which 1s the marginal density of St given F, Then the time ¢ value of any claim
X = f(S7) will be

C (T, y)dy = Q(ST € dy| ]:,),

/ Q(Sr € dv| F,) f / 5y CUT 91}

0

Integration by parts transforms this into the Breeden and Litzenberger formula
Convex payoffs

There 1s a special case of terminal-value options with a convex payoff, which 1s
particularly interesting. For instance, we can use Jensen's mequahty (see, for
example, 6 6 of Wilhams, 1991) to show that

Vo =Eg(e"T/(S7)) = e '1F),

where F1s a forward price F = ¢'"Sp = Eg(Sr). We can also use the convexity of
f once more to show that

Vo 2 e " fIF) 2 f(So) — (1 — ¢ ")A0).

So that 1If /(0) = 0, for perhaps a call option, the option value Vj 15 always worth
at least as much as its current intrinsic value f{Sp), and similarly V, > f(S))
American options, which give the nght to the intrinsic value f{.S,) at any time 1 up
to maturity 7, have no additional worth for such convex payoffs null at 0.

We can also see how volatility and convexity make prices higher The price of
a convex option 1s increasing in the volatihty of the asset. For instance, 1f

ST = Fexp(cZ —1d?),
where Z 1s a normal N(0, 1) giving E(S%) = F, then for 0% < 2,
ST = STexp(a Z — Ja?)for Z, an independent N(0, 1),
where o2 = 72 — o2 Then again by Jensen's mequality
E(/(S7)) =E(E( (S7)[S7)) = E(/(S7))

Call prices, for instance, increase with the volatility of the asset (as per the Black-
Scholes formula), but also 1n general models This fact, coupled with the Breeden
and Litzenberger formula, shows how volatility and convexity work together to
give value That 1s, the option’s non-linear terms have worth

/0 CAT, y) /" (v)dy,
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which mcreases both with the volatility of the asset (which increases all the call
prices) and the convexity of f (which increases /7).

Hobson (1996b) unites existing results, using coupling, to show that convex-
option prices, even for diffusion models, increase with volatiity and that the
option value 1s itself a convex function of the current assct price

A new result generalises the Brecden and Litzenberger formula to higher
dimensions Suppose we have a vector of assets S, in R", such that |S;]| 1s square-
integrable and that options on all fixed portfolios (linear combinations) of St are
traded That s, the call ({6, S7) — y)+ 1s traded, for all vectors 8 1n R" and all real
v, and has current price C(T, 0, )

Now for any f1n C"*3, which satisfies the boundedness condition that |V”+3f]
1s integrable over R", then f has a Fourier transform /( ),

fio)y = / e (x) dx,

which 1s bounded by [f18)| < ¢[8] """, for some constant ¢ We recall the Fourier
mversion formula

Ax) = @2m)™ / ¢ 7(6) df.
We can also use an adapted version of the existing one-dimensional hedging
representation applied to the complex function ¢, evaluated at the portfolio
value z = {6, S7), thus.
e S0 =1 448, ST)—/ DI, Sr)—1)"e" dy
B

We can substitute this expression mto the Fourier mversion formula above, to
deduce that

J(S7) = fl0) + (V/S10), S7) — (27} / / vl (0, Sr) — I) e" f18) dy d8
B JP
This expression can be re-expressed, by changing variables to ¢ = v 6. to give
A187) = 0) +(9110). $1)+ [ ({6, Sr) = 1)*Fi(8) .

where F(¢) = —(2m) ™" Re [m|y|"* " f(y¢)dy Thus the ume ¢ price of such a
claim f(Sy) 18

Vi =10) + (90), )+ [ €T 0)s) s

where C/(T, ¢) = C/(T, ¢, 1) And thus when our claim, X = f{Sy), 1s the
terminal-umc evaluation of a smooth function f; then the claim has a static hedge
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of cash, stocks, and generahsed calls. As such functions are dense in the space of
all measurable functions f, with f{S7) integrable, then all such claims can be
approximated with static hedges

6. SUPERHEDGING

In incomplete models, where we cannot hedge, and we are pricing exotics
(insusceptible to Breeden and Litzenberger), we must try something else Work by
El Karour et al (1996) has brought forward the concept of supcrhedging.

A clear treatment of the El Karour results can be found 1n Hobson (1996b),
and Frey (1997) 1s a good review of the current literature and developments in the
superhedging field

Suppose as an example, a stock price behaves under some martingale measure,
as a martingale diffusion with volaulity o,

dS, = 0,5, dW,

Suppose further that o, i1s either dependent on a new source of randomness
distinct from W, or simply uncertain — we just do not have a reliable model for 1t.

Given an upper bound o4 on the volatility, that i1s o, < gy, we can bound the
price of convex terminal value claims f{S7). We can even allow oy to be non-
constant, as long as o = op(S,, 1) only depends on time and the current stock
price. If we hedge as if the actual volatility 1s oy then, as the theorem below
shows, our hedge’s final value will always be at least as large as f{Sy). The claim
has been superhedged. So the super-price of the claim is the theoretical price of
J(S;) given the stock’s volatility 1s oy. Stmilarly concave payoffs are superhedged
by lower bounds on volatihity.

THEOREM (EI Karow ct al ) Let C, = C(S,, {) be the worth of the convex claim
S(Sy) assuming the volatility is oy, and let V, be the worth of the attempted hedge
Then C(x. t)1s convex i x and the tracking error e, =V, — C,1sgiven by the post-
Live quantity

! v
=1 [ (@~ TS (s
2 Jo ax?

In the special case where f{x) 1s the call payofl (x — &)™, then C, = C(S,, 1) 1s
the Black-Scholes call price, assuming constant volatility oy, where C = C(x, ) 1s

[ 2
Clx. 1) = _\.(I,(logz‘."rig‘w(T— f)) _kq)(logr‘ ~102,(T - ,)).
ouvT —1 o T =1
and the hedge ¢, 1s equal 10 ¢, = 4¢(S,, 1), where
dC

i

(log,‘l +1ad3 /(T - r))

a_ ouyvT —1
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Then the worth of the hedge at ime 115 Cy + j(; 0. dS,. Crucially, C1s convex in x
so that the tracking error 1s always positive as oa 18 an upper bound for o, At
time 7, Vs the worth of the hedge and Cr 1s the option worth (S, — k)", so a
positive tracking error mecans the option has been superhedged

A pleasing synthesis between the option-hedging of section 5 and super-
hedging has been achieved by Paras (1997), a description of which we close with

Following Paras, we let P be the set of all measures that might model the asset
price. These measures might not be equivalent, for nstance they might
correspond to all possible Markov volatility processes o, lying in a band

om S0 S op,

where a,,, o can be functions of time and asset price Then the superhedge price
of a claim X will be the (supermartingale) process

Vi =supEp(X| F),
Pe P

where 1nterest rates have been set to zero for simphcity. The superhedging
strategy will be to behave as 1f volatility 1s

o when £¥ > 0, locally concave

{ oy when %\4 > 0, locally convex,
a5

Suppose also that there are currently traded instruments, such as vanilla options,
which pay off X, at ime 7 and arc currently worth C,(r). We might not be able to
write X entirely in terms of a combination of the X,, but we could do the best we
could. If we used a hedge of A, umts of X,, our valuation for X would be

L)) = supEp (X - Z AX| f,) + Z AC(1)
FeP 1 1

As we arc completely (super)-hedged for any choice of XA, we could choose A to
minmmise L,(A), and quote the sharpest price possible. As L,(A) 1s the supremum
of linear functions of A, 1t 1s a convex function of A, and so susceptible to
opuimization techniqucs.

Interestingly, this problem s the Lagrangian dual of the constrained
optimization problem which maximises the expectation of X over measurcs
which produce the markel price for every X, That 1s the problem

supEp(X| F,). subject to Ep(X, || F,)=C,(1). Pe P

This 1s really just affirms the intuitive observation that measures in P which do
not reflect the current price of traded instruments cannot be the measure we need
to price So we have a duality between the best superhedge of the claim over all
measures, allowing hedging with traded mstruments, and the best superhedge
over all measures which price the traded instruments to market
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RISK-MINIMIZING HEDGING STRATEGIES FOR UNIT-LINKED LIFE
INSURANCE CONTRACTS

By
THOMAS MOLIER

Laboratory of Actuarial Mathematics
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ABSTRACT

A unmit-hnked hfe insurance contract 15 a contract where the insurance
benefits depend on the price of some specific traded stocks We consider a
mode! describing the uncertainty of the financial market and a portfoho of
insured ndividuals simultaneously. Due to incompleteness the insurance
claims cannot be hedged completely by trading stocks and bonds only,
leaving some risk to the msurer. The theory of risk-mimimization 1s briefly
reviewed and applied after a change of measure. Risk-minimizing trading
strategies and the associated intrinsic nsk processes are determined for
different types of unit-linked contracts By extending the model to the
situation where certain remnsurance contracts on the insured lives are traded,
the direct insurer can eliminate the risk completely The corresponding self-
financing strategies are determined.

KEYWORDS

Incomplete market, Martingale representation, Minimal martingale measure,
Intrinsic risk, Reinsurance.

I INTRODUCTION

Traditional actuaral analysis of hfe insurance contracts focuses on
calculation of expected values of various discounted random cashflows;
the fundamental principle of equivalence states that discounted premiums
and benefits should balance on average for any contract. The corresponding
premium is called the equivalence premium. Similarly, at any time during the
insurance period, the prospective reserve 1s defined as the conditional
expected value of all discounted future benefits less premiums, given the
available information. The development of the reserve 1s described by

ASTIN BULLETIN Vol 28, No 1, 1998, pp 17-47
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Thiele’s differential equation, which oniginally dealt with constant determi-
nistic interest and deterministic benefits, but has been widely generalized, see
e.g. Norberg (1995) and Norberg and Meller (1996).

With a unit-linked life insurance contract, benefits depend explicitly on a
spectfied stock mdex. Typically, the policyholder will receive the maximum
of the stock price and some asset value guarantee stipulated 1n the contract,
but other dependencies may be specified These contracts have been analyzed
by Brennan and Schwartz (1979), and more recently by ¢ g. Delbaen (1990),
Bacinello and Ortu (1993), Aase and Persson (1994) and Nielsen and
Sandmann (1995). The last of these authors allow the risk-free interest rate
to be stochastic. Various exolic types of contract functions are considered n
Ekern and Persson (1996). Aase and Persson (1994) derive a partial
differential equation for the value of the reserve of a umt-hnked hfe
insurance, which 1s compared with Thiele’s differential equation They also
present duplicating strategies that minimize the nisk of the insurance
company 1n a sense.

All the papers mentioned consider mortality risk as diversifiable or
assume that the insurer 1s “risk neutral with respect to mortality™ and
replace the uncertain courses of the msured hives by the expected. In this
way, the actual nsurance claims, depending on uncertainty within the
portfolio of msured hives and the financial markets, are replaced by similar
claims which only include the financial uncertainty. These claims are then
priced using standard no-arbitrage pricing theory. In the present paper we
provide and exanune a modecl where the uncertainty of a portfolio of lives to
be msured and a certain financial market are described simultaneously, and
consider the problem of hedging the actual claims which depend on both
sources of uncertainty.

The nsurance company issues life insurance contracts with insurance
benefits linked to the price of a specified stock. This stock and one risk-free
asset arc traded freely on the financial market without transaction costs. We
then consider the problem of defining optimal investment strategies. This
situation differs from the case of standard life insurance, where the insurance
company should try to maximize trading gains in order Lo compete with
other companies on redistributions of bonus With unit-linked contracts,
benefits are already hinked explicitly to the development of the market, and
hence are not influenced by the factual gains generated by the imnvestment
strategies of the insurance company. However, by 1ssuing these contracts,
the insurer 1s exposed to a financial risk, and our objective here will be to
minimize this risk. In this paper we will measure the risk associated with the
contracts using the expected value (under an adjusted measure) of the square
of the difference between the insurance benefits to be paid and the gains
obtained from investments.

The insurance contracts are characterized as contingent claims n an
mcomplete model, such that the insurance claims cannot be perfectly
duphcated by means of self-financing strategics The theory of rnsk-
mimmuzation for mcomplete markets introduced by Follmer and Sonder-
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mann (1986) and developed further by Follmer and Schweizer (1988) and
Schweizer (1991, 1994 and 1995) 1s reviewed and then apphed after a change
of measure. With 1ts present formulation, this theory deals with the problem
of hedging contingent claims that are payable at a fixed ime only. The
analysis of more general claims with intermediate payment times would
require an extension of the original theory of Follmer and Sondermann
(1986), a problem which will be addressed 1n a forthcoming paper by Moller
(1998) Thus, nsurance contracts with payments occurring only at fixed
times are analyzed within the original setup of Follmer and Sondermann
(1986), whereas some modifications are needed in order to deal with
contracts where the sum insured falls due immediately upon the death of the
insured. In the present paper, we assume that premiums are paid as single
premiums and that all benefits are deferred to the term of the contract. In
this way optimal investment strategies minimizing the risk (under the
minimal martingale measure) associated with the assigned contracts are
determined. Since the model is incomplete, risk cannot be eliminated
completely by applying these strategies, leaving some minimum obtamnable
risk (called the intrinsic risk) to the insurer. This minimum risk process 1s
determined for different types of standard contracts and is taken as a
measure of the non-hedgeable risk inherent in the contracts.

In Section 2 we present the combined model and briefly mention some
basic results from the theory of mathematical finance. We also introduce the
basic types of insurance claims to be analyzed in the paper Section 3 1s
devoted to a review of the most important concepts of risk-minimization.
Unit-linked hfe insurance contracts by single premium are analyzed in
Section 4. Section 5 deals with the situation where reinsurance contracts are
traded freely on the market. Finally, some numerical results are presented 1n
Section 6

2 THE MODEL

In this scction the two basic elements of the model, the financial market and
a portfolio of individuals to be insured, are mtroduced. We set oul by
presenting the financial market and reviewing some well-known results from
the theory of mathematical finance for complete markets. When extending
the model by also including a portfolio of individuals to be insured, the
market 1s no longer complete.

Throughout, we let T denote a fixed, finite time horizon and consider a
given probability space (2, F, P).

2.1. The financial market

We consider a market consisting of only two traded assets: a stock with
prices process S and 4 bond with price process B. At any time ¢ these assets
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are traded freely at prices S, and B,, respectively. The price processes are
defined on a probabulity space (2, F, P) and are given by the P-dynamics

(IS, = (1(1, S,)S,([l-i—U(I,S,)S,dW,, (2 1)
dB, = r(t, S,)B,dt, (22)

So > 0, By = 1, where W = (W})gc,<7 15 a standard Brownian motion on the
time interval [0, T]. The filtration G = (G,)y,r generated by this economy
1s given by

gl = U{(Sm le)a u < t} = O'{S,,, u < ’}-

A solution to the equation (2 1) exists provided that the functions o and o
satisfy certain regularity conditions, see e.g. Duffie (1996, Appendix E).
These conditions are assumed to be fulfilled henceforth. Furthermore, we
assume that j;)l r.dt exists and 1s finite almost surely.

The process « 1s interpreted as the mean rate of return of S, and o as the
standard deviation of the rate of return. Similarly r 1s called the short rate of
interest and denotes the rate of return of the risk-free asset The process v
defined by v, = (a, — r,)/o, 1s known as the market price of risk process
associated with S. In addition to the assumptions above, we assume that v
satisfies the integrability conditions from Duffie (1996, Chapter 6). With
constant coefficients ¢, o and r, all conditions are satisfied, and we have the
celebrated Black-Scholes model where S and B are given by

Si = Syexp((cv = 3o?) 1+ oW,) ,
B, = exp(r o).

The model above has been thoroughly investigated in the literature of
mathematical finance, see e.g. Duffie (1996), Bjork (1996) and Lamberton
and Lapeyre (1996). Thus some concepts and results from the theory of
finance, needed repeatedly in the sequel, will be quoted without explicit
reference. Also Aase and Persson (1994) give a brief survey of this theory.

Recall that two measures P and P* are said to be equivalent if, for each
set A € F, we have that P(A4) = 01f and only if P*(4) = 0. By definition, the
probability measure P* defined by

* T u— Tu l r u—F 2
o[ () () ) 2o

1s equivalent to P. It can be vertfied that the discounted price process S*,
defined by

'3 !
S} =58,/B, = Soexp (/ (cy — ry) du+ / a,,dW,,), (2.4)
0 0
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18 a P*-martingale. Thus P* 1s called an equivalent martingale measure In the
above model, the martingale measure 1s unique.

A trading strategy or porifolio strategy is an adapted process ¢ = (£,7)
satisfying some integrability conditions (a precise definition will be given 1n
Section 3). At any time f € [0, 7], & and 7, represent, respectively. the
number of shares and the number of bonds held in the portfolio. The value
process V¥ associated with ¢ 1s defined by

V;p =&S + 0B, (2.5)
and the strategy 1s said to be self~financing if

1 !
e =g+ [ eas,+ [ nas,. 26)
JO J0

forall0 <+ < T According to (2 6), any change in the value of the portfolio
1s generated by changes in the underlying price processes S and B. A
contingent c¢laim with maturity T is a random variable X that is Gp-
measurable and P*-square integrable In particular, X 1s called a simple claim
whenever X = g(Sr), for some function ¢ R, — R. We say that a
contingent claim X can be perfectly duplicated if there exists a self-financing
portfolio ¢ such that V¥ = X P-a.s In this case the claim 1s called arramable.
If all contingent claims are attamable, then the market 1s said to be complete;
otherwise the market 1s referred to as mcomplete. A self-financing strategy ¢
s an arbitrage if V§ < 0and ¥§ > 0orif ¥ <0. 7% >0 P-as.and 2> 0
with positive probabnlnty It 1s well- known that the market deﬁned by
(2.1)-(2.2) and filtration G 1s complete and free or arbitrage under the above
mentioned assumptions

Note that if p = (£, ) 1s self-financing and duplicates the claim X, then
we have the following representation from (2 5) and (2 6)

T T
X =&,Sy + By + £.dS, + / n.dB, (27
0 0

The arbitrage-free price process (F(t,S:))gc,<y associtated with a simple
claim specifying the payment g(S7) at tme 7 can now be characterized by
the partial differential equation (PDE)

—i1(1,8)F(1,8) + Fi(t,8) + r(1,5)sF (1, 8) + %a(l,.s‘)zszf'm(t,s) =0, (2.8)

with boundary value (T, s) = g(s) Here, exemplifying a general notational
convention adopted throughout, F(z,s) denotes the partial derivative of
(1, 5) with respect to s, F,,(7,s) denotes the second order partial derivative
with respect to s, and so on.
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The arbitrage-free price process associated with the claim g(Sr) is also
given 1n terms of the unique equivalent martingale measure by

F(1,S) = E° [Cxp<~ /, " du)g(S-r)|g,} . (29)

(Throughout E£* denotes expectation with respect to P*). Thus, the price is
determined by discounting the T-payment with the asset B and then
calculating the conditional expectation under the martingale measure P*.

2.2. The insurance portfolio

In this paragraph we will introduce a model to describe the lifetimes n a
group of individuals. For simplicity, we assume that the lfetimes are
mutually independent and identically distributed. The 11d. assumption
implies that the individuals are selected from a cohort of equal age x, say,
and we denote by /, the number of persons in the group Mathematically,
this 1s described by representing the individual remaining hfetimes as a
sequence 7, .., T;, of 1.1.d. non-negative random variables defined on
(0, F, P). Assuming that the distribution of T; 1s absolutely continuous with
hazard rate function y,,, the survival function 1s

t
p=P(T, >1) = exp(—/ Josr dT) .
0

Now define a univariate process N = (N,)y.,<r counting the number of
deaths in the group; T

N

No=Y T, <),

=1

and denote by H = (H;)yc,.r the natural filtration generated by N,
ic H,=o{N, u<t} By defimtion, N is cadlag (right-continuous with
left-limits) and, since the lifetimes 7, are 11d., the counting process N 1s an
H-Markov process. The (stochastic) mntensity process A of the counting
process N can be informally defined by

E[dN[ l H/_] = (/\ - Nr_)l.b_\+[(/[ = /\1(/[,

the hazard rate function p,,, times the number of individuals under
exposure just before time 1. The compensated counting process M defined by

t
M, =N, —/ Adu (2.10)
0

1s an H-martingale
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2.3. The combined model

Now ntroduce the filtration F = (F,).,«r generated by the economy and
the insurance portfolio, that is T

]'-, - g[ \% Hl-
We assume throughout that Gr and H 7 are independent and take
F=GrVo{l(T, Su),0<u<T, i=1,.,L}.

At time 0 the insurance company issues an insurance contract for each of the
{, individuals. These contracts specify payments of benefits and premiums
that are contingent on the remaining hfetime of the policyholder, and are
linked to the development on the financial market. During the period [0, 7
the company 1s allowed to trade the assets B and S freely (without
transaction costs, taxes and short sales restrictions) based on the complete
information F Furthermore, we allow for continuous rebalancing of the
portfolio of stocks and bonds in order to hedge against the msurance claims

In the following, we present the two basic forms of insurance contracts to
be analyzed in this paper: the pure endowment and the term insurance. With a
pure endowment contract, the sum msured 1s to be paid at the term 7 i1f the
insured 1s then sull alive. The sum 1s of the form g(S7) for some continuous
function g stipulated 1n the contract, thus depending on the price of the risky
asset at time 7. Some specific functions will be considered as examples, e g.
g(s) = s and g(s) = max(s, K) which are known from the literature as puie
unit-inked and wnir-linked with guarantee msurance policies, sec Aase and
Persson (1994). For each insured person the obligation of the insurance
company 1s given by the present value

H, = I(T, > T)g(St)B7! = I(T, > T)g(Sr)e” o " @2.11)

Here we have adopted widely accepted actuarial usage of the term present
value, 1t 1s taken to be the payments discounted using the bond price process
described by (2.2) Thus, the present value 1s an Fy-measurable random
variable. This usage may bc at variance with the economical one, where
present value typically refers to an Fy-measurable value. The entire portfohio
generates the discounted claim

1,
H =g(ST)B7' > (T, > T) = g(S7)B7' (I, - Nr), (212)

1=1

where (/, — N+) 1s the number of survivors at the end of the insurance
period It should be noted that the undiscounted mnsurance claim H B taken
from (2.12) 1s a function of Sy and Ny only. Insurance claims that are
payable at ime 7 and are functions of S7 and N only will be called simple
T-claums, whereas more general insurance claims payable at time T arc
denoted (general) T-claims
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The term msurance states that the sum msured 1s due immediately upon
death before time T. In this case, we consider a time dependent contract
function g, = g(¢, S;). By the definition of the contract, payments can occur
at any time during [0, 7] and obligations generated by such contracts do not
form T-claims without mtroducing special assumptions. A simple way of
transforming the obligations into a (general) 7-claim 1s to assume that all
payments are deferred to the term of the contract and are accumulated with
the nsk-free rate of interest r. With this specific construction, the heirs of a
policyholder who died at time ¢ would receive the benefit g(¢, S,)BrB, ! at
time T. The deferred payments could as well be accumulated differently, for
example by using some deterministic first order interest rate 6 or by investing
g(t,S;) according to a predefined strategy. These ways of modifying the
contracts by deferring the benefits might seem most reasonable for contracts
with short time horizons, say one year Although time horizons associated
with traditional life insurance contracts are typically much longer, we will
assume that the benefits are actually deferred to the end of the insurance
period. The nsurer’s habilities in respect of a portfolio of term insurance
contracts with payments that are deferred and accumulated using the riskless
asset B are now described by the discounted general T-claim

IN IA T
Hr=B7'> ¢(T,,Sr)By'BrI(T, < T) = / g(u, S.) B dI(T, < w),
=1 =1 70
which can be rewritten as an integral with respect to the counting process N:
T
Hy = / ¢(u1.5.)B. " dN, (2.13)
Jo

Various other insurance contracts can be obtained as combinations of the
pure endowment and the term insurance. For example, with the endowment
insurance, the sum nsured 1s payable at the time of death of the insured
persons or maturity, whichever comes first. The present value of this claim 1s
a sum of (2.12) and (2 13). Throughout, we assume that premiums are paid
as single premiums at ume 0. Thus, the present value of all premiums 1s
simply = = [, - m, where = is the single premium paid by the insured.

In Section 2 1 1t was pointed out that in the complete market every
contingent claim can be represented as an integral with respect to the price
processes S and B, see (2.7). As we will show later, this property 1s not
preserved when the model consists of the assets (B, S) and filtration F
Intmuvely, this follows from the fact that the claims (2 12)-(2 13) are not
generated by the price processes (B, S) alone since the uncertainty
concerning the insured lives contributes essentially to the final outcome of
the claims
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We end this section by discussing choice of martingale measure in the
combined model. For any H-predictable process 4, such that # > —1, define
a likelthood process L by

dL, = L,_h,dM,, (2.14)

and nitial conditional Ly =1 Provided that Ef[L7], a new probability
measure P can be defined by

(—=UT-LT, (215)

where Uy 1s given by (2.3). Using the definition of the measure P and the
independence between N and (B, S) under P we see that §* defined by (2.4) 1s
also a P-martingale: for u < ¢ we have

E[S;UrLr|F.] _E[S;Ur|F.] E[Lr|F.)

Bl = g Lo~ ElOnE LA

E*[S*If”] = u’

using that $* 1s a P*-martingale, and so cach P 1s an equivalent martingale
measure. Due to this non-uniqueness of the equivalent martingale measure,
contracts cannot 1n general be priced uniquely by no-arbitrage pricing theory
alone Actually, all prices

n(P) = E’[H)

for the claims (2 12)-(2.13) obtained by admissible choices of /1 are consistent
with absence of arbitrage. Furthermore, (8, S) and N are independent under
P and, by the Girsanov theorem, the process M” defined by

!
M'=N, - / (1 + by )ddu
0

i1s an (F, P)-martingale. The term Ly in (2.15) essentially changes the hazard
rate in the model to 1., (1 + f1,). In particular, the measure P* defined by
(2.3) can be obtained from (2.15) with # =0 Note that the change of
measure form P to P* does not affect the distribution of N and that M is an
(F, P*)-martingalc.

Throughout this paper we will apply the specific martingale measure P*
defined by (2.3) which 1s also known as the munumal martingale measure, cf
Schweizer (1991, 1995) This particular measure 1s normally appled to
pricing of umt-linked contracts, the motivation being the nsurer’s risk
neutrality with respect to mortality, see e.g. Aase and Persson (1994). Thus,
we consider the probability space (2, F, P*) endowed with the filtration F.
Note that F 1s equivalently generated by the P*-martingales $* and M:

Fr=o{(S;,M,), 0<u<t}.
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In the analysis below, we could equally well apply any of the martingale
measures P defined by (2.15) for adnmussible choices of /i In this case we
would obtain similar results with the hazard rate function p replaced by
(1 +h)p and M replaced by M". However, there do exist martingale
measures which do not preserve independence between (B, S) and N, and
such choices of martingale measures would certainly complicate calculations
in Section 4 greatly.

3. A REVIEW OF RISK-MINIMIZATION

In the previous section, a model describing a financial market and an
insurance portfolio was introduced. It was pointed out that this market is
incomplete 1n the sense that contingent claims cannot in general be perfectly
duplicated by means of self-financing strategies. In this section, we briefly
review some results on the theory of rnsk-minimization, dealing with
incomplete as well as complete markets.

Follmer and Sondermann (1986) extended the established theory for
complete markets to the case of an incomplete market. By introducing the
concept of mean-self-financing strategies they obtained optimal strategies n
the sense of minimization of a certain squared error process. In Follmer and
Schweizer (1988) a discrete time multiperiod model was examined within this
set-up, and they obtained recursion formulas describing the optimal
strategies The theory has been further developed by Schweizer (1991,
1994). Féllmer and Sondermann (1986) originally considered the case where
the original probability measure P is in fact a martingale measure. Schweizer
(1991) mtroduced the concept of local risk-muumization for price processes
which are only semimartingales and this criterion was similar to performing
risk-minimization using the mimimal martingale measure P*

Recall the space (2, F, P*), filtration F and the (F, P*)-martingales $* and
M. The deflated value process V'* 1s defined by

V;*"sz;"B,“lzg,S,*-|—77,’ (3.1

where V% 1s given by (25) From Folimer and Sondermann (1986) and
Schweizer (1994) we have a shightly modlﬁed definmtion of strategies and the
value process. Introducing the space £2(P%) of F-predictable square-
integrable processes £ satisfying

* TZ *:|
E[/O £d(s"),| < oo

they state-
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Definition 3.1 An F-strategy is any process o = (§,m) with £ € Cz(Pg) and n
F-adapted such that the (deflated) value process V¥ s cadlag and
Ve e L2(P*) for all 1.

The cost process C¥ associated with the strategy « s defined by

!
=V’ - / £.dS;, (3.2)

0

and the risk process R of o 1s defined by
Rf =E*[(CF - CYIF,] . (33)

In this definition, the notion risk process is attached to the conditioned
expected squared value of future costs. This usage differs from the
traditional actuarial one, where “‘risk process” would typically denote the
cash flow of premiums and benefits

The cost C¥ 1s the value of the portfolio less the accumulated income
from the asset S. The total costs C/ incurred in [0, r] decompose into the
costs incurred during (0, ¢] and an imtial cost CJ = V¥, which typically 1s
greater than zero. A strategy s said to be mean-self-financing |f the cost
process C¥ = (CY)oc,<7 15 an (F, P*)-martingale. Furthermore, 1t should be
noted that the strategy ¢ = (£,n) 1s self-financing 1f and only 1f

Ve = Vet / £.dS?,

that 1s, 1f and only if C7 = C§ = V¢ P*-as.

Let us now turn to the problem of characterizing the optimal strategies.
We consider a general contingent claim specifying the Fyr-payment H at
time T and focus on adnussible strategies ¢ satisfying

Ve =H as.

By means of admussible strategies, the hedger is able to generate the
contingent claim, but only at some cost defined by C%. In particular, for
attamable claims, C¥ = C§ = V¥ 1s known at time 0.

As a first result, adn11551b]e strategies mimimizing the mean squared error
RY defined by (3 3) are determined. For any admissible o we have

)
co= vy / (ST = H— / £.dS", (3.4)
0

hence

T 2
R =E[(CF-Cpy] = [(H - / £,dS? — Cg’) } . (3.5)
0
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and so Ry 1s mimmized for C§ = E*[H| (= E*[C7]). Thus, we should choose
£ so as to mintmize the vanance

E'[(ch - E(cf) (3.6)

This criterion does not yield a unique strategy, but it characterizes an entire
class of strategies all mimimzing the mean squared error (3.5). The non-
uniqueness of the optimal admussible strategy 1s a natural consequence of the
simple criterion of minimizing (3.5), which involves only the value of the cost
process C¥ at time T, given by (3.4) Furthermore, note that H = £7S% + 07,
which does not depend on (7)yc,c7- Thus, we should not expect the
minimization criterion associated with the squared error (3.5) to impose any
constraints on the number of bonds held in the time nterval (0, 7).

The construction of the strategies is based on an application of the
Galtchouk-Kunita-Watanabe decomposition, see Follmer and Sondermann
(1986). Defining the nrincic value process V* by

Vt* = E*[H|‘F1] )

and noting that V* s an (F, P*)-martingale, the Galtchouk-Kunita-
Watanabe decomposition theorem allows us to write V' umquely in the
form

!
Vv =E'[H] +/0 elhass + LY, (3.7)
where LY = (L"), .7 1s a zero-mean (F, P*)-martingale, L” and S* are

orthogonal, and ¢# is a predictable process in EZ(PE). By applying the
orthogonalty of the martingales L” and S*, and using V= H, Follmer and
Sondermann (1986, Theorem 1) prove.

