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ABSTRACT

This paper proposes a consistent approach to discrete time valuation in insurance
and finance. This approach uses the growth optimal portfolio as reference unit
or benchmark. When used as benchmark, it is shown that all benchmarked
price processes are supermartingales. Benchmarked fair price processes are
characterized as martingales. No measure transformation is needed for the fair
pricing of insurance policies and derivatives. The standard actuarial pricing rule
is obtained as a particular case of fair pricing when the contingent claim is inde-
pendent from the growth optimal portfolio.
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1. INTRODUCTION

There exists a stream of literature that exploits the concept of a growth optimal
portfolio (GOP), originally developed by Kelly (1956) and later extended and
discussed, for instance, in Long (1990), Artzner (1997), Bajeux-Besnainou &
Portait (1997), Karatzas & Shreve (1998), Kramkov & Schachermayer (1999),
Korn (2001) and Goll & Kallsen (2002). Under certain assumptions the GOP
coincides with the numeraire portfolio, which makes prices, when expressed in
units of this particular portfolio, into martingales under the given probability
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measure. In Kramkov & Schachermayer (1999) and Platen (2001, 2002) it was
demonstrated that prices when benchmarked by the GOP can become super-
martingales. The notion of a numeraire portfolio was recently extended by
Becherer (2001), taking into account benchmarked prices that are supermartin-
gales when an equivalent local martingale measure exists. In standard cases
with an equivalent martingale measure the numeraire portfolio has been shown
to coincide with the inverse of the deflator or state price density, see Consta-
tinides (1992), Duffie (1996) or Rogers (1997). Furthermore, in Bühlmann
(1992, 1995) and Bühlmann et al. (1998) the deflator has been suggested for the
modeling of financial and insurance markets. Similarly, in Platen (2001, 2002,
2004) a financial market has been constructed by characterization of the GOP
as benchmark portfolio.

Within this paper we follow a discrete time benchmark approach, where we
characterize key features of a financial and insurance market via the GOP.
We do not assume the existence of an equivalent martingale measure. The con-
cept of fair pricing is introduced, where fair prices of insurance policies and
derivatives are obtained via conditional expectations with respect to the real
world probability measure. This provides a consistent basis for pricing that is
widely applicable in insurance but also in derivative pricing. Examples of a
discrete time market will be given that illustrate some key features of the bench-
mark approach.

2. DISCRETE TIME MARKET

Let us consider a discrete time market that is modeled on a given probability
space ( , , )PAX . Asset prices are assumed to change their values only at the
given discrete times

< < < <t t t0 n0 1 f 3#

for fixed n ∈ {0, 1, …}. The information available at time t in this market is
described by Ati

. In this paper we consider d + 1 primary securities, d ∈ {1,2,…},
which generate interest, dividend, coupon or other payments as income or loss,
incurred from holding the respective asset. We denote by S (j)

i the nonnegative
value at time ti of a primary security account. This account holds only units of
the j th security and all income is reinvested into this account. The 0th primary
security account is the domestic savings account. According to the above
description, the domestic savings account S(0) is then a roll-over short term
bond account, where the interest payments are reinvested at each time step.
If the j th primary security is a share, then S (j)

i is the value at time ti of such
shares including accrued dividends. Thus, the quantity S (j)

i represents the j th
cum-dividend share price at time ti. We assume that

>S 0i
j] g (2.1)

almost surely for all { , , , }j d0 1 f! .
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Now, we introduce the growth ratio h( )
i
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of the j th primary security account
at time ti 1+ in the form 
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for { , , , }i n0 1 1f! - and { , , , }j d0 1 f! . Note that the return of S( )j at time 
ti 1+ equals h 1( )

i

j

1
-

+
. In our context the concept of a growth ratio will be more 

convenient than that of a return. We assume that i 1+h( )j is A t i 1+
-measurable and

almost surely finite. The growth rate of the domestic savings account S(0) shall
be strictly positive, that is 

>h 0( )
i 1
0
+

(2.3)

almost surely for all { , , , }i n0 1 1f! - with 0S 1( )0 = . We can express the price
of the j th primary security account at time ti, that is usually the j th cum-
dividend share price S (j)

i , in the form 

S S h( ) ( ) ( )
i

j j
l

j

l

i

0
1

=
=

% (2.4)

for { , , , }i n0 1 f! and { , , , }j d0 1 f! . Note that due to assumptions (2.1) and
(2.3) we have for the savings account 

