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ABSTRACT

We consider a risk process modelled as a compound Poisson process. We find
the optimal dynamic unlimited excess of loss reinsurance strategy to minimize
infinite time ruin probability, and prove the existence of a smooth solution of
the corresponding Hamilton-Jacobi-Bellman equation as well as a verification
theorem. Numerical examples with exponential, shifted exponential, and Pareto
claims are given.
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1. INTRODUCTION

Assume an insurance company has the possibility to choose and buy dynam-
ically an unlimited excess of loss reinsurance. For this situation, stochastic
control theory is used to derive the optimal reinsurance strategy which mini-
mizes ruin probability when the reinsurer computes his premium according to
the expected value principle. The corresponding problem has been solved by
Schmidli (2000) for the case of dynamic proportional reinsurance.

We model the risk process Rt of an insurance company by a Lundberg
process with claim arrival intensity l and absolutely continuous claim size
distribution Q. The number of claims At in a time interval (0,t] is a Poisson
process with intensity l, and the claim sizes i , , ,U i 1 2 f= are positive iid vari-
ables independent of At. Let Ti be the occurrence time of the i-th claim,

, , ,i c1 2 f= the premium intensity of the insurer which contains a positive
safety loading

> ,c E Uim 7 A

and s R0= the initial reserve. Then – without reinsurance – the surplus of the
insurance company at time t is
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The reinsurer uses the expected value principle with safety loading > 0i for pre-
mium calculation. We assume ( ) > ,E U c1 i+ i m 6 @ because otherwise the insurer
could get rid of all his risk by reinsuring his total portfolio.

Excess of loss reinsurance is a non proportional risk sharing contract
in which, for a given retention level b 0$ a claim of size U is divided into
the cedent’s payment { , }U bmin and the reinsurer’s payment ( )U b- =+

{ , }U U bmin- . In this paper the retention level is assumed to be chosen dynam-
ically, i.e. the insurer adjusts the retention level bt at every time t 0$ , based on
the information available just before time t:t If F is the sigma-field generated
by , ,R u tu # then bt is assumed to be predictable (a pointwise limit of left con-
tinuous tF adapted processes), i.e. it is a measurable function of s and the
times and sizes of claims occurring before t. It can be represented by a sequence
of functions , , , ,n 0 1 2n f=r with : R Rn

n2 1"r + measurable and

( , , , , , , ) < .b T T U U t T T t Tfort n n n n n n1 1 1f f #= -r +

We will show that the optimal reinsurance strategy exists and is given via a feed-
back equation of the following form:

( )b b Rt t
b= - ,

where Rt
b is the surplus process with strategy bt, and b(s) is a measurable func-

tion. In particular, the optimal strategy is Markovian, i.e. it depends on the
actual surplus only and not on the history of the process. Let bt be an arbi-
trary dynamic reinsurance strategy. Then with ( ) ,1= +t i m

,minR s ct E U b dx U bt
b

x i T
i

At

10 i

t

= + - - -t +

=

# !^ h9 C $ . (1)

is the surplus process under the strategy bt.
Our aim is to minimize ruin probability which is the same as maximizing

survival probability. The ruin time tb is the first time the surplus of the insur-
ance company ever becomes negative using reinsurance strategy bt. It is given by

: < .inf t R0 0b t
b$=x $ .

Then we can write the ruin probability as

( ) ( < ).s Pb b 3=} x

With

b( ) | ( )s P R s s1b b 03= = = = -d x }^ h

194 CHRISTIAN HIPP AND MICHAEL VOGT



we will compute the function

( ) ( ) ,sups s
b

b=d d" ,

and find an optimal strategy t ,b) such that ( ) ( ).s sb=d d )

A more realistic problem would have a loading of the reinsurer which varies
with the retention level (e.g. if instead of the expected value principle one
would use the variance principle). Furthermore, one should also consider lim-
ited XL-covers, and then both, the retention and the limit, will be considered
as control variables, see [7].