Theorem 3.2 (Foéllmer and Sondermann) An adnussible strategy ¢ = (€,7)
has muumal variance

B [(cp—mieny] =& [@h)]
of and only if € = €1,

Note that 1f, furthermore, the number of bonds held at time 0 1s determined
such that the initial value of the portfolio equals E*[H], 1.

no = E"[H] — &Sg,

then Ry = E° [(C?;—E*[Cﬂ)z]. Thus, the variance is interpreted as the

minimal obtainable risk.
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A more precise result 1s obtained by looking for admissible strategies,
that 1s V¥ = H, mmimizing the remamning risk, defined by RY at any tume 1.
Such strategies are said to be risk-nunimizing. Now fix some admissible
strategy v When considering the remaining risk RY at some point in time ¢,
only admissible strategies ¢ coinciding with ¢ in the interval [0, 1) should be
compared. This condition ensures, that the cost processes are given by the
same value C¥ = C7 al the ume of consideration In this case the strategy @
1s said to be an adnussible continuation of ¢ at time ¢, see Follmer and
Sondermann (1986) for more details. The risk-minimmizing strategy,
minimizing the risk process (R} )oc,<7 1s determined by Follmer and
Sondermann (1986, Theorem 2). T

Theorem 3.3 (Follmer and Sondermann) There exists a unique admissible
risk-nuninuzing strategy o = (€,m) given by

(Enm) = (€M, vV —glishH, 0<e<T
The associated risk process is given by RY = E* [( LI — L1 ]:,}

The nisk process associated with the risk-minimizing strategy 1s also called
the wntrinsic risk process

4. UNIT-LINKED CONTRACTS WITH SINGLE PREMIUM

In this section, we apply the technique of risk-minimization in the
investigation of the insurance contracts introduced n Section 2. An
important step will be the construction of the decomposition (3.7) of the
present values (2.12)-(2.13). Having determined this, risk-mimnimizing
strategies and the intrinsic risk process associated with the pure endowment
and the deferred term insurance contract can be determined by Theorems 3.2
and 3.3.

From the classical actuarial theory it 1s known that in the case of fixed
premiums and sum insured, the “‘relative risk” associated with the portfolio
decreases as the size /, of the portfolio increases. More precisely, this means
that the ratio between the standard deviation of the present value of all
payments and the size of the portfolio /, will converge to 0 as /, 1s increased
In the present set-up, we cannot expect such results since the payments
associated with different insurance contracts are now hinked to the same
asset and hence are no longer stochastically independent. However the initial
intrincis risk Ry can be taken as a measure of the nisk associated with
the non-hedgeable part of the claims, and we will accordingly examine

the ratio Ro//,
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4.1. The pure endowment
Consider the claim with present value H in (2.12);
H = g(Sr) B! (I = N7), “@n
and define the (deflated) intrinsic value process V* = (V) <1 by
Vi =EH|F],

for all ¢ € [0, T]. Due to the stochastic independence between N and (B, S)
under P*, we get

Vi =E(h - Nr)|F)B'E [¢(ST) BB | F] (4.2)
Here, the first faclor 1s eastly determined as

=Y BT, > T)|T, >

1 Ty>t

l,
E*[(l\ - NT)lfl] =FE" [Zl(ﬂ > T)‘]:I
=1

= Z T—tPxt+r = (/\ - N/)T_,P.H-h

1 T,>t

that 1s, at any time ¢ the expected number of individuals alive at the time of
maturity 7 1s simply the number of survivors at time ¢ multiplied by the
probability 7_,p.,, of survival to T for an individual, conditional on his/her
survival to t. The second factor in (4.2) corresponds to the representation
(2.9) of the unmque arbitrage-free price process associated with the simple 7-
claim g(S7) in the complete model with filtration G. In the present model,
the insured lives are included in the filtration F, and arbitrage-free prices are
in general not unique. However, as N and (B, S) are stochastically
independent, the conditional distribution of (B, §) given F, does not depend
on information concerning the insured lives H, and thus

E [g(ST)B,B}'U:,] =E" [g(ST)BtB;Ing:I = F*(1,S,),

where the function F¥(r,s) satisfies the same second order PDE as 1n the
complete case (2.8). Consequently, we arrive at the expression

Vi=(h- N’)T—lp"HBI—‘Fg(” Si). (4.3)

The process ¥* can be interpreted as the market value process assoctated
with the entire portfolio of pure endowment contracts, using the pricing rule
P*. In particular, the mtial value Vj=/rp.F8(0,S) 1s a natural
candidate for the single premium for the entire portfolio. This specific
choice of single premium would be 1n accordance with the well established
actuarial principle of equivalence (stating that premiums and benefits should
balance on average), but exercised under the martingale measure P*
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Applying the 1t6 formula to (4.3), we get

!
V,* =V5 +/ (/\ - Nu—)B,?ng(uaSu)T_,lp\+11/14\+udu
0

b [ = M) B 80+ 3 (V2= VL),

O<n<t

To determine the integral involving d(B; ' F&(1,S,)), recall the definition of
the deflated price process S7 = §,B;"', implying that

dS, = S:dBI -+ B’(IS:( == S,i',([/ + B,[IS;.
Using the Ito-formula and the PDE (2.8). 1t 1s seen that
d(B7'F8(1,8)) = —r(t, S))B F¢(1, S,)dr

|
+ B! <F,"'(t, Sodi + FY¥(t, S,)dS, + 5 FE(t, S)o (1, 51)25,2(”>
= F&(1, S,)dS;
Also, since
I
S =V == [ B P S s N
O<u<t 0

we obtain.

Lemma 4.1 For the conungent claim H m (4.1) the process V* defined by
Vi =E*[H|F/] has the decomposition

= Vi + /g”ds* / vitam,,

where (1,011 are given by

7=l = N rop s FR(1,S)), (4.4)
v = =B F8(4,8) o s, 0S 1S T (453)

Admissible strategies minimizing the variance

B |(CF - B [Cf))] (4.6)
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can now be characterized by applying Theorem 3.2 and Lemma 4.1. By use
of the Fubimi theorem, the associated minimum obtainable variance 1s
rewritten as

oL 20 -t

T
=F [/ B F (20, 8u) 7 _ ‘p\+,,) /\,,du}
0

T
/ E‘ B Fg u S,,)) ] r_,,pf+,,E*[(/\ _Nll),u‘.\-i-u] du
0

T

= E* B Fs Ll Su)) } T—up_%_;_,, IN uPx Bntu du

=/ TP\ / E* [(B,,—IFg(uasu))z] T—uPstu tr+u du (4 7)
JO
Thus we have obtained

Theorem 4.2 Consider the pure endowment given by the conungent claim H in
(4 1). Adimussible strategies ¢* puninuzing the variance (4 6) are deternuned
by
E,* = (1\ - N,_) r- 1/7\+1F\g(f751)7 0<t LT,
np=H - ST

The muumal variance is given by (4.7)

The insurance company 1s able to reduce the total risk associated with the
portfolio of unit-linked insurance contracts to the “intrmsic nsk™ R, by
following a strategy according to Theorem 42 which also satisfies
Cy = E*[H] In particular, it 1s seen that R} is proportional to /,, implying

that the ratio between /Ry and /, converges to 0 as /, converges to infinity

Before determining the unique risk-minimizing strategy, we present one
specific strategy from Theorem 4 2, see Follmer and Sondermann (1986,
Example 1).

Example 4.3 We shall present one strategy ¢ that does not require any extra
investments during the time interval (0, 7). It 1s self-financing on (0, 7T),
followed by a possible extra payment at time T Define the strategy by

=67 0<1<T, (4.8)

n = E*[H] + / £dS: — 68, 0< 1< T, (4.9)
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and nr = H — {rS%. By definition, this strategy 1s self-financing on the
interval (0, 7). Substituting the decomposition of A from Lemma 4.1 into
the expression of 77, we gel

T T
mr=H =Sy =B [0+ [ elasi+ [ vllas, - grs;
JO [}

Likewise we have from (4.9) that

T— T
nr- =E*[H] + ST — Er_Sh_ = E'[H] + / £.dS” — £7 83,
0 0

which proves that

T
nr —Nr- = / l/lfla'M,, = L;’
JO

Thus, the loss L¥ 1s an extra payment/investment to be made at tume 7 in
order to satisfy the condition of admissibility.

The vanance-minimizing trading strategy in Example 4.3 represents a very
simple dynamic portfolio strategy from the point of view of the insurer.
According to this strategy he i1s to make an imitial investment at time 0 in
stocks and bonds. During the time interval (0, 7) this portfolio 1s then
adjusted continuously without any additional inflow or outflow of capital as
defined by the equations (4.8)-(4 9) At the term T the insurance company
now provides the difference LY between the claim H and the value V%_ of
the portfolio However, there are reasons why this strategy should not be
applied. Indeed, 1t does minimize the variance or the imtial ntrinsic risk, but
at any time 7 during the insurance period the value V¥ of the portfolio will 1n
general not equal the conditional expected present value of the claim V.
Since this difference may be substantial due to adverse development within
the insurance portfolio, one should at least require that the value of the
portfolio equals ¥} n order to cnhance the solvency of the insurer This
additional requirement, n addition with the mimimal vanance criterion, 1s
actually sufficient to determine the unique risk-minimizing strategy . The
assoclated intrinsic nsk process 1s described in Theorem 3 3, and we get

T 2 T
E* [(L’Tl - L,H)2 [ .7:,] =FE [(/ V,?(/M,,) |.7-',] =FE* [/ (uf)z/\,,du|.7i]
1 H
r 2
_ / B [ B [0 = Nl 7]

' T
=(/, - N,)/ E* {(Vl’ll)2|]-",] u—tPrtr fata du. (4.10)
H
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From Theorem 3.3 we now have:

Theorem 4.4 For the pure endowment given by the contingent claim (4.1) the
unique adwussible risk-nunimizing strategy s grven by

fr = (l\ - Nl—) T—Ip\+-IFyg(I)Sl)1
n; = (L — N T—rP.\+tB,_1Fg(fa S)—-¢S8;,0<:1<T

The ntrinsic risk process R? s given by (4 10)

In the model the insurance company 1s allowed to trade the assets S and B
continuously, thus being able to hedge all contingent claims involving these
assets only. This eliminates a part of the total uncertainty, leaving only the
uncertainty of “'not knowing how many of the insured persons will die in the
insurance period”. The latter 15 described by the martingale M, which
generates the insurer’s loss L.

dL!" = vdM, = — B F5(1,S,) 7_per(dN, — \dlt). (4.11)

The insurer adjusts his trading strategy according to the conditional
expected number of insured persons surviving the insurance period. During
the infinitesimal time interval [¢, 1 + dr) the insurer will experience the gain
dM, muluplied by the term B[ 'F#(1,S,) 7_,p.s, ., the latter denoting the
price at time ¢ of one security with payment g(Sr) at time T contingent on
the survival of some individual That s, a death will produce an immediate
gain for the insurer due to the downwards adjustment of the expected
number of survivors, whereas no deaths will cause a small loss The
expression (4.11) for the loss 1s similar to the one obtained by Norberg
(1992) for general payment streams., using a quite different approach. With
this terminology, the term (v B,) 1s recognized as the sum at risk at time 1.

We now turn to some examples in the case of constant deterministic short
rate of interest, constant drift term «, and volatility parameter o on S. We
will investigate three different contract functions: pure unit-linked, where
g(s) = s; unit-hnked with guarantee, where g(s) = max(s, K); and the case of
deterministic benefits, g(s) = K

Example 4.5 Consider a standard Black-Scholes market, where all
coefficients r, @ and o are constant. Let the contract function be of the
simple form g(s) = s, 1e. the insured 1s to be paid the value of the stock at
the maturity date. In this case, the process (F4(t,S/))o<,<7 1S easily
determined as T

F8(1,S,) = B [e—'(T-'>ST|f, _s,
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implying that F8(¢, S;) = 1. The intrinsic value process 1s
V,* = (/\ - Nz) T—tPr+1 e"'S, = (/_\ - N1) T=1P\+1 S,*;

and n particular V§ =/, rp. §;. From Theorem 4.4 we have the unique risk-
minimizing strategy

(&,m) = (= Ni2) 72Prg, = AN, T2 ST ) (4.12)
where AN, = N, — N,_. Finally, we have thec aggregated loss

T
L“ = — / S:; T—uPv4u dMu:
J0

and the intrinsic risk process

T
Rllp = (l\ - NI) T—Ip\+I/ E* [(S;)2|]:I] T—ull\+u Hatu du
1

T
= (/\ - N/) T—I/)\+I(Sl*)2/ (')02(”_[) T—1Px+u Hadu du
/

The risk-minimizing strategy given by (4.12) 15 casy to interpret: at any time 7
the nsurance company should hold a number of stocks, corresponding to
the expected number of surviving individuals Since the number of stocks is
controlled by a predictable process &, some adjustments are made each time
a death occur within the portfolio in order to ensure that ¥ = V7 for all +.
This 1s described by the adapted process 1), which denotes the amount to be
cashed by the insurance company n connection with the observed death.

Example 4.6 Now consider the contract function g(s) = max(s, K), where K
1s some non-ncgative constant. Note, that K = 0 1s just the case treated
above in Example 4.5 As n the previous example, prices are described by a
standard Black-Scholes market.

Writing the contract function max(s, K) on the form K + (s — K)", the
process (F4(1, S))g<,<7 can be evaluated by means of the well-known Black-
Scholes formula

Fe(1,S,) = E* [e"(T"’)(K +(S7 - K)+)]f,]
= K70 4 (S,<I>(z,) — Ke 108 (z, —oV/T = 1))
:Ke"(T_’)<D(—z,+a\/T—f> + S,8(z,), (4 13)

where ® 1s the standard normal distribution function and

__log(Si/K) + (r +a*/2)(T = 1)
o oVT — 1 '
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In particular, the first order partial derivative 1s F#(r, S;) = ®(z,). Thus, the
risk-minimizing strategy 1s given by

&= =N_) roipsi®(z0), (4 14)
m = (I.\ - N/) T—tP+r e_”Fg(’a S:) - (/.\ - Nl—) T—IP\+I(I)(T-'1)S,*

=, = N;) 7=tDvss Ke"’Tq)(—z, +ovVT - r>
— AN; 7opr 1 ®(20) ST (4 15)

and the intrinsic risk process R¥ 1s now given by

T
R:p = (l\ - Nl) T—I/)\+I/ E* [(efrqu(u,S”))Zl]_-Ijl T =1 4u Pxtu ([ll,
!
with F¥ defined by (4.13).

Example 4.7 As a last example, consider the case of deterministic benefits,
that 1s g(S7) = K for some non-negative K. Here, the risk-minimizing
strategy 1s given by

(&) = (07 (k= Ni) 7P Ke _IT) > (4.16)

and the ntrinsic risk process 1s

T
R? = (. = N;) 7_uPvis / K2e™ T r_up i g dut
S

=/ -N) T—rP\+f(1 - T—Ip\+t)K20~2rT-

In Example 4.5-4 7, we have determined risk-minimizing strategies for three
different contract functions, 1in the setting of a standard Black-Scholes
market. The strategies are associated with an entire portfolio /,; single-hfe
strategies are obtained by specializing to /, = 1. For example, the strategy
(4 14)-(4.15) for a single life becomes

E=1(T > 1) r_ipas®(2)), (4.17)
m=1(T) > 1) T_,p_\+,Ke_’T<I>(~z, +ovVT — t)
—I(Th =1) 7-p 2 2(2,)S], (4.18)

and the intrinsic value process is
Vi=IT >1t) T_,p\+,(Ke_’T<I)<—z, +oVT — I) + Sf@(z,))
The process V* 1s in a sense similar to a traditional prospective reserve. First,

an indicator function appears, which guarantees that the reserve 15 only
different from zero as long as the policyholder 1s still alive. The rest of the
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terms are interpreted as the conditional expected present value of the
insurance benefit, given the policyholder 1s alive at 1. Provided that the
policyholder survives to the matunty date, that 1s 77 > T, the nsk-
minimizing strategy (4 17)-(4 18) for a single life reduces to the strategy

(5?777?) = <T—1P\+I‘I’(31), T—IP.\+1K€_'T(I)(—ZI + U\/T—“—f>),

which 1s exactly equal to the corresponding duplicating strategy obtained by
Aase and Persson (1994). The result (4.17)-(4.18) 1s to be interpreted as
follows: As long as the policyholder 1s alive, the insurance company should
hold a portfolio, where the number of stocks 1s determuined as the probability
7P+ Of survial to T conditioned on survival to 1 times the factor ®(z,); the
latter 1s recognized as the hedge from the Black-Scholes formula of a
European Call Option. If the policyholder dies before the maturity date 7,
the insurer immediately cashes the reserve, as is apparent in the definition of
7. These interpretations are easily carried over to the situation where the
insurance portfoho consists of more than one individual In this case, the
numbers of stocks and bods held are adjusted in accordance with the
conditional expected number of survivors to T, that is (/\ — N))_pups
Thus, the nsk-minimizing strategies reflect the actual development in the
msurance portfolio, and bring to the surface the uncertainty associated with
the insured lives. For example, we obtain expressions for the intrinsic rnisk
processes, which serve as characterizations of the non-hedgeable risk
imherent 1n a portfolio of unit-linked contracts. In Section 6 we present
some numerical results 1n the set-up of Examples 4.5 and 4.6 obtained by
Monte Carlo simulation.

4.2. Term insurance

Now consider the term msurance with single premium 7* paid at time 0. The
payments generated by this contract are described by the discounted claim

T
HT=/ g(u, 8,)B;dN, (4.19)
0

An mmportant step s the construction of the decomposition for the intrinsic
value process for Hy First of all, observe that

t T
Ve =EH7|F) = / g(u, S,)B; dN, + E* [ / g(u, S,)B;'dN,| F,
0 !

I T
- / e(u, S) B dN, + / B (1, S) (1 = N et fisa dit
0 4
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where

Fo(1,8) = B | g0, 8,) | G,

1s the umque arbitrage-free price at time ¢ of the simple u-claim g(u, S,;) 1n
the complete model with filtration G. Secondly, by calculations similar to the
ones in the previous section, we see that

d(B;'F&(1,S,)) = F&(1,S,)dS;

Using the general It6 formula and the Fubim Theorem for It processes, see
Ikeda and Watanabe (1981), V* can now be rewritten as

1
Ve= v} +/ (=B7 ' F¥ (7, Sr)paer (I = Ny)) d
0

t T
+/ (g(T, ST)BT_I - / BT_IF "(Tu ST) u--rp\+'r/1'.\+udu> dN‘r
0

JT

1 r
+ / </ B:ngu (7', ST) u~7‘p\+'r,u'\+ud“) (l\ - NT—)/".\'+T(]T
J0

T

l T
+ / ((/\ - N‘r~)/ F?" (Tu S‘r) II—TP\'+T/‘[‘,\'+Hdu) dS-,*—
JO T

Upon gathering terms, and using F#/(t,S,) = g(t,S;), we obtain a decom-
position corresponding to Lemma 4 1:

Lemma 4.8 For the claim Hy i (4.19) the process V* defined by
V! =E"[Hr|F/] has the decomposition

=V;+ /f”dS* / vl am,,

where (€1, 0") are given by

T
pr = (,\ _NI—)/ tu—tPa+e /l,‘+,, (’ S:)d (420)

l/[H :g(’asl)Bl_l - / Fg'(’ S) t u—t Pyt ftu du (421)

St
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Using Theorem 3.3 we have now proved:

Theorem 4.9 For the term nswance given by the contingent claim (4.19) the
umque admissible risk-nuninuzing straregy is given by

T
{,* = (/\ - N{—)/ F;g"(f’ S[) w—1P\+1 Ha+u d":
'

! T
777‘ = / g(L[, S”)B;l(/N” -+ ([\ - N,)/ BI—IF‘E"(f, S/) u—tPatt fotu du
JO t
_51*51*7 OS’S T.

The mtrmnsic risk process R¥ is given by

T
R = (= N) [ B [WIVIF] aeaposs s
JI
where v 1s taken from (4 21).

To give the resulting portfolio an interpretation, note that ¢ = (£,7) 1s
determined such that

' T
vt = [ gl 5087 N, + B [ | ews)Bam|7,
0 !

Thus, V7 1s determined as the sum of the benefits sct aside to deaths already
occurred and the expected discounted value of payments associated with
future deaths

As in the case of the pure endowment, the term v/ denotes the immediate
loss due to the death of one of the insured persons. Here, the insurer has to
set aside the sum insured g(1,S;) immediately upon a death within the
portfolio at time ¢. In connection with the incurred death, the insurance
company adjusts 1ts expectations regarding the further development of the
msurance portfolio. Since the number of survivors has been reduced by one,
the insurer now reduces his reserves by the amount

T
/ Fg“(’v SI)BI‘I u—tPa+1 frtu du,
'

which 1s the expected discounted value of future payments conditional on
survival to time ¢.

Example 4.10 Consider a unit-hinked term insurance contract with guarantee
in the case of a standard Black-Scholes market. Let the contract function be
on the form g(u,s) = max(s, Ke®), that 1s the guarantee 1s adjusted in
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accordance with some constant force of inflation § The functions F®«(1,s)
are determined by

Fo(1,8,) = Kee~r =0 (-:E"’ + o= z) + 8,3(z"), (4.22)
with
) _ log(Si/Ke™) + (r + 0*/2)(u — 1)

<t

ovu—1

Using Theorem 4.9 we find the risk-minimizing strategy

r
&=(h— N/—)/ u—tP\+i ;L\+,,(I)(:'$“))du,
{
T
= (I, —N,) / u—t1Pra+1 M\-+11Ke_(r_b)"¢’(_:5u) +ovu—1t)du
!

! T
+ / ¢(u, S,)B;'dN, — AN, / wiPrst @ (=) S*du.
0 Ji1

The intrinsic risk process 1s also determined by that theorem upon inserting
the functions F% from (4 22) in (4.21).

5. EXTENDING THE FINANCIAL MARKET

In the previous sections we have analyzed a model where the financial
market consists of two assets only, namely a risk-free asset B (the bond) and
a risky asset S (the stock). That model, which also describes the development
of a given portfolio of insured lives, is incomplete. We considered two
different basic types of insurance products, and in both cases risk-
minimizing strategies were constructed and the corresponding intrinsic risk
processes were determined. Due to incompleteness, the risk could not be
eliminated completely and thus some uncertainty regarding the course of the
insured lives in the portfolio (the intrinstc risk) remains with the insurance
company.

The present section is devoted to a brief investigation of the situation
where the financial market 1s extended by a third tradeable asset that is
related to the specific insured lives. As in Section 4, focus will be on the pure
endowment, but all results can be repeated for the term msurance and the
endowment surance as well. Furthermore we restrict the analysis to the
case where the risk-free interest rate r 1s assumed to be constant.

In addition to the assets (B, S) with prices processes defined by (2 1) and
(2.2), respectively, we introduce an asset with price process Z = (Z,)y<, <7
where T

Z,={l, = N/) r-iD e e~ 0, (5.1)
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The mitial value Zy = /, 7p, ' 1s equal to the price at time 0 of /, standard
pure endowment contracts with sum insured | calculated on a valuation
basis consisting of the mortality hazard function j¢, and the risk-free interest
rate r. Assuming that premiums are paid as a single premium at time 0, Z,
represents, at any time 0 < ¢ < T, the traditional prospective reserve for the
portfolio. This reserve 1s calculated as the conditional expected value of
future benefits, given the current number of survivors (/, — N,). The
introduction of this extra investment possibility 1s motivated by the existence
of remsurance markets, where the direct insurer 15 able to reduce his total
risk by selling some part of the insurance portfolio. Trading on the
reinsurance markets will typically be controlled by certain restrictions such
as short-selling constraints and upper limits for the amount reinsured.
However, in the present formulation we do not impose any restrictions on
the trading of any of the three assets

As an example, let us now consider an insurer facing the contingent claim
arising from the portfolio of pure endowment unit-linked contracts with sum
insured g(St) for the portfolio, that 1s

H = (I, — N7)B7'g(St), (52)

and assume that the msurer 1s allowed to trade continuously on the extended
market (B, S, Z) Note that the asset Z depends on the uncertainty from the
insured lives only and evolves independently of the other assets (8, S). The
insurance claim H, however, depends on both sources of uncertainty.

Define the deflated price processes S* and Z* by §* =S§/B and
Z* = Z/B, respectively. In this new setup a trading strategy 1s a sufficiently
integrable process ¢ = (£,9,n), where & and ¢ are F-predictable and » 1s
F-adapted. At any time ¢, 9J,, & and 1, are the number of units held of
standard pure endowment contracts, stocks, and bonds respectively, and the
(discounted) value process V¥ 1s now given by

V=¢8I +9,Z +n,

We set out by verifying that the measure P* defined by (2 3) 1s a martingale
measure for $* and Z*. It already follows from the calculations in Section 4
that §* 1s an (F, P*)-martingale, and the process Z* 1s obviously also an
(F, P*)-martingale, stnce

(/\ - N/) T—tPrdt = E*[([.\ - NT)lfl] .

From the decomposition for the intrinsic value process V* for (5.2) and a
similar representation result for Z* with respect to M, we obtain

t !
V= v+ / £1dsS? + / 9Haze,
JO 0
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with
(6,01 = (L = Neo) rop o FE(L S, TR, S)). (53)

The intrinsic value process V* has now been rewritien as a sum of two
integrals with respect to the price processes S* and Z* This implies that the
contingent claim H associated with the pure endowment can be replicated by
means of self-financing strategies in terms of the three assets (B, S, Z). We
can summarize this result by

Theorem 5.1 Consider the pure endowment with present value (5.2) and
assiume that standard pure endowment contracts with sum msured 1 are traded
freely on a financial market with constant short rate of wmteresi. A self-
financing admussible (risk-mimmizing) strategy o* 1s given by

5; = (/\ - Nl—) T—/P\uFf(’aS/)a (5 4)
19;. — el(T I)Fg(l,S,), (5 5)
W=V S -0, 01T (5.6)

Furthermore, the intrinsic risk process R” is identically 0.

The msurer 1s now able to eliminate the risk associated with the insurance
claims completely by following a strategy in accordance with Theorem 5 1

According to this result. the insurer should not only adjust the portfolio of
stocks and bonds continuously — also the portfolio of reinsurance contracts
should be contiuously rcbalanced. By some simple calculations involving
(5.4) and (5.5), formula (5.6) can be rewnitten as

77: = —(/\ - Nl—)T /17\HF§(,’S’)SI‘ = _£7S7

Furthermore, ¢* satisfies V; =9;Z;. Thus, the self-financing (and risk-
minimizing) strategy consists of a number J* of shares of standard pure
endowment contracts on the portfolio of insured hves, which 1s adjusted
such that the value 9 Z, exactly equals the intrinsic value process V" at any
time ¢ € [0, 7] When allowing trading of reinsurance contracts, the criterion
of risk-minimization simply states that all risk should be surrendered to the
remnsurer. Furthermore. the number of stocks £* to be held 1s the same as in
the situation where standard insurance contracts are not traded. By the
above calculabions, we see that this position is financed by an equivalent
short position n* 1n the nsk-free asset. that 1s, 1; = —£'S;.

We end this section by mentioning that P* would not be a martingale
measure for Z* had we defined the price process Z = (Z,)<,<7 by

Z=(l - Nr)7‘_/1)\+1€_h(TA’)-
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Here, the nsk-free mterest rate r has been replaced by some first order
interest rate 6 # r. In this case, a martingale measure P for (Z*, S*) could be
defined by (2.15) with /i, = (6 — r)/ i+, provided that &, > —1 for all ¢. Thus,
mn turn, would mmpose unique arbitrage-free prices for the umt-linked
contracts that differ from those computed using the minimal martingale
measure P*

6. NUMERICAL RESULTS

We round off by presenting some Monte Carlo simulation results We
consider the pure endowment where the sum insured 1s due at the matunty
date if the insured 1s then still alive. Premiums are assumed to be paid as a
single premium at time 0 The contract functions from Example 4.5-4 6 will
then be examined by evaluating the mitial value of the intrinsic risk process
Vs, the mitial intrinsic nisk Ry and the risk-increase associated with some
simple (pieccwise constant) strategies. Since these quantities are proportional
to the size of the portfolio /,, recall c.g. (4.3) and (4.10), we consider an
msurance portfolio consisting of only one individual, that 1s, we take /, = 1.
Furthermore we take the age of the policyholder to be x = 45 upon 1ssue of
the contract, and fix the term of the contract to be 7 = 15 years. We use the
Gompertz-Makeham hazard function as mortahty law of the policyholder

ftarr = 0 0005 + 0.000075858 1.09144** >0,

which 1s used 1 the Danish 1982 technical basis for men. With this mortality
law, the conditional probability (spss of surviving another 15 years given
survival to age 45 15 0 8796 The basic financial market 1s standard Black-
Scholes with parameters o = 025 and r = 0.06. that 1s, the deterministic
risk-free interest 1s 6% and the volatility of the stock is 25% Furtherniore,
we take So =1 and By =1 The importance of the volatility parameter 1s
illustrated by considering, 1n addition, the case of small market volatihty
(0 = 015) and large market volatility (¢ = 0 35).
The value at time 0 of the intrinsic value process V*, given by

Vo =1 rp F4(0,5)), (6.1)

1s evaluated by simply inserting the parameters (r, o) and Sy =1 1n the
function F* determimed in Example 4 5 and 4.6. Results are listed 1n Table |
for different choices of guarantees, the pure umt-linked msurance
corresponds to guarantee K = 0 The mmitial intrinsic risk Rg 1s given by

T
Ro=FE" |:l\ TP\ / (e—ran(u, Sn))z T—uP+u Hatu du > (6 2)
0

and since_we have no explicit expression for the expected value of
(F&(u, Sy))", we apply Monte Carlo simulation combined with numerical
integration 1n order to evaluate (6.2)
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The price process for the stock S under P*
Sl — e(r—%ﬂ'z)l+aiV, (63)

can be simulated by simply simulating a standard Brownian motion
and nserting this in (6.3). Let n = 100 be the number of time intervals
per time unit (one year) and denote by Af = | /n the mesh of this partition.
Also let M denote the number of paths of S to be simulated and let
sj('"), m=1, ., M,j=1,..,T nbca scquence of simulated independent
standard normal variables The simulated versions S™ of (6.3) are
determined as

alm 1 A 1
S,E, ):exp<(r—502)k-At+ZavAt€j( )>, k=1, ., T-n,m=1, M,
2 =

where S,(('") has same distribution as Sia,. The mutial nsk Ry 1s now
approximated numerically by applying Monte Carlo simulation for the
integral (6.2) which is discretized using the so-called summed Simpson rule,
see e.g. Schwarz (1989). In all computations we apply the step size
Ar=1/100 In Table 1 we have also presented the estimate for Ry and the
standard error on this estimate based on M = 300000 simulated paths for
o = 0.15and 025 and M = 500000 for ¢ = 0 35.