>S 0( )
i
0 (2.5)

for all { , , , }i n0 1 f! .
In the given discrete time market it is possible to form self-financing port-

folios containing the above primary security accounts, where the changes
in the value of the portfolio are only due to changes in primary security
accounts. Since we will only consider self-financing portfolios we omit in the
following the word “self-financing”. For the characterization of a strictly positive
portfolio at time ti it is sufficient to describe the proportion i ( , )3 3! -r( )j of
its value that at this time is invested in the j th primary security account,

{ , , , }j d0 1 f! . Obviously, the proportions add to one, that is 

1( )
i
j

j

d

0

=r
=

! (2.6)

for all { , , , }i d0 1 f! . The vector process , , ,( ) ( ) ( )

i i i i

d0 1 f= =r r r r r` j$ , i ∈
, , ,n0 1 f! +, denotes the corresponding process of proportions. We assume

that ir is Ati-measurable, which means that the proportions at a given time do
not depend on any future events. The value of the corresponding portfolio at
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time ti is denoted by iS ( )r and we write , , , ,S S i n0 1( ) ( )
i f!=r r

!$ +.. Obviously,
we obtain the growth ratio hl

( )r of this portfolio at time tl in the form 

h h( ) ( ) ( )
l l

j
l
j

j

d

1
0

= r
-

=

r ! (2.7)

for { , , , }l n1 2 f! , where its value at time ti is given by the expression 

S S h( ) ( ) ( )
i l

l

i

0
1

=
=

r r r% (2.8)

for { , , , }i n0 1 f! .

3. DISCRETE TIME MARKET OF FINITE GROWTH

Let us denote by V the set of all strictly positive portfolio processes S( )r . This 
means, for a portfolio process S V( ) !r it holds ( , )h 0( )

i 1 3!+
r almost surely for 

all { , , , }i n0 1 1f! - . Due to (2.5) V is not empty. We define for a given port-
folio process S V( ) !r with corresponding process of proportions r its growth
rate gi

( )r at time ti by the conditional expectation 

logg E h A( ) ( )
i i t1 i=

+
r r

`a j k (3.1)

for all { , , , }i n0 1 1f! - . This allows us to introduce the optimal growth rate g
i

at time ti as the supremum 

supg g( )
i

S
i

V( )
=

!

r

r

(3.2)

for all { , , , }i n0 1 1f! - .
If the optimal growth rate could reach an infinite value, then the corre-

sponding portfolio would have unlimited growth. We exclude such unrealistic
behaviour by introducing the following natural condition.

Assumption 3.1 We assume that the given discrete time market is of finite growth,
that is

< ,max g
{ , , , }i n i0 1 1

3
f! -

(3.3)

almost surely.

Furthermore, it is natural to assume that our discrete time market is such that
a portfolio exists, which attains the optimal growth rate.
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Assumption 3.2 There exists a portfolio S V( ) !r with corresponding process of
proportions r and

,S 1( )
0

=r (3.4)

such that

g g( )
i i

=r (3.5)

and

<E
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A( )

( )
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+

+
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K

N

P

O
O

(3.6)

for all { , , , }i n0 1 1f! - and S V( ) !r . Such a portfolio is called a growth opti-
mal portfolio (GOP).

Without conditions (3.3) and (3.5) there is no basis for considering GOPs.
Also condition (3.6) is a very natural condition, which only assumes the
integrability of ratios of growth rates and thus allows to form conditional
expectations. There is an extremely wide range of models that satisfy the
Assumptions 3.1 and 3.2. These cover most established discrete time models
used in insurance and finance.