2. HAMILTON-JACOBI-BELLMAN EQUATION

The computation of the optimal reinsurance strategy is based on the classical
Hamilton-Jacobi-Bellman equation which can be derived heuristically consid-
ering (1) on a short time interval [ , ]D0 in which a constant strategy b is used.
One of the following two cases can occur:

1. There is no claim in [ , ],D0 which happens with probability ( ).oD D1 - +m
Then the reserve of the company at time D is given by

( [( ) ]) .R s c E U b DD= + - -t +

2. There is exactly one claim with claim size U Q+ in ( , ]D0 and this happens
with probability ( )oD D+m . Then the reserve can be written as

( [( ) ]) { , }.minR s c E U b U bDD= + - - -t +

Taking expectations and averaging over all possible claim sizes, we arrive at the
equation

( ) ( ) ( ) { , }

( ) ( ) ( ).

mins o E s c E U b U b

o s c E U b o

D D

D D D D1

b = + + - - -

+ - + + - - +

d m d t

m d t

+

+

^ ``

^ ``

h j j

h j j

89

8

B C

B

For D 0" we obtain for a smooth function ( )sd

{ , } ( ) [( ) ] ( )minE s U b s c E U b s0 l= - - + - -m d md t d+
^ _h i6 @

and finally by maximizing over all possible values for b the Hamilton-Jacobi-
Bellman equation for our optimization problem:

{ , } ( ) ( [( ) ]) ( )sup minE s U b s c E U b s0
>b 0

l= - - + - -m d d t d+
^ h6 @# - (2)

An optimal strategy is derived from a solution (d(s), b*(s)) of the equation (2),
where b*(s) is the point at which the supremum in (2) is attained.
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The insurance company has a non negative net premium income if

[( ) ].c E U b$ -t +

Let b be the value where equality holds:

[( ) ].c E U b= -t +

Since we are looking for a nondecreasing solution of equation (2) we can
rewrite it as

( )
( )

( ) { , }
.inf

min
s

c E U b
s E s U b

>b b
l =

- -

- -
d m

t

d d
+

^ h

8

6

B

@
* 4 (3)

3. EXISTENCE OF A SOLUTION

In this section we shall prove the existence of a solution of equation (2). This
will be done through a monotonicity argument, similar to the approach in [2].

Theorem 1 Assume the claim size distribution Q is absolutely continuous. There
exists a nondecreasing solution V(s) of the Hamilton-Jacobi-Bellman equation (2)
which is continuous on [ , ),0 3 continuously differentiable on ( , ),0 3 with V(s) = 0
for s < 0, and V(s) → 1 for .s " 3

Proof. Define a sequence Vn(s) via ( ) ( ),V s s0 0= d the ruin probability without
reinsurance (which means b 3= or b = M if ( )P U M 0$ = ) for n = 0, and
through the recursion

( )
[( ) ]

( ) ( { , })
, , , .inf

min
V s

c E U b
V s E V s U b

n 0 1
>n b

n n
1

0
l f=

- -

- -
=m

t+ +

7 A
) 3 (4)

We show by induction that V�n (s), n = 0,1,2,… is a decreasing sequence. For
n = 0 we have

0
0 0( )

( ) [ ( )]
V s c

V s E V s U
=

- -
ml

(see [1]. p. 4) and from (4) we get for n = 0:

1 ( )
[( ) ]

( ) [ { , } ]
.inf

min
V s

c E U b
V s E V s U b

>b 0

0 0=
- -

- -
m

t +l
^ h

( 2

Thus we have 01 ( ) ( )V s V s#l l for all s ≥ 0. Now let n ≥ 1 and s be fixed. For all b
we have
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( )( [( ) ]) ( ) [ ( { , })]

( )

( )

( ) { , } .

min

min

V s c E U b V s E Vn s U b

E V u du

E V u du

V s E V s U b

{ , }

{ , }

min

min

n n

ns U b

s

ns U b

s

n n

1

1

1 1

#

#

- - - -

=

= - -

t m m

m

m

m m

+
+

-

-
-

- -

#

#

l

l

l

^ h

;

;

7

E

E

A

Here we used the induction hypothesis n ( ) ( )V s V sn 1# -
l l for all s ≥ 0. Since b

was arbitrary, we can switch to the infimum which gives us the required result

n n1+ ( ) ( ).V s V s#l l

So V�n (s) is a decreasing sequence of continuous functions, and since V�n (s) > 0
the sequence V�n (s) converges to a function g(s), and with