TABLE |

THE INITIAL INTRINSIC VALUES AND RISKS ASSOCIATED WITH UNIT-LINKFD PURE ENDOWMENT CONTRACTS
FOR YARIOLS CHOICFS OF GUARANTEF AND VOLATILITY

Guarantee (K) Vs Ro (std.dev.) VRV,

=015 0 08796 0131 0411
05 exp(rT) 0 8996 0134 (0 0002) 0 407

exp(rT) 10807 0173 (0 0002) 0385

(M = 300000) 2 exp(rT) 17993 0 446 (0 0001) 0371
=025 0 08796 0 194 - 0501
05 exp(rT) 09580 0 205 (0.001) 0474

exp(r T) 1 2066 0261 (0 001) 0422

(Af = 300000) 2 exp(rT) 19161 0538 (0 001) 0383
o =035 0 0 8796 0365 0687
05 exp(rT) 10255 0 380 (0 005) 0 608

exp(rT) 13213 0 449 (0 005) 0513

(M = 500000) 2 exp(rT) 20511 0743 (0 005) 0423




RISK-MINIMIZING HEDGING STRATEGIES FOR UNIT-LINKED LIFE INSURANCE CONTRACTS 45

The unrestricted nsk-minimizing strategies are not applicable 1n practice,
since they are based on the assumption of continuously adjustable
portfolios. However, the expressions can be used as a guide 1n practical
portfolio administration. For example, the insurer could apply a piecewise
constant strategy on the form

J

&= I (o, 48, (6.4)

=1

where € denotes the unrestricted risk-mimimizing strategy determined in
Section 4. Thus, the portfolio of stocks 1s adjusted at fixed times
O=rn<n< < ty_1 <ty =T, asanapproximation to the continuously
adjustable risk-mimimizing strategy. Here, we have chosen f =, and
t, = /12, which implies trading once a year and once a month, respectively.
In Table 2, we have lIisted the risk-increase associated with the piecewise
constant strategies (6.4), obtained by evaluating the expression

J y
Z E* / (f,, - &, )20“25';2(&1
J=1 Ul

In Moeller (1996) optimal simple strategies are derived by means of some
heuristic calculations

TABLE 2

THE RISk INCREASE ASSOCIATED WITH SIMPLE STRATEGIFS WITH YEARLY AND MONTHLY ADJUSTMENTS
FOR UNIT-LINKLD PURE ENDOWM1I NT CONTRACTS

K Ry Yearly (std. dev.) Monthly (std. dev.)
o=015 0 0131 00015 - 0 00012 -

05 exp(rT) 0134 00014 (15 10°% 000012 (13 10°7)

exp(rT) 0173 00011 (16 10°%) 000009 (13 1077)

(M = 1000000) 2 exp(rT) 0 446 00004 (14 10°%) 000003 (11 1077)
=025 0 0194 0 0060 0 00051 -

05 exp(r 0205 00058 (19 107%) 000050 (16 10°%)

exp(rT) 0261 0 0051 (19 107%) 000044 (16 10 °)

(M = 1000000) 2 exp(rT) 0538 00040 (19 10°%) 000034 (16 10 %)
c=035 0 0365 00225 - 000187 -

05 exp(t7) 0380 00218 (31 10% 000186 (26 107%)

exp(rT) 0449 00209 (31 10% 000178 (26 107%)

(M = 1000000) 2 exp(rT) 0743 00193 (31 10 000160 (26 1075)




46 THOMAS MOLLER

With volatility parameter ¢ = 0.25, the ratio between the square root of the
initial intrinsic risk /Rp and the mtrinsic value process ¥ 1s 0.5 for the pure
unit-hnked life insurance, see Table |. By increasing the size /, of the
portfolio to 100, say, the corresponding ratio 1s reduced by the factor
v 100/100 =0 1 to 0 05. As mentioned in the previous sections, Vg can be
interpreted as a natural candidate for the single premium In non-hfe
insurance premiums are often increased by adding a safety loading, typically
twice the standard deviation of the total hability This procedure would lead
to a safety loading about 2 - 5%, that is 10% when /, = 100. Furthermore, 1t
1s noted that the minimal risk associated with the simple strategy (6 4) with
trading once per year 1s only 0.006 higher than the minimum obtainable risk
Ry = 0.194. Thus corresponds to an increase of 3 1% Thus, the uncertainty
associated with the death of the policyholders seems to be by far the most
important

The results obtained for the unit-hinked contract with guarantee different
from O indicate lower values of the ratio between the square root of the
munimal obtainable risk Ry and the ntrinsic value process ¥ than in the
pure unit-iinked case. Furthermore, the ratio seems to be decreasing as a
function of the guaranteed amount Also the relative risk increase assoclated
with simple strategies 1s smaller than the corresponding results for the pure
untt-linked life mnsurance. These properties could be partly explained by
considering the exact form of the sum insured, described by the underlying
derivative

max(Sy, K) = K + (St — K)*

Obviously, the probability of the European Call Option (Sy — K)¥ being in
the money will converge to zero as K converges to infinity. In this way the
relative uncertainty associated with the sum nsured should decrease when
the guaranteed amount increases.

Table 1 also gives indications of the consequences of possible mis-
specification of the volatility parameter o. It 1s seen that all quantities listed
here seem to be non-decreasing functions of the volatility. In particular,
calculation of premiums based on the initial intrinsic value ¥ only would
neglect the increase n the ratio v/Rg/ ¥V} as o increases. Thus, this principle
could result in premiums which are not adequate to cover the insurer’s
liabihties to the insured
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WITHDRAWAL BENEFITS UNDER A DEPENDENT DOUBLE
DECREMENT MODEL

By Jacqurs F. CARRIERE

Dept of Mathematical Sciences
Unwversity of Alberta

ABSTRACT

This article presents an explicit formula for the value of a withdrawal benefit
when the times of death and withdrawal are dependent. The derivation 1s
based on an actuarial equivalence principle. As a special case, we show that
in the fully continuous case, the withdrawal benefit is the reserve when the
decrements are independent We also present a defimition of antiselection
and prove that the withdrawal benefit will be smaller under antiselection.

KEYwWORDS

Dependent decrement theory, withdrawal benefits, antiselection, the
equivalence principle, varying hfe insurance.

1. INTRODUCTION

In some markets, like the United States, life insurance products have a
withdrawal benefit when the policy 1s terminated. This article will examine
the mmplications of dependent probabilities of withdrawal and dcath on
withdrawal benefits for hife insurance in discrete time. Specifically, we will
give an explicit expression of the withdrawal benefit under a dependent
decrement model thus allowing us to characterize the withdrawal benefit
under antiselection

In the book, Actuanal Mathematics (1986), the authors state that “if the
withdrawal benefit in a double decrement model whole life insurance, fully
continuous payment basis, 1s the reserve under the single decrement model
whole life insurance, the premium and reserves under the double decrement
model are equal to the premium and reserves under the single decrement
model ”” This incredible result 1s not always true. The reason that the reserve
18 not always equal to the withdrawal benefit was given by D.R. Schuette
(reported by Nesbitt (1964)), who found the withdrawal benefit 1s not the
reserve in the discrete model because ““the probabulity of withdrawal depends

ASTIN BULLETIN, Vol 28, No 1 1998 pp 49-57
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on the force of mortality.” Thus, this article delves into the issue of
dependent mortahty and withdrawal in a discretc model For an introduc-
tion to the mathematics of dependent decrement theory, consult Carriere
(1994).

2. THE SINGLE-DECREMENT MODEL

In this section, we present the classical single-decrement model for lfe
msurance pricing and reserving Let Ty denote the time and death for some
life aged x. Next, let

S = Pr(Ty > 1),1 >0, (1)

be the survival function of T,;. Throughout the discussion we will assume
that this survival function 1s absolutely continuous with a density denoted as
f4(t) and a force of mortality equal to u/(r)=s(1)/S%1t). Thus
Sty = cxp{— fé wd () d:}. Now consider the probability that the hfe
survived to time ¢ + s given that 1t survived to time ¢. This survival function
15 denoted as ;p¢ and it 1s equal to.

d 1+
P=Pr(Ty>1458Ty>1) = S—(,,LQ = exp{—/ u‘l(z)dz}. (2)
S4(1) '
It will be convenient to define T,(r) as the random vanable induced by
S so that pf = Pr(T,(1) >s) Note that T, = T,(0) and pf = S7(1).
Moreover, if T; >t then Ty(t) = Ty — ¢, otherwise T,(r) 1s undefined. It 1s
instructive to note that if the expectation E[g(T,(1))] exists for some function
g(s), then

Elg(Tu(n)] = Elg(Ta — O[Ty > 1. (3)

This last fact will be used repeatedly.

Usually we will assume that premiums and death benefits are paid at the
discrete times ¢ = k/m where k& = 0, 1, 2, ... and m > 0 Therefore, it 1s
conventent to define the discrete random variable

w_ 1mTa)
d m (4)
where |.] is the floor function In other words, |v] is the integer part of y.
Thus, 1f y >0 then |y| =k 1f and only if Kk <y < k+1 Note that T, is
simply equal to KJ' when m =oco and so any discussion about the
continuous model 1s subsumed within the discrcte model.

In this article, we assume that the life insurance has a varying death
benefit equal to b(r), if death occurs at time ¢. Typically, h(r} =1 for all 1
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u(t) = exp{— /Olé:dz} (5)

denote the interest discount function Traditionally, actuaries have assumed
that §; = & 1s constant thus implying that v(¢) = e~ Using the equivalence
principle and the functions v(r) and b(r), we define the net single premium at
time ¢ for the future benefits from the life insurance as

(1) = E[b(KG + 1 /m)u(K7 + 1/m) [u(0)| Ty > 1]
= E[b(|mTy + 1| /m)o(|mTy + 1]/m)/v()|T, > {] (6)
= E[b(m(Ty(r) + 1) + 1| fmyo(m(Ta(t) + 1) + 1| fm) fo(0)]
Note that the last equality in equation (6) follows from equation (3). Now,
let us focus on the valuation of the premium payments. Assume that
payments of 1/m are made at the times ¢+ = 0, 1/m, 2/m, . Then the present

value at time 1 = 0 of all the payments made in the period [r,s) will be
denoted as a[r,s) and calculated as

Next, let

o0

alr,s) = %Zv(k/m)l(r < (k/m) < s) (7)

A=0

In this definition, I(e) 1s an indicator function that s equal to | if the event ¢
1s true and 0, otherwise. It 1s instructive, to verify that a[r,s) = a[0,s) — «[0,r)
Using this annuity-certain formula and the equivalence principle, we find
that the net single premium for the future payments from the life annuity at
time  1s.

ay(t) = Ela[t, Kj + 1/m)/v(0)| Ty > 1]
= Elalt,(mTy4+ 1|/m)/uv(6)|Tq > 1] (8)
= Ela[t, m(Ty(r) + 1)+ 1|/m/u(1)].

Under the single decrement model, the net level premium for the hfe
insurance 1s denoted as P’ and 1t is equal to.

Pi = A3(0)/ag (0), (%)
under the equivalence principle. Thus, we can define the /ink function as.
L(r,s) = b(s) v(s)/v(r) — Pjalr,s)/v(r), (10)

This link function will be useful when the withdrawal benefit 1s derived for
the double-decrement model 1n the next section. This ink function can also
be used to define the prospective loss at time ¢, which 1s

L"(1) = L(, K + 1 /m) (1)
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Note that E[L"(0)] = 0. Finally, we find that the prospective reserve at any
time 7 is:

V() = E[L™(1 |Td>r]=E[.C | mTy +1]/m)|Tq > ]
—E[E(,L (Ta(t) + 1) + 1] /m)] = A7 (1) = Pjag(1)

Note that the random variable |_m(T,,(t) + 1)+ lj/m has a central role. Thus
it will be convenient to define

K1) = \m(T(r) + 1) + 1) /. (13)
With this notation, we can write
A (1) = E[b{KG (1)v(Kg (1) /v(1)],
ag( f) = Ela(t, g () /v(1); (14)
Vﬂl E[E "1 ))]
Let S¢(s|7,m) denote the survival function of K’/(¢). Let us derive this
function. Consider the fact that if y > 0 and x > 0, then |y] +1 > x1f and

only if y > |x]. Using this result we find that KJ(¢) > s 1f and only 1f
T4(1) = (ms]/m) — 1. Therefore,

S%(s|t,m) = exp{ — e £)dz 15
,m) = CXp pi(z)dz g (15)
{

(12)

3 THe DouBLE-DECREMENT MODEL

In this section, we present the probabilistic structure for a dependent double-
decrement model. This will allow us to derive an expression for the
withdrawal benefit, Wi (1), that represents the benefit that s returned to the
policyholder at time Lml + 1]/m when withdrawal occurs at time ¢

Let 7,, denote the time at withdrawal from a life insurance contract fora
life aged x, where /" (1) 1s the density, S"(r) = [ f*(z)dz 1s the survival
function and " (¢) = f"(1)/S"(7) 15 the force We will ﬁnd 1t useful to define

the discrete random variable

|mT, |

m __
Ku‘ -
n

(16)
Generally, we assume that T, and T, are not stochastically independent
Therefore, let us consider the conditional density of T, given that T, =1,
which 1s denoted as /1" (14]1). Also, let S (14t) = [ £ (z]r) d= denote the
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conditional survival function of T, given that T,. = t. Hence, the conditional
force of mortality 1s

f(llw(fd“)

dl"([,['[) A L LV
S (14]0)

(17)

Thus S7"( t/|t) = expi [" e (z)dz}. In the case of independence, we get
S (24]0) S (140) = SUta), and p"(14)t) = p4(t4). 1t 18 1tmpor-
tant to note that the ensuing discussion and results assume that we know the
density £ (14]t). However, estimating this density is not a trivial exercise
because we can only observe the mintimum of the random variables T; and T,,.

Now consider the probability that the life survived to time ¢ + s given
that 1t survived to time ¢ and withdrawal occurred at time r This survival
function is denoted as (" and it 1s equal to.

Pr(Ty>1+5,Ty> 1T, =1)
Pr(T; > 4T, =1)

Sdl“([ +S|[) . d|w
ZWZCXP{__/I ﬂ,l (Zlf)dZ}. (18)
d|w

It will be convement to define T,.(1) as the random variable induced by ,p;
so that " = Pr(Ty(1) >5). Note that pf=35"(10). We let
T4 (0) = Ty, It is instructive to note that 1if the expectation E[g(T..(1))]
exists for some function g(s), then

Elg(Ty(1)] = Ele(Ty = )| Ta > 1, T, = 1] (19)

P = PHTy > 1+95|Ty>1,Ty=1) =

This last fact will be used repeatedly In the definition of the withdrawal
benefit, the random variable |m(T,(¢) +¢) + 1] /m has a central role Thus
1t will be convenient to define

;;]w(’) = |_’n(71(/|u'(1) + t) + ]J/’TI. (20>
With this notation, we can write

aw (1) = E[b{UC, (1) u(Kg,(0) [u(D)],

v 21
a3(1) = Elalr, K2 (1)/0(0)] 2

Let SY"(s|t,m) denote the survival function of K,
if and only 1f Ty,(¢) > [ms}/m — 1. Therefore,

Lms]/m
S (s, m) = exD{— / /L"""(z)dz}- (22)
'

We are now ready to state our first theorem.

(r). Note that Ky (1) > s



54 JACQUES F CARRIERE

Theorem 3.1. Let L(t,s) be the link function If the equivalence principle holds,
then under a double-decrement model where the premiums are equal to P}, the
withdrawal benefit function is

d(1) = E[L(Ime+ 1] [m, K, (1))]
= E[L(Imt+ 1]/m, |m(Ty,(£) + 1) + 1] /m)]
= E[L(|mt+ 1|[/m,|mTy+ 1)/m)|Ty > 1, T, =1
=E[L{({mt+1|/m K} +1/m)|Ty > 1. T, = 1]

(23)

Proof. If Wi (1) 1s the withdrawal benefit, then under the equivalence
principle,

PYE[al0, K} +1/m) | (Ty < T,))+a0, K"+ 1/m)(Ta>T, )| =
Eb(KG+1/m)v(Kg +1/m) Ty < T, )+ Wy (T) oK)+ 1/m) 1 (Ty > T,,)].
Therefore,

Py E[al0, K"+ 1/m)]+

Py Ellal0, K+ 1/m) — al0, Kg' + 1/m)| (T4 > T.)] =

EbK) +1/m) v(K) + 1/m)]+

EQW(T,) o(KL: -+ 1/m) = (K + 1 /m) v(K} + | /m)] (T > T,)]
But

P} x Elal0, K} + 1/m)] = Eb(K] + 1/m) oK} + 1/m)].
For simphcty, let Y = 1(T; > T,) U(K,’{,’ + 1/m). Then

E[YWy (T\)] =

EYB(KS + 1/m) (K] + 1/m)[v(K] + 1/m)]—-

E[YP{ (a0, Ki + 1/m) — al0, K[! + 1/m)) Ju(K" + 1 /m)].

Note that [0, K} +1/m) —al0,K" + 1/m)=alK" + 1/m K} + 1/m),
hence the right-hand side of the last equation 1s equal to

E[YC(K'+1/m, K} +1/m)|=E[YE[L(K'+1/m,K]'+1/m)|Ty>T,,T,]]=
E(YE[L mat+1) /m Ky 41 /m)| Ty > 0. Tu =l _p. ) = EYW(T)

Hence, the result is proved d

Now, let us compare the withdrawal bencfit W} (1), as defined in
equation (23), with the reserve formula V"' (t), shown in equation (12).
Clearly, they are different, even when T, and T, are stochastically
independent. In the case of independence, Ty(z) and Ty,(t) are 1dentically
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distributed Let W}'(1) denote the withdrawal benefit under the independent
decrement model, then

a (1) = E[L(Lmt+1]/m, K (1))]. (24)
Thus
hm V(1) = Lim Wy (1) = E[L(1, T4(1) +1))].

In other words, the withdrawal benefit 1s equal to the reserve in the
continuous model, thus confirming a well-known fact

4. WITHDRAWAL BENEFITS UNDER ANTISELECTION

In this section, we give a defintion of antiselection and we show that the
withdrawal benefit under antiselection 1s smaller than the benefit under the
single-decrement model, as expected. We are now rcady to give a definition
of antiselection We say that life msurance 1s subject to anuselection at
withdrawal, if

1M (tqltw) < 1l (td) Vi > .. (25)

If we reverse this inequality, then we have antiselection for life annuities.
Using our definition of antiselection, we immediately find that

S (s|r,my > S9(s|t, m) (26)

for alls s > 0.

First. we discuss the implications of antiselection to the valuation of the
life 1nsurance. Assume that g(s) = bh(s)v(s) 1s an absolutely continuous
function with g’(s) <0 so that

g =20 + [ g)a:

Actually, this1s a weak assumption because the assumption 1s obviously true
when b(s) = 1 and u(s) = exp(—§ s)

Lemma 4.1. Suppose that g(s) = b(s) v(s) for s > 0 1s absolutely contrnuous
and g'(s) <0 If g(s) 1s mntegrable with respect to the cumulative distribution
Sunctions 1 — SN (s|t,m) and 1 = SU(s|t,m), then under the antiselection
condition " (t4)0,) < 1 (14) and the equivalence principle. we get

(1) < 4300
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Proof. First, note that

(1) A (1) = E[b(K} (1) v(K ()]
B / g(s)d(1 = 59(slt,m))
J{0 oc)

= [ s+ [ =] a1 = "Glr,m)
[0,50)

/ L (z) — S9(s|t,m)) dz

= g(0) +/0 gz )Sd( |t,m) dz

Next, under antiselection SU¥(z|¢, m) > S9(z|t,m) and so g'(z)S" (z]t,m) <
g (2)S%(z|t,m). Integrating both sides of the inequality yields the resuit. [J

Next, we present a lemma on the implications of antiselection to the
valuation of life annutties.

Lemma 4.2. Under the equivalence principle and the antiselection condition
¥ (tyly) < 1 (ty), we get

digpye(1) 2 af (1).
Proof. First, note that
v(1)dly (1) = Elalt, Kj(1))]

xX

= E[%Zv(k/m)l(i <k/m< /C:}'(f))]

A=0

— EZ vlk/m)1{(t < k/m)E[1(k/m < KJ(1))]

oC

1 w(k/m)1(1 < k/m)S? (k/m|t, m).

But under antiselection S/ (5|7, m) > S9(s|t,m). Summing both sides of the
inequahty yields the result. O

Applying Lemma 41 and 4.2, we immediately find that under
antiselection the withdrawal benefit under the classical independent
decrement model 1s too large We summarize this result with the following
theorem.
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Theorem 4.3. Under the conditions in Lemma 4.1 and 4.2, we get

i (D) < WG(1). (27)
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ABSTRACT

In this paper we mvestigate multivariate risk portfolios, where the risks are
dependent. By providing some natural models for risk portfolios with the
same marginal distributions we are able to compare two portfolios with
different dependence structure with respect to their stop-loss premiums. In
particular, some comparison results for portfolios with two-point distribu-
trions are obtained The analysis 1s based on the concept of the so-called
supermodular ordering. We also give some numerical results which indicate
that dependencies 1n risk portfolios can have a severe impact on the stop-loss
premium. In fact, we show that the effect of dependencies can grow beyond
any given bound.

KEYWORDS

Dependent risks; Stop-loss premium, Supermodular order; Stop-loss order;
Majorization, Comonotonicity, Exchangeable Bernoulli random variables

1. INTRODUCTION

In traditional nisk theory for means of tractability, individual nisks are
usually assumed to be independent. Recent research has shown, however,
that a positive dependence between risks leads to underestimation of the

ASTIN BULLETIN Vol 28, No 1, 1998, pp 39-76
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stop-loss premium for the aggregated loss. To the best of our knowledge,
Heillmann (1986) and Hiirlimann (1993) have been the first authors, who
demonstrated the impact of dependencies on stop-loss premiums More
recently, Dhaene and Goovaerts (1996) investigated the effect of bivariate
dependencies on the related stop-loss premium and gave an upper bound by
determining the riskiest portfolio Dhaene and Goovaerts (1997) made a first
attempt to treat multivariate dependencies They considered a special life
insurance portfolio with two-point distributions. Their results were general-
1ized by Muller (1997) who characternized the niskiest portfolio under all
portfolios with equal marginals for arbitrary distributions. Wang (1997)
suggested a set of tools for concrete modeling of dependencies in risk
portfolios using the information given by the correlation coefficients.

In this paper we now propose some natural models for multivariate risk
portfolios with different degree of dependence and same marginal
distributions The assumption about equal marginals 1s crucial here since
our focus lies on comparing dependencies only The results can of course be
extended to unequal marginals by adding stochastic dominance. The models
are defined in such a way that 1t is possible to compare two portfolios from
the same class of models with respect to their stop-loss premiums. More
precisely, we consider the classical individual model from risk theory, where
the aggregate claim amount of a portfolio 1n a period 1s given by

=1

where X, 1s the random claim amount caused by policy /, 1 = 1, .., n
Throughout the paper we assume that the random variables X, are non-
negative with finite expectation. In a first model (model 3 | 1n section 3) we
assume that the risks can be divided into several groups, where each risk of a
group 1s influenced by a global risk factor, a group specific risk factor and an
individual risk factor. We show how the group structure of the portfolio
affects the stop-loss premium and determine the safest and riskiest portfolio
in this model class. On that occasion, we use the notion of majorization 1n
order to compare the group structures

In a second model (model 3.2 1n section 3) we compare two portfolios,
where both are subject to the same economic/physical environment, but the
second portfolio contains an additional global risk factor which influences
the risks of this portfolio in the same direction. Again, the marginal
distributions are assumed to be equal for both portfolios. It can be proved
that the stop-loss premium 1n the second scenario 1s greater than 1n the first
one. This result 1s used later on to construct a portfolio, where the risks have
two-point distributions and the portfolio can be characterized by a
dependence parameter p € [0, 1]. The construction 1s such that increasing
p leads to a higher correlation in the portfolio and the two extreme cases
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p =0 and p =1 correspond to independence and comonotonicity respec-
tively. We show that the stop-loss premium is increasing in the dependence
parameter p.

In another model we compare portfolios which are given by exchangeable
Bernoulli random varniables Here 1t can be shown that stop-loss order of the
mixing distribution 1mplies more rniskiness for the aggregate claims.
Moreover, 1 this setting, we prove that the ratio of the stop-loss premium
in the niskiest scenarto divided by the stop-loss premium of an arbitrary
portfolio is increasing in the retention level.

Our models are very general and cover most of the specific parametric
models considered by Wang (1997) There 1s one main difference between
Wang’s paper and this one We mainly investigate, how dependencies affect
the niskiness of portfolios, whereas Wang focuses on algorithms for
simulation and efficient computation of concrete parametric models for
correlated risks. Thus the two papers are complementary in so far as his
algorithms for simulation can be easily adapted to our models.

Most of the comparison resuils we provide 1n this paper are based on the
so-called supermodular ordering. This concept has recently proven to be
valuable for comparing dependencies in random vectors in a wide range of
apphed probability models For details see Bauerle (1997a), Shaked and
Shanthikumar (1997) and the references therein.

At the end of the paper we give a numerical example for model 3.1, which
shows that dependencies can have a severe eftect on the stop-loss premium.
In particular we demonstrate that whenever the retentton level exceeds the
expected aggregate claim amount, the effect of dependence can be arbitrary
worse

The paper 1s orgamzed as follows section 2 contains some basic
defimtions and results about stochastic orderings and dependence which we
will use in the sequel. Section 3 covers model 3.1 and 3.2 and section 4 1s
dedicated to the special case of risks with two-point distributions. The
numerical results are summarized in section 5.

2. STOCHASTIC ORDERINGS AND DEPENDENCE

Let us first fix the notation. A portfolio of risks is a random vector
X = (X1, .., Xy)of nindividual risks, where an individual nsk X,,1 <1 <n
1s a non-negative (univanate) random vanable with a finite mean. For
arbitrary univariate random variables ¥ we denote the distribution function
by Fy(t) =P(Y <1),t€ R and Fy(t):= P(Y > 1) =1— Fy(r) shall be
the corresponding survival function. We will also frequently use the stop-loss
transform my(r) .= E(Y —1)* = [* Fy(x)dx, t € R. For a random vector
X = (X1, ., X,) we similarly define the distribution function

Fx() =P(X<n)=PX <t .., Xy < ty), t=(t1, ., ly) €R"
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and the survival function
Fx() =P(X>1)=PX I >t1, ., Xy,>1), t=(1, ,t,) €R"

Note that for multivanate distributions in general Fy (1) # 1 — Fy(t). If two
random yarlables or vectors X and Y have the same distribution, we will
write X = Y. X ~ F should be read as: X has the distribution F.

Now we will introduce some stochastic order relations, which are well-
known concepts for comparing risks.

Definition 2.1 Ler X, Y be real random variables with finite means

a) We say that X precedes Y i stochastic order, written X <4 Y, 1f
Fx() > Fy(t) for all t € R.

b) X precedes Y n stop-loss order, written X <y Y, if wy(t) < wy (1) for all
te R.

Remarks

a) If X <Y, where < may be any stochastic order relation, then we will also
write Fy < Fy whenever 1t 1s convenient.

b) If we have a family Fj, 8 € © C R of distributions, then we say that Fj 1s
stochastically increasing in 6, if Fy <,;, Fy for 8 < 6.

c) Stop-loss order means, that the stop-loss reinsurance premium for the
nsk Y 1s higher than that for X for any retention 1.
Now we collect some important properties of these orderings, which we

will use frequently. They can be found e.g. in Shaked and Shanthikumar

(1994) or Goovaerts et al. (1990)

Theorem 2.2
a) The following conditions are equivalent.
. X<y 7Y,
2. Ef(X) < Ef(Y) for all non-c_]ec/reasmgfynfnonsf, L
3. There are random variables X = X and Y = Y such that X < Y almost
sure.
b) The following conditions are equivalent
1. X S\I Y,
2. Ef(X) < Ef(Y) for all non-decreasing convex functions f, _
3. There are random variables X £ X and V2 Y such that E [ Y|X ] >X
almost sure.

As stated before, the main topic of this paper 1s the comparison of the
riskiness of portfolios. In order to do so we need notions of stochastic order
relations for random vectors. We say that a portfolio X = (Xi, ..., X,) 1s
less risky than a portfolio Y = (Y;, , Y,), if the corresponding aggregate
claims S =" X, and §'=)"_, Y, are stop-loss ordered, i.e S <y S It
will turn out that a sufficient condition for this 1s given by the so-called
supermodular ordering or the symmetric supermodular ordering These
stochastic order relations have recently been considered in applied
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probability by Bauerle (1997a, b), Biduerle and Rieder (1997), Shaked and
Shanthikumar (1997) and others. In the actuarial literature the super-
modular ordering has been introduced by Muller (1997) It 1s based on the
comparison of integrals of (symmetric) supermodular functions, which are
defined as follows

Definition 2.3
a) A function f R" — IR is said 1o be supermodular, i/

f(xla S X RE X +4, xn) _f(«\‘la s XeFEL X, X,,) (l)
2 (X X, e 0, ) = (e, X, Xy, )

holds for all x€ R", 1 <i<j<nandalle,6 >0
b) A funciion f.IR"— R s called symmetric, if f(x) = f(Ilx) for all

permutations Ilx of x.

An mtuitive explanation of the notion of supermodularity can be given as
follows: Let x|, , x, be the individual claim amounts of n policy holders
and let f(x), ..., x,) be the loss for the insurance company caused by these
claims Then supermodularity of the function f means that the conscquences
of an increase of a single claim are the worse, the higher the other claims are.

Symmetric functions do not depend on the order of the variables. This
means 1n our context that the policy holders are indistinguishable

The following properties of supermodular functions are well-known.

Theorem 2.4
a) If [1s twice differentiable, then f is supermodular if and only if

02
ox,0x,
b) Ifg), ..., g« IR — Rareincreasing functions and f 1s supermodular, then
fla (), .., gn(’)) 15 also supermodular.

f(x)>20forallxe R*, 1 <1<j<n

A proof of this theorem and many examples can be found in Marshall
and Oflkin (1979, p. 146fl ). Now we will introduce the supermodular
stochastic order relation.

Definition 2.5

a) A random vector X = (X,, , X,) s said to be smaller than the random
vector Y = (Y, ., Y,)wn the supermodular ordering, written X <,,, Y, tf
Ef(X) < Ef (Y) for all supermodular functions f such that the expectations
exist.

b) A random vector X = (X, , X,) 15 said to be smaller than the random
vector Y = (Y, ..., Yy) in the symmetric supermodular ordering, written
X <omem Y, W Ef(X) < Ef(Y) for all symmetric supermodular functions [
such that the expeciations exisi.
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Supermodular ordering is a useful tool for comparing dependence
structures of random vectors. Since any function /. R" — R that depends
only on one variable (1.e. f(xy, ..., xy) = g(x,) for some g. R — R and
some 1 € {I, ,n}) s supermodular, it follows immediately from the
definition that only distributions with the same marginals can be compared
by supermodular ordering Moreover, all functions f(x) = x,n,, i #; are
supermodular. Hence X <, Y implies Corr(X,, X)) < Corr(Y,, Y,), 1 #j.

The usefulness of these concepts 1n our setting 1s shown clearly 1n the next
result.

Theorem 2.6 Let X = (X4, ..., Xp) and Y = (Y1, ..., Y,,) be random vectors
with X < Y (X <gman Y) and let

S=i:X, and S'=iY,
-1 =1

Then S <, §'.

Proof- For the supermodular ordering this has been shown in Miiller (1997,
Th. 3.1). The case of symmetric supermodular ordering can be shown along
the same lines, as the function x — Y x; 15 obviously symmetric. O

The Theorem says that stronger dependence 1n the sense of supermodular
ordering leads to more risky portfolios. Next we will construct a special
random vector with given marginals, which exhibits a very strong form of
dependence. Let U be a random variable uniformly distributed on [0,1] and
let Fy, .., F, be n marginal distributions. Define X = (X, ., X,) =
(FFY(U), , F,Y(U)). Using the well-known fact in simulation that
F YUy~ F, we sce that X in fact has the marginal distributions
Fy, ..., F,. Since F,*' is increasing for all / it follows that X, (w;) < X,(ws)
implies X;(w;) < X,(w2) for all ; # 1. Schmeidler (1986) and Yaar (1987)
introduced the notion comonotonicity for this property. An easy calculatton
shows that the distribution function of X is given by Fy(r) = min]_, F/(t,).
Summing up, we can give four equivalent definitions of comonotonicity.

Definition 2.7 The distribution F with marginal distributions Fy, ..., F, s called
comonotomic, Iif one of the following four equivalent conditions s fulfilled

”n
1. F(n) = 1’1]1;1 F(), te R",

1=

2. The random vector X = (F7W(U), , E;7Y(U)), where U is uniformly
distributed on [0,1), has the distribution F,

3 There ts a univariate random variable Z and there are imcreasmg functions
Sis o S such that X = (f1(Z), ., fulZ)) has the distribution F.

4. There 1s a random vector X ~ F, such that X,(w\) < X (w;) wmples

X,(w1) < X,(w2) for all j # 1.
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The comonotonic distribution £ is also called upper Fréchet bound, since
Fréchet has shown that for any distmbution function ¢ with marginals
Fi, . , F, we have G < F. An ¢ven stronger result 1s the so-called Lorentz-
iequahty. Tt can be found e.g. as Theorem 5 in Tchen (1980) and can be
stated as follows.

Theorem 2.8 Ler X be an arbitrary random vector and let Y be the
comonotonic random vector with the same margnals as X. Then X <,,,, Y.

This means that comonotonicity 1s the strongest possible dependence
structure and hence by Theorem 2.6 the corresponding portfolio 1s the
niskiest one under all portfolios with the same marginals.

3. THE MODELS

In this section we consider several possibilites of modeling dependencies in
risky portfolios. In our first model we assume that the portfolio consists of
different groups, such that there is a strong dependence between the
members of one group, but much less dependence between members of
different groups. As a typical example where this 1s very realistic imagine a
catastrophe risk like earthquakes or hurricanes, where the groups are
specified by geographic regions. There 1s certainly a strong dependency
between the expected losses of people from the same region, but the losses
will be nearly independent for people who live far from each other For such
situations we suggest the following model. It was introduced by Tong (1989)
and was further considered by Bduerle (1997a).