From the viewpoint of an investor, a growth optimal portfolio (GOP), can
be interpreted as a best performing portfolio because there is no other strictly
positive portfolio that in the long term can outperform its optimal growth
rate. The GOP has also another remarkable property, which we derive in the
following. Let us study the situation that an investor puts almost all of his 
wealth in a GOP S( )r and invests a vanishing small proportion ,0

2
1!i b l into 

an alternative portfolio S V( ) !r . We call the resulting portfolio the interpo-
lated portfolio V V!r, ,i r . It exhibits by (2.7) at time ti 1+ the growth ratio 

( )h
V

V
h h1, ,

, ,

, ,
( ) ( )

i
i

i
i i1

1
1 1

= = + -i i
+

+
+ +

i r r
i r r

i r r
r r (3.7)

with corresponding growth rate 

logg E h A, , , ,
i i t1 i=

+
i r r i r r

`a j k (3.8)

for { , , , }i n0 1 1f! - . To study the rate of change in the growth rate of the
interpolated portfolio let us define its derivative in the direction of the alter-
native portfolio S V( )!r at time ti, that is the limit 

lim
g

g g1
, ,

, , ( )i
i i

0
02

2
= -

i i"
= +

+

i r r

i
i

i r r r
` j (3.9)
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for { , , , }i n0 1 1f! - . We prove in Appendix A the following fundamental
identity, which will give us access to the understanding of the central role of
the GOP in pricing.

Theorem 3.3 For a portfolio S V( ) !r and { , , }i n0 1 1f! - the derivative of the
growth rate of the interpolated portfolio at time ti equals

.
g

E
h

h
A 1

, ,

( )

( )
i

i

i
t

0 1

1
i2

2
= -

i
= + +

+
i r r

i

r

rJ

L

K
KK

N

P

O
OO

(3.10)

One observes that from (3.9), (3.5) and (3.2), we must have by the optimality
property of the GOP that 

,g 0, ,q
q 0i2 #

= +

r r (3.11)

which leads by the identity (3.10) directly to the following important result.

Corollary 3.4 A portfolio process S V( ) !r is growth optimal if and only if all
portfolios S V( ) !r , when expressed in units of S( )r , are ( , )PA -supermartingales,
that is

E
h

h
A 1( )

( )

i

i
t

1

1
i #

+

+
r

rJ

L

K
KK

N

P

O
OO

(3.12)

for all { , , , }i n0 1 1f! - .

Corollary 3.4 reveals a fundamental property of the GOP. It says, all nonnega-
tive securities, when expressed in units of the GOP are supermartingales. Note
that we did not make any major assumptions on the given discrete time
market. Under the additional assumption on the existence of an equivalent
local martingale measure, a similar result has been obtained for semimartin-
gale markets in Becherer (2001). Corollary 3.4 is proved without the explicit
assumption on the existence of an equivalent risk neutral measure. The sim-
ple and direct proof of Theorem 3.3 in the Appendix avoids the technical
machinery employed in Becherer (2001). In addition, our approach is con-
structive and the fundamental equation (3.10) can be used to establish further
identities or inequalities in risk management.

Let us consider two nonnegative portfolios that are both growth optimal,
see (3.5). According to Corollary 3.4 the first portfolio, when expressed in
units of the second, must be a supermartingale. Additionally, by the same
argument the second, expressed in units of the first, must be also a super-
martingale. This can only be true if both processes are identical, which yields
the following result.

Corollary 3.5 The value process of the GOP is unique.
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Note that the stated uniqueness of the GOP does not imply that its proportions
r have to be unique.

4. FAIR PORTFOLIOS

In what follows we call prices, which are expressed in units of the GOP, bench-
marked prices and their growth ratios benchmarked growth ratios. The condi-
tion (3.6) guarantees the integrability of benchmarked growth ratios and prices 
The benchmarked price S ( )

i
r at time ti of a portfolio S( )r is defined by the rela-

tion 

S

S
S ( )

( )

( )

i
i

i=r
r

r

(4.1)

for all { , , , }i n0 1 f! . By Corollary 3.4, the benchmarked price of a strictly
positive portfolio S V( ) !r is a supermartingale, which means by (3.12), (4.1),
and (2.8) that 