( ) ( )V s g u du1
s

= -
3

#

we have a nondecreasing continuous function V(s) satisfying

( )
( )

( ) { , }
.inf

min
g s

c E U b
V s E V s U b

b b
=

- -

- -
m

t$ +

^ h

8

6

B

@
* 4

What is left is a proof for continuity of g(s): then

( ) ( )V s g s=l

is continuous, and V(s) satisfies equation (2). We first show that g(s) > 0 for
all s ≥ 0. The function g(s) is the limit of the functions V�n (s). If the infimum
in (4) is not attained in ,b s6 @ then it is attained at ,b 3= and hence V�n (s) and
V�0 (s) are proportional for small s, i.e.

( ) ( ), < .V s V s s b0n 0? #l l

Furthermore,

( )
( )

> ,g c
V

0
0

0=
m

which implies g(s) > 0 for < .s b0 # Assume that

{ : ( ) }< .infs s g s 00 3= =

Then ,s b0 $ and there exists <s s s b0 0# + for which g(s) = 0 or
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( ) ( { , }

( ) [ ( { , })] ,

inf min

min

V s E V s U b

V s E V s U b 0

b b
- - =

- - =

$
6 @" ,

i.e. ( ) ( )V s V s b= - (notice that ( > ) >P U b 0). Then

( ) ( )g u du g u du0
s b

s

s b

s 0
$=

--
##

which contradicts the choice of s0.
We next show that in the definition of the functions ( ), ,V s s Kn # the infi-

mum can be restricted to the region [ , ],b1 3 where > .b b1 Assume the contrary,
i.e. there exists a sequence s K0 n# # and b bn" such that

n 1+
n( )

[( ) ]
( ) [ ( { , })]

( ) .
min

V s
c E U b

V s E V s U b
n V s n
1 1

n
n

n n n n
n n1$ $

- -

- -
- -m

t + +
l l

Since n 0( ) ( )V s V s0 # #l l and [( ) ] ,c E U b 0n "- -t + we obtain

n n( ) [ ( { , })] ,minV s E V s U b 0n n n "- -

and therefore for each accumulation point s0 of the sequence sn

( ) , ( ),minV s E V s U b g s00 0 0- - = =^ h7 A! +

a contradiction.
Finally, the relation

| ( ) ( )|

[( ) ]
( ) { , }

[( ) ]
( ) { , }

sup
min min

g x g y

c E U b
V x E V x U b

c E U b
V y E V y U b

b b1

#

-

- -

- -
-

- -

- -
m

t
m

t$
+ +

^ ^h h6 6@ @

for ,x y 0$ implies continuity of g(s). ¬

Remark 1 Let 

( , )
[( ) ]

( ) [ ( { , })]min
V s b

c E U b
V s E V s U b

=
- -

- -
m

t +

where V(s) is a smooth solution of the Bellman equation (3) with the properties
of Theorem 1. Then the infimum over b b$ is either

( ( ) [ ( )])c V s E V s U- -
m

(no reinsurance or b 3= ) or
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[( ) ]
( ) [ ( )] ( ) { }

c E U s
V s E V s U V P U s0 $

- -

- - -
m

t +

( )b s= or

[( ) ]
( ) [ ( { , })]

.inf
min

c E U b
V s E V s U b

< <b b s - -

- -
m

t +( 2

Since V(s,b) has a continuous derivative w.r.t. b in ( , )b s this last infimum – if
attained in this interval – is attained at the point b for which this derivative is
zero or

( ) ( ).V s b V s- =m tl l

So in each case there is (possibly more than) one point ( , ]b b 3! at which the infi-
mum is attained, and a measurable selection of these points yields a measurable
function b(s). The corresponding strategy b)t is admissible, it can be represented by

( , , , , , , ) ( ( ) ( )),T T U U t b R T B tn n n n1 1f f = +r

where R(Tn) is a measurable function of , , , , ,T T U Un n1 1f f and

( ) [( ) ] .B t ct E U b dxx
t

0
= - -t +#

The retention b 3= (no reinsurance) will be optimal for small values of :s For
<s b b# we have