Model 3.1
Consider a portfolio X = (X1, ..., X,), consisting of n risks X, ..., X,. We
assume that the risks can be divided into r < » groups according to an
n-dimensional vector k = (ky, ..., k., 0, .., 0), k, € N, 5" _, k, = n, where
risk X, 1s mn group vifand only1ff k) + ... +k,—y <1<k + .. +k,. Each
of the risks in the portfolio 1s influenced by three risk factors which will be
modeled as independent random vanables V, G, and Z,
1 an overall risk factor ¥ which 1s due to global environmental changes and
concerns all of the risks in the portfolio 1n the same fashion,
2. a group specific risk factor G, which influences only the risks in group v,
1 < v < r and has no effect on other risks in the portfolio,
3. an individual risk factor Z, which reflects the individual share of risk X,
1<i<n
Moreover, we assume that there exists a function g : IR> — IR such that
the :-th risk 1s given by X, = g(V, G,, Z,) whenever ( 1s in group v. Since we
associate higher outcomes of a risk factor with higher risk in the portfoho,
we suppose that g 1s increasing. This situation 1s typical for a lot of insurance
portfolios In private health insurance for example, the risk caused by an
individual person depends on an overall risk factor which collects
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environmental aspects (e g pollution, greenhouse effect, epidemics), on a
group specific factor like profession and on an individual risk factor which
summarizes health conditions. In car insurance, the group risk factor could
be interpreted as the local area of the policy holder. Assuming this kind of
dependence within a portfolio 1t 1s now interesting to imvestigate the effect,
the constellation of group sizes has on the aggregate claim of the portfolio,
since it is well-known that positive correlations in a risk portfoho increase
the payable amount of the insurance company, see e.g. Dhaene and
Goovaerts (1996, 1997) or Miiller (1997). Obviously it 1s quite hard to
compare two risky portfolios when for example the number and sizes of the
groups change. However, 1n some cases this 1s possible as we will show 1n the
next theorem In order to state it, let £ and &’ be two n-dimensional vectors with

k=(ki, ., ky.n0, ., 0), K=(, &0, .0

1<r, 1<n, k,kie N for all i and Y7 k,=3" k' =n Let two
n-dimensional risky portfolios X and Y be given by

X =g(Z,,G,V) Y1 =¢g(U,G, V)
Xy = 8(Zk,, G, V) Ye, =g(Uy, Gy, V)
Xk1+] :g(ZI\|+la(;2a V) Yk’|+| =g(U/\"l+laG|a V)

Xty = 8(Zky14yy G2, V) Yerw, = (U 1k, G2, V)

AXn:g(ZmGr» V) Y, =g((j,,,G[, V)
where the individual risk factors Z,, , Z,, Uy, ., U, are 1i.d. random
variables, the group specific risk factors G, ..., Ginax{rey are 1.1.d random

variables and the environmental nsk factor V is a random variable
independent of {Z,}, {U,} and {G,}. g. R® — R 1s an increasing function.
Denote S =3 | X, and §' =3, Y, respectively.

Moreover, we need an appropriate order relation for vectors to compare
the group structures & and &’. It turns out that the notion of majorization 1s
best suited for this purpose. The defimition 1s as follows.

Definition 3.1 Let x,y € IN§ and denote by X[ 2 - 2 Xy the decreasing
rearrangement of x, analogously for y. We say that y majorizes x (x < y) tf
and only if

H

zr:,\'[lj < Zym, r=1,..,n—1, and ZX[,] = Z}/[l]-
—1 =1

=1 =1
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A host of results and applications of this order relation can be found 1n
Marshall and Olkin (1979) Intuitively speaking k& < &' means that in &’
the groups are larger and/or more unequal. Some examples are given n
section 5 Now we are able to state the main result for this model

Theorem 3.2 /f k < k', we obtain under the assumptions of model 3.1
a) X SA}'INWH Y’
bh) S <48

Proof A complete proof of statement a) can be found in Bauerle (1997a).
The main ideas are as follows' 1n a first step we show that for a sequence
{G,} of 11 d random variables and

X=(G, ,G, Gy .., G, ,G,..,G)
Y =(Gy, ...,Gi, Ga, .., G2y oy G1y oy G))

where the block of G,’s 1n X (Y) has length &, (k}), the relation k& < &’ implies
that X <,uue Y. Applying properties of symmetric supermodular functions
we obtain a) Part b) then follows from Theorem 2.6. O

In this setting 1t 1s easy to determine the niskiest and the safest portfolio
with respect to the stop-loss ordering of aggregate claims. In order to do so
we only need to determine the minimum and maximum with respect to
majorization under all vectors k with Yk, = n It s ncarly obvious that the
minimum 1s given by & = (1, 1, ., 1) and the maximum is given by
K = (n, 0, ,0). This yields the following resuit.

Corollary 3.3 Let k" = (n, 0, . , 0) and & = (1, ..., 1) be two n-dimensional
vectors and denote by S and S* the aggregate claims of the corresponding risk
porifolios as i model 3.1 Then we obtam for arbitrary k € INj with
Sor ki = n and respective aggregate claim S

S S\'I S <y S

Hence the riskiest portfolio 1s given, when there is only one group and the
safest portfolio 1s obtained, when each individual forms his/her own group.

Our model 3.1 1s strongly related to the component models introduced 1n
chapter 9 of Wang (1997). As another important class of models he considers
common muixture models, which we will investigate now.

Model 3.2

The tuition behind this model 1s as follows The model for X as well as the
model for Y 1s a so called common mixture model This means that there are
some external mechanmisms, described by random variables, which have
influence on all the risks Given these environmental parameters, the
individual nsks are independent. The parameters can be some state of nature
(weather conditions, earthquakes, ...) as well as economic or legal
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environments (inflation, court rules etc ) which have a common impact on all
risks. In contrast to model 3.1 we will now compare the portfolios with
respect to the number of external mechamsms which affect them.

The following model for this situation has been considered by Bauerle
(1997a) (cf. also Shaked and Tong (1985))" Suppose there are (wo n-
dimensional random vectors X and Y with the structure

(Xh cery Xn) = (gl(zlv W), B3] gn(Zm W)) (2)
(YI, <y Yn) = (gl(Ulv V: W), s gn(Um v, W)) (3)
where Z;, ..., Z, are 11.d. random variables, U,, ..., U, are i..d random

variables and (V, W) 1s a random vector independent of Z, and U,.
Moreover, the functions g, /R?* —IR and g, : R® — IR are such that for

every fixed wand all i = 1, ..., n we have
g:(ZnW)gg:(Un v, W), (4)
i.e. they have the same distribution.
We will show now, that the portfolio ¥ = (Y, ..., Y,) 1s more risky than
the portfolio X = (X), ..., X,,), if the functions g, are increasing in the

second argument. In fact, let S-=3% , X, and & =57 Y.. Then the
following holds.

Theorem 3.4 If the functions g, are increasing mn the second argument, then
a) X < Y,
b)S<,S.

Proof* a) can be found as Theorem 3 | in Bauerle (1997a). Part b) then
follows immediately from a) by Theorem 2.6. O

The model for Y contains an additional environmental variable VV, which has
an influence on Yy, .., Y, in the same direction. Hence there is more
dependence in Y than in X, since the external mechamism. which has a
common influence on all risk, is more important in Y. This will become more
explicit 1n the special case we will treat now.

Let us assume that W 1s constant Hence Y, = g,(U,, V) and X, = g,(Z)).
This means that Y, , ¥, are conditionally independent given V' = v and
the monotonicity of g, in the second argument means that the conditional
distribution of Y, given V¥ = v 1s stochastically increasing in v for alt 1 =
1, .., n. Moreover, X\, .., X, are independent random variables, which by
(4) have the same marginal distributions as Yy, ..., ¥,. Summing up, we get
the following corollary of Theorem 3.4.

Corollary 3.5 Let V be any random variable and let Y =Y, , Y, be a
random vector such that Y\, ..., Y, are conditionally mdependent given V.= v
and such that the conditional distributions P(Y, € -|V = v) are stochastically



MODELING AND COMPARING DEPENDENCIES IN MULTIVARIATE RISK PORTFOLIOS 69

increasing m v for all v = 1, .., n Moreover, let X = (X, ., X,) be a vector
of independent random variables with the saume margmal distributions as Y.
Then

X<pnY and S :iX, <y S =i Y.
=1 =1

Another application of Theorem 3.4 will be given in the next section. Many
more examples can be found 1n chapter 7 of Wang (1997)

4. RISKS WITH TWO-POINT DISTRIBUTIONS

Now we consider the important special case of portfolios consisting of risks
X, having a two-point distribution 1 0 and a, with P(X, =0) = p,. This
occurs e.g. in the individual life model. Dhaecne and Goovaerts (1997)
determined the riskiest portfolio with given marginals for this case and
especially considered portfolios with dependencies only between couples.

The riskiest portfolio has the property that if a policy holder with a low
mortality dies, then all policy holder with higher mortality also die with
probability | We think that this 1s very unrealistic. It would be desirable
to have a parametric model with a dependence parameter p, which
continuously varies between independence and maximal dependence as
described above.

We investigate here two such models, one for the case of indistinguishable
individuals and one for the case that the probability for no claim differs
between the individuals.

Indistinguishable individuals
We say that the individuals in a portfolio are indistinguwishable, 1f the joint
distribution of the random vector of their risks is not affected by
permutations of the risks In probability theory a sequence of such random
variables 1s said to be exchangeable (or interchangeable), see e.g. Feller
(1966, p. 228f1') or Chow and Teicher (1978) Of course this implies that all
risks have the same marginal distribution, 1e. there1s a p € (0, 1) and some
a>0suchthat P(X, =0)=p=1—-P(X,=ca)forallr = 1, ., n Without
loss of generality we can assume o = I, so that the random varnables
Xy, X3, . form a sequence of exchangeable Bernoulli varables.

Therefore let us assume that S, 1s the total claim amount of a portfolio of
n nisks, which stem from a sequence of exchangeable Bernoulli vanables. A
well-known theorem of de Finetti (see e.g Feller (1966, p 228)) states that in
this case S, 1s a mixture of binomial distributions, 1.€.

P(Sy=k) = /01 (Z)ﬁ"(l 9y E(d)
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for some mixing distributions F. Thus, the distribution of S, is completely
determined by the mixing distribution £ In fact, it 1s completely determined
by the first » moments of F. For a survey on exchangeable Bernoull:
variables, including many examples and methods for estimating their
parameters we refer to Madsen (1993).

Now we want to show, how the mixing distribution F affects the riskiness
of the portfolio S, We have the following result.

Theorem 4.1 Ler S, (S)) be the total claim amount of a portfolio of n risks,
which stem from a sequence of exchangeable Bernoulli variables with mixing
distribution F (F'). Then F <y F' implies S, <, S,..

Proof* This follows directly from Corollary 3.7 in Lefevre and Utev
(1996). O

Remark: From Theorem 4.1 1t follows easily that the least risky portfolio of
exchangeable Bernoullh variables with given margmnals 1s the one that
consists of independent risks and the riskiest portfolio is the one with mixing
distribution concentrated on {0, 1}, which means that the nisks are
comonotonic In fact, this means that the portfolio consists of i1dentical
risks X = (X;, Xi, . , X1) and the distribution of the total claim amount
S, =n X; 1s a two-point distribution with P(S, =0)=p=1- P(S, =n).
If we compare the stop-loss premiums of this portfolio with an arbitrary
other portfolio of hi(1, p)-distributed risks, then we can strengthen Theorem
4 1 to the following result.

Theorem 4.2 Let X = (X, .., X,) be a portfolio of bi(1, p)-distributed risks
with an arburary dependence structure and let Y = (Y1, ..., Y1) be a portfolio
of identical risks with the same distribution. Let wy (1) = E(3 X, — t)* be the
net stop-loss remsurance premium of porifolio X and define wy(t) similarly.
Then the ratio wy(t)/mx(t) is increasing on its range [0, n)

Proof: Since > Y, = nY) 1s a two-point distribution on {0, n}, the function

7y 18 affine linear. Since any stop-loss transform 1s decreasing and convex

(see e.g. Muller (1996)) this implies that g(x) := 7y o 73! (x) is a convex
function. Differentiation yields that

¢(x) = Ty o7y (%)

my oy (x)

is increasing, and hence 7 (x)/7), (x) 1s decreasing, since 7!

This can be written equivalently as

1s decreasing.

(7 () = Ty (s)my (1) forallr <s
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and hence

/ R () (s) ds > | / " (s)r (1) ds

& m(Nmy () < me (N7 (1)
my (1)

Ty (t)

1S Increasing

O

Remark. Computational results indicate that Theorem 4.2 may be true for
arbitrary distributions. We are, howcever, not yet able to give a proof for this
conjecture.

Distinguishable individuals.

Now we propose a model where the individuals in the portfolio may
have different probabilities for claims and different claim amounts. We
want to construct a portfolio of risks X, with P(X,=0)=p, and
PX,=a)=¢,=1—p, where 0 <p, <1 and o, > 0 are drbltrary. More-
over we want to introduce a dependence parameter p € [0, 1] such that p =0
corresponds to independence and p = | corresponds to comonotonicity. A
very simple model with this property would be to take some mixture of the
independent and the comonotone case. We think, however, that this 1s not
very realistic. We propose some sort of an additive damage model, which 1s
well known in reliability theory. Assume that there are two sources, that
cause some normally distributed damage. One source influences all
individuals in the same manner, whereas the other source depends on the
individual behavior of each individual. A claim of amount «, occurs, if the
sum of thesec two damages exceeds some level z,.

The formal construction will be based on model 3.2 with distributions
and functions, which assume only two values. We denote by N(u,o?) the
univariate normal distrbution with mean p and varnance o2 >0 For
convenience we extend the definition to the case o® =0, where N(u,0)
denotes the one-point distribution in u. The p-quantile of the standard
normal distribution will be denoted by zp, 1e 1If X ~N(0,1), then

P(X < z,) = p. Now assume that 0 < o2 < T£< I and consider model 3.2
with W ~N(0,62), ¥ ~N(0,72 = 02), Z,~N(0,1 —o?) and U, ~N(0,1 —12)
All random variables shall be mdependent We define

Q, Z+WZ2 2z,
glz,w)y=a, - I{z+w22z,} _{ ” olse P

and

gluy v, wy=oy- H{u+v+w> zp, }
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Recall t{lfmat X, =g(Z, W) and Y, =g(U,V,W) for: = 1, ..., n. Since
U, + Vd=Z, ~ N0, 1 —0c°), condition (4) s fulfilled. Moreover,
Z+W=U+V+W~N(0,1), so that P(X,=a,)=P(Z,+ W >z,,)=q, and
P(X,=0)=P(Z,+W <z,)=p,. Similarly P(Y,=0)=p,=1-P(Y,=«,). By
Theorem 3.4 X <,,, Y and hence X 1s less risky than Y.

Now let us write X(o) = (X,(0), ., Xu(c)) for the above defined
portfoh? X to make the dependency on o explicit The definition of Y implies
that ¥ = X (72) which can be seen by interchanging the roles of Z, and U, as
well as the one of Wand V + W. Hence we obtain the following result.

Theorem 4.3 Let 0 < p < p' <1 Then X(p) <.n X(p') and hence

n h

Z Xi(p) <u Z Xl(/)l)-

=1

It 15 easy to see that X(0) is a portfolio of independent risks and X(1) 1s a
portfolio of comonotonic risks, which is the niskiest portfolio under all
portfolios with given marginals, as has been shown by Muller (1997) for
general distributions and 1in Dhaene and Goovaerts (1997) for the case of
two-point distributions as considered here Now we will show that we can
get any positive dependence structure by varying p continuously between
these two extreme cases. In fact, we have the following result.

Theorem 4.4 The function p — Corr(X,(p), X,(p)) is non-negative and
continuously wcreasing for all 1,7 =1, [ n,1#.

Proof: The margmal distribution of X,(p) and hence also the variance of
X,(p) 1s independent of p for: = 1, .., n Thus we only have to examine the
covariance. A straightforward calculation shows that

Cov(X,(p), X)(p)) = ey (P(X,(p) = e, X)(p) = o) — ;).
Hence 1t 1s sufficient to consider the expression
P(X.(p) =, Xj(p) =) = P(Z,+ W > 2,, 2, + W 2 z,) = Ff)(zpnzﬂ,)

where F, 1s the survival function of a bivariate normal distribution with
standard normal marginals and correlation coefficient p. It follows from
Slepian’s incquality and its proof as given e.g. in Tong (1980, p. 8{T) that
p — F, 1s increasing and continuous. Hence p — Corr(X,(p), X,(p)) 1s also
increasing and continuous. Non-negativity then follows from the fact that
X(0) 1s a vector of independent random variables O
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5. NUMERICAL EXAMPLE

Let us now illustrate the effect of dependencies in model 3.1 by a numerical
example. In order to keep the computation simple, we have chosen g(x, v, z)
= y. The sequence of random vanables {G,} 1s 1.1.d. with a two-point
distribution on 0 and 4, where the value of 4 occurs with probability 0.06.
The portfolio consists of 20 risks. We have computed the relative stop-loss
premiums for 8 different scenarios which are given by their group structures
ki, t =1, .. 8listed in table I.

TABLE |
scenario k.
1 (. 1,1, L, nLn
2 4,3,3,2,2, 1.1, 1,1, 1, 1)
3 8,2,2,2,2,2,2)
4 4.4,4,3,3.2)
5 (15,2, 1.1, 1)
6 (5,55, 5
7 (10,5, 5)
8 (20)

Scenario | corresponds to the safest portfolhio with 20 independent risks and
scenario 8 1s the riskiest portfolio, where the same risk occurs 20 times. In the
next table we summarize the ordering relations of these vectors with respect
to the majorization ordering.

TABLE 2

ky ks ks ky ks ke k7 kg
ky < < < < < < < <
ko =< =< =< = =< = =<
ke =< A < A ~ <
ks =< < =< =< =<
ks < # # =<
ke < < <
k7 < <

The symbol £ indicatcs that the vectors cannot be compared The following
table now contains the relative stop-loss premiums (divided by the
independent case : = 1) multiplied by 100 for several retention levels. Note
that the expectation of the aggregate claims equals 4 8 and the outcomes
range between 0 and 80.
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TABLE 3
scenarto
retention ky ks ks ka ks ke ke kg
0 100 100 100 100 100 100 100 100
1 100 105 109 110 L 112 113 116
2 100 113 121 124 126 129 132 139
3 100 124 140 145 150 155 161 173
4 100 144 173 182 191 200 210 233
6 100 174 210 229 272 272 295 347
8 100 270 330 385 537 500 572 717
10 100 327 478 480 830 700 834 1128

Because of Theorem 3.2 we know that given a retention level, the relative
stop-loss premium increases in 4. Table 3 shows that the increase 1s moderate
if k, and &, are 1n some sense nearby as for example k¢ and k7. In the cases
where we were not able to establish the comparison theoretically hike for
example for scenario 5 and 6, we find that the order can change when the
retention level increases Theorem 42 explains the monotonicity of the
relative stop-loss premium with respect to the retention n scenario 8. The
numerical data suggest that this is also true for the other scenarios. This was
already observed by Dhaene and Goovaerts (1996). To our knowledge this is
still an open problem.

A very important conclusion that we can draw from the computation is
that the increcase in the relative stop-loss premium can be dramatic in the
presence of positive dependence Even minor occurrence of dependence like
n scenario 2 has a severe effect. Moreover, 1f a portfolio contains positive
dependence between the risks, the situation deteriorates in the number of
insured risks.

Suppose Y, Xy, .., X,, are 11.d. random varnables (w.l 0 g we assume
that they are concentrated on [0,1]) and we are mterested in the stop-loss
premiums of the safest porlfollo Ty ( EQ" X, —nt)" and the riskiest
one (1) = E(nY — ni)*, where 1 € (O l) gives the rctentlon percentage. In
this settmg we obtain

Theorem 5.1 The ratio 7, (1) /7% (1) 13 increasing in the number n of aggregate
risks and the himut 1s equal 1o E(Y —1)* J(EY = 1) if t <EY and +oo if
t > LY

Proof* We obtain that
™) E(nY-n)t  E(Y -1
() B Xo—n)t  EGYL X =07
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Hence 1t suffices to prove that E(15°" . X, —1)* 1s decreasing i n. Since

1

Ls X,
Xy, ..., X, are 1.1.d. 1t follows fror’;l Tlheorem 4 1n Arnold and Villasenor
(1986) that

n-{—lZX' S.\I;ZXI (5)

and the monotonicity foilows.

Since the random variables X, X, ... arc independent and idenucally
distributed with a finite mean, the assumptions of the strong law of large
numbers are fulfilled Therefore

l n
’}5&;; X, =EX| =EY (6)
Hence the stated limit follows. O

Remark: Arnold and Villasenor (1986) have shown that for Equation 51t 1s
sufficient, that X, Xa, are exchangeable Hence the monotonicity part of
Theorem 5.1 remains true for the more general case of exchangeable random
variables, but 1n that case the limit will be different. In fact, there 1s also a
version of the strong law of large numbers for sequences of exchangeable
random variables. It states that in this case

1 n
lim ~> "X, = E[X;|©),
=1

n-—-2o0 11

where © 1s the random vanable, which describes the mixing mechanism 1n
de Finettr’'s Theorem (cf. Feller (1966) and Chow and Teicher (1978) for
more details) Hence in this case we get

i () E(Y-n*

oy (1) E(E[Y|0] - n)*

From Theorem 5.1 we see that the rclative stop-loss premium can be
arbitrary high, when the retention exceeds the expected aggregate claim
Altogether we can conclude that the usual assumption of independence n
risky portfolios leads to a dangerous underestimation of the risk Hence the
adequate modeling of dependent risks will remain an important task for
future research.
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SOME APPLICATIONS OF LEVY PROCESSES TO STOCHASTIC
INVESTMENT MODELS FOR ACTUARIAL USE
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ABSTRACT

This paper presents a continuous time version of a stochastic nvestment
model ongmally due to Wilkie. The model 1s constructed via stochastic
differential equations. Exphicit distributions are obtained in the case where
the SDEs are driven by Brownman motion, which is the continuous time
analogue of the time series with white noise residuals considered by Wilkie
In addition, the cases where the driving “noise™ are stable processes and
Gamma processes are considered.

KEYWORDS

Lévy process; Brownian motion; stochastic investment model

1. INTRODUCTION

Wilkie (1986) presented an tnvestment model based on time series, which has
since been updated and extended 1n Wilkie (1995) This paper presents some
continuous time variants of Wilkie’s original model using stochastic
differential equations driven by appropriate Lévy processes. There 1s no
single correct continuous time equivalent to the model in Wilkie (1986), the
aim of this paper 1s Lo suggest somc possible ways of constructing the
analogous continuous time models and to analyse these mathematically. Tt
seems that whatever one takes to be the “right” continuous time equivalent
of the Wilkie model, similar methods to those presented here can be used to
analyse 1t.

One reason one might be interested 1n a continuous time model 1s that in
a continuous time setting one 1s free to choose any unit of time and to model
the state of the various investment variables at any time, not just at discrete
instants. However, the main attraction of continuous time models 1s their

ASTIN BULLETIN, Vol 28, No [, 1998, pp 77-93



78 TERENCE CHAN

mathematical tractability; whereas the Wilkie model 1s mainly intended for
computer simulations, 1n the continuous time sectting here many questions
admit explicit answers which can be obtamed in a simple way. Here, we
concentrate on obtaining explicit distributions but other questions can
undoubtedly be answered

The model introduced 1in Wilkie (1986) only makes use of Gaussian
(white noise) series, for our model the driving noises are allowed to have
other distributions.

2. DESCRIPTION OF THE MODEL

In many ways, the model described here is the most direct and obvious
continuous-time version of the model 1in Wilkie (1986), although some
modifications are necessitated by the transition to a continuous time scale.
We do not make any special claims about 1ts appropriateness to practical
situations beyond pointing out its similarity to the onginal Wilkie model
which has by now gained wide acceptance, at least in the world of insurance.
The two main guiding principles behind the construction of the continuous
time model presented here are firstly the analogy with the corresponding
time series and secondly the similarities between certain features of the
Wilkie model and other models which feature widely in different areas of
financial modelling, occasionally we shall depart from an exact analogy with
the time series to emphasise these similarities because the qualitative features
common to all these models are of potentially greater interest Thus, 1t would
be more appropriate to refer to the continuous time mode! presented here as
inspired by the Wilkie model, rather than “‘the continuous time Wilkie
model” The model should be treated as a ‘“‘first draft™ rather than a final
version. As with the original Wilkie model, the model here 1s based on four
processes (although these are not exactly the same as the ones in Wilkie
(1986)) and we describe each of these in turn.

Let Z,, Z3, Z3 and Z4 be four independent (not necessarily continuous)
processes. Exactly what kind of processes are the Z, will be discussed later.

1.1. Retail prices index and inflation

Consider first a retail prices index, Q, =exp{P;} We use an Ornstein-
Uhlenbeck type modecl for the process P.

dP, = R,dt

dR, = —a\Rydt + ¢(0)dt + o1dZ (1) (1)
where a; > 0, oy € R and ¢ is a (determimistic) positive periodic function
with period /1 > 0. Here the process R plays the role of the continuous force
of inflation. A direct translation of Wilkie’s model would have ¢ = constant,
but in passing to continuous time it may be desirable to take into account the
seasonal fluctuations in inflation over a year. The period / here corresponds
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to a year in our units of time (see Remark (i1) below) (To spell things out in
a little more detail, supposing ¢ = constant, the process R, mm (I 1)
corresponds to Wilkie’s Viog Q(f), the parameter a; corresponds to the
parameter Wilkie calls t — QA, ¢ corresponds to QMU(I — QA) in Wilkie's
original paper and o, plays the role of QSD).

Because (1.1) 1s a hnear equation, 1t 1s easy to solve explcitly, whatever
our choice of driving noise Z;. The general version of 1t6’s formula for
discontinuous semimartingales X states that 1if f1s a continuous function
with the necessary derivatives,

S (Xort) = £ (X0,0) /f s dv—f-/j \,(/X+/f"\, X),
vy (f(x.f,s> () ~f X AX, = 35X

O0<s<t

where AX, =X, — =9f /01, ff=0f/0x etc. For this and other
aspects of the genelal theory of stochastic integration with respect to
semimartingales, we refer the rcader to Protter (1990) and Roger and
Wilthams (1987), which approach the subject in different ways. (Note that X
is assumed to be right-continuous and can only have countably many jumps,
so the sum above is actually a sum over countably many values of ).
Consider now the case that f(x,7)=¢“X, We have f =0 and
S(X=,5)AXs = f (X5, 5) —f(X,—,$). so the terms mvolving the jumps of X
in I[td’s formula all vanish Therefore applying 118’s formula to ¢"'R,, we
obtain an explicit formula for R;:

! !
R, = ¢ 'Ry +/ e"'('_°)<7f>(s)(l.v+/ e UIdZ,(s). (12)
0 0

From (1.2), we can find P, = Py + f(; Rds and the resulting double integrals
can be handled by interchanging the order of integration (e g. see Lemma 3 1
in the sequel)

1.2. Share yield process

Wilkie (1986) next considers two inter-related processes: an index of share
dividends and the dividend yield process. Let Y, denote the share dividend
yield The continuous time analogue of Wilkie’s model would be

),I - Y* CXI){X, + CR!}v

13
where dX, = —a X,dt + bydt + 02dZ5(1) (13)
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(Here, Y, = Yoe ¥0+¢R) I the sequel, this notation will be frequently used
to denote this kind of ““modified initial condition’’.) Equation (1.3) admits an
explicit solution similar to (1.2), namely

1_ —ayf {
X, = Xpe ™" + b, (—L—> +/ gre U N dZ5(s). (14)
0

az

1.3. Share dividend process

We next turn to the index of share dividends, D, Our model follows Wilkie
in using an exponentially discounted “sum of inflation effects™.

!
d(logD,)= <bz +ﬁ/\/ e*X‘R,Ads+’yR,> dt +mdZy (1) +mdZ5(t).  (1.5)
0

In Wilkie’s time series model, the noise has a simultancous as well as a
lagged effect which 1s captured by moving average n the noise. There 1s no
senstble equivalent in the continuous time context for such a moving
average. Another feature of the model (tnherited from Wilkie) 1s the mixing
of the drniving notses for ¥, and D,.

The share price S, 1s related to the dividends and the yield by S, = D,/ Y,
It 1s interesting to note that the process S, satisfies an equation of the form

dS, = ¢/ Sidt + S{(61dZ (1) + 62dZ: (1) + b3dZ5(1)),
which has exactly the same form as the ubiquitous geometric Brownian
motion model of share prices, except that the coefficient ¢, here takes a rather
complicated form which involves the whole path of the force of inflation R

up to time 7, as well as the usual constant dnift terms
Interchanging the order of integration, 1t 1s easy to see that

{ 3 {
A / / e ™R, _,duds :/ (1 — e "N R du ,
Jo Jo 0

thercfore from (1 5) we have

{ {
D,:D*exp{nzzz(t)+'I73Z_1(1)+[3/ (I1—e A(’_”))R,,du—k'y/ R“du-{-bzt}.
Jo 0
(1.6)

where D, 1s a constant determined by Dy and Ry 1n a similar manner to Y,
(see Remark (iv) in §1.5 below).
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1.4. Consol yield process

Finally, we have the yield on consols C,,

!
C = e P Ry_sds + Cue”",
! fp/o =S (].7)

dV, = —agVidi + 04dZ4(1), Vo=v

The equation for ¥ in (1.7) admits an explicit solution for the same form as

(12)

1.5. General remarks on the model

(1) We do not claim that the method in (1.1) 1s the most appropriate way to
model seasonal effects in inflation — 1t 1s one stmple and obvious way to do 1t
without destroying the most attractive features of the Ornstein-Uhlenbeck
process but we could equally plausibly let o be a periodic function as well
and we would sull be able to obtain an exphcit solution as before

(ii) Some remarks on the time scale of the continuous time processes here
and therr relationship with their discrete-time counterparts in Wilkie (1986)
might be useful Typically these continuous time processes run at a much
faster speed than their discrete-time equivalents: for example, if the unit of
time 1in Wilkie (1986) 1s years, the unit of time here might be centuries, so
that 1 = 0.01 would correspond to a year. This 1s essentially an artifact of
the discretization i passing from continuous time to discrete time. If we
were to discretize (1.1) in multiples of /& using first-order Euler approxima-
tion together with the approximation P, — P,_; = ft'_,l R.ds ~ hR,_; and
noting that ¢(t) = ¢(t — h) = ¢ = constant, we would recover the Wilkie
model provided we rescale time by defiming R, := Ry;,. For example,
assuming that Z, i1s Brownian motion for simphcity, the first-order Euler
discretization of (1.1) 1s

R, ~ R_y = —a\hR,_y + ol + o (Z]([) - Z|(l — /1)),
which can be rewritten as
R, = (l — alll)Rr—h + ¢h + o) \//_1 W,
=p+a(R_y— p)+ovVh W,

where we have puta = 1 — ayh, pu = ¢/ay and W, = (Z,(1) = Z,(t — h))/Vh.
Note that W, Wy, Wy, ... are 1.1.d. standard Gaussian random variables.
Defining R, := Ry, we obtain from (1.8) the AR(1) ume-series model of Witkie:

(1.8)

RI =nu +a(k,_| — /L) +o W, (19)
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where &, = o;vh. The calculations at (2.5) and (2.6) below and the
subsequent discussion tllustrate this point in greater detail Observe that the
corresponding parameters in (1.1) are rescaled 1n the appropriate way with
this time change @, = ha; and &, = o1vh Because the parameters are
automatically scaled accordingly once a time scale has been chosen. such
comparisons with the discrete time-series are usually irrelevant from a
practical pomnt of view; in practice, one would choose a suitable time scale
and then fit the model to data directly without reference to any discrete-time
model and if one wished to do simulation, one would choose a discretization
for its numerical efficiency rather than for 1its consistency with another
discrete-time model. The same comment applies to all the other processes
discussed above

(i) For our choices of Z|, the process R will have a stationary distribution.
Throughout this paper, we assume that the initial condition Ry 1s some fixed
number as in (1.2) However, it 15 also possible to let Ry be a random
variable with the stationary distribution, in which case R would be a
stationary process. The same can be said of all the other processes which
have stationary distributions.