,ES S A( ) ( )
i k ti$r r

a k (4.2)

for all { , ,..., }k n0 1! and { , ,..., }i k0 1! .
In common actuarial and financial valuations in competitive, liquid mar-

kets a price is typically chosen such that seller and buyer have no systematic
advantage or disadvantage. The problem of such a description is hidden in
the fact that one must specify the reference unit or numeraire and the corre-
sponding probability measure that both buyers and sellers use to calculate
their expected payoff. If one chooses the real world measure as obvious prob-
ability measure, then one needs still to determine the reference unit. We know
from Long (1990) that under certain conditions benchmarked prices are mar-
tingales. In markets with a corresponding equivalent risk neutral martingale
measure this price corresponds to the risk neutral price. For this reason we
choose in our more general setting the GOP as numeraire. By using the real
world probability measure to form expectations and the GOP as numeraire it
follows from Corollary 3.4, as shown in (4.2), that any strictly positive port-
folio price, when expressed in units of the GOP, must be a supermartingale.
This could give an advantage to the seller of the portfolio S( )r if the equality
in (4.2) is a strict one. Its expected future benchmarked payoff is in such a
case less than its present value. The only situation when buyers and sellers
are equally treated is when the benchmarked price process S( )rt is an ( , )PA -
martingale, that means 

ES S A( ) ( )
k k ti=r r

a k (4.3)

for all { , , , }k n0 1 f! and { , , , }i k0 1 f! . Equation (4.3) means that the actual
benchmarked price S ( )r

i is the best forecast of its future benchmarked values.
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Equivalently to (4.3) we have by (2.8) for the corresponding portfolio process
S( )r that 

E
h

h
A 1( )

( )

i

i
t

1

1
i =

+

+
r

rJ

L

K
KK

N

P

O
OO

(4.4)

for all { , , , }i n0 1 1f! - . This leads us naturally to the concept of fair pricing,
see also Platen (2002):

Definition 4.1 We call a value process { , { , , , }}V V k n0 1k g!= fair if its bench- 

marked value k
kV

S

V
( )
k

= r
t forms an ( , )PA -martingale.

By Definition 4.1 and application of Theorem 3.3 we directly obtain the fol-
lowing interesting characterization of fair prices.

Corollary 4.2 A given portfolio process S( )r is fair if and only if

g
0

, ,
i

0
2

2
=

i
= +

i r r

i

(4.5)

for all { , , , }i n0 1 1f! - .

Intuitively, Corollary 4.2 expresses the fact that a portfolio is fair if the maxi-
mum that the growth rate of the corresponding interpolated portfolio attains,
is a genuine maximum. This typically means that the GOP proportions must
satisfy the usual first order conditions in the direction of the portfolio. This
will happen if S( )r is in the interior of V as in this case the derivative at zero
may be taken from both sides.

5. A TWO ASSET EXAMPLE

To illustrate key features of the given discrete time benchmark approach, let
us consider a simple example of a market with two primary security accounts.
The two primary securities are the domestic currency, which is assumed to
pay zero interest, and a stock that pays zero dividends. The savings account at
time ti is here simply the constant S 1=( )0

i for { , , , }i n0 1 f! . The stock price
Si

( )1 at time ti is given by the expression 

,S S h( ) ( ) ( )
i l

l

i
1

0
1 1

1

=
=

% (5.1)

for { , , , }i n0 1 f! . Here the growth ratio l ( , )h 0( )1 3! at time tl is assumed
to be a random variable that can reach values, which are arbitrarily close

160 HANS BÜHLMANN AND ECKHARD PLATEN



close to 0 and 3. Since the GOP has always to be strictly positive we must
have 

[ , ]0 1( )
i
1 !r (5.2)

for all { , , , }i n0 1 f! . By (2.6) the GOP proportions ( )
i
0r and ( )

i
1r are such that

1( ) ( )
i i
0 1= -r r (5.3)

for all { , , , }i n0 1 f! . Obviously, the set V of strictly positive, portfolios S( )r

is then characterized by those portfolios with proportion i [ , ]0 1!r( )1 for all 
{ , , , }i n0 1 f! . The growth rate g( )

i
r at time ti for a portfolio S V( ) !r is accor-

ding to (3.1) given by the expression 

logg E h A1 1( ) ( ) ( )
i i i t

1
1

1
i= + -r

+
r

`aa jk k (5.4)

for all { , , , }i n0 1 1f! - . Let us now compute the optimal growth rate of this 
market, see (3.1). The first derivative of gi

( )r with respect to ir
( )1 is 

g
E
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h
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1 1

1
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( )

( ) ( )
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2
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-
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+
r J