( , )
[( ) ]

( ) [ ( )]
V s b

c E U b
V s E V s U

=
- -

- -
m

t +

which is maximal for .b 3=

Remark 2. The function V(s) will not be concave in general: notice that the
survival probability ( )s0d will not be concave in general, and ( )V sl will be pro-
portional to 0( )sdl for .s b0 # # However, if ( )s0d is concave, the function V(s)
constructed above will be concave, too. To see this we have to show that all
the above functions Vn(s) are concave which is done by induction. If Vn(s) is
concave, then for s ≥ 0 and h > 0 we have for arbitrary b

( ) [ ( { , })]

( )

( )

( ) ,

min

min

V s h E V s h U b

E V u du

E V u du

V s E V s U b

{ , }

{ , }

min

min

n n

ns h U b

s h

ns U b

s

n n

#

+ - + -

=

= - -

+ -

+

-

#

#

l

l

^ h7 A! +
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and hence

n 1+n 1+ ( ) ( ).V s h V s#+l l

4. VERIFICATION THEOREM

In this section we will show that the strategy b)t derived from the maximizer ( )b s)

in (2) maximizes the survival probability. This is done through the following
verification theorem. Notice that this theorem also implies uniqueness of the
solution.

Theorem 2 The strategy b
t
) maximizes survival probability: For any s > 0 and

arbitrary predictable strategy bt with survival probability d(s) we have

( ) ( ),V s s$ d

with equality for .b bt t= )

Proof. Let V(s) be the smooth solution of (3) constructed in chapter 3, for which

( )V s0 1# #

and

( ) .limV s 1
s

=
" 3

We write R(t) and R*(t) for the risk process of the insurance company with
reinsurance strategy bt and b*

t , respectively, and initial capital s. Let t and t*

be the corresponding ruin times, X*
t , Xt the stopped processes and W *

t , Wt the
stopped processes, transformed by V(s), i.e.

( ) { , } ,

( ) { , } .

min

min

W V X V R t

W V X V R t

t t

t t

= =

= =

x

x

) ) ) *_`

^^

ij

hh

Then, as in [5], p. 80, (2.16), we obtain

[ ] ( ) ( ) [( ) ]

[ ( { , }) ( )] ,min

E W V s E V X c E U b ds

E V X U b V X ds

t s s
t

s s s
t

0

0

= + - -

+ - -

t

m

+#

#

l _ i;

E

and a corresponding formula for W *
t . From the Hamilton-Jacobi-Bellman equa-

tion (2) we see that for all t > 0
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t[ ] ( ) [ ].E W V s E Wt$=) (5)

Assume first that the predictable strategy bt satisfies

> ,for allb B t0 0t $ $ (6)

where B satisfies { > }> .P U B 0 We show that in this case the process R(t) is
unbounded on { }3=x . For this we prove

{ ( )P R t M# for all t 0$ and } 03= =x (7)

for all M > 0. With > ( ) /n M c B+ the probability of more than n claims of size
larger than B in an interval of length 1 is positive. Since the claims process has
stationary and independent increments, with probability 1 there are more than
n such claims in an interval [ , ].t t 1+ For ( )R t M# we have

( ) < ,R t M c nB1 0#+ + -

i.e. < .3x This proves (7).
For arbitrary e we now construct a strategy b

t
+ with risk process ( )R t+ and

ruin time x+ such that {P 3=x and < }< e3x+ and ( )R t " 3+ on { 3=x
and }3=x+ . Let M > s be sufficiently large such that ( ) <M e1 0- d let T =

{ : ( ) }inf t R t M= which is finite almost everywhere on { },3=x and define

> .

if

if
b

b t T

t Tt
t

3

#
=+
*

The strategy bt
+ is predictable, and

{ , < } ( ) < .P M e1 03 3 #= -x x d+

Furthermore, <T 3 implies ( ) .R t " 3+

Now repeat the above reasoning leading to (5) for ( )R t+ instead of ( ).R t We
obtain

{ , } ( ) { , } ,min minE V R t V s E V R t$=x x) ) + +
_` _`ij ij8 8B B

and with t" 3 we arrive with ( ( ))V R 0=x) ) and ( ( ))V R 0=x+ + at

{ } ( ) { }
{ } .