{1v) Because the processes X and R in (1.3) are not spatially homogeneous,
the itial values Xy and Ry cannot be absorbed into Y, and so separate
parameters for the initial values are needed The same applies to the
processes D and C. Also, Wilkic (1986) has an extra drift term of the form
¢ dt appearing 1n the equation for V, in (1.7) but we have omutted it here
because 1t 1s clear from the explicit formula for V, that ¢ can be absorbed
into the two parameters v and C,, and so serves no additional purpose

1.6. Lévy processes

We are mainly interested in the case where the “noise” processes Z, are
symmetnic Levy processes, that 1s processes with stationary independent
increments (“*Symmetric” in this context just means that Z and —Z have the
same law.) We end this section by briefly recalling some results about Lévy
processes which we shall need in the sequel. Let Z be a (symmetric) Lévy
process. Since Z has stationary independent increments, 1ts characteristic
function must take the form E [e %] = ¢ "9 for some function 1, called
the Lévy exponent of Z. The Lévy-Khintchine formula says that

(0)=" % 11ab v / (1—e "™ —1fx)v(dx)+ / (1—e “")u(dx) (110)
2 J{<1y {hz1}
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for a,oc € R (1if Z 15 symmetric, « = 0) and for some o-finite measure v on
R \{0} satisfying [ min(1, x?)v(dx) < co. The mecasure v 1s called the Lévy
measure of Z. (To put readers on more familiar ground, consider the
sttuation when ¢ = a = 0 and suppose that the total mass A of v, A = [ru(dx)
1s fimite. Then the Lévy process Z with such a Lévy measure 1s just an
ordinary compount Poisson process which jumps occurring as a Poisson
process of rate A and whose jump-size distribution is A™'v(dx). In the case
that the integral of v diverges near 0, Z will have infinitely many small jumps
in a finite time-interval At the other extreme, if v = 0, there are no jumps so
we just have Brownian motion and # is the same as the exponent for a
normal distribution )

From the Lévy-Khintchine formula we can deduce the exact form Z must
take. 1t turns out that Z must be a linear combination of a Brownian motion
(the continuous part) and a pure-jump process independent of the Brownian
part. Specifically, let Q (dt, dx) be a Poisson measure on (0,00)x R {0} with
expectation measure dt X v (here dr denotes Lebesgue measure), then
(assuming ¢ = 0 1n (1.10)) we have the Léevy decomposition

Z(=O'BI+J1+A[ (111)

where, corresponding to each of the three terms in (l lO) respectlvely, Bisa
Brownian motion, J1s the pure-jump martingale J, = [ _, X(Q((0,1],dx)—1v(dx})
and A s the finite-variation jump process 4, fl\ >y Q ((0,1),dx). The
processes B.J and A are independent A more detailed treatmem can be found n
Protter (1990) and Rogers and Wilhams (1987) also contains a nice direct
construction of (1.11). Because of independence, we lose no generality in treating
separately the cases where Z 1s a Brownian motion and where Z 1s a pure-jump
process We do this in the next two secttons

3 EXPLICIT DISTRIBUTIONS IN THE Brownian CASE

If the Z, are all Brownian motions, all the processes described in the previous
section are either Gaussian processes or exponentials of Gaussian processes
Since 1n order to specify the law of a Guassian process one only has to
specify the mean and the covariance, the results of this scction are essentially
trivial.

Recall that for a Brownian motion W, [(; f(s)dW, =B f(;j(s)zdsg where
B 1s some other Brownian motion. Applying this result to (1.2) givés

I 20,0 __ 1
R =Ry + / e (s)ds + oje” ' B, (E—> (2.1)
0 2ay



84 TERENCE CHAN

where B 1s a Brownian motion. Hence, R, has Gaussian distribution with
mean

pr() = e ‘“’Ro—f—/o (=) o (s)ds (2.24)

and variance

_ o 2ayt
vR(l) = al,<l——2%l——> . (2.2b)

(In 2.2a,b) we have used the fact that B, 1s Gaussian with mean 0 and
varitance ¢). Similar results hold for the other Ornstein-Uhlenbeck type
processes X and V introduced 1n Section 1.

From (1.6) and (1.7), 1t is clear that the key to finding the dlstnbutlons
of D, and C, hes in obtamming the distnbution of ]0 s)R; ds for
su1table (determunistic) functions f. Since R 1s a Gaussian process SO 18
1 f( )R, ds and so all we need to do 1s work out the mean and variance
of [,/ (s)R. ds. The mean 1s trivial: by mterchdnglng the order of integration
i1t 1s easy to see that the mean 1s just [, f(s)jx(s)ds We now turn to the

vanance Since the mean is irrelevant here, the variance is ssimply given by

IE"[ // Hds ] ]EO[//f f(uHH,,dudv]

where we have put
2ayt
et —1]
H,:O'|€_(”’B|( >
2a,

and we use the superscript in E® to emphasise that Hy = B;(0) = 0. Using
the covariance of Brownian motion E (BB,) = min(s, ) and interchanging
the order of integration, we get

E’ [/ / Sy (u)HH, du ds]

=2 / 1(s) / f(0)E(H,H,) duds

_2r/j ""/f —“'"( 7";‘;”_') du ds (2.3)

Putting £ = 1 1n (2.3) gives the vanance of /0 R; ds to be

2 a1 —2aq1
ﬂ(i_,_zez _e__i>_ (2 4)

a; \a a 2a2 24t
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At this pomnt, 1t may be instructive to compare these results with the
analogous ones for the AR(1) time series (1.9) The mean and vanance of
S -i—| R has been obtained by Hurlimann (1992) and Wilkie (1995). Keeping
to our notation established in (1.9), the mean of the accumulated force of
mflation 31, R, 1s

(25)

while in the continuous model the mean j(; R; ds1s (assuming ¢ = const.)

I
/ pals)ds = ot + "By gman) (26)
JO a

where 1« = ¢/a, as before. We see immediately that (2 5) and (2.6) have the
same form. To check that they in fact agree, recall that to obtain the time-
series (1.9) from (1.1), we discretized time 1nto steps of size i Therefore
Z,/ll IR, 1s precisely the Riemann- sum ) approximation to fo Rids. According
to the formula (2.5), the mean of Z' " 1R, 1s

i | — t/h
pt+ (Ro — u)ha(—a—)
l —a
1 —ay/ t/h
=/Lf+(R0—'/,L)< alal 1> [l — (I —a\h) /I:l

Ro —
— i+ 9 M[l —e
ay

as i — 0, which 1s precisely the mean of O'&(IS given by (2 6). Similarly,
Hurlimann (1992) gives the variance of ), R, as

&2 [’ _2a(1 - d') N a*(l — az’)]

(]_(1)2 l —a 1 —a?

which has the same form as (2 4).

It 1s just as easy to obtain the distributions of the other processes 1 our
model Putting f(s) = pe 7" in (23) we get that [ e "R, ds has
Gaussian distribution wnth mean

o
/ pe =) pup(s) ds (2.7a)
0

and vartance

2

poi ((an — o) — (a1 + p)(pe"”” + aye2") + 40'/)6-((““))’) (2.7b)

a 2(ay - p)(a +p)
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Putting f =3+~ — Be =9 also gives an explicit expression for the
variance of 3 [y (1 — e "N R, ds+ v [ R, ds, although this 1s too messy
to write down here — the formula 1s simplfied somewhat by choosing y =0
and simplified considerably by choosing v = —f, for this would then reduce
to (2.7b). The full covariance structure of the process rH.jg/(s)R\ ds can
also be obtained in this way

Armed with these results, we can now state the distributions of interest.
We have already found the distributions of R, and P, = f(; R, ds (see (2.2)
and (2.4)). Applying the results (2 2) to the process X, we get from (1.3) and
(1.4) that log Y, has Gaussian distribution with mean

1 _ p—ual
log Y, + Xoe™“ + by (—a—i———> + Cur(7)

and vanance

2(12

1 _ ,—2(1:/
Conlt) + A ()

For the dividend index D, the result (2.3), with f(s) = 3+ — Be™ =),
together with the analogous results (2.2) for U give that log D, has Gaussian
distribution with mean

log D, + byt + / (B+v - Be NN g (s) ds
0

and variance
2 2
(m5 +m5)¢

n s Nt __ gt
+20%/ (ﬁ+7—ﬁe_’\('_“))€—"”/ (ﬂ_i_,y_ge—/\(’*“))(e(—ze—) duds.
o Jo '

Applying (2 2) to V, shows that 1t 1s Gaussian with mean

—a3!

jy(t) = ve

1 — C,—Zu.;l
VV(’) = 0-‘2‘( 2(‘4—)

The distribution of C, 1s the convolution of normal and log normal
distributions and the results (2.2) and (2 7) show that C; has mean

and variance

vl
5/ /)L'_p(’_s),LLR(S) ds-{-C,,e’“'([H""(')/z
0
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and variance

p€2a? (a1 — p)* — (ay + p)(pe™ 2" + are™2") + day pe=(+r)
a 2(ar = p)*(ar + p)
+ C2(32/z;/(l)+v|/(l)(el-y(l) _ 1)

It 1s also possible to specify the {ull multivanate structure of R, Y and D using
the methods here. Since R, Y and D are either Gaussian or log Gaussian, their
Joint law s specified once we have the covariances Cov(R,logY,),
Cov(R;,log D) and Cov(log Yy, log D;). For the most part, we only need to
know the covariance stucture of the process 1— R, which 1s given by

et — |
E[R R, = pr(1)pir(s) + E[HH,] = jir(£)pr(s) + 0110_""( 5 >
1
iIf s < t Thus, for example,
{
E[R, log D,] = 11 (1)(log D, + bat) + / (B+v — Be N TNE[R,Ry] ds
Jo

and we can then substitute the relevant previous results mto the above
expression. In addition, we also need the covariance of X, and Z,(¢), which is
given by

o2l _ |
E°[X,Zy(1)] = o2¢”“ min (C—, t)
2(12

using the covariance of Brownian motion. The detailed computations of the
covariances are left to the reader.

4, EXPLICIT DISTRIBUTIONS IN THE DISCONTINUQUS CASE

There have been some suggestions that Gaussian noisc terms are not entirely
appropniate for these models and that more reahistically, the noisc should
have jumps In this section, we perform the same analysis as in Section 2 on
the assumption that the Z, are symmetric pure-jump Lévy processes.

From the analysis in Section 2, 1t 1s clear that once we know what the law
off(;/‘(s)Zv ds 1s for fixed ¢ (where f{s) or f{1, s) 15 a suitable function and Z 1s
a generic Lévy process), we can obtain the necessary explicit distributions. It
all turns out to rest on the following simplc lemma allowing the interchange
of order of integration.

LEMMA 3.1: Let f and g be Riemann-integrable functions. Then the laws of

[16) st azias ad [ et) [ 1) asz,
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are the same for each fixed t and the common law s given by

|:Cxp{—19 / (u) / f(s dsc/Z,,}]—e\p{ /7,/)0g F(u)])du}

(3.1
where 1 is given by the Lévy-Khinichine formula (1.10) and F(u) = (')' f(s)ds

The proof, although not very pretty, uses only well-known standard results
in the theory of stochastic integration and Lévy processes and is presented 1n
the Appendix.

Remarks

(1 The above lemma 1s trivial if Z has finite variation, for then the integral
Jo8(s)dZ, exists as an ordinary Riemann-Stielfjes integral. Changing the
order of integration as for ordinary integrals, we actually have the much
stronger result that

P (J,/(s) [y g(w)dZ, ds = [ g(u) [, f(s)dsdZ, Vi)=1.

When Z has infinite variation, the integral with respect to Z 1s a “"genuine”
stochastic integral. In this case, we have to emphasise that Lemma 3.1 holds
only for fixed r; the two integrals clearly cannot have the same law as
processes since the former 1s a process of finite variation while the latter has
infinite vanation.

(1) Since ¢ 1s a fixed parameter in the present context, Lemma 3.1 holds
cqually if we allow fand g to also depend on ¢, which we need to do for some
of the processes considered earlter.

(ur) Note that a simple special case of (3.1) 1s that

lE[exp{—iH./O.l G(r.u) dZ,,}] - exp{— /()’d)(GG(I,u))du} (32)

for any (Riemann-integrable) function G.

Consider now the model described in Section | where the Z, are
symmetric Lévy processes with jumps. From the explicit formula (1.2) for R,
we see that to find the law of R, we can apply (3.2) with G(1,u) = gy e~
in which case we obtain

I
E[e "] = exp{—zﬁuk(l) —/ w(ﬁale_”'('_”))du} ,

where jiz(1) 1s as defined by (2.2a). In a similar way we can obtain the laws of
the processes X, U and V introduced 1n Section 1. For the law of ﬁ) R, ds, we
can dpPly Lemma 3 | with g(t,u) = ale*“‘(’ M, f=1 and for the law of

[ipe *" R, ds we can take g(f,u) = o™ (1=, f(t,5) = pe =9 In this
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way, we obtain the distributions of R, 8§, C, and log D, in a similar manner
to Section 2 However, the joint distribution is much more difficult to obtain

We end this section with a brief word on some specific examples of Lévy
processes one might choose to use in these models. We just mention two
commonly used Lévy processes. One 15 the symmetric a-stable process,
whose Lévy exponent 1s 9)(#) = |9]" and whose Lévy measure 1s

v(dx) = —gl—(l\' x #0,

|\_|l+n -

where C, = 77'T(1 + o) sin(ma/2). (Here 0 < o < 2; v = 2 corresponds to
the Gaussian distribution and @ = 1 gives the Cauchy distribution). Stable
distributions are examples of so-called heavy-tailed distributions One of the
disadvantages of stable processes 1s that they do not have higher order
moments than 1 (for o < | they do not even have a first moment) which may
cause awkward problems, for example, when we take exponentials of stable
processes as we are frequently doing in these models

Another commonly used class of Lévy processes which overcomes this problem

1s the Gamma process. A Lévy process Y 1s said to be Gamma with parameters
(@, 8 where o, > 01f P () < x) = T(a)™' 8 [ »*~'e~*dy. Hence

IE[e_'M’] = (ﬂ——f ig)ﬂ = cxp{—allog(l +g)} .

Note that such a process 1s non-decreasing, so to obtain a symmetric process,
we simply take two independent copies Y and Y and define Z = ¥ — ¥. The
process Z 1s therefore a symmetric Lévy process with Lévy exponent
¥(0) = alog(l +62/8%) and Lévy measure v(dx) = a|x| 'e ?Pldx. Looking
at the Lévy decomposition, since f{ A<t |x|v(dx) < oo, we see that Z has finite
variation and since j{|\|>l ]x|"u(d.\‘5 < 00, Z; has finite moments of all orders.
Applying Lemma 371 we obtain (replacing @ with 8 for convenience)

E[exp{_efolf(r—s)dz\}] :exp{—a/ol log(l —sz%%”) ds} (33)

e E[exp{—ﬂ/olg(u)/”[f(s) dst,,}]
= exp{—a/()llog(I - 92§2u)3 [/“[f(s) c/s]z) du} (3.4)

Although in gencral 1t 1s not possible to give exphcit formulae for the
integrals 1n (3.3) and (3 4) for our choices of f and g as in the preceding two
sections, the Laplace transforims (3 3-4) do give relatively simple expressions
for the moments, involving integrals which can be readily evaluated by
numerical means.




90 TERENCE CHAN

5. CONCLUDING REMARKS

We have concentrated here on obtaining explicit formulae, both 1n the case
where our SDEs are driven by Brownian motions and in the case where they
are driven by symmetric Lévy processes with jumps. Of course, many other
questions — which we have not considered — do not admut explicit answers
and one must then resort to numerical solutions. It is not our intention here
to give a detailed quantitative analysis of numerical simulations of the
models presented 1n the preceding sections, as this could well constitute a
paper 1n its own right. We simply present some examples of numerical
simulations to give a feel for what these processes look like In the case of
SDEs driven by Browman motion, great advances have been made 1n recent
years in numertcal methods for solving them. For a comprehensive survey of
these techniques as well as an extensive bibliography on the subject, we refer
the reader to Kloeden and Platen (1992) By contrast, numerical methods for
SDEs driven by processes with jumps, such as stable processes, have recerved
far less attention until recently and the lhiterature on this subject 1s more
hmited: a systematic treatment 1n book form can be found in Janick: and
Weron (1993).

For simplicity, we present some stmulations for the inflation process R,
only since of the four components, this 1s closest to the time-series model of
Wilkie Figure 1 shows three trajectories of the process R,, in the case where
the noise Z, 1s Browman motion. The scaling used 1s such that the time
interval [0, 1] corresponds to a period of 50 years Spectfically, in the context
of Remark (n) 1n Section 1, we have used # = 0.02 and 1n equation (1.2) our
choice of ¢ 1s ¢(t) = b+ ccos(2m1/h). Since the picture 1s only intended to
give a qualitative indication of how the process behaves, the actual
numerical values on the vertical axes are not of any great importance: the
parameter values in Wilkie (1986) are used as a rough guide to the sort of
values which might be appropriate for the parameters here — n particular,
the parameter values of Wilkie are rescaled in the manner discussed in
Remark (i1) of Section 1

Throughout, we have taken the various parameters in our models as
given quantities and we have said nothing about the problems of their
estimation. There 1s some discussion of this question in §6.4 and §13.2 of
Klioeden and Platen (1992) which 1s especially relevant to the linear
equations which appear repeatedly in our models.
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FIGURE | SAMPLE PATH REALIZATIONS OF THE FORCE OF INFLATION PROCESS R,

APPENDIX PROOF OF LEMMA 31

Consider first the integral I(s) = [; g(u)dZ, Takea sequence of partitions

(u,(("), u,(";l] of the interval [0, ¢}, such that sup, |ukJrl — 4" 50 as n > .

It is known that, as n — oo,

L) = 3 o) (202 - 26i) — [ sty az

u,(‘") <y

in probability uniformly in s over the time interval [0, ¢] (see Protter (1990)).
Therefore, there 1s a subsequence (n,) such that I, (s) — I(s) almost surely as
1 — oo and without loss of generality we can assume that 7,(s) — /(s) almost
surely. Next, take a different sequence of successively refining partitions of

[0, 7] and call this [s<"" ‘"’>) Put

] j+|

() m (m) (1)
E,,uk, Zf( )(_}+l_sj )

('") n)
EX ZHA
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(Of course, F,(ul”,1) — F(1) — F(u\") as n — 00.) We then have

iy S (5) (- 7) S e (20 - 20)

m) < W < gm)
k =7

/ f(s / u) dZ, ds

and so for fixed n,

E|oxpt =05 /(") (57 —5") 3 #(d”) (2042 - 2(4™)

,("I)S’ “in)sv/(m)
n) (n n) (m m (m
=IE |exp —10Zg<u )(Z(u,\+I Z(u, ) Z f( ))(J'H_J )>
(") <t (m)>”
5
= exp{—(ugil —u,((”)>1,b[9g(u,(\")) ,,,(uk ,t)]}
u <y
<
=exp{ — Z (”221 —u,(\,"))'qb[(?g( ) ,,,(u,(\ ),t)}
wM <y
S
—expd = > () —ul" ) o) (F(0) - F™) )| (41)
W<y
PR

as m — oco. In the above calculation, we have used the stationary
independent  increments property of Z and the fact that
E[¢ 7%~ %)] = ¢ =% Letting n — oo 1n (Al) then gives the right-hand
side of (3.1).

For the mtegral [;g(«) [\ f(s)dsdZ,, we know that

S et (k) - Fu) (202 - 204) [ st [ 19dsaz,

almost surely as » — oo (passing to a subsequence if necessary) A similar
calculation as 1n (A1) easily yields the identity (3.1).
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ABSTRACT

The Cox regression model 1s a standard tool in survival analysis for studying
the dependence of a hazard rate on covariates (parametrically) and time
(nonparametrically). This paper 1s a case study intended to indicate possible
applications to non-life insurance, particularly occurrence of claims and
rating

We studied individuals from one Damish county holding policies in auto,
property and household insurance simultaneously at some point during the
four year period 1988-1991 1n one company The hazard of occurrence of
claims of each type was studied as function of calendar time, time since the
last claim of each type, age of policy holder, urbanization and detailed type
of insurance Particular emphasis was given to the technical advantages and
disadvantages (particularly the complicated censoring patterns) of consider-
ing the nonparametrically underlying time as either calendar time or time
since last clatm. In the former case the theory 1s settled, but the results are
somewhat complicated The latter choice leads to several issues still under
active methodological development. We develop a goodness-of-fit criterion
which shows the lack of fit of some models, for which the practical
conclusions might otherwise have been useful.

l. INTRODUCTION

Individual rating in noun-life insurance may be based on exogenous variables
(age of policy holder, urbanization) but in auto insurance vartous schemes
for dynamical individual rating based on endogenous information (previous
claim career) are well established. A possible further development of such
procedures would be to base rating on endogenous variables for more than

ASTIN BULLETIN, Vol 28, No 1, 1998, pp 95-118
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one type of non-life insurance. This would — as all such schemes — require an
extensive knowledge base, and to focus ideas we studied the example of
household, property and auto insurance. The joint development in time of
the occurrences of claims of these three types is conveniently phrased in
terms of the theory of event history analysis which has developed rapidly
during the last decade, cf. Blossfeld et al (1989) and Blossfeld and Rohwer
(1995) for good surveys with social science applications and Andersen et al
(1993) for a general treatise with many practical examples, primarily from
biostatistics.

In this report we indicate some 1nitial possibilities as well as difficuities in
carrying out such a programme Restricting attention to claim occurrence
(i.e disregarding claim size) we want to capture the occurrence in time of
claims as function of fixed exogenous covanates (age of pohicy holder,
urbanization) and several time variables: calendar time and times since
recent claims of each type. There 1s an active current literature on choice of
time scales in statistical models for repeated events, cf. Lawless and
Thiagarajah (1996), Lawless (1998) and Oakes (1998).

Our main tool will be versions of the Cox (1972a) regression model for
event history data, see Andersen et al. (1993, Chapter VII). In this
“semiparametric’’ model, one time variable is selected as “‘underlying’” and
modelled “nonparametrically” while other time variables as well as fixed
exogenous covariates are modelled parametrically See Prentice et al. (1981)
for an early exposition of alternative time scales in Cox models for repeated
events and Oakes (1998) for an excellent concise survey. The Cox model 1s
introduced in Section 3 and two alternative choices of underlying time
variable are considered in Section 4 (calendar time) and 5 (time since last
claim). Whereas calendar time as underlying time variable leads to a
relatively standard application of Cox regression methodology, it will turn
out to be rather less standard to consider time since last claim. A brief
discussion is contained 1n Section 6.

The methodology 1s 1llustrated on data from a Danish insurance
company, ntroduced in Section 2.

2. DATA

The present case study is based on data from a Danish insurance company.
Between | January 1988 and 31 December 1991, 15,718 persons across
Denmark at least once simultaneously held household, property and auto
policies in this company. We study the 1,904 persons from the county of
Fyn, in which Odense 1s by far the largest city. For each person and each
type of policy is known
o the start and the end of the policy if within 1988-1991. If there were
several policies of the same type within 1988-1991, only the latest was
kept in the routine records on which we work.
o age (but not sex) of policy holder
urbanization
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o for household: coverage (amount)
o for auto: coverage
e date and size of claims.
In this study we focused attention on claims that led to payments This
means that we removed claims of size 0. We made no other use of claim size.

3. THE COX REGRESSION MODEL FOR EVENT HISTORY ANALYSIS

For each type h = 1, 2, 3 (household, property, auto) and policy holder : the

intensity of having a claim at time ¢ 1s denoted A, (¢). Here ¢ can be calendar

time (cf. Section 4) or time since the last claim of a similar type (cf. Section

5), with a special definition necessary if there has not (yet) been such a claim.

A third possibility would be that r was time since taking out the policy. We

explain later why we do not consider the latter possibility relevant here.
The Cox regression model now postulates that

/\Iu(’) = 0’0/1({) €xXp {,B[,,Zlu(f)] Ylu(’)

where og(f) 1s a freely varying so-called underlying intensity function
common to all policy holders 1 but specific to insurance type # The indicator
Yy (1) 1s 1 1f policy holder 7 1s at risk to make a claim of type 4 at time 7, 0
otherwise The covarnate process Zy,(¢) indicates fixed exogenous as well as
time-dependent endogenous covariates. The fixed covariates considered are
year of birth of pohcy holder and urbanization of residence, which 1n
practice equals | for city (Odense) and 0 for rural (rest of Fyn). The time-
dependent covariates indicate duration since last claim of each type (which
can and will be parameterized in various ways). Finally the vector G,
contains the regression coefficients on the covanates Z;,(1)

Statistical inference 1n the Cox regression model 1s primarily based on
maximum partial likelihood, which in the generality necessary for this
application was surveyed by Andersen et al. (1993, Chapter VII) in the
framework of counting processes. The regression coefficients 3, are estimated
by maximizing the partial hkelihood

exp(8, 2y (Thy))
L ,Bh =
( ) 1;[ Zl Yu(Thy)=1 exp(ﬁ;,Z/”(le))

where Ty < Ty < ... are the times of claims of type A, policyholder (j)
claiming at ume T}, Large sample results are available to justify the
application of the inverse Hessian of the log partial lkelihood as
approximate covariance matrix for fS,. Because of the time-varying
covariates the necessary algorithms are rather elaborate, although we were
able to perform all computations on a medium-sized PC using StatUnit
(Tsur, 1993). The computations may also be performed 1n standard packages
such as BMDP, SAS or S-plus, or via the Poisson regression approach of
Lindsey (1995).
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For the underlving intensity og,(t) 1t 1s well-established that a natural
estimator of the integrated intensity

Aoi(t) = /Olao;,(u)du

1s given by the step function (the “Breslow” estimator)

- l
AQ/,([) = =
r%‘; > exp(8,Zu(Ty))

! th(Thj):l

where T;, < Ty < ... are the times of claims of type 4 and 8 the maximum
partial likelihood estlmator of 3.

Unfortunately Ao (#) 1s less than optimal 1n communicating rmportant
features of the structure of agx(1); 1t 1s often desirable to be able to plot an
estimate of ay, 1tself We shall here use kernel smoothing (which in the
context of estimating the intensity 1n the multiplicative intensity model for
counting processes was incidentally pioneered by the actuary Ramlau-
Hansen (1983)). This estimates ap,(¢) by

. =T,
a();,(t) = Z K< Y
J1=h< Ty, <t+h

where b is the bandwidth, K a kernel function, here restricted to [—1,1] and
AAO/,(T,U) = AOI,(T;,J) AO;,(T;,J 1) Tw = 0. We choose here the Epa-
nechnikov kernel K(x) = 0.75(1 — x?). For more documentation, see again
Andersen et al. (1993, pp. 483 and 507-509).

Despite 1ts considerable flexibility, the Cox regression model is not
assumption-free, the most important assumptions being that of proportional
hazards and that of log-finearity of effect of regressors. There 15 a well-
developed battery of goodness-of-fit procedures available, cf. Andersen et al.
(1993, Section VII.3), and several of these methods have been used in the
present case-study (never indicating deviation from model assumptions).
However, space prevents us from documenting these here.

> A AOI:(TIU)

4 COX REGRESSION OF CLAIM INTENSITY
CALENDAR TIME AS UNDERLYING TIME VARIABLE

Our first choice of underlying time scale is calendar time, which is always
observable and whose association with variations in claim intensity may
form an interesting object of study. Technically, the counting process
approach elaborated by Andersen et al. (1993, Section I11.4) easily allows for
entry and exit of policies from observation (the *“Aalen filter’”) in this
situation.
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However, an mmportant purpose of this study was to ascertain the
observability and possible extent of the association of claim intensity to the
duration(s) since earher claim(s), and 1t 1s less obvious how to account for
these. Because of the relatively limited period of observation (4 years) 1t was
necessary to make several pragmatic choices. First, the dependence on earlier
claims was operationalized as dependence on duration since latest claim, and
this was achieved by defining the indicator covariates
[1-90]: There has been a claim less than 90 days ago.

[91-180): The latest claim was between 91 and 180 days ago.
[[81-270]° The latest claim was between 181 and 270 days ago.
[271-360] The latest claim was between 271 and 360 days ago.
[> 360] There has been no claim during the past 360 days.

Since the database contains no information on claims before 1988, these
covariates would not all be observable early in the period. We therefore decided
to use 1988 as run-in year, only for collecting information on earher claims.

A further problem was the many instances where a new policy was taken
out within 1988-1991 In case no claims happened, the above covariates
would remain unobservable for 360 days, which forced us to add the
covarlate
[no inf]. policy (of this type) was taken out less than 360 days ago and

during that time there were no claims.

4.1. Household claims in calendar time

For household claims the relevant covariates were: year of birth of
policyholder (categorized in three groups separated by 1 January 1938 and
| January 1948), urbanization (Odense vs rest of Fyn) and duration since
last claim of each type as described above All groups of covariates were of
statistical significance and the estumated model had regression coefficients as
given 1n Table 4.1.

It 1s seen that compared to the “‘no information” situation when no claim
has happened after a recently taken out policy, knowledge of a recent
household claim during the recent 0-9 months increases the risk of a new
household claim by a factor ranging from ¢°32 = 1.8 to °3% =22, 1¢, a
factor of about 2. On the other hand knowledge of claim-free career of one
year decreases the risk by the (statistically insignificant) factor of 0.9.

Past property claims have effects according to a stmilar pattern, although
the effects are smaller, except for very recent property claims (° %% = 1.9),
some of which may be caused by the same events that caused the household
claim. Unfortunately the database cannot 1dentify such cases, which would
in principle violate the proportional hazards assumption of the Cox
regression model
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TABLE 4 1

REGRESSION COEFFICIENTS IN REDUCED COX MODEL FOR HOUSEHOLD CLAIMS

Covariate Estimate Standard error P
Household[no nf ] 0 ~ —
Household[1-90} 0 562 0277 0043
Household[91-180)] 0725 0275 0008
Household[181-270] 0 808 0275 0003
Household[271-360] 0206 0303 0 496
Household[ > 360] -0 105 0243 0 665
Property[no inf] 0 , -
Property[1-90] 0629 0197 0001
Property[91-180] 0178 0219 0416
Property[181-270] 0107 0225 0663
Property[271-360] 0287 0225 0202
Property[> 360] -0132 o 16l 0413
Auto[no inf ] 0 - _
Auto[1-90] 0224 0209 0284
Auto[91-180] 0301 0 208 0148
Auto[181-270] 0258 0217 0234
Auto[271-360] ~0 187 0 260 0473
Auto[ > 360] —0 144 0 148 0330
Born[> 1947] 0 - -
Born[1938-1947] 0015 0086 0 860
Born[ < 1938] -0 406 0 100 0000
Rural 0 - -
City 0381 0076 0 000

Past auto claims show overall significance, although the effect of each
period 1s small, generally in a similar pattern as for the other types of
insurance.

The age pattern has a decreased intensity for older policy-holders
(intensity factor e~24% = 0.7) while the two younger groups are very similar;
finally urbanmization generates the expected gradient with an increased risk in
the city (! = 1.5).

The underlying ntensity 1s estimated as described in Section 3, using 3
different bandwidths for illustration, see Fig. 4.1 It 1s not easy to conclude
much from the somewhat 1rregular pattern except perhaps a slight general
decrease. The boundary effects at the start and the end of the studied period
are statistical artefacts deriving from the kernel estimation approach.

It may be noticed from Table 4.1 and the following tables that several of
the patterns of dependence on time since last claim might be simphified. As
an example 1n Table 4.1, the regression coefficients Auto[1-90], Auto[91-180]
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and Auto[181-270] look rather similar, as do Auto[271-360] and
Auto[> 360]. However, there 1s no obviously consistent pattern across
types of claims and types of nisk indicators, so we have refrained from
conducting what would mn any case be post-hoc attempts at statistical
identification of such patterns.