L

K
KK `
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P

O
OOj

(5.5)

and the second derivative has the form 

g
E

h

h
A

1 1
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i
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2
= -
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Oj jk

j
(5.6)

for { , , , }i n0 1 1f! - . We note that the second derivative is always negative,
which indicates that the growth rate has at most one maximum. However, this
maximum may refer to a proportion that does not belong to the interval [ , ].0 1
To clarify such a situation we compute with (5.5) the values 

g
E h A 1( )

( )
( )

i

i
i t1

0

1
1

( )
i

i

12

2
= -

r
=

+

r

r

a k (5.7)

and

g
E

h
A1

1
( )

( )

( )
i

i

i

t1

1 1
1

( )
i

i

12

2
= -

r
= +

r

r

J

L

K
K

N

P

O
O (5.8)

for { , , , }i n0 1 1f! - . Due to (5.6) the first derivative 
g

( )

( )

i

i
12

2

r

r

is decreasing for
( )
i
1r increasing. If
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E h A 1( )
i t1
1

i $
+

m
`c j m (5.9)

for both 1=m and 1= -m , then (5.7) and (5.8) are of opposite sign and hence
there exists some 

i
[ , ]0 1( )1 !r such that 

g
0( )

( )

i

i
1

( ) ( )
i i
1 12

2
=

r
=

r

r r

(5.10)

for { , , , }i n0 1 1f! - . Otherwise, if condition (5.9) is violated, then the opti-
mal proportion is to be chosen at one of the boundary points. In this case the
derivative (5.5) will not be zero at the optimal proportion and we obtain not
a genuine maximum for the optimal proportion.

To check whether particular primary securities and portfolios are fair we
now specify in our example the distribution of the growth ratios. Let us consider
the case when the growth ratio hi

( )1 is independent of the past and lognormally
distributed such that 

,log h D DN( )
i
1 2+ n v` _j i (5.11)

with mean Dn , variance > 0D2v and time step size >t t 0D i i1= -+ .

1. At first, we clarify when the derivative 
g

( )

( )

i

i
12

2

r

r

can become  zero for [ , ]0 1( )
i
1 !r .

Because of

expE h A
2

D( )
i t1
1

2

i = +mn v
+

m
`c dj m n) 3 (5.12)

for 1=m and 1= -m , (5.10) can only hold for | |
2

2

#n v . In this case it is 
also possible to show for 0D " that the optimal proportion ( )

i

1r for the
GOP reaches asymptotically the value 

,lim
2
1( )

i
1

2
0D

= +r
v
n

"

with limits 

limE
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limE
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and it follows for all strictly positive portfolios S V( ) !r that 

g
0

, ,
i

0
2

2
=

i
=

i r r

i

for { , , , }i n0 1 1f! - . Thus by Corollary 4.2 all portfolios S V( ) !r are fair
if the absolute mean to variance ratio is less than 

2
1, that is 

| |
s
m

2
1

2 # . This
means, for all strictly positive benchmarked portfolios the expected log-
return of S( )1 is not allowed to be greater than half of its squared variance.

2. In the case <
s
m

2
1

2 - , when the stock significantly underperforms, then the 

situation is different. The optimal proportion is 

0( )
i
1 =r

for all { , , , }i n0 1 1f! - . For the GOP this requires to hold all investments
in the savings account. Here we get 

< ,expE
h

h
A

2
1D( )

( )

i

i
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1

1
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2

i = +n v

+

+
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J
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KK
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N

P

O
OO

n o

which shows that the benchmarked stock price process 
S
SS ( )

( )

( )
1

1

= r is a strict 
supermartingale and not a martingale. Thus S( )1 is not fair according to Defi-
nition 4.1. Alternatively, we can check by Corollary 4.2 whether S( )1 is
fair. For the portfolio p with all wealth invested in stock, that is pi =

, ( , )p p 0 1( ) ( )
i i
0 1 =` j , we obtain the derivative of the corresponding interpolated

portfolio in the form 

< ,exp
g

2
1 0D

, ,
i

0

2

2

2
= + -

i
n v

= +

i r r

i

de n o

which shows by Corollary 4.1 that S( )1 is not fair. On the other hand S ( )0

is clearly a martingale and thus fair.