P V s P
P e

and3 3 3

3

$ $

$

= = =

= -

x x x

x

) +

Since e was arbitrary, this is our assertion for the special case of a strategy bt
with property (6). In particular, since any solution V(s) of (3) in the sense of
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Theorem 1 will produce a strategy satisfying (6), we have uniqueness of the 
solution and ( ) { }.V s P 3= =x)

Next we show that for premium intensities ,c c with >c c we have

( ) ( ) ,W s W s sfor all 0l l$ $

where ( )W s and ( )W s are solutions to (3) with c and ,c respectively and 
( ) ( ) .W W0 0= = a Notice, that ( )W s and ( )W s do not solve (3) in the sense of

Theorem 1, the conditions ( )W s 1" for s " 3 and ( )W s 1" for s " 3 will not
hold. Let n( ), ( )W s W sn be the sequences constructed in the proof of Theorem 1
converging to ( )W s and ( )W s with ( ),W s respectively ( )W s defined by 

( ) ( ) ( ) ( ) ,W s g u du W s g u duand
ss

00
= + = +a a ##

where ( ), ( )g s g s are the limits of the sequences W �n (s), W �n (s). We prove by
induction that

l l( ) ( ), , , , .W s W s n 0 1 2n n f$ = (8)

For n = 0 we have

( ) ( ( ) [ ( )]),

( ) ( ( ) [ ( )]).

W s c W s E W s U

W s c W s E W s U

0 0 0

0 0 0

l

l

= - -

= - -

m

m

At s = 0 we have W �0 (s) > W�0 (s). Assume now that

{ : ( ) ( )}< .infs s W s W s0 0 0
l l 3#=

By continuity, > .s 00 Then

( ) ( ) ( ) < ( ),W s c E W u du c E W u du W s
s U

s

s U

s
0 0 0 0 0 0

0

0

0

0
l l l l#=

m m
- -

# #< <F F

a contradiction. Assume now that (8) holds for n. Then for all b > 0

( ) [ ( { , })] ( )

( ) ( ) ( { , })

min

min

W s E W s U b E W u du

E W u du W s E W s U b

{ , }

{ , }

min

min

n n ns U b

s

ns U b

s

n n

l

l

$- - =

= - -

-

-

#

#

;

; 8

E

E B

which implies n n1 1+ +
( ) ( )W s W s$� � and finally the desired result ( ) ( )W s W s$ for

all s.
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Now let cn converge monotonically to c from above, and ( )W sn the corre-
sponding solutions of (3) with cn instead of .c Then the sequence of functions

( )W snl is monotone and bounded by ( ),W s0l the function corresponding to c.
Let ( )g s and ( )W s be the limits of ( )W snl and ( ),W sn respectively. As in the
proof of Theorem 1 we obtain continuity of ( ),g s and so ( ) ( )W s g sl = and

( )W s is a solution of (3) with c. Uniqueness of the solution for every a implies
( ) ( ).W s W s0=

To obtain a solution V(s) of (3) satisfying ( )V s 1" for s " 3 let ( )V sn be a
sequence of functions with

( )
( )

( ),V s
V

W s
0

n
n

n= a

then for n " 3 we have

( ) ( )

( ) ( ).

V s W s

V s V s

orn

n

0"

"

a
c

cl

For s " 3 we have

( ) ( )W s V s1 0= =a
c

cl

and therewith .1=cl The same argumentation with n ( )V s instead of ( )V sn leads
us to ( )V s with ( ) ( )V s V s$ for > .c c For fixed s and arbitrary small > 0f we
can find >c c for which

( ) < ( ) .V s V s + f

Let ( )R t be the risk process with strategy ,bt premium intensity c and x its
ruin time. Then on { }3=x we have ( )R t " 3 and hence, with $x x

{ } ( ( { , }))

( ( { , })) ( )< ( ) .