0 0008
00008 1
00007 -
| : Bandwidth 10 days
00006 1 l ’ i — Bandwidth 30 days
co P ) ' —— Bandwidth 50 days

0 - t
01-Jan-89 01-Jan-90 01-Jan-81 01-Jan-92

FiGurRe 4 1 Kernel smoothed underlying intensities for household claims

4.2. Property claims in calendar time

For property insurance there i1s a series of optional additional coverage
possibilities, which are all included as specific indicator covariates fire, glass,
insects, wash basins, pipe. rot

The estimates of the reduced model are given in Table 4.2. Note that
urbanmization is statistically insignificant and that there 1s an unusual age
pattern, the middle-aged having a somewhat lower risk than the young and
the old. In the interpretation of the age cffect it 1s however particularly
important to keep 1in mind the specially selected population each person
must have had all three types of policies simultaneously at some point during
1988-1991, this restricts consideration to better situated people.

Of the optional additional coverage, only glass and pipe coverage are
retained as risk variables, both clearly increasing the risk. That fire does not
appear 1s related to the fact that almost all policies chose that option. For
duration since last claim the general pattern is similar to the earlier one,
although one must notice that there 1s never a significantly lower risk than
that of [no inf.], which (as we shall discuss more fully below) will limit the
practical applicability of the results.
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TABLE 42

REGRESSION COEFFICIENTS IN REDUCED COX MODEL FOR PROPERTY CLAIMS

Covariate Estimate Standard error 14
Household[no nf ] 0 - _
Household[1-90] 0485 0229 0034
Household[91-180] 0302 0240 0208
Household|181-270] 0345 0240 0151
Household[271-360] 0032 0260 0902
Household[ > 360] —0080 0192 0676
Property[no inf ] 0 -

Property[1-90] 0524 0206 001l
Property[91-180] 0334 0217 0124
Property[181-270] 0206 0224 0357
Property[271-360] 0281 0224 0210
Property[> 360} —0180 0181 0320
Auto[no nf'] 0 - -

Auto[1-90] 0501 0184 0 006
Auto[91-180] 0262 0202 0194
Auto[181-270] 0182 0210 0387
Auto[271-360] 0267 0211 0205
Auto[ > 360] 0026 0141 0 851
Born[ > 1947] 0 -

Born[1938-1947] -0 196 0079 0013
Born[ < 1938] -0 061 0079 0438
Glass 0411 0140 0003
Pipe 0185 0072 0010

The underlying intensity 1s estimated in Fig 4 2 and shows a dramatic peak
in early 1990, apparently traceable to extreme weather conditions

4.3. Auto claims in calendar time

In addition to the standard covariates, auto claims are expected to depend
on whether or not there 1s auto comprehensive coverage and whether or not
a certain "free claim™ allowance 1s included n the policy.

The estimates of the reduced model are given in Table 4 3, where 1t 1s
immediately noticed that, perhaps contrary to expectation, auto compre-
hensive coverage does not increase risk of claim for this population of
nsures. Note also the age pattern, generally unusual for auto insurance with



THE COX REGRESSION MODEL FOR CLAIMS DATA IN NON-LIFE INSURANCE 103
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maximal risk among the middle-aged policy-holders. (Note that there are no
data to account for size of household, and note once again the specially
selected population.)

TABLE 43

REGRESSION COEFFICIENTS IN REDUCED COX MODEL FOR AUTO CLAIMS

Covariate Estimate Standard error P
Household[no inf] 0 - -
Houschold[1-90] 0388 0245 0114
Household[91-180] 0303 025t 0226
Household[181-270] 0304 0252 0227
Houschold[271-360] 0493 0244 0043
Household[ > 360] 0001 0193 0995
Auto[no inf ] 0 - -
Auo[1-90] 0730 0259 0005
Auto[91-180] 0862 0257 0 001
Auto[181-270] 0738 0264 0 005
Auto[271-360] 0618 0273 0024
Auto[ > 360] 0294 0231 0203
Born[> 1947] 0 - -
Born[1938-1947) 0100 0079 0209
Born[ < 1938] —0 140 0087 0106

Free claim 1 048 0083 0 000
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The patterns regarding duration since last claim show no overall effect of
recent property claims and some effect (increase) on risk of recent household
claim. As expected, recent auto claims considerably increase the risk of a
further auto claim, as does the “free claim” option (no penalty 1n premium
scale after a claim)

The underlying intensity (Fig. 4.3) indicates some seasonality with peaks
in the winter and the summer, however this pattern 1s rather irregular.
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FiGure 4 3 Kernel smoothed underlying intensity for auto claims

4.4, Preliminary conclusions: calendar time as underlying variable

Two problems are common to all analyses so far. First, the unstable nature
of the population of policies during the relatively short observation window
of four years make the desired allowance for time since earher claims difficult
to achieve 1n practice. The general reference category of [no inf.], meaning
that a policy of the relevant type was taken out less than a year ago and there
have not yet been claims to that policy, 1n all cases carries a very low risk for
new claims of the type under study This relative low-risk behaviour of new
policyholders 1s obviously difficult to integrate into a reward system for
faithful customers In this connection it must be emphasized that the routine
nature of our database (which may well be typical of such databases) did not
allow the distinction between genuinely new policies and “bureaucratical”
renewals 1nitiated by the company or the policyholder in order to update
conditions.
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Secondly, some of our concrete results point to the rather special
selection procedure underlying the present database: all policyholders were
required to have held all three types simultaneously at least once in 1988-
1991 As an example, think of the rather biased selection of young
policyholders!

5. COX REGRESSION OF CLAIM INTENSITY:
USING DURATION RATHER THAN CALENDAR TIME AS BASIC TIME VARIABLE

In the discussion so far it has become obvious that we need to reason in
several time varables: calendar time as well as duration(s) since recent
claim(s). At least because of the possibility that there have not yet been any
claims, we may also need the time since the policy was taken out. When
using the Cox regression model such as introduced 1n Section 3

/\/ll(r) = CY()/,(f) exp [,B//,Zlu(’)] Ylu(t)

one may choose one of these time scales as “‘basic” (= r) and handle the
other(s) as (time-dependent) covariates Z;,(f). An important criterion for
choosing between these possibilities is the additional fiexibuity n the
description offered by the “nonparametric” underlying mtensity oy, (f). We
actually saw in Section 4 that various indications regarding seasonal patterns
appearcd in the graphs of Figs. 4.1-3

Another criterion 1s ease of handhng special observation plans. When
calendar time 1s used, the exact time 1s always known for each policy-holder,
in contrast to what 1s the case for duration since last claim. We discussed the
latter problem at the beginning of Section 4, where we constructed time-
dependent covanates to account for durations since earlier claims.

However, both prior expectation and our experiences so far pomt to the
importance of time since last claim as decistve time variable, for which the
maximal modelling flexibility offered by the nonparametric part of the Cox
model would be useful. To discuss an adequate statistical analysis in this
time-scale, consider first the simple situation without covariates, which is a
renewal process.

5.1. Estimation of renewal processes observed in a fixed time window

Let X}, X5, be independent random variables (durations) with distribu-
tion functions Fy, F; = F3 =. = F, assumed to have finite expectations
o and o and  density functions fi=F and f=F. Let
Sy =X+ ...+ X,,n=1, 2, ..and the stochastic process (a renewal process)

N, = ZI{SH < [}a
n=1
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the number of durations since time 0. If f; = (1 — F)/u the process 18

stationary Observing a renewal process in an interval [1, ;] amounts to

observing the renewal times (claims) T, € [t,n] or equivalently

(N—=N, tein,n]). Let T, be the first renewal after 1, ie.

N7, = N, + 1. Then T, — 1, 1s called the forward recurrence time, and 1f

the process is stationary, this has density function (1 — F)/u
Observing a renewal process in an observation window [1y, f2] involves

four different elementary observations

1. Times x, from one renewal to the next, contributing the density f(x,) to
the likelihood.

2 Times from one renewal to ¢, right-censored observations of F,
contributing factors of the form 1 — F(1; — T,) to the likelihood

3 Times from 1 to the first renewal (forward recurrence times),
contributing, 1n the stationary case, factors of the form
(1 = F(T, — t;))/ to the likelihood.

4. Knowledge that no renewal happened in [, 2], being right-censored
observations of the forward recurrence time, contributing in the
stationary case a factor

/°° (1 = F(u))du/ .

21

In the stationary case the resulting maximum likelihood estimation problem
1s well understood. Vardi (1982) derived an algorithm (a special case of the
EM-algorithm) in a discrete-time version of the problem, and Soon and
Woodroofe (1996) gave an elaborate and very well-written discussion 1n
continuous time. McClean and Devine (1995) conditioned on seeing at
least one renewal in [1}, 1], excluding observations of type 4 and restricting
attention Lo observations of type 3 night-truncated at t, — 11, 1.e. with

density
(1 = Flu— 11))/(1 - /0* F(v) dv>

Again an EM-type algorithm 1s feasible.

In our situation we need to be able to generalize the estimation method
from nd vanables to the Cox regression model, and we would also prefer to
avoid the stationanty condition required for inclusion of the (uncensored
and censored) forward recurrence times of type 3 and 4.

This 1s possible by restricting attention to (uncensored and censored)
times since a renewal, that 1s, obscrvations of type | and 2. As discussed
repeatedly by Gill (1980, 1983), see also Aalen and Husebye (1991) and
Andersen et al. (1993, Example X.1 8), the hkelihood based on observations
of type | and 2 1s 1dentical to one based on independent uncensored and
censored life times from the renewal distribution F. Therefore the standard
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estimators (Kaplan-Meier, Nelson-Aalen) from survival analysis are
applicable, and their usual large sample properties may be shown (albeit
with new proofs) to hold.

The above analysis 1s sensitive to departures from the assumption of
homogeneity between the 1id replications of the renewal process. Restricting
attention to time since first renewal will be biased (in the direction of short
renewal times) if there 1s unaccounted heterogeneity, as will the re-use of
second, third, ... renewals within the time window. As always, incorporation
of observed covanates may reduce the unaccounted heterogeneity, but the
question 1s whether this will suffice

5.2. Cox regression of duration since last claim

The Cox (1972a) proportional hazards regression model for survival analysis
was 1mplemented by Cox (1972b) in the so-called modulated renewal
processes, for which the hazard of the renewal distribution 1s assumed to
have a similar semiparametric decomposition. This model has received much
less attention than the survival analysis model and 1ts event history analysis
generalization (Prentice et al., 1981, Andersen and Gall, 1982, Andersen et
al , 1993, Chapter VII), although Kalbfleisch and Prentice (1980) and Oakes
and Cur (1994) discussed estimation. Careful mathematical-statistical
analysis was provided by Dabrowska et al. (1994) and Dabrowska (1995),
who showed that if the covanates depend on no other ttme variables than the
backward recurrence times, then the ‘usual’ asymptotic results of the Cox
partial (or profile) likelithood may be proved.

In the present case we have the additional complication of observing
through a fixed (calendar) time window. Inclusion of likelihood factors of
types 3 and 4 1s then intractable, but if the model were true (in particular, if
the observed covarnates sufficiently account for individual heterogeneity),
valid inference may be drawn from the reduced likelihood based on time
since first claim (factors of types 1 and 2)

Finally, we want to incorporate time-dependent covanates not depending
on the backward recurrence time only (for example, in the analysis of
household claims we want to incorporate times since the last property or
auto claim) and the analysis 1s then no longer covered by Dabrowska’s
asymptotic results.

As poimnted out at the end of the last section, if there is unaccounted
heterogeneity the expected bias by restricting attention to time since first
renewal will be n the direction of short renewal times, and this will be even
worse 1if times since second, third etc renewal times are also included. We
build a goodness-of-fit criterion on this intuition, as follows.
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5.3. A goodness-of-fit criterion for the Cox modulated renewal process
observed through a fixed time window

We assume that the occurrence of claims of type 4 for policy holder : at
duration ¢ since last claim of that type 1s governed by a Cox regression model
with intensity

/\Iu(f) = aOh(’) €Xp [ﬁ;,zlu(’)] Yln(’)

with interpretation as before. For this model Dabrowska (1995) proved
asymptotic results for the ‘usual’ profile likelihood based inference, under
the crucial assumption that the covanates Zj(z) depend on time only
through (the backwards recurrence time) . (Obviously a full model will
require an additional specification of occurrence of the first claim of type /
after the policy 1s taken out.)

The claim occurrences are viewed through a fixed time window, but under
the model valid inference may be based on the likelihood composed of the
product of contributions from the distribution of time from first to second
claim, second to third claim, and so on, the last being right-censored The
expected deviation from the model is that time from claim y = 1 is longer
than times from claims j =2, 3, . We therefore extend the model to the
Cox regression model

/\Iu_/(’) = aOIU(f) €xp [/B;UZ’H(’)] Ylu(’)-

In practice the regression coefficients S, and the underlying intensities
oy () after claim  are assumed 1dentical fory = 2, 3, .... A good evaluation
of the fit of the Cox model can be based on first assessing identity of
regression coefficients (8; = Bm) and then, refitting 1n a so-called stratified
Cox regression model with identical 8y, but freely varying ay(f) over y,
comparing the underlying intensities (ceon (1) = aqu2(t)) after first and after
later claims. For the first hypothesis a standard log partial hkelihood ratio
test may be performed, for the second we use graphical checks as surveyed
by Andersen et al. (1993, Section VII. 3) Further development of this
goodness-of-fit approach might follow the lines of Andersen et al (1983)

5.4. Household claims by duration since last such claim

The relevant covariates are the same as listed in Section 4 1 except of course
that duration since last household claim 1s now described in the non-
parametric part of the Cox model rather than by time-dependent covanates.
Table 5.1 shows the final model after elimination of non-significant
covariates It 1s noted that the result 1s rather simpler than that represented
by Table 4 1 since in addition to time since last household claim, also time
since last auto claim and age have disappeared.
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TABLE 5t

REGRESSION COLFFICIENTS IN REDUCED COX MODILL FOR HOUSEHOLD CLAIMS
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Covarare Estimate Standard error P
Property[no inf ] 0 ~ -
Property[1-90] 0659 0199 0001
Property[(91-180] 0118 0243 0623
Property[181-270] 0281 0238 0237
Property[271-360] 0211 0266 0428
Property[ > 360] -0 140 0165 0394
Rurul 0 - _
City 0251 0103 0015

The remaining covariates, time since last property claim and urbanization,
have similar effects (particularly for the former) as before, and similar

remarks apply.

The underlying intensity 1s estimated in Fig. 5.1 for the first three years
(thereafter the random vanation dominates) A clear decrease 1s seen: the
longer the duration since the last household claim, the lower the intensity of

d nEw one.
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Fitting the stratified model specified in the previous section to the covariates
of Table 5.1 leads to insignificantly different regression parameter estimates
after first and after later claims (x* = 8.87, f = 6). To compare the estimates
of underlying intensities ayq, () between times since first claim and times
since later claims, Fig. 5.2 shows integrated intensity estimates against time,
whereas Fig 5.3 shows integrated intensity estimates against one another
Both plots indicate good agreements so that the model, and hence the above
interpretation, would seem acceptable

06

[J— 1st tand <_:|a_|m |

05 | Durations following 2nd claim |

04

03

02

01+

f
0 365 730 1095

FIGURE 52 Estimated integrated underlying intensities for household claims

5.5. Property claims by duration since last such claim

In a sstmilar fashion Table 5.2 shows the final model after elimination of non-
significant covariates. (A hikehhood ratio test for no effect of time since last
household claim gave P = .01.)

TABLE 52

REGRESSION COEFFICIENTS IN REDUCED COX MODEL FOR PROPERTY CLAIMS

Covariate Estimate Standard error P
Household[no inf ] 0 - _
Household[1-90] 0198 0208 0340
Household[91-180] 0321 0213 0131
Houschold[181-270] 0110 0236 0634
Household[271-360] -0 140 0269 0 602

Household[> 360] —0253 0157 0106
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06 - ) p
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0 - * |
0 0.2 04 0.6

FIGURE 53 Estimated mtegrated underlying intensities for household claims based on durations following
second clauim plotted against those based on the (possibly right censored) duration from first to second claim

As for household claims, we get a much simpler description 1n the present
time-scale, the only remaming covariate being time since last household
claim The effect of this covanate in qualitatively stmilar to what 1t was 1n
Table 4.2. The underlying intensity (Fig. 5 4) 1s decreasing. The gradient
between best and worst customers (expressed by range of vanation of
regression coefficients) 15 smaller than for household claims, corresponding
to common expectation.

For the goodness-of-fit test the identity of regression coefficients was again
easily accepted (x> =0.73, / = 5), but here the unfortunate bias in the
direction of shorter durations after second and further claims 1s clearly
vistble from Figs. 5.5 and 5 6. The model must be judged as not fitting and
the above conclusions cannot be sustained
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FIGURE 55 Estimated integrated underlying intensities for property claims
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FIGURE 5 6 Estimated integrated underlying intensity for property claims based on durations following
second claim plotted against those based on the (possibly right censored) duration from first to second clatm

5.6. Auto claims by duration since last such claim

Finally, Table 5.3 documents the result of fitting the Cox regression model to
time since last auto claim, using the covariates listed in Section 4,
particularly Section 4.3, and eliminating statistically insignificant covariates

TABLE 53

Regression coefticients in reduced Cox model for auto claims

Covariate Estimate Standard errov P
Houschold[no inf] 0 - _
Household[1-90] 0304 0205 0139
Household[91-180] 0295 0218 0175
Household[181-270] 0053 0240 0 826
Household[271-360] 0032 0251 0897
Household[ > 360] —0334 0155 0031
Auto comprehensive —-0405 0148 0005

Free claim 0320 0121 0008
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Compared to Table 4.3, we necessarily have lost time since last auto claim,
but furthermore, age 1s no longer significant while, most surpnsingly, auto
comprehensive coverage seems to decrease the risk of the next auto claim by

a factor of e~ %%% = 0.67 We can only interpret the latter phenomenon with
reference to a peculiar selection of policyholders who choose comprehensive

coverage. The underlying intensity (Fig. 5 7) shows a clear decrease.

00014 .
00012 -
0 001

0 0008 +

0 0006 +

underlying intensity

00004

00002 -

0 365 730 1095

duration (days)

FIGURF § 7 Kernel smoothed underlying intensity for auto claims (bandwidth 50 days)

The result of the goodness-of-fit test is very stmilar to that for household
insurance above: regression coefficients are easily 1dentical (x? = 2 26,
f = 7), but the expected bias 1s immediately obvious from Figs. 5.8 and 5.9
The model must thus be considered poorly fitting, and the results cannot be
sustained.

5.7. Preliminary conclusions: duration as underlying time variable

The two basic difficulties mentioned in Section 4 4 were not removed by
changing to duration as basic time varable. Furthermore, technical
problems of cstimation (as well as reluctance to postulate stationarity)
forced us to omit all durations already running at the start of observation
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FiGURE 5 8 Estimated integrated underlying intensities for auto claims

1.2 ’

0 ; % : f : }
0 02 0.4 06 08 1 1.2 1.4

FIGURE 59 Estimated integrated underlying mtensities for auto claimms based on durations following second
claim plotted against those based on the (possibly rnight censored) duration fiom first to second claim
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| January 1988 or when a new policy was taken out. Even based on
these reduced data, we were able to construct a goodness-of-fit criterion that
rejected the Cox regression model for property and auto claims, while
household claims seemed to be amenable to analysis by this approach.

In any case the analysis performed in this section 1s in practice
restricted to what happens during the first three years after a claim, and it
1s mmpossible to extrapolate from here to the situation before the first
claim or long after a claim, both of which carry an important weight in
practice.

6. DISCUSSION AND CONCLUSION

The purpose of this report was to demonstrate some possibilities of recently
developed tools 1n event history analysis in describing routinely collected
data on non-life insurance claim histories, with the long-term aim of
mdividualizing rating To simplhfy matters we 1gnored claim size but
attempted to handle such presumably reahstic difficulties as relatively short
collection period (4 years), many bureaucratic renewals and the special
selection pattern arising from the desire to simultanecously study household,
property and auto mnsurance in the same company.

Our basic tool was an event history generalization of the proportional
hazards model due to Cox (1972a) for survival data, see Andersen et al
(1993, Chapter VII) for a detailed exposition

A central feature has been the choice of time origin. The primary choice
was to use calendar time as underlying time 1n the Cox regression model,
which necessitated a run-in period for assessing time since last claim but
otherwise allowed detailed 1dentification of effects of fixed (exogenous) and
time-varying (endogenous) covariates, in most but not all cases yielding
results in good accordance with expectation.

A more experimental choice was to use time since last claim as underlying
time 1n the Cox regression model, tying to Cox’s (1972b) modulated renewal
process The mathematical-statistical theory of this model s rather less
settled (Dabrowska, 1995). We develop 1n Section 5 a necessary (but by no
means sufficient) goodness-of-fit criterion which, for property and auto
claims, 1s violated even for our restricted data after first claim. Although the
use of time since last claim as underlying time variable does have advantages,
particularly in leading to much simpler regression models, 1t will so far have
to be considered to be under development. The goodness-of-fit investigation
indicated residual unaccounted heterogeneity, for which some kind of frailty
modelling (Oakes 1992, 1998, Hougaard 1995, Scheike et al. 1997) might be
fruitful.

Several of the difficulties and shortcomings hsted in Sections 4.4 and 5.7
refer to the routine nature of the database that we used (and which we
believe 10 be typical). Further attempts at employing such techniques in this
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context should perhaps make an effort to obtain better tuned databases, to
further calibrate and explain the tools before they are released with practical
ambitions.
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ON STOP-LOSS ORDER AND THE DISTORTION PRICING PRINCIPLE

By WERNER HURLIMANN,

Winterthun

ABSTRACT

A number of more or less well-known, but quite complex, characterizations
of stop-loss order are reviewed and proved in an elementary way. Two recent
proofs of the stop-loss order preserving property for the distortion pricing
principle arc invalidated through a simple counterexample A new proof is
presented. It 1s based on the important Hardy-Littlewood transform, which
1s known to characterize the stop-loss order by reduction to the usual
stochastic order, and the dangerousness characterization of stop-loss order
under a finite crossing condition Finally, we complete and summarize the
main properties of the distortion pricing principle.

KEY WORDS

Pricing theory, distortion function, quantile function, stop-loss order,
stochastic order, Hardy-Littlewood transform

. INTRODUCTION

Since 1ts introduction by Buthimann (1970), the functional approach to
premium calculation in insurance has seen an impressive development. A
first general and rather elementary method to generate valuable pricing
principles consists of the class of quantile premium calculation principles by
Denneberg (1985/90/94) Several recent contributions around this theme
have been made n actuarial science and finance, among others Hurlimann
(1993), Wang (1995a/b/c, 1996a/b), Wang et al. (1997) and Chateauneuf et
al. (1996).

For a given set S of non-ncgative random variables X > 0 with finite
means, defined on some probability space, and which represent random
losses of msurance contracts, a pricing principle 1s a non-negative real
function P-.S — R, which depends on the distribution F\(x) of X, and
which 1s interpreted as price of the insurance risk From an axiomatic point
of view, 1t 15 well accepted that a pricing principle should satisfy a certain

ASIIN BULLLTIN, Yol 28, No [, 1998, pp 119-134



120 WERNER HURLIMANN

number of desirable properties. Without repeating all well-known inter-
pretations, the following properties are quite reasonable:

(P1) PX] > E[X], forall X € S

(P2) PlX] <suplX], forall X € S

(P3) PlaX + bl =aP[X]|+b, forall a,b, a>0, forall X € §

(P4)  PlX+ Y] < P[X]+ P[Y], forall X,Y € Ssuchthat X + Y € §
(PS) PX]<PlY]fX<ygYand X, Y €S

The last property says that the price functional preserves the stop-loss order,
or equivalently the increasing convex order (see Kaas et al. (1994) and
Shaked and Shanthikumar (1994) for fundamentals). Requiring that the
price functional preserves the usual stochastic order <, only, is a less
stringent property since stochastic order implies stop-loss order. Though the
stop-loss ordering preserving property of the Swiss family of premium
calculation principles has been known since its actuarial consideration in
Bithimann et al. (1977), the recognition of <y as a sound ordering of risk
seems more recent. For example, the order preserving axiom (PS) 1s
considered in Heillmann (1987) but without mention of a specific and
accepted partial order, which could be used as selected ordering of risk.
Furthermore, the absolute deviation principle and the Gint principle,
introduced by Denneberg (1985/90), and which satisfy properties (P1)-(P4),
and the weaker stochastic order preserving property, also satisfy (P35),
(consequence of our main result in Section 3.2). Previously two quite simtlar
but different proofs of (P5) have been proposed by Wang (1996a/b), but
both contain an error (see Section 3.1).

In view of the above discussion, 1t seems useful to present a short
chronological review of some main non-trivial pricing functions, which
preserve <y, and inspect whether the remaining axioms (Pl)-(P4) are
satisfied.

The Swiss family 1s positively homogeneous if, and only if, 1t 1s the net
principle (see Schmidt (1989), simpler proof by Hurlimann (1997), Example 4.1
(continued), p. 9). The first genuine pricing principles, which satisfy (P1)-(P5),
are the absolute deviation principle P[X] = E[X]+ 0 - E[|X —my|[,0<6< 1
(Denneberg (1985/90)) and the G principle P[X])= E[X]+6 Gmi[X],
0 <8 <1 (Denneberg (1990)). These functionals are special cases of the
class of distortion pricing principles.

oc 1 1
PlX] =/0 g(FX(x))dxzfo F;'(l —u)dg(u)z/o F;l(u)a"y(u), (11)

where g(x) 1s an increasing concave function such that g(0) =0, g(1) =1,
Fy(x) =1 — Fy(x) 1s the survival function, y(x)=1-g(l —x) 1s the
distortion of probabilities in Denneberg’s setting, and Fy'(u) 1s a quantile
function of X. The second equality 1s obtained through partial integration,
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and shown by elementary calculus in case g(x) 1s differentiable. The right-
hand side representation has been introduced by Denneberg (1990) and
its equivalence with the first integral (up to an alternative appropriate
definition of the inverse) has been used by Wang (1996a) (see also Wang
et al. (1997)).

Another attractive special case of (1.1) is the PH-transform principle
studied by Wang (1995a/95b/96a/96b). Previously to the last example had
appeared the Dutch principle (see van Heerwaarden (1991), van Heerwaar-
den and Kaas (1992), Kaas et al. (1994) and a shight generahization of 1t (see
Hurlimann (1994/954/95b)). A pricing principle from the Dutch family
satisfies (P1)-(P5) 1if, and only tf, it 15 of the form

PIX]=EX]+6 E[(X-E[X])),], 0<4<1. (1.2)

The Dutch family 1s a special case of the class of so-called ‘‘quasi-mean value
principles” considered recently by the author. However, only sporadic
members of this class define feasible price functionals satisfying (P1)-(PS5), of
which one may mention the interesting Example 11 1 in Hurlimann (1997a)

A generahzation of the class of distortion pricing principles 1s the class of
Choquet pricing principles in Chateauneuf et al. (1996), which 1s based on
the theory of capacities and non-additive measures (exposed in Denneberg
(1994)), and breaks with the traditional probabilistic foundations of
actuarial science and finance. Finally, let us mention that one misses still
feasible price functionals along the economic approach initiated by
Buhlmann (1980/84) (see the critical comments by Lemaire (1988)).

In the present paper, we invalidate Wang’s proofs of the property (PS5) for
the distortion pricing principle through a simple counterexample, and focus
on a new proof of this important property. Using a two-stage himiting
argument (dominated convergence theorem and continuity property of the
distortion pricing functional), 1t 1s possible to restrict the attention to risks,
which belong to the following large set

S consists of all non-negative random variables with
finite means, such that the distribution functions of any
two of them cross finitely many times (finite crossing condition) (1.3)

For completeness, we show also that (1 1) satisfies the other properties
(P1)-(P4), where our exposé is intended to be essentially accessible from an
elementary perspective.

The paper 1s organized as follows In Section 2, a number of more or less
well-known, but quite complex, characterizations of stop-loss order are
reviewed and proved in an elementary way. Since no such proofs have been
found 1n the original and other papers (and books) consulted by the author,
the present supplement to the existing hiterature will hopefully be helpful for
future workers in this area (as 1t has been to the author). Section 3 1s devoted
to a derivation of the main properties of the distortion pricing principle. In
Section 3.1 two recent proofs by Wang of the stop-loss order preserving
property for the distortion pricing principle are invalidated through a simple
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counterexample A new proof 1s presented in Section 3.2 It 1s based on the
tmportant Hardy-Littlewood transform, which 1s known to characterize the
stop-loss order by reduction to the usual stochastic order (Theorem 2.3), and
the dangerousness characterization of stop-loss order under the finite
crossing condition (1.3) (Theorem 2.2) Finally, we complete and summarize
the main properties of the distortion pricing principle i Section 3.3.

2. SOME EQUIVALENT CHARACTERIZATIONS OF STOP-LOSS ORDER

Capital letters X, Y, ... denote random variables with distnibution functions
Fy(x), Fy{x), ... and finite means uy, py, ... The survival functions are
denoted by Fy(x) =1 — Fy(x), ... . The stop-loss transform of a random
vartable X 1s defined by

mx(x) 1= E[(X — _\‘)+] =/ Fx(0)dt, x in the support of X 21

The random vanable X 1s said to precede Y in stochastic order or stochastic
domunance of first order, a relation written as X < Y, if Fx(x) < Fy(x) for
all x 1n the common support of X and Y. The random varniables X and Y
satisfy the stop-foss order, or equivalently the increasing convex order, written
as X <y Y (or X <\ Y), if wy(x) < wy(x) for all x. A sufficient condition
for a stop-loss order relation is the dangerousness order relation, written as
X <p Y, defined by the once-crossing condition

Fy(x) < Fy(x) for all x < ¢,

2.2
Fyx(x) 2 Fy(x) for all x > ¢, (2:2)

where ¢ is some real number, and the requirement 1y < py (Lemma 2.1). By
equal means py = py, the ordering relations <y and <p are precised by
writing <y — and <p_. The partial stop-loss order by equal means 1s also
called convex order and denoted by <... The probabilistic attractiveness of
the partial order relations <y and <y 1s corroborated by several invariance
properties (e.g. Kaas et al. (1994), chap 1L.2 and III.2, or Shaked and
Shanthikumar (1994)). For example, both of <; and <,; are closed under
convolution and compounding, and < 15 additionally closed under mixing
and conditional compound Poisson summing

In applications, to establish stop-loss order comparison properties, one
requires some fundamental facts and equivalent characterizations. First of
all, the following well-known elementary equivalent statements hold:

(SL2) E[p(X)] < E[p(Y))] for all increasing convex functions ¢(x)
(SL3) E[max(x, X)] < E[max(x, Y)] uniformly for all x € R
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A famous and widely known sufficient condition for stop-loss order 1s
summarized 1n the following property.

Lemma 2.1, ( Karlin-Novikoff (1963) once-crossing condition, Lemma of Ohlin
(1969)). Let X and Y be random variables with distributions Fy(x), Fy(x)
and suppose that X <p Y, as defined in (2.2). Then the stop-loss order
relation X <y Y 1s satisfied

Proof. By assumption, one has the inequalities

max(x, X) < max{(x,Y), x>,
min(xy, X) > min(x, Y), x<ec.

In particular, one obtains Efmax(x, X)] < E[max(x, Y)], x > ¢ By (SL3)
above, 1t remains to show the last inequalty for x < c¢. This follows
immediately from the identity

max(x, X) = X + x — min(x, X)

using the assumptions. O

A generalized version of the Karlin-Novikoff once-crossing conditions
yields the following sign-change characterization of the stop-loss order.
Without proof, one finds the relevant conditions in Taylor (1983), which
attributes them to Stoyan (1977) However, the previous result by Taylor has
not becn formulated as a full characterization of stop-loss order

Theorem 2.1. ( Karlin-Novikoff-Stoyan-Taylor crossing conditions for stop-
loss order). Let X, Y € § be random variables with means puy. py,
distributions Fy(x), Fy(x) and stop-loss transforms 7y (x), 7y(x). Suppose
the distributions cross n > 1 times 1n the crossing pomnts 1) < fH < . < 1,
Then one has X <,; Y if, and only 1f, one of the following is fulfilled:

Case | The first sign change of the difference Fy(x) — Fy(x) occurs from —
to +, there 1s an even number of crossing points # = 2m, and one has the
inequalities

x(ly-1) <my(ty—1), j=1, ,m (2.3)

Case 2 The first sign change of the difference Fy(x) — Fy(x) occurs from +
to —, there 1s an odd number of crossing points # = 2m + 1, and one has the
mequalities

pxy <py, wx(ty) <wylty), J=1,.,m (2.4)
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Proof. Two cases must be distinguished.