3. For >
s
m

2
1

2 the stock is performing extremely well. The optimal propotion
is 

1( )
i
1 =r

for { , , , }i n0 1 1f! - . This means, for sufficiently large mean of the logarithm
of the growth ratio of the stock one has to hold for the GOP all investments
in the stock. In this case we get 
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< ,expE
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1D( )

( )

i

i
t

1

1
0

2

i = - +n v

+

+
r

J

L

K
KK

de

N

P

O
OO

n o

which says that the benchmarked domestic savings account 
S
SS ( )

( )

( )
0

0

= r is a 

strict supermartingale. This means that S ( )0 is not a martingale and thus
by Definition 4.1 not fair. However, note that S 1( )1 = is a martingale.
For , ( , )1 0( ) ( )

i i i
0 1= =r r r` j we have then 

< .exp
g

D
2

1 0

, ,
i

0

2

2

2
= - + -

i
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= +

i r r

i

de n o

This confirms also by Corollary 4.2 that S( )0 is not fair.

This example demonstrates that benchmarked prices are not always martingales.
However, these benchmarked prices become martingales if the corresponding
derivative of the growth rate of the interpolated portfolio in the direction of
the security is zero, as follows from Corollary 4.2. Furthermore, the given log-
normal example indicates that discrete time markets with securities, where the
mean to variance ratio of the excess log-return over the risk free rate exceeds
one half, may not be fair.

6. FAIR PRICING OF CONTINGENT CLAIMS

Now, let us consider a contingent claim Hi, which is an Ati-measurable, possibly
negative payoff, expressed in units of the domestic currency and has to be paid
at a maturity date ti, { , , , }i n1 2 f! . Note that the claim Hi is not only contin-
gent on the information provided by the observed primary security accounts
S ( j)

l up until time ti, { , , , }j d0 1 f! , , , ,l i0 1 f! ! +, but as well on additional
information contained in Ati as, for instance, the occurrence of defaults or insured
events. Following our previous discussion and Definition 4.1 we obtain directly
the following formula for the fair price of a contingent claim.

Corollarly 6.1 The fair price kU ( )Hi at time tk for the contingent claim Hi satis-
fies the fair pricing formula 

k
i

i
k ,U S E

S

H
A( ) ( )

( )
H

t
i

k= r
r

J

L

K
K

N

P

O
O (6.1)

for { , , , }.k i0 1 f!

Obviously, by (4.10) all fair contingent claim prices have a corresponding bench-
marked fair price of the type 
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S

U
U( )

( )

( )

k
H

k

k
H

i

i

= r (6.2)

for all { , , , }k i0 1 f! , { , , , }i n0 1 f! , where the process k ,UU( ) ( )H Hi i= $ k ∈
{ , , , }i0 1 f , forms an ( , )PA -martingale according to Definition 4.1. The argu-
ment can be easily extended to sums of contingent claims with A -adapted matu-
rity dates. Note that all fair portfolios and fair contingent claim prices form a
price system, where benchmarked prices are ( , )PA -martingales.

If there exists only one equivalent risk neutral martingale measure, then the
pricing formula (6.1) is the standard risk neutral pricing formula, used in finance,
see Platen (2001, 2002, 2004). However note, in this paper we do not assume
the existence of such an equivalent risk neutral martingale measure and con-
sider a more general framework.

Formally, one can extend (6.1) also for assessing the accumulated value for
cashflows that occurred in the past, that is for { , , }.k i i1 2 f! + + Then we
obtain 

U
S

H
S( )

( )
( )

k
H

i

i
k

i = r
r (6.3)

for { , , }i 0 1 g! and { , , }k i i1 2 f! + + . In (6.3) we express the with earnings
accumulated tk-value of the payment Hi made at time ti. This interpretation is
important for insurance accounting as will be discussed below.