lim min

lim min

P E V R t

E V R t V s V s

1{ }t

t

3

# #

= =

+

x x

x f

"

"

3
3

3

=x8

6

B

@

So with 0"f

{ } ( ) { }P V s P3 3$ $= =x x)

which proves the verification theorem. ¬

5. NUMERICAL EXAMPLES

Here we present numerical computations for three different claim size distrib-
utions. Our first example has exponential claim sizes with mean 1/m. Even in
this simple case it seems to be impossible to find an analytical solution of (2).
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Figure 1: Survival probabilities

The survival probability of an insurance company using no reinsurance, i.e.
bt = ∞ for all t, can be expressed explicitly by

( ) exps mc m c s1= - - -d m m
cc m m (9)

(see [4]. p. 164). We will use the same parameters as in [6], i.e. ,m 1= (which
implies 1=n ), ,1=m premium rate .c 1 5= and . .1 7=t Since ( )V 0 is unknown
we start with ( ) ( )V 0 0= d from (9) and norm the function ( )V s replacing ( )V s
by ( )V s V s1^ h where s1 is sufficiently large. Figure 1 gives the survival proba-
bilities for no reinsurance (lower graph) and for optimal excess of loss rein-
surance (upper graph) for reserves [ , ].s 0 15! We see that optimal excess of loss
reinsurance gives a considerably higher survival probability. Figure 2 gives the
optimal strategy ( )b s) for values [ , ];s 0 5! for s 5$ the optimal strategy is
nearly constant. For small s the optimal strategy is, as expected, to keep the
whole risk. At the point .s 0 376. the optimal strategy is ( ) ,b s s= which means
that independent of the following claim size the reserve remains nonnegative
immediately after the claim. For .s 0 797L we have to choose strategies ( )<b s s
and the optimal strategy tends to be constant. Figure 3 is used to explain the
optimal strategy presented in Figure 2. For each curve we fixed s ( .s 0 4= at
upper graph, then . , . , . , .s s s s0 59 0 6 0 61 0 8= = = = and finally .s 0 9= at lowest
graph) and calculated ( , )V s b (defined in Remark 1) for varying [ . , ]b 0 15 1! .
For s small ( , )V s b is minimized for .b 3= For [ . , . ]s 0 376 0 797! the minimum
is achieved at the jump, which means .b s= For larger values of ,s here for
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example .s 0 9= the minimal ( , )V s b is achieved at a point before the jump.
Looking at

{ , } ( ) ( ) ( )( ( ))minE s U b s x f x dx s b F b1
b

0
- = - + - -d d d#^ h6 @

we can see why the jumps occur, if b > s the term ( )( ( ))s b F b1- -d equals
zero. Figure 4 gives the optimal strategy ( ), [ , ]b s s 0 15!) in the case of a
non concave solution V(s). To achieve such a V(s) we use a distribution with
density

( ) , >expp x m m x x1 1= - -]^^ ghh

which is an exponential distribution shifted by 1, and solve the corresponding
Hamilton-Jacobi-Bellman equation for parameters m = 1, l = 1 and premium
rates c = 3 and r = 3.5. Notice that in this case we have to choose c > 2 to keep
the condition > [ ].c E Uim In the last example we consider Pareto distributed
claim sizes with parameter ,a 2= i.e. claims with density

( ) ( ) , > .p x x x2 1 03= + -

Like in the first example we choose l = 1 and the premium rates c = 1.5 and
r = 1.7. Without reinsurance the survival probability at s = 0 is

OPTIMAL DYNAMIC XL REINCURANCE 205

Figure 2: Optimal strategy for exponential distribution



Figure 4: Optimal strategy for shifted exponential distribution
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Figure 3: V (s,b) for different values of s and varying b



( ) ( ) .c a0 1
1

= -
-

d m

In Figure 5 we show the optimal reinsurance strategy for s ∈ [0, 5] Contrary
to the case of exponential distributed claim sizes there exists no interval in
which we can choose ( ) .b s s=) The optimal strategy for large values of s is con-
stant, ( ) .b s 0 8077.) for s = 5.
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Figure 5: Optimal strategy for Pareto distribution