Case 1 The first sign change occurs from — to +

If X <yY, the last sign change occurs from + to — (otherwise

wy(x) > my(x) for some x> 1,), hence n = 2m 1s even Consider random

variables Zo =Y, Z, = X, and Z,,; = 1, .., m with distribution functions
N Fx(x), x<nyo,

R = {fri xS @25)

Fory=1. ,m, the Karlin-Novikoff once-crossing condition between Z,.,
and Z, is fulfilled with crossing point 1. A partial integration shows the
following mean formulas:

Ly = E[Zj] =y — 7TX(12',_|) +71'y([21_|), Jj=1 ,m (26)

Now, by Karlin-Novikoff, one has Z,;; <p Z,,y=1,.. ,m, if, and only Iif,
the inequalities p,4; < g, are fulfilled, that is

Tx(ty—1) —my(ty_1) <ax{tya) —7y(ty+1), j=1,...,m—1, and

27
7T/\’(’2m—|)""71-)’([2'”—1) SO) ( )

which 15 equivalent to (2.3). Since obviously Z, <, Y, one obtains the
ordered sequence

X=Zu<pZn<p <pZi<,Zy=Y, (2.8)
which 1s valid under (2.3) and implies the result.
Case 2 The first sign change occurs from + to —
If X <,; Y, then the last sign change occurs from 4 to —, hence n = 2m + |

is odd. Similarly to Case I, consider random variables Zo, = VY, Z,,,.1 = X,
and Z,,j =1, ,m, with distribution functions

FX(x)a X S [217

Fx) = {Fy(x), X > 1. (29)

For y=0,1, ,m, the once-crossing condition between Z,,| and Z, 1s
fulfilled with crossing point 15,4. Using the mean formulas

w =E[Z]=py —mx(ty) +my(ry), Jj=1,...m, (2.10)
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the conditions for Z,y <p Z,, that is p4y <y, f = 0,1,...,m, are therefore

px — jir < wx(t2) — wy (),
mx(ty) — my(ty) < mx(tys2) —my(ty42), J=1,..,m—1,and (2,11)
7I-X(IZIH) - 71')’(’2111) S 01

which 1s equivalent to (2 4). One obtains the ordered sequence
X=2Zw1<pZn<p. Z<pZiipZy=Y, (2.12)

which 1s valid under (2.4) and implies the result. |

It 1s instructive to relate this result with another (apparently simpler) known
crossing characterization. Instead of crossing points, which describe the sign
change properties of the distribution functions, consider slightly mare
general crossover points, which are defined as follows A pair {£, u} of real
numbers 18 a crossover point of the parr {F(x), Fa(x)} of distribution
functions 1f for i # j € {1,2} one has

F(§7) < F(§7) < £(8) < Fi(§) and u = F(§),
or equivalently

Frw) < ') < F7 () < PV ut) and € = F ()
How are the crossing points related to the crossover points? Clearly, every
crossing point 1s a crossover point. Additionally, there are two crossover
points, associated to the end points of the supports of F)(x), F>(x), where no
actual sign change between the distributions occurs Let (a,,b,),
—o00 <4, <b <oco, be the open support of F(x), r=1,2, and set
a =mm{ay,as}, b =max{by,h}. Then (g,b) is the open support of the

pair {F|(x), F>(x)}, and {@,0}, {h, 1} are the remaining crossover pornts.
The following characterization has been used by Kertz and Rosler (1992),
again without proof.

Corollary 2.1 (Crossover point characterization of the stop-loss order) For
1=1,2, let X, € § be random variables with finite means p,, distributions
F(\) and stop-loss transforms m,(x). Then one has X, <y X5 1f, and only 1f,
for all crossover points {£ u} of the pair {F\(x),Fa(x)}, the inequality
W[(f) < 7!'2(5) 1s fulfilled.

Proof. It suffices to show that the conditions are sufficient. One needs the
following additional critenia-

7 (b) < ma(b) & by < by,
a) <

mi( m(a) & < pa. (2.13)
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The first one follows mmmediately from the integral representation
m(x) = [ F(t)dt. For the second one, we distinguish between two cases.
If @ > —co, then the equivalence follows from the fact that m,(¢) = p, — a,
1 =1,2. If « = —o0, the inequality

[y = /000 Fi(x)dx — /_(; Fi(x)dx < /000 Fs(x)dx — /_(; Fy(x)dx = jp

can be rearranged to the inequahity

™ (a) = /_ " Fi(x)dx < my(a) = /_ " B(x)dy,

0 oo

and vice versa. Since the set C of crossover points equals
C = {crossing ponts} U{a,0} U {b, 1},

the mequalhities 7 () < m(€) for all {§,u} € C imply by the above critena
that the inequahties (2.3) and (2.4) required 1in Case 1 and Case 2 of the
Theorem 2.1 are fulfilled. O

The simpler but less precise characterization by crossover points 1s often
sufficient from the theoretical point of view (an example 1s Theorem 2 3
below) From a practical point of view, Theorem 2.1, together with the
ordered sequences (2.8) and (2.12), yields the maximum amount of available
information for a stop-loss order relation. In this respect, a detailed
application of this result shows that X; <, X3 1f, and only if, the set C of
crossover points is given as follows:

Case 1 n=2m

:{{al70}’{tl1Fl([l)}’{ILFZ(IZ)}a{[:"Fl(13)} {[2maF7 fom } {b27]}}

Case 2. n=2m+ 1
C={{a,0} {r,,F2(1))} . {tr2, F1(2)} . {13, Fa(t3) }, -, { tams 1, Faltamsr ) } { b2, 1 } }

Some applications, which use the explicit characterization Theorem 2.1, are
given in Hiirhmann (1998a).

The once-crossing condition of dangerousness order formulated 1n
Lemma 2.1 1s not a transitive relation Though not a proper partial order,
it 1s an important and main tool used to establhish stop-loss order between
two random vanables In fact, the transitive (stop-loss)-closure of the
order <p, denoted by <p., which is defined as the smallest partial order
containing all pairs (X, ¥Y) with X <p Y as a subset, 1dentifies with the stop-
loss order. To be precise, X precedes Y in the transitive (stop-loss-)closure of
dangerousness, written as X <p. Y, 1if there is a sequence of random
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vaniables Z,, Z,, Z3, ,suchthat X =2,,Z, <p Z,41, and Z, — Y n stop-
loss convergence (equivalent to convergence 1n distribution plus convergence
of the mean). The equivalence of <p- and <, 1s described 1n detail by Muiller
(1996) (see also Kaas and Hcerwaarden (1992)). In case there are finitely
many sign changes between the distributions, the stated result simplifies as
follows.

Theorem 2.2. (Dangerousness characterization of stop-loss order) Let
X,Y € S be random varniables with finite means such that X <,; Y. Then
there exists a finite sequence of random variables Z,, Z,, ..., Z, such that
X=Z,Y=Z,and Z, <p Z, foralli=1,..,n-1

Proof. This 1s Kaas et al. (1994), Theorem I11.1.3 Alternatively, the ordered
sequences (2.8) and (2 12) yield a more detailed constructive proof of this
result. O

Other characterizations of the stop-loss order can be obtained by
transforming the random variables, which must be compared A simple
such result reduces a (degree one) stop-loss order comparison to a degree
zero stop-loss order or usual stochastic order comparison by means of the
Hardy-Littlewood maximal distribution. For any random variable X with
finite mean and quanule function Fy'(u), the Hardy-Littlewood transform
X' of X 1s defined by its quantile function on [0,1] through the formula

1 b
(FH)™ () = 1_1,/,, Fy' (v, u<l, (2 14)
F'(1), u=1

Its name stems from the Hardy-Littlewood (1930) maximal function The
random variable X 1s the least majorant with respect to <, among all
random varnables Y <y X (e g Maeilyson and Nadas (1979)). Its great
importance in applied probability and related fields has been noticed by
several further authors, among others Blackwell and Dubins (1963), Dubins
and Gilat (1978), Riischendorf (1991), and Kertz and Rosler (1990/92). A
recent actuanal use has been proposed by the author (1998b)

Theorem 2.3. ( Reduction of stop-loss order to stochastic order) For i = 1,2,
let X, € S be random variables with finite means g,, distributions F,(X), and
stop-loss transforms 7,(x). Then one has X| <y X5 if, and only if, one has
X<, xi.

Proof. (Kertz and Rosler (1992), Lemma 1 8) The basic 1dea relies on the
following geometric property. For each crossover pomnt {£,u}, the identity

00 |
[0 =A@ = [ {F0) - 0}
E 1]
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expresses the fact that the area between F) and F; to the right of £ equals the
area between Fy' and Fy! to the right of u. From this and the Corollary 2.1
one obtains the result by means of the following equivalences:

X <y X2

< m(é) = /00 Fi()dt < /00 Fy(1)di = m(€) for all crossover points {&, u}
4 4

o {F\(t) = Fy(¢)}dr > 0 for all crossover points {£,u}

@ [ {F5'(v) = F7'(v) }dv > 0 for all crossover points {£,u}

& (FINY'(u) < (F)(u) for all u € [0, 1]
o X<, X O

By existence of a common mean g, = yy, the resulting characterization of
the convex order X] <.« X2 & X{! <y X3' 1s found m equivalent form in
van der Vecht (1986), p. 69, which attributes the result to D. Gilat In this
situation, there exists also the well-known higher degree stop-loss order
reduction property of the integrated tail transform considered by van
Heerwaarden (1991), p. 69, whose importance lies in actuarial ruin models
(see e.g. Embrechts et al (1997)). For completeness, one may mention a
further characterization of the convex order by means of Markov kernels,
which goes back to Blackwell (1953), and still another one by means of
fusions for probability measures as studied by Elton and Hill (1992). For

this, the interested reader is referred to Szekli (1995).

3. PROPERTIES OF THE DISTORTION PRICING PRINCIPLE

First, we invahdate S. Wang’s proofs of the stop-loss order preserving
property (P5) for the distortion pricing principle through a simple
counterexample Then we focus on a new proof of this important property.
For completeness and convenience of the reader, elementary proofs of the
other properties (P1)-(P4) are also provided, where reference 1s made to
related results in the literature.

3.1. A diatomic counterexample

For real numbers 0 < a; < a; < by < by and fori = 1,2 let X, be a diatomic
random variable with support {«,, b,} and probabilities {p,,1 — p,},0 < p, < 1,
and mean y, = a, -+ (1 = p,)(b, — a,). Assume p; < pip and p» < py Then the
dangerousness order relation X; <p X> (a sufficient condition for <y) holds
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because 1 <y and the survival functions satisfy the Karlin-Novikoff once-
crossing condition (known as Ohlin’s Lemma in actuarial science).

[—:I(-)>F-( )’ x <,

F,(,\); Fo(x), x>, B

with ¢ = a;. Set g(x) = ,\'IF, p>1,1in (1) to get the PH-transform principle
o0

II,[X] = / F(x)%dx. In the notation of Wang, one has
0

RHS(p)=/ {Fz( ) = Fi(x )}JX=(1—P2)7(bz—a1)—(l—pn)F(bl—dl)

Wang (1996b), proofoflTheoreml states that RHS(p)>F2(a|)'" RHSgl)
or equivalently (1 — p,)e™' > (1 — py)»" This is not correct because x5! 1s
decreasing over (0,00) for | p>1and (I —py) > (1 —p;) by assumption.
Similarly, Wang ~ (1996a), proof of Theorem , ~states  that
RHS(p) > Fy(a\)»~' RHS(1), or equwvalently (1 —p) ' > (1 —py)i,
which 1s false for the same reason Despite this, one has

M,(X\] = ai + (1 = p )by — ar) < az + (1 = pa)i(by — ay) I, [X2],

and therefore a correct proof of (P5) must be given.

3.2. An elementary proof of the stop-loss order preserving property

In a first step we suppose that X, Y € S. The idea of the proof s simple. For
each X >0, let X* be the distortion transform with survival function
Fé(x) = (F,\( c)) By Theorem 2.2 it suffices to show that X <p Y implies
X& <y Y& which in turns imphes that P[X] = E[X8) < E[Y¥] = P[Y], hence
(PS). Furthermore by Theorem 2.3 1t suffices to show thdt X <p Y imples
(x6)" <, (¥&)". (Note that the distributions of (X#)" and (X*)¢ differ in
general )

Suppose that X <p Y, that 1s E[X] < E[Y] and there exists g € (0, 1)
such that

Fol(w) > Fy'(w), 0<u<yg,

| | (32)

Fyi(u) <Fyi(u), g<u<l.
For snmp]icxty, assume that g(x) (resp. y(x)) 1s differentiable and has an
inverse g~ (x) (resp. v~'(x)). Then the distortion transform X% has quantile
function (Fg = (yo Fy)~ ' and ucmg (2.14) one obtains for the Hardy-
Littlewood distortion transform (x8)"" the relationships

e H\ -] 1 1 ] 1 —|
(F57)  (u)y=— ('yoFX) Yo)dv= —u/ “ Fyi(v)dvy(v),0<u<l  (3.3)

1—u/,
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Similar expressions hold with X replaced by ¥ One must show that
(FEY " w) < (FE")™'(w) for all u € [0, 1), or equivalently

/"] {Fy'(v) ~ Fg'(v)}dv(v) > 0 for all w € [0, 1]. (34)

If w>g¢g this 1s trivial by the second inequality in (3.2) Let now
0<w<g<1 Since y(x) 1s convex, the derivative 7/(x) is increasing, in
particular v'(w) < v'(g) < +/(1). The affirmation follows from the following
chain of equalities and 1nequalities

1
[ AF 0 - FE )
q |
=—[ {F;?‘(V)—F?'(v)}v’(v)dv+/ {F7'(v) = Fy' (D} (v)dv

>7() [ {F70) = F O 2 40) - [ (R 0= F7 )
=(@) (Y= EX)} 2 0
G3)

This achieves the proof of the stop-loss order preserving property for the
distortion pricing principle in case the finite crossing condition (1.3) holds.

In case X <y Y and there are infinitely many crossing points, the
equivalence of <y and <jp. shows that there 1s a sequence of random
vanables Z,, Z;, Z5, ....such that X = Z,, Z, <p Z,;1, and Z, — Y In stop-
loss convergence Foreachn > | one has X <y Z, by Theorem 2.2 From the
preceding first step, one obtains that P[X] < P[Z,]. On the other side, the
relation Z; <p Z,,i implies min(Z,,d) <p min(Z,4,,d) for all d, from which
one deduces by the first step that Plmin(Z,,, d)] < P[min(Z,,,d)] for all d, all
m > n. Using this, the result follows from the inequalty

P[Z,,]zlljm P[nnn(Z,,,d]S{}im {”%lﬁr’roloP[min(Z,,,,d)]}:(}im Plmin(Y d)}=P[Y]
The first and third equality is a continuity property satisfied by the Choquet
integral, and a fortiori by the distortion pricing principle, which 1s a special
case of it (see Denneberg (1994), or Axiom 4, Theorem 1 to 3 in Wang et al.
(1997)). The second equality is an application of the dominated convergence
theorem, which is allowed for risks with finite support
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3.3. Other properties of the distortion pricing principle

It 1s now possible to complete and summanze the main properties of the
distortion pricing principle Up to (P5) an advanced proof of this 1s 1n
Denneberg (1994), pp. 64 and 71.

Theorem 3.1. (Main properties of the distortion pricing principle) Let X
be a non-negative random variable with survival function F,(x), and
quantile function Fj'(u). Let g(x) be a differentiable increasing concave

function on [0.1] such lpat g(0)=0, g(1)y=1. Then the functional
Pix]= [ g[F(x)ds = / F2 (w)dy(u) with 7(x) = 1 - g(1 — x), satisfies
the propeortles (P1) — (PS)O

Proof. (P1)-(P3) are easily shown as follows (see also Denneberg (1990)).
(P1) Since g(x) 1s increasing concaye on [0,17and g(0) =0, g(1) = 1, one has
g(¥) > x and therefore P[X] > / F(x)dx = E[X]

Jo
(P2) One first shows that P[X] preserves <,, which 1s obvious because
X <, Y 1s equvalent with Fyl(u) < Fy'(u) for all we (0,1) Since
X < Y ‘=sup[X], the property follows.

(P3) This property follows from the facts F;_:_h(u):F;'(u)+b and
F7L(w)=a Fz'(u) for a>0.

(P4) That this holds when ~(x) has a bounded density is mentioned by
Denneberg (1990). Using Wang (1995a), Appendix. one relaxes this
condition as follows, where differentiabihity of g(x) 1s here not assumed
(The 1dea of proof 1s attributed to O. Hesselager). A simple property of
concave functions 1s required.

Lemma 3.1. Let 0 < @ < b and suppose g(x) 1s concave for x > 0. Then for
any x > 0 one has the inequahty g(x + b) — g(x -+ a) < g(b) — g(a).

Proof. 1t 1s well-known that g(x) 1s concave if, and only if, one has

g(y) — g(x) > g(z) —gly)

forall0 < v<y<z.

y—x
Two successive applications of this criterion to a <b < x+a< x+ b,
respectively ¢ < x +a < b < x + b, yields the desired 1nequality. O

It suffices to show (P4) for arbitrary Y and a discrete X taking values 1n
{0, ,n}. Indeed, applying (P3), the result holds then for X € {k, ,n+k}
and X € {kh, ..,(n+k)h}, k€ Ny, h >0 arbitrary. Since any random
variable can be approximated closely by a discrete random variable with
small enough /4, the property will hold for arbitrary X. One uses
mathematical induction. For n =0 the affirmation is obvious. To show
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the induction step n — n + 1 for (X, Y) with X € {0, ..,n+ 1}, let (X', Y')
be distributed as (X, Y|X >0) Since X' e {l,..,n+ 1} the induction
hypothesis states that P[X" + Y'] < P[X’] + P[Y’]. With € = Pr(X =0) and
Fyp(x) =Pr(Y > x|U = 0) one has for x > 0:

Fy(x) = (1 —€)Fy(x),

Fy(x) = eFyjo(x) + (1 — ) Fy(v),

Fyiy(x) = eFyjp(x) + (1 = €)Fxrpyr ().
According to Lemma 3 1, one obtains for x > 0 that

g(Fyxsy(x) — g(Fy(x)g(Fr(x)) < g((1 — &) Fypy (x)) — g((1 = €)Fy(x))
—&((1 = &)Fy(x)).
Observe now that k(x) := gl —e)x)
—€
k(0) =0, k(1) = 1. Integrate on both sides of the last inequality and use the

1s increasing concave on [0, 1] such that

mduction assumption for the function k(x) to see that

P[X + Y]— P[X]~P[Y]
<ti-e) { [ kFonnts= [k [T k() <o

This shows (P4)
Since the property (P5) has been shown 1 Section 3.2, the proof s complete
O

Note added in proof. At the time this paper has been accepted for
publication, the author has received a related paper by Dhaene ct al.
(1997). These authors present in particular an alternative proof of the stop-
loss order preserving property of the distortion functional, whose 1dea 1s due
to A. Milller Moreover, their Theorem 3 characterizes stop-loss order using
the distortion functional 1n a way dual to the classical characterization
(SL1)-(SL3) based on the expected value functional. Finally, the author is
grateful to A. Miiller for pointing out an error 1n the elementary proof of
Section 3.2.
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ON THE ANALYSIS OF THE TRUNCATED GENERALIZED POISSON
DISTRIBUTION USING A BAYESIAN METHOD
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ABSTRACT

The generalized Poisson distnbution with parameters 8 and X\ was
introduced by Consul and Jain (1973) and has recently found several
instances of application in the actuarial literature. The most frequently used
version of the distribution assumes that # > 0 and 0 < A < 1, in which case
the mean and vanance are /(1 — A) and 6/(1 — )\)—3, respectively. These
simple moment expressions, along with nearly all of the other theoretical
results available for this distnbution, fail when A <0 or A>1 (eg,
Johnson, Kotz, and Kemp, 1992, page 397). In these cases, even the
defimtion of the probability mass function usually given in the literature 1s
not properly normalized so that its values do not sum to unity. For this
reason, 1t 15 common to truncate the support of the distribution and
exphicitly normahze the probability mass function. In this paper we discuss
the estimation of the parameters of this truncated generahized Poisson
distribution using a Bayesian method

KEYWORDS

Bayesian; bivariate; generalized Poisson; Langrangian Poisson; truncated;
Markov chain Monte Carlo.

I. INTRODUCTION

A great many distributions are available for modelling discrete data ansing
in the insurance field. A large number of these discrete distributions are
described 1n Chapter 3 of Klugman, Panjer, and Willmot (1997). Recently,
some authors have also explored the use of Consul’s Generalized Poisson
Distribution (GPD) in actuarial settings. Consul (1990) demonstrated that

ASTIN BULLETIN, Vol 28, No 1, 1998, pp 135-152



136 DAVID P M SCOLLNIK

the GPD, sometimes also known as the Lagrangian Poisson distribution, is a
plausible model for claim frequency data, Goovaerts and Kaas (1991) and
Ambagaspitiya and Balakrnishnan (1994) presented recursive methods to
compute the total claims distribution for certain compound GPD models, as
did Hesselager (1997) for a class of compound Lagrangian distributions
including the compound GPD; Scollnik (1995a) used the GPD, and 1ts
extension to a regression context, in order to model various sorts of claim
frequency data and showed how Markov chain Monte Carlo (MCMC)
methods could be used to implement Bayesian posterior and predictive
analyses of these models (see also Scollnik, 1995b and 1995c); Famoye and
Consul (1995) introduced a version of bivariate GPD (BGPD), discussed
parameter estimation by the method of moments and double zero frequency
and by the method of maximum likelihood, and fit the BGPD to a data set
on accidents sustained by a group of shunters, Vernic (1997) considered the
same BGPD as did Famoye and Consul, and used method of moments
estimation to fit this BGPD to the aggregate amount of claims for a
compound class of policies submitted to claims of two kinds whose yearly
frequencies are «a priori dependent.

The purpose of this paper 1s to clarify some points relating to the GPD
which are frequently misrepresented in the literature and to discuss how
Bayesian posterior and predictive analysis of the truncated GPD and of a
truncated BGPD can proceed using MCMC methods. We begin with a
discussion of GPD models.

2. GENERALIZED PoISSON DISTRIBUTION MODELS

The probabihity mass function of the basic untruncated GPD 1s commonly
given by

0(0+nX)"" 120 o =0,1,2,...,m 0

P N= =Pn 07/\a =
r( n) = pu( m) { 0 Jorn>mwhen A <0,

and zero otherwise, where 8 > 0, max(—1, —8/m) < A < 1, and m 1s usually
taken equal to the largest possible positive integer such that 8 +mA > 0
when X 1s negative. Often it 1s explicitly further required that m > 4 (e.g., as
in Vernic, 1997) in order to ensure that there are at least five classes with
non-zero probability when A 1s negative (see Consul, 1989, page 4), but this
obviously need not be the case. At this time, we will review a few of the
properties associated with (1) Most of these properties are documented 1n
Consul’'s (1989) treatment of the GPD. Additional references will be
introduced as required. The reader 1s forewarned that some authors switch
the roles of the parameters # and A. We have adopted the parametrization
found 1in Consul (1989) and Johnson, Kotz and Kemp (1992, page 396).
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To begin with, suppose that 0 < A < 1 and the value of m is taken equal
to oo. For this case 1t 1s known that

6

0
E(N)=— and VCN’(]V):-(—I—:)\—)3 R

(2)

so the variance of the GPD is always larger than or equal to the mean. It 1s
apparent that this instance of the GPD reduces to the standard Poisson with
parameter § when A = 0. The two moment expressions 1n (2), along with
simple formulae for skewness and kurtosis and virtually all of the other
theoretical results obtained relating to the GPD (e.g., Consul and Jain, 1973;
Ambagaspitiya and Balakrishnan, 1995; Vernic, 1997), are only vahd for the
case of the GPD presently under consideration, i.e. when 6 >0, 0 < A < 1,
and m = oo.

Henze and Klar (1995, page 1877) make the claim that this fact has not
been emphasized enough 1n the literature, and point to a paper by Alzaid
and Al-Osh (1993) in which 1t is tacitly assumed that (2) also holds for
negative values of \. Famoye and Consul (1995, page 128) recently made the
same errant assumption, without alerting the reader as to its nature. It is also
very common for authors to estimate the GPD parameters by equating
empirical moments to the theoretical moments obtained in the special case
described above, even when the sample vanance 1s strictly less than the
sample mean so that negative estimates of A result (e.g., Consul, 1989, see
also Vernic, 1997).

Actually, in order to permit cases where the variance is smaller than the
mean, Consul and Jamn (1973) had proposed to admit negative values of A.
However, when the value of A 1s negative the probability mass function (1) 1s
no longer normalized. To see this, suppose that § = 1.6, A= —0.75 and
m=2. Then Pr(N=0)=02019, Pr(N=1)=0.6839, Pr(N=2)=
0.0724, Pr(N >2) =0.0, and the sum of these supposedly exhaustive
‘probabilities’ 1s only 0.9582. This problem was not recognized in the early
literature concerning the GPD (e.g., Consul and Jain, 1973) until Nelson
(1975) indicated that a cautious approach was warranted in the use of the
GPD model with negative values of A\. One solution to this problem 1s to
simply normalize the function in (1) when A < 0. In fact, (1) will generally
need to be normalized except n the special case that 8 >0, 0< A < 1, and
m = oo Accordingly, Consul and Famoye (1989) defined the probability
mass function of the truncated GPD to be

pn(8, A, m)

Pr(N =n)=q,(0,\,m) = K6, ,m)

forn=0,1,2, .., m (3)

and zero otherwise, where 6 > 0, —0c0 < A < 00,

h

K (6, A, m) Zp,,@x\m
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and m 1s any positive integer such that 6 + mA > 0. Usually, m 1s taken equal
to the largest such value. Note that the definition of the truncated GPD
extends the permitted range of the parameter A to the entire real hine.

When class frequencies are inappropriately calculated using (1) instead of
(3), an error of truncation 1s said to occur Consul and Shoukri (1985) and
Consul (1989, Section 9.1.1) have made an analysis of the error of truncation
when —1 < A < 0. The sitmulation study they conduct 1s not exhaustive, but
it does appear to indicate that the error of truncation may be serious when
the number of non-zero probability classes 1s 3 or 4 and the value of 0 is
approximately between 0 7 and 4.5. The reader can easily verify that the
error of truncation may also be serious when A< —l or A > 1.

Consul and Famoye (1989) studied the truncated GPD in some detail and
discussed parameter inference using maximum likelihood (ML) estimation
and estimation based upon the empirical mean and the ratio of the first two
empirical class frequencies. Their main conclusion was that the ML
estimates determined using (3) as the basis of the likelihood function are
generally closer to the true values of the population parameters than are the
ML estimates determined on the basis of (1) Hence, even though the error
of truncation associated with using (1) may be small in some cases, they
suggested that one should estimate the values of the parameters 8 and A
using the truncated GPD model (3). It should be noted that the estimation
methods persued by Consul and Famoye (1989) are implemented in such a
way so as to determine estimates of § and A conditional upon a presumed
known value of m. Since m 1s not known, Consul and Famoye (1989) simply
set it equal to the value of the largest observation.

Bayesian estimation 1s a likelthood based style of inference that
incorporates prior information on the unknown variables ML estimates
are equivalent to the nodes of the Bayesian posterior distribution, when the
prior distribution for the unknown variables 1s flat. However, the goal of a
Bayesian analysis 1s generally not just a point estimate hike the posterior
mode (or mean or median), but a representation of the entire distribution for
the unknown parameter(s) (Gelman, Carlin, Stern, Rubin, 1995, page 301).
In the next Section, we discuss how a Bayesian analysis of the truncated
GPD with an informative prior distribution can be accomplished using a
MCMC approach. We emphasize that the Bayesian estimation method
yields a posterior distribution for all of the unknown parameters, including
m {cf. Consul and Famoye, 1989).

3. A BAYESIAN ANALYSIS OF THE TRUNCATED GPD MODEL

Consul and Famoye (1989) argue that any discrete probability model for a
random variable N defined on the set of non-negative integers 1s
automatically truncated in real life situations because the sample size 1s
always finite and the probabiulities for large values of N become so small so as
to be unobservable. This 1s particularly true in an insurance setting when the
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number of claims per policy 1s small Assuming this context, we suppose that
the sampling model is taken to be approximately truncated GPD as in (3)
with parameters 8, A, and m, so that
8, A, m

Pr(N =j|0, \,m) = q,(6,\. m) Z%‘&/\Tn; for y=0,1,2, .,m, (4)
and zero otherwise, with 8 > 0 and —co < A < co, with m equal to some
posttive integer such that 6§ 4+ mA > 0, and with | <m < M so that there is
at least one non-zero class with non-zero probability. Setting M equal to a
value between 5 & 15, say, will generally suffice when the number of claims
per policy or acaidents per individual 1s small. We recognize that the value
selected for the parameter M 1s formally an expression of « priori knowledge
This 1s further discussed 1n the next paragraph. If the data consists of
observed class frequencies n,,y =0, .., M, with n=ng+ ... np, then the
likelihood function is of the form

m Hln p (9 /\ ITI)”’
9 B =0 FJ\Y .
](07/\1’") X qu( u/\vn-l) K(g, /\,ITI)” (5)

J=0

If the data includes some grouped class frequencies, then the likelihood
function is modified in the obvious way. For example, 1f we observe the first
two class frequencies ng and n; along with the grouped class frequency
g2 =m + ... + nyy, then the hikehhood function 1s of form

18, X, m) o< go(@, A, m)q1 (6, \,m)" {1 — qo(6, \,m) — q, (60, \, m) }¥2.

In order to complete the defimition of a full probability model, 1t 1s now
necessary to specify a prior distribution for the unknown parameters 6, A,
and m The reader s free to use any reasonable prior specification as befits
the expert opinion that 1s available to him or her. For our presentation, we
will consider 3 different forms of prior density specification (PDS). For the
first PDS, we will assume that the parameters are distributed @ priort 1n the
following way:

plO, A, m) x p()p(M)p(m) when 6 +mA >0, (6)
and zero otherwise, with
p(0) ~ Gamma (1, 2) | (7)
p(A) ~ Normal (0, 0.1) (8)
p(m) ~ Uniform {1, .., M} . 9)

The Gamma distribution in (7) 1s parametrized so as to have mean and
standard deviation both equal to 0.5, and the Normal distribution in (8) has
standard deviation equal to 0.1 With respect to the Uniform distribution 1n
(9), we are free to attach a hyper-prior distribution to the parameter M. We
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have not pursued this particular avenue, although in Section 5 we will
compare the use of several different values of M in the context of a particular
data analysis

Another approach 1s to forgo the introduction of M entirely, and rather
specify a distribution p(m) on the entirety of the non-negative integers (in
effect, M = 00). In this case, equations (6), (7) and (8) would be unchanged,
and (9) might be replaced with

p(m) ~ Poisson (yt) , (10)

for some specified value i« > 0 The parameter restrictions in effect would be
8>0, —oo < A< oo, and @+ mX > 0. An analysis of the truncated GPD
model incorporating this second form of PDS will also follow in Section 5.

Our third PDS will be similar to the two above, with the added restriction
that m = M, for some specified value M < oo. That s, our third analysis will
be conditional on a fixed value of m < co.

By multiplying the likelihood and prior density functions together, we
obtain the form of the posterior distribution up to a normalizing constant,
that 1s

p(0, A mlng, ., ny) o< p(@)p(AN)p(m)](6,M,m) when 8+ mA >0, (1)

and zero otherwise, with § > 0 and —oco < A < co. If we let n* denote the
value of the largest observation, then we also require that m € {n*, .... M}.
Here, either the value of M < oo 1s known as 1n the case of our first PDS, or
else M = oo as in the second. In the case of our third PDS, M 1s assumed to
be known and we further condition upon the assumption that m = M < oc.
At this stage, the complete probability model can be analysed using a
numerical method. We propose the use of a MCMC method in order to
complete the analysis of the posterior and predictive distributions.