An important case arises when a contingent claim Hi with maturity ti
is independent of the value iS( )r of the GOP. Then by using (6.1) its fair price
at time tk is obtained by the formula 

,U E H PA( )
k
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i t k
ii

k= ^ h (6.4)

where 

P E
S

S
A( )

( )

k
i

i

k
tk= r

rJ

L

K
KK

N

P

O
OO

(6.5)

is the fair value at time tk of the zero coupon bond with maturity ti for k ∈
{ , , , }i0 1 f , { , , , }i n0 1 f! . The formula (6.4) reflects the classical actuarial
pricing formula that has been applied by actuaries for centuries to project
future cashflows into present values, though with an “artificial” not financial
market oriented understanding of Pi

k. Thus it turns out that the actuarial
pricing approach is in this particular case generalized by the fair pricing con-
cept that we introduced above through Definition 4.1. Note, in this case the
knowledge of the particular dynamics of the GOP is not necessary since
the zero coupon bond Pi

k carries the relevant information needed from the
GOP.
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7. FAIR PRICING OF SEQUENCES OF CASHFLOWS

For the pricing of an insurance policy the actuarial task is the valuation of a
sequence of cashflows X0, X1,…,Xn, which are paid at the times t0, t1,…, tn,
respectively. After each payment, its value is invested by the insurance company
in a strictly positive portfolio, characterized by a process of proportions p. Here
we choose an arbitrary process of proportions p, representing the investment
portfolio of the insurance company. The benchmarked fair price Q0 at time t0 for
the above sequence of cashflows is according to (6.2) given by the expression 
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X
Q A( )

k

k
t

k

n

0
0

0
=

=
r!

J

L

K
K

N

P

O
O (7.1)

It follows that the benchmarked fair value Qi at time ti for { , , , }i n0 1 1f! - of
this sequence of cashflows equals the sum 

Q C Ri i i= + (7.2)

for { , , , }i n0 1 f! . Here we obtain 
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which expresses the benchmarked value of the already accumulated payments.
Furthermore,

E
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X
R A( )i
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O
O (7.4)

is the benchmarked fair price at time ti for the remaining payments, which is
called the prospective reserve, see Bühlmann 95. It is easy to check that the
process , { , , , }i nQ Q 0 1i f!= # - forms an ( , )PA -martingale for all choices of p
by the insurance company. When expressed in units of the domestic currency,
we have at time ti for the above sequence of cashflows the fair value 

Q S Q( )
i i i= r (7.5)

for all { , , , }i n0 1 f! .
The above result is important, for instance, for the fair pricing of life

insurance policies. Each insurance carrier can choose its own process of pro-
portions p to invest the payments that arise. However, the GOP, which is
needed to value the prospective reserve, must be the same for all insurance
companies in the same market. Above we clarified the role of the GOP for
pricing the prospective reserve. We point out that the above analysis says noth-
ing about the performance and riskiness of different investment strategies that

166 HANS BÜHLMANN AND ECKHARD PLATEN



the insurance carrier can choose. The growth rate for the investment portfolio
becomes optimal, if the proportions of the GOP are used. If the insurance com-
pany aims to maximize the growth rate of its investments, then the fair pricing
of an insurance policy and the optimization of the investment portfolio both
involve the GOP.

8. UNIT LINKED INSURANCE CONTRACTS

In the insurance context we look again at the cashflows n, , ,X X X0 1 f but
assume a specific form for these random variables. Intuitively, they stand now
for unit linked claims and premiums. Hence they can be of either sign. The cash-
flow at time ti is of the form 

X D S( )
i i i= r (8.1)

for { , , , }i n1 2 f! . The payments are linked to some strictly positive reference
portfolio S V( ) !r with given proportions p. The insurance contract specifies
the reference portfolio S( )r and the random variables Di, which are contingent
on the occurrence of insured events during the period ( , ]t ti i1- , for instance,
death, disablement or accidents.

The standard actuarial technique treats such contracts by using the refer-
ence portfolio process S( )r as numeraire and then deals with the unit linked ran-
dom variables , , ,D D Dn0 1 f at interest rate zero. It is reasonable to assume
that these random variables are A -adapted and independent of the reference
portfolio process S( )r .

The standard actuarial value iW ( )r of the payment stream at time ti is deter-
mined by the accumulated payments iC ( )r and the properly defined liability or
prospective reserve ri. The standard actuarial methodology assumes that the
insurer invests all accumulated payments in the reference portfolio S( )r . Then
one obtains for iW ( )r , when expressed in units of the domestic currency, the
expression 

W C r( ) ( )
i i

p p= + i (8.2)

with accumulated payments

C S D( ) ( )
i i k

k

i

1

=
=

r r ! (8.3)

and the liability or actuarial prospective reserve

|r S E D A( )
i i k t

k i

n

1
i=

= +

r !e o (8.4)

for { , , , }i n0 1 f! . Observe the difference between iW ( )r and Qi as defined in
(7.5). Hence the standard actuarial pricing and fair pricing will, in general,
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lead to different results. As we have seen previously in (6.4) this is to be
expected when the cashflows are not independent of the GOP.