4. COMPLETING THE BAYESIAN ANALYSIS USING A MCMC METHOD

In order to complete the Bayesian analysis of the truncated GPD model, we
adopt a MCMC method. In particular, we implement a ‘single-component
Metropohis-Hastings’ (Gilks, Richardson, and Spiegelhalter, 1996, page 10),
or ‘variable-at-a-time Metropohs-Hastings’ (cf. Chan and Geyer’s discussion
of Tierney’s 1994 paper, page 1748; also, Haastrup and Arjas, 1996, page
156), algorithm. This algorithm simulates a realization of a Markov chain
which has the posterior distribution of the unknown parameters 6, A, and m
as 1ts equilibrium distribution The al%orlthm generates a sequence of
simulated parameter values, 8, AQ 5@ g0 AL (D" whose empiri-
cal distribution converges towards the posterior distribution of the unknown
parameters. The posterior distribution can thus be approximated on the
basis of these values, and the approximation can be made as exact as we
desire by simply increasing the length of the simulation. Note that
predictions can also be obtained by simply averaging the truncated GPD
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probability mass function over the sampled parameter values. That 1s, the
probability mass function for a future observation Ny, given the observed
class frequencies ng, ., n,, can be esimated using the result that

Pr(Nf =] l no, ..., nm) (lz)

= Z//Pr(Nf =76, mp(8,\,m|no, .., ny,) dd dxr

m

N BZ'FL Pr(Ny =7 | 69, X0 m())
=B+l L

Here, B represents the number of iterations for which the Markov chain is
allowed to 'burn-in’ and L represents the number of 1terations the Markov
chain 1s run thereafter. A method for checking the convergence of the
Markov chain by comparing several different and independently simulated
sequences 15 given 1n Gelman, Carlin, Stern, and Rubin (1995, pages 330-
333) If several different and independently simulated sequences are
available, then the sample average in (12) should be taken over all of the
available sample paths.

There are many ways of implementing the Markov chain described
above. We proceed 1n the following manner. Let 8@, A® and m® denote
arbitrary starting values for the 3 random variables under examination In
this context, the ith iteratuon of the single-component Metropolis-Hastings
algorithm consists of 3 updating steps.

Step 1

Wepemer the first step of the ith iteration with values 8¢=", A1) and m(=1.
In this step, we update the value of 8 by %eneralmg a candidate value 6* from
a proposal distribution indexed by 6U~" with density ¢4(86“~"). The
candidate value 1s accepted with probabihty

nun| 1 p0* A mt=D | ng, ) go (890 | 67)
) p(g(’—]),/\('—l),n‘l(l—l) | ny, ..., nm) q0(8* | 9(:—[)) p

(13)

where the density p(6,\,m | ng ..., n,) 1s as given 1n equation (11). If the
candidate value 1s accepted, we assign %) equal to 8* Othcrwise, 8 1s set
equal to 6¢-");

Step 2

We enter the second step of the ith iteration with values 60, AU=D and
mU=1) In this step, we update the value of A by generating a candidate value
A* from a proposal distribution indexed by AU=!) with density ¢, (AA-D).
The candidate value 1s accepted with probability

mmn | 1 P8, N mU=D T ng, o ) u(AD A
, p(e(’)’ /\(l_l)’m(l.—l) I no, .- nm) ([,\(/\* l /\("l)) ?

(14)
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If the candidate value 1s accepted, we assign A1) equal to A*. Otherwise, A 1s
set equal to AU~

Step 3

We enter the third and last step of the th iteration with values 8¢, A}, and
mU=1 _In this step, we update the value of m by generating a candidate value
m* from a proposal distribution with density g, (m|mt~"). The candidate
value 1s accepted with probability

e p(00 N | g, ., 1) @u(m@N | m*)
" p(OD, XD, m=D |y, . ) g (m* | mtE0) )7

(15)

If the candidate value is accepted, we assign m") equal to m*. Otherwise, m®
1s set equal to m{*~1) This concludes the third step of the rth iteration, and we
exit from 1t with the updated values 8, A\, and m\.

The specification of the proposal distributions ¢g(.l.), gx(.].), and ¢,(])
appearing 1n the steps above still remains. This 1s discussed 1n Section 5. It
should be emphasized that the algorithm given above describes only one
possible 1mplementation of the single-component Metropolis-Hastings
algorithm. A fuller discussion of this algorithm and other MCMC methods
will not be presented at this time, since several such discussions are readily
available 1n the texts by Carlin and Louis (1996, Section 5.4), Tanner (1996,
Chapter 6), and Gelman, Carhin, Stern, and Rubin (1995, Chapter 11).
Within the actuarial Literature, the recent articles by Haastrup and Arjas
(1996) and Scollnik (1995d) may prove instructive to a reader unfamiliar
with these methods. Also, Pai (1997) discusses the use of MCMC to perform
a Bayesian analysis to scrutinize the compound loss distribution.

5 NUMERICAL ILLUSTRATION

The data we analyse 1s taken from Adelstein (1949, p. 379) and gives the
observed number of accidents in the age-group 26-30 years during the first
year of service for a group of railyard shunters. The data appears 1n Table 1,
and 1s underdispersed with a sample mean of 0 5815 and a sample variance
of 0 5719. Consul and Famoye (1989) previously fit a truncated GPD model
to this data and obtained the ML estimates § = 0.6115 and A = —0.0676.
However, Consul and Famoye (1989) proceeded by grouping the last three
of the class frequencies appearing in Table | into a single class of frequencies
greater than or equal to 4 and also appear to have set m = 4 for the purposes
of estimation even though one worker experienced 6 accidents. Conse-
quently, their ML estimates are adversely affected. Our own analysis will use
the onginal form of the data presented by Adelstein.
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TABLE |

ADELSTEINS (1949) SHUNTERS ACCIDENTS DATA
FIRST YEAR OF SHUNTING AGE 26-30 YEARS

Number of Accidents Number of Men
0 121
1 85
2 19
3 1
4 0
5 0
6 1

We proceed to analyse Adelstein’s data using the truncated GPD model
along with each PDS introduced in Section 3. We utilise the MCMC method
described 1n Section 4. A few specifics concerning the implementation of the
Markov chain are worthy of note. For the univariate proposal distributions
associated with the parameters 6 and A, we found that normal distnibutions
centered at the current value of the parameter in question and with standard
deviation of 0.05, that 1s

qo(0|s) ~ Normal (s, 0 05) and ¢\(A|s) ~ Normal (s, 0.05),

yielded acceptance rates in the 50 to 75 per cent range. The proposal
distribution for the parameter 1 was taken to be Poisson with mean ;¢ in the
case of the analysis incorporating the second PDS, that is

Gm{ml|s) = gm(m) ~ Pouisson (1) .

This makes Step 3 of the algorithm an independence sampler (Gilks,
Richardson, and Spiegelhalter, 1996, page 9; also, Tierney, 1994, page 1706)
since g,,(m|m¢=1) no longer depends on the value of m(~'). For the analysis
incorporating the first PDS, exact draws of m from its full conditional
posterior distribution were used. In this case, the acceptance probability (15)
1s always equal to 1. For the analysis incorporating the third PDS, no draws
of m were required since this analysis assumed that the value of m was fixed
and known.

For each analysis, four realizations of a Markov chain were simulated
Each chain was permitted to run for 10,000 iterations. The results of the first
5,000 iterations were discarded as ’burn-in’, and convergence of the Markov
chains for each analysis was formally monitored by applying the diagnostic
of Gelman, Carhn, Stern, and Rubin (1995, page 330-333) to the output of
iterations 5001 through 10,000. The behaviour of the realised Markov chain
sample paths associated with one of the simulations (corresponding to the
second PDS with p = 10) 1s illustrated in Figures 2, 3 and 4. In these plots, it
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1s apparent that the simulated Markov chains are well on their way towards
convergence by the 100th iteration in each case. Esumated posterior
distributions for the parameters 6, A, and m are presented 1n Figures 5, 6 and
7. These posterior distributions are estimated on the basis of the 20,000
(4 times 5,000) simulated draws for each parameter from its posterior
distribution.
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FiGuRre 6 Estimated Posterior Density Functions for the Parameter m
(Second PDS with ¢ = 10)

Summary results for all of our analyses appear 1n Tables 2 through 7.
From Tables 3, 5, and 7, one can observe that predictive inferences are
largely unaflected by the particular choice of PDS.

TABLE 2

ESTIMATED POSTERIOR MEANS AND SDs FOR THE PARAMETERS {0, A, AND m
RESULTING UNDER THE FIRST PDS FOR 3 VALUES OF M (m < Af)

Parameter M=6 M=10 M =25
[} 0 5837 0 5861 0 5807

(0 0556) (0 0541) (0 0536)

A 00034 0 0009 0 0085

(0 0353) (0 0340) 00316)

m 6 8 0016 14 9864

© (1 4196) (5 7347)
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TABLE 3

THE ESTIMATED PREDICTIVE DISTRIBUTION P’r(Ny =nglng, , my,)
RESULTING UNDER THE FIRST PDS FOR 3 VALUES OF Af (m < Af)

ne M=6 M=10 M =25
0 0 5587 05573 0 5603
| 03237 03251 03213
2 00951 00953 00952
3 00190 00189 00194
4 00030 00029 00032
5 0 0004 0 0004 0 0005
>6 0 0001 0000t 0 0001
niean 0 5857 0 5867 0 5858
(sdd) (07711 (0 7697) (0 7749)
TABLE 4

ESTIMALED POSTERIOR MEANS AND SDs FOR THE PARAMIETERS 6, A, AND
RESULTING UNDER THE SLCOND PDS 1 OR 4 DIFFERENT VALUES OF ju

Parameter pn=2 nw=>, =10 n=25
[ 05810 05831 05828 05774

(0 0529) (0 0544) (00531) (0 0529)

A 00034 00032 00051 00150

(0 0346) (0 0350) (0 0335) (0 0291)

m 632473 72713 10 3290 24 6669
(06319) (14242) (27903) (50021)

TABLE 5
THE ESTIMATED PREDICTIVE DISTRIBUTION Pr(N; = nglng. . nw)

RESULTING UNDER THE SECOND PDS FOR 4 DIFI'ERENT VALULS OF s

ny pu=12 n=>, =10 n=25
0 0 5602 05590 05591 05621
| 03231 03236 03230 03184
2 00945 00949 00951 00953
3 00188 00189 00192 00201
4 00030 00030 00031 00034
S 00004 00004 00004 00005
>6 00001 00001 00001 00001
mean 05830 0 5849 0 5858 0 5863

(sd) (07692) (0 7704) (07724) (0 7803)
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TABLE 6

ESTIMATED POSTERIOR MEANS AND SDs F OR THE PARAMETERS 6, A\, AND m
RESULTING UNDLR THE THIRD PDS FOR 3 VALUES OF M (i = Af)

Parameter M=6 M=10 M=125
[} 0 5844 0 5838 05748
(0 0532) (0 0545) (00511)
A 0 0025 00029 00160
(0 0343) (0 0333) (0 0279)
m 6 10 25
0) (0) ©)
TABLE 7
THE ESTIMATED PREDICTIVE DISTRIBUTION Pr{Ny = nging, , nm)
RLSULTING UNDER THI: THIRD PDS FOR 3 VALUES OF M(m = M)

np M=6 M=10 M=25
0 0 5583 0 5586 05636

| 03243 03238 03175

2 00951 0 0951 00948

3 00189 00189 00200
4 00030 0 0030 00034

5 0 0004 0 0004 0 0005
>6 0 0001 0 0001 0 0001
mean 0 5857 0 5854 0 5842
(sd) (0 7700) (0 7703) (0 7796)

6. FUTURE RESEARCH THE CORRELATED TRUNCATED BGPD MODEL

Famoye and Consul (1995) and Vernic (1997) have both considered a BGPD
(bivariate GPD) formed by applying the method of trivariate reduction. This
method proceeds as follows: let Ny, N, and N3 be independent GPD random
variables with respective parameters (6;, A1), (62, A2), and (61, A;). Then the
random vector (X, Y) 1s said to have a correlated BGPD if X = N| 4+ N, and
Y = N> + N;. Unfortunately, both Famoye and Consul (1995) and Vernic
(1997) imphcitly permit the parameters A,, + = 1, 2, 3, to take on negative
values but fail to correct the definitions of the affected GPD and BGPD
distributions by appropriately truncating and normahzing them.

In order to correct this problem, we define a correlated truncated BGPD
by the method of trivaniate reduction. Let N, N, and N; be independent
truncated GPD random variables with respective parameters (8, A, m,),
(62, X2, M), and (63, Az, ma). Then the random vector (X, Y) will be said to
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have a correlated truncated BGPD if X =N, 4+ N, and Y = N, + N3 as
before. It should be possible to implement Bayesian posterior and predictive
inferences for this distribution by using an extension of the MCMC method
described in Sections 3 and 4 along with a data augmentation method to
simulate the unobserved values of Ny, N, and N3, given the observations X
and Y along with the current simulated values of the parameters (6,, A,,m,),
i = 1,2, 3. This procedure will be further explained, and also applied to a
numerical example, in a paper to follow.
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A NOTE ON THE NET PREMIUM FOR A GENERALIZED LARGEST
CLAIMS REINSURANCE COVER

By RaouL M BERGLUND
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ABSTRACT

In the present paper the author gives net premium formulae for a generahzed
largest claims remnsurance cover If the claim sizes are mutually independent and
identically 3-parametric Pareto distributed and the number of claims has a
Poisson, binomual or negative binonual distribution, formulae are given from
which numerical values can easily be obtained The results are based on identities
for compounded order statistics.

KEYWORDS

Net premium; Reinsurance, LCR; ECOMOR, Compounded order statistics

]l INTRODUCTION

An expression for the pure premium for the largest cluim reinsurance cover was
already introduced by AMMETER (1964a) and for the p largest claims reinsurance
cover by AMMETER (1964b) Simple formulae were presented under the
assumptions that the claim sizes obeyed a one parametric Pareto distribution
and the number of claims was Poisson distributed For the same claim size
distribution Kupper (1971) gave a formula for the largest claim reinsurance when
the number of claims was geometrically distributed and CIMINELLI (1976)
considered a negative binomial distribution BERLINGER (1972) extended the
results by AMMETER and deduced the variance for the p largest claims reinsurance
cover Net premium for a general claim size and claim number distribution was
given by KREMER (1985) and for some generalized clatm number distributions
and a general claim size distribution by KREMER (1988a). The results in the latter
were, however, not so practical for a specific claim size distribution. The author of
this paper gives net premium formulae for a generalized largest claims reinsurance
cover, assuming that the claim sizes are mutually independent and identically
3-parametric Pareto distributed and when the number of claims has a Poisson,
binomial or negative binomial distnbution The formulae presented in this paper
arc simple and easily calculated.

ASTIN BULLETIN, Vol 28, No 1, 1998 pp 153-162



154 DAVID P M SCOLLNIK
2 PRELIMINARIES

5, , Xy denote non-negative, mutually independent and
identically distributed claim sizes, which are independent of the number of claims
N that occur in a given time period. Denote by

Xni12Xn22 2Xww

From now on, let X;, X,

the claims ordered m a decreasing size. The i-th largest claim 1s called the (-th
ordered claim or more gencrally the -th compounded order statistic Let

Ji [0,00) = [0,00)
{1 > 1) be measurable functions, that satisfy
n n
Si(0)=0and Y fi(v) € [0, Zy,]
=1 =1

for all 0 <y, < < y;<yp; This representation was first made by KREMER
(1982) and the following main definition by KREMER (1984)-

Definition. The remsurance treaty defined by

Rx(Xy 1,Xn 2, s Xnv ¥)=Rn= Z (XN ),

N
which determins the reinsurers share of the total loss Z X,, 15 called a reinsurance
treaty based on ordercd claims 1=/

We arc especially interested in the case
Si(x) =a, x,

where a,, 1 > I, are real constants. This reinsurance treaty 1s defined as the
generahzed largest claims cover (KREMER 1988b) We get for

ay=ay= =day,=1laq=0Y1>p

the so called LCR(p) treaty covering the p largest claims and for

ar=a= =d,_;=la=1—pa=0vi>p

the so called ECOMOR(p) treaty covering all claims in excess of the p-th largest
claim
We will subsequently use some special functions. The incomplete gamma

function 1s defined as

AY
C{a. x) = /e‘” u ey ,a>0, 1220

[
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and the complete gamma function as hm I'(a,x) =I'(¢) The incomplete beta
function 1s defined as e

LY

™
B(a, b, x) = /u"—l(l - u)b_’du = / ul i+ u)—(“b) du ,a,b>00<x< 1
0 0

and the complete beta function as liml B(a,b, x) = B(a,b). The complete beta

function and the complete gamma function are rclated by

T(a)0(b)

B(a, b) = m

3 FORMULAE FOR THE NET PREMIUM

The two most common risk loaded premium principles, the variance principle and
the standard deviation principle, are based on the expectation and the vanance of
acertain risk For a gencralized largest claims reinsurance cover the expectlation 1s
given by

E[Ry) = a E[Xy )

and the vanance by

-1

Var{Ry] = Za EX3 ] +2i

=2 =1

(l[lj XN XNJ (Z(IE N:])

The following theorem 1s duc to CIMINELLI (1976) and KREMER (1985), where

o(s)=> P(N=
n=0

denotes the probability generating function of N, which i1s assumed to have
derivatives ¢on (0,1) of each order 1 > /

Theorem 1 If the claim sizes X;, X;, , Xy have a continuous distribution
function F the density function of the i-th ordered claim 1s given by

P(Xy = x) = = fX)[] = F(x)]~ ¢4 (F(x))

1“()
and the joint density function of the i-th and j-th ordered claims (0 <1 <) 1s
given by

P(Xa = xu Ky = x) = m [/ = PG [Ex) = Fg)P ™ 80 (FOo ()
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Theorem 2 If the claim sizes X;, X2, ., Xy have a conunuous distribution
function F the k-th moment around the origin of the i-th ordered claim 1s given by

/
E[X%, )] —ﬁ /F’ W) 11 = u) ™ ¢ (u)dlu
0

and the expectation of the cross product of the i;-th and ;-th ordered claims
(0 <1 <y)s given by

E[XN IXN _/]

/F‘ (1 — vy e (v /F 1= u(l =)'~ (1 = uy ™ dudb.

Proof The first part of the statement follows from theorem 1 after the
substitution u = F(x) For the second part we have for 0<i1<y and
OSXNJS XN [ that

o oo E[XN IXN_/]:
C/ / xXox[1 - F(x))" ' [F(x) - F(x,)}’*'*lqb(’)(F(,\‘j))j(.\',)j(,\‘j) dx, dx;,
0
where
/
c= T(T( — 1)

After substituting v = ——%:— and v = F(x,) we obtain

E[Xy Xy )| =

I
Co/ / F (1= (] = ) F (0)al = {1 = P! [1 = ™ 60 () ducty =

{
C/F Tt - \'}’71¢U}(\’)/Fl(l —u(l — ) 1 = ™ dudy
0 0
O

From now on we will focus on the case where the claim sizes are distnibuted
according to the 3-parametric Pareto distribution

F(x)=1—<i{j_'g>o x>d >0 31
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where the parameters o, 8 and d satisfy & > 0 and b > —d The distribution (3 1)
1s the most used claim size distribution, especially 1f there 1s a possibility of large
claims In the Iiterature the 3-parametric Pareto distribution 1s sometimes also
called the “shifted” Pareto distribution (RYTGAARD 1990) or the complete Pareto
distribution (DAYKIN et al 1994). Since

the expectations of theorem 2 becomes after binonual expansion and simphfica-
tions

1

: 1 & ke
E[Xf\v. :F—(l—;< > d+ﬂl‘ h( 5)"0/(/~u)' & (1) du
and for a > 1
!
E[XN AN j] F()

! I
[A// 11— v)/_ "oW) (v — Az/(l - v)J—‘l'-’dJ(’)(v)(/v + A3/(1 - v)’—ld)(’)(v)(lv}
0

0 0

where
, (=4
@8 =
,_.i
4= o[ F F=)
_ 2t
A1 =F5

The restriction on the parameter « 1s needed to get a finite expression Assuming
further that the number of claims N is Poisson distributed

P(N=n)=—¢e" A>0,n20, (32)

negative binomially distributed

o _Tr+n) I\ A\
P(N=un)= (i ([+)\> (]+/\) RA>O, >0 (33)
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or binomially distributed
P(N=n) = (m>4"(’ Q""" 0<g<1l,n=0.1, ,m, (3.4)

where m 1s a non-negative integer, we have the following corollaries

Corollary 3. Assume that the claim sizes X;, X5, ., Xy arc Pareto distributed
(3 1) and that the claim number N 1s Poisson distributed (32) Then the &-th
moment around the origin of the i-th ordered claim 1s, for a > ’f given by

¥y = Z( i+ prtpatne -2y

and the expectation of the cross product of the :-th and J-th ordered claims
(0 <1<y) s, for & > max(!,2}, given by

ElXy Xy )] = ANT( = 2,0) — ALNT(0 — L, A) + 4,00, ,\)J

ol

Proof Since the y-th derivative of the probability generating function ¢ for a
Poisson distributed random variable (3 2) 1s given by

(J)(S) = NMeMs=h)

we have, for v > 0, that

!

!
/ (I —u)"™ ]d)(/) (Wdu =X /( — u)7_le’\(”_l)du
0

4]

After the substitution 1 = A(J — u) we obtain
/ A
/(I —u)" ¢V (w)du = A"’/r7 le™tdr
0 0

= N 7T(y, A).

which gives the result.

d

Corollary 4 Assumc that the claum sizes X;, X, , Xy are Pareto distributed (3.1)
and that the claim number N 1s negative binomially distributed (3 3). Then the
k-th moment around the origin of the :-th ordered claim 1s, for a > "7 given by
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- k —n 1\ Ah . .

h=0

and the expecctation of the cross product of the /-th and j-th ordered cluims
(0 <1 <y) s, for a > max {{,2}, given by

I Q)
B(j,r) T'(1)
DB = 2,72, 745) = ANBG — L+ L ) + A3t 7]

ElXn Xy )| =

Proof Since the j-th derivative of the probability generating function ¢ for a
negative binomially distributed random variable (3 3) is given by

L(r+,)

0 —— N[ = s = D]

¢V(s) =

we have, for v > 0, that
! F !
/ (1= u)™' @ () = %” / (= )™= Mu = D)7
. r
0 0

After the substitution 7 = A(/ — 1) we obtamn

/ A
[ =g SR et
_D{r+y)

NTYB(vir +7— 7725,

T(r)
from which the result follows after simplification

O

Corollary 5. Assume that the claim sizes X, X; , X are Pareto distributed (3.1)
and that the claim number N 1s binomially distributed (3.4) Then the k-th
moment around the ongin of the :-th ordercd claim 1s, for a > §, given by

£l ) =:(") 3 (f) (d+ B (=B ¢ Bi =t m — 14 1,q)

h=0

and the expectation of the cross product of the i-th and y-th ordered claims
(0 <1 <y)s, for o > max{{,7}, given by

N , m\T'(;+ 1 2
ElXy Xy )= (J)—(é(,—))[AzquU—- m—=y+1,q) = AyBG —L,m—=y+1;q)

+ A3B(im—y+1,q))
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Proof Since the y-th derivative of the probability generating function ¢ for a
binomially distributed random variable (3 4) 1s given by
T(m+1)

PO = =+ )

Flas+1—4q)"™7 ;< m,

we have, for v > 0, that

1 !
r 1)
/(l — )" ¢V (u)du = 11(,,(1'71 j—+ 1) 9’ / W) qu+ 1 — ¢)"du
0 0

After the substitution ¢ = ¢(/ — u) we obtain

/ q
r
/(1 — L()W_I(b(])(ll)(lu = F(”(]’n__j__{l_)]) ql—"//”y—-l(l _ [)m—_/a,l
0 0
Pim+1 -
Sty Brm=st L)

from which the rcsult follows after ssmphfication

O

If 0 < o < 1, which indicates a very heavy tailed distribution, we have according
to the results above that the first moment around origin of a certain number of
the largest ordered claims does not exist We could therefore consider the number
of ordered claims, for which the first moment around the origin does not exist, as
a measure for how dangerous a Pareto distribution 1s Since many computer
programs have built-in routines for computing the complete gamma, incomplete
gamma and the incomplete beta function, the expectations in results above can be
calculated easily
If the claim sizes obey an exponential distribution

Fx)=1—-¢%"9 850, x>a,

we cannot get useful expressions for the moments around the origin and the cross
product by applying thcorem 2 Using well known results from order statistics for
a determimistic number of claims (DAvID 1970) and then the iterativity of the
expectation operator, expression for the pure premium can be constructed.
Exponentially distributed claim sizes have been studied by Kupper (1971) and
KREMER (1985 and 1986).

4 A NUMERICAL EXAMPLE

Let the distribution for the claim sizes be Pareto distributed (3.1) with d = 0 For
the insurance line under consideration the method of moments gives the following
parameter estimates & = 2.340/ and B = 13692. Since the most import claim
number distributions are the Poisson and the negative binomial, we will restrict
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the example to them. Using the same estimation method we have the following
parameter estimates. Poisson A\ = 79667, negative bmomial A= 170865 and
F = 73326 We have the following numenical results

Expectation of LCR(p) and ECOMOR(p) treaties

p Poisson negative binomial 14 Poisson negative binomial
1 124 597 124 368 1 0 0
2 190 099 189 738 2 59 095 58 997
3 238 679 238 215 3 92 937 92 783
4 278 390 277 837 4 119 548 119 350
5 312 395 311 763 5 142 369 142 133

LCR(p)-treaty ECOMOR (p)-treaty

Standard deviation of LCR(p) and ECOMOR(p) trcaties
P Poisson negative binomial P Poisson negative binomal
t 178 069 178 129 1 0 0
2 191 632 191 860 2 134 587 134 549
3 198 847 199 254 3 182 222 182 206
4 203 797 204 389 4 188 799 188 815
5 207 581 208 363 5 193 255 193 405

LCR(p)-treaty ECOMOR (p)-treaty

The difference between the numerical values for Poisson and the negative
binonual cases is quite small. If we assume that 1n the incomplete beta function b
1s large and « 15 bounded we have the following asymptotic representation
(ABRAMOWITZ and STEGUN 1972)

o x@b+a-1)
B(a;b;x) : [a’ 2—x ] -2
5o = o) x + O(b™).

This explains the similarity 1in the numerical results above. This suggests, that the
Poisson distribution mught be the right claim number model if the parameter
value r1s large and A 1s small in the negative binomial distribution
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BOOK REVIEWS

S.A KruGMAN, H.H. PANJER and G E. WiLLMOT (1998). Loss Models.
From Data to Decisions. Wiley, New York.,

Hogg and Klugmann (1984) gives an excellent introduction into the
stochastic modeling of insurance losses. A key feature of that book is the
attention given to the special character of insurance data. Rather than
having embarked on a second (revised) edition, the present three authors
have decided to write a new text, keeping the main 1deas of Hogg and
Klugman (1984), but adding numerous topics which every actuary, whether
practicing or academic, ought to know

Loss Models *1s organized around thc principle that actuaries build
models in order to analyze risks and make decisions about managing the
risks based on conclusions drawn from the analysis”. Tt 1s to be stressed that
the text mainly looks at the liability side of insurance' the losses. These are
put together in a global risk model where uncertainty may enter at the claim-
size level (Chapter 2) and at the claim-frequency level (Chapter 3).
Combining these two levels leads to an aggregate model (Chapter 4). The
premium side of the coin 1s treated through credibility theory (Chapter 5).
Long term stability questions are discussed via the classical hmit theorems
for ultimate ruin (Chapter 6).

So far, various existing tcxts present, at least from a chapter heading
point of view, similar material Where are the novelties? First of all, this text
Is extenstve 1n its 644 pages. That means that all of the above topics are
treated in a fair amount of detail. Secondly, numerical examples together
with accompanying exercises and case studies are abundant. On each topic
introduced, the reader is asked to calculate actual numbers (ie take
decisions) based on data Many of the exercises presented stem from
actuarial examination papers. Answers to selected ones are given.

This brings me to the key question* “What is the intended readership?”
As the book assumes no specific prerequisites beyond basic courses n linear
algebra, analysis and elementary probabulity and statistics, the readership 1s
broad. Anyone interested 1n acquiring the basic stochastic techniques which
practicing actuaries use dailly will find this text useful. The necessary
statistical and probabihstic techniques are introduced 1f and when needed
Computability 1s always a concern. no theory without numbers The style of
writing 1s relaxed, yet also concise. A slight loss of conciseness 1s present
towards the end of the text where basic results of Poisson processes and
Brownian motion are derived' for instance the proof of the interarrival-time
characterisation of the homogeneous Poisson process leaves the critical
reader a bit in the cold when 1t comes to achieving independence (the usual

ASTIN BULLETIN, Vol 28, No 1, 1998, pp 163-166
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step-by-step “proof”’), also the reader could have benefited from a warning
that the reflection principle for brownian motion (figuring on the cover!),
though intuitively clear, needs a proof (strong Markov property). Similar
warnings could have been made in the chapter on ruin theory. Also, I found
the Index, and to some extend the References a bit wanting. These ““flaws”
however should not diminish my admuration for this book: 1t 1s a most useful
addition to the actuarial literature Especially from the more applied,
industrial side: If T were recruiting a new, young actuary of which [ would
know that he or she had a through knowledge of the material treated in Loss
Models, T would be most glad As such, this book will no doubt become a
classic reference.

REFERENCE
Hoca, R and KLUuGMAN, S. (1984) Loss Distributions. Wiley, New York.
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THOMAS MACK (1997): Schadenversicherungsmathemarik. Sonderauflage von
Heft 28 der Schnftenrethe Angewandte Versicherungsmathematik der
Deutschen Gesellschaft fiir Versicherungsmathematik e.V Verlag Versiche-
rungswirtschaft e.V. Karlsruhe, 1997 TISN 0178-8116, ISBN 3-88487-582-5

The more 1 was reading in this book the more I got interested in 1t and at
the same time I found 1t was a pity that 1t 1s not written in English because
there 15 no doubt a great number of potential readers not mastering the
German language sufficiently. So let’s hope that it will soon be translated
into English

Thomas Mack's present book on actuanal sciences in Non-Life insurance
1s subdivided nto the four main parts

Part | Basics

Part 2 Pricing

Part 3 Reserving

Part 4 Risksharing

In the first part both the classical individual and collective model of nisk
theory are dealt with, complemented by a third approach where the portfolio
1s assumed to consist of a number of subportfolios in which each risk has the
same claims degree distribution. In the same first chapter there 1s already a
sectton on pricing where the author proposes the so-called covariance
principle, 1.e., the total security loading 1s distributed onto the individual
risks proportionally to the covariance between the claims potential of that
risk and the one of the entire portfoho. Furthermore there 1S an nteresting
part discussing the practically important fact that a company can still
underwrite a certain share of a risk even if the total premium for it 1s less
than what according to the company’s standard would be required as a
technical minimum.

In the second part on pricing there is at the beginning an extensive
discussion on how to define-more or lecss homogenous-risk categories as a
basis for the construction of a tarff Several statistical procedures are
proposed for this like cluster analysis, maximum likelthood and minimum
square procedures as well as some parametric approaches. Nexl comes
credibility theory, experience rating and the construction of bonus malus
systems followed by a small section on the truncation of large individual
claims that distort the normal claims statistics.

Part three on claims reserves 1s visibly the chapter where the author could
draw most from his vast practical experience. Among many other things also
a credibility approach for assessing claims reserves is discussed here. But
basically this chapter deals with three different statistical procedures, namely
two non-parametric ones (one additive and the other multiplicative) and a
parametric approach which 1s called *cross-classified’””. Although most of
this chapter 1s very much practically oriented (last but not least, I think,
because of the proposed separations “*claims frequency/severity” on one
hand and “IBNR/IBNER” on the other), there 1s this theorem on page 279
which 1s of remarkable theoretical interest and which would read 1n English:
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“The maximum hkelthood estimator for the claims reserve within the cross-
classified Poisson model with positive increments 1s identical with the chain
ladder reserve.”

The last chapter is on risksharing, i e., on coinsurance, reinsurance and
retrocession and right at the beginmng the important distinction between
proportional and non-proportional risksharing 1s made The chapter closes
with some general observations on risk management and solvency.

I found reading in this book refreshing because of many original thoughts
and approaches which are not commonly known and I would just hke to
express my hope again that it should be translated into English soon.

ERWIN STRAUB
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