The benchmarked value i
i

iS

W
W ( )

( )

( )

=r
r

r

at time ti for the cashflows of this unit 

linked insurance contract is then by (8.2) of the form 

i
i

iS

C r
W ( )

( )

( )
i

=
+r
r

r

(8.5)

for { , , , }i n0 1 f! . On the other hand, the benchmarked fair value Q( )r
i at time 

ti of the cashflows of this contract is according to (7.1) - (7.5) given by the expres-
sion 

i
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Q( )
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i
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(8.6)

with fair prospective reserve
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(8.7)

for { , , , }i n0 1 f! . Under the natural condition of nonnegative fair prospective
reserves one can prove that the benchmarked fair prospective reserve is less or
equal the actuarial prospective reserve. The proof of the following inequality

relies on the supermartingale property of
S

S
( )

( )

k

k
r

r

, { , , , }k n0 1 f! and is shown in 
Appendix B.

Lemma 8.1 If

E D A 0k t
k m

n

1
m $

= +

!e o (8.8)

for all { , , , }m n0 1 1f! - , then 

R ri # i (8.9)

for all { , , , }i m0 1 1f! - .

As by (8.4) we have

,r S E D A( )
m m k t

k m

n

1
m=

= +

r !e o

168 HANS BÜHLMANN AND ECKHARD PLATEN



the condition (8.8) of the lemma means that the insurance contract defines a
cashflow whose actuarial prospective reserve never becomes negative. This is
usually observed as a practical constraint, since insurance products that allow
for negative reserves have many defects. From (8.5) and (8.6) we immediately
have under condition (8.8) the inequality 

WQ( ) ( )
i i#r r

for { , , , }i n0 1 f! . Reverting to property (8.9) we observe that there is, in gen-
eral, a nonnegative difference 

r R 0i i $- (8.10)

between the actuarial and the fair prospective reserve. This difference is a
consequence of the classical actuarial price calculation leading to the prospec-
tive reserve ri in (8.4). Of course, the actuarial and the fair prospective reserve
coincide if one uses the GOP as reference portfolio.

CONCLUSION

We have shown that the growth optimal portfolio plays a central role for pric-
ing in finance and insurance markets. The concept of fair contingent claim
pricing has been introduced. Fair price processes, when measured in units of
the growth optimal portfolio, form martingales. For contingent claims that are
independent of the growth optimal portfolio fair prices also coincide with the
classical actuarial prices, however, in general, this is not the case.
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A. APPENDIX

Proof of Theorem 3.3

For ,0
2
1!i b l and S V( ) !r we consider the interpolated portfolio V V, , !i r r ,

that is with growth ratio 

>h 0, ,
i 1+
i r r (A.1)

given in (3.7) for { , , , }i n0 1 1f! - . One can then show, using ( )log x x 1# -
and (3.7), that 
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We obtain in (A.3) for h h 0( ) ( )
i i1 1
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i r r the inequality 
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Summarizing (A.2)-(A.5) we have for { , , , }i n0 1 1f! - and S V( ) !r the upper
and lower bounds 
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where by (3.6) 
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170 HANS BÜHLMANN AND ECKHARD PLATEN



Then by using (A.6) and (A.7) it follows by the Dominated Convergence Theo-
rem that
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for { , , , }i n0 1 1f! - and S V( ) !r . This proves equation (3.10). ¡

B. APPENDIX

Proof of Lemma 8.1

We have 
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if E(Dn + Dn –1 +…+ Di +1 | Ati
) ≥ 0, for i ∈ {0,1,…,n – 1}. Taking conditional

expectation with respect to Ati
, the inequalities above become a chain, whose 

first member equals 
iS
R

( )r
i , and the last member becomes 

iS
r
( )r
i .

This proves (8.9). ¡
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