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ABSTRACT

We consider a financial market driven by a continuous time homogeneous
Markov chain. Conditions for absence of arbitrage and for completeness are
spelled out, non-arbitrage pricing of derivatives is discussed, and details are
worked out for some cases. Closed form expressions are obtained for interest
rate derivatives. Computations typically amount to solving a set of first order
partial differential equations. An excursion into risk minimization in the incom-
plete case illustrates the matrix techniques that are instrumental in the model.
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INTRODUCTION

A. Prospectus

The theory of diffusion processes, with its wealth of powerful theorems and
model variations, is an indispensable toolbox in modern financial mathematics.
The seminal papers of Black and Scholes and Merton were crafted with Brownian
motion, and so was the major part of the plethora of papers on arbitrage pric-
ing theory and its ramifications that followed over the past good quarter of a
century.

A main course of current research, initiated by the martingale approach to
arbitrage pricing Harrison and Kreps (1979) and Harrison and Pliska (1981),
aims at generalization and unification. Today the core of the matter is well
understood in a general semimartingale setting, see e.g. Delbaen and Schacher-
mayer (1994). Another course of research investigates special models, in partic-
ular Levy motion alternatives to the Brownian driving process, see e.g. Eberlein
and Raible (1999). Pure jump processes have found their way into finance,
ranging from plain Poisson processes introduced in Merton (1976) to fairly general
marked point processes, see e.g. Björk et al. (1997). As a pedagogical exercise,
the market driven by a binomial process has been intensively studied since it was
proposed in Cox et al. (1979).
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The present paper undertakes to study a financial market driven by a con-
tinuous time homogeneous Markov chain. The idea was launched in Norberg
(1995) and reappeared in Elliott and Kopp (1998), the context being modeling
of the spot rate of interest. These rudiments will here be developed into a model
that delineates a financial market with a locally risk-free money account, risky
assets, and all conceivable derivatives. The purpose of this exercise is two-fold:
In the first place, there is an educative point in seeing how well established theory
turns out in the framework of a general Markov chain market and, in particu-
lar, how and why it differs from the familiar Brownian motion driven market.
In the second place, it is worthwhile investigating the potential of the model from
a theoretical as well as from a practical point of view. Further motivation and
discussion of the model is given in Section 5.

B. Contents of the paper

We hit the road in Section 2 by recapitulating basic definitions and results for
the continuous time Markov chain. We proceed by presenting a market fea-
turing this process as the driving mechanism and by spelling out conditions for
absence of arbitrage and for completeness. In Section 3 we carry through the
program for arbitrage pricing of derivatives in the Markov chain market and
work out the details for some special cases. Special attention is paid to interest
rate derivatives, for which closed form expressions are obtained. Section 4
addresses the Föllmer-Sondermann-Schweizer theory of risk minimization in
the incomplete case. Its particulars for the Markov chain market are worked
out in two examples, first for a unit linked life endowment, and second for
hedging strategies involving a finite number of zero coupon bonds. The final
Section 5 discusses the versatility and potential uses of the model. It also raises
the somewhat intricate issue of existence and continuity of the derivatives involved
in the differential equations for state prices, which finds its resolution in a forth-
coming paper. Some useful pieces of matrix calculus are placed in the Appendix.

C. Notation

Vectors and matrices are denoted by boldface letters, lower and upper case,
respectively. They may be equipped with top-scripts indicating dimensions, e.g.
An×m has n rows and m columns. We may write A = e ! f( )aef f F! to emphasize the
ranges of the row index e and the column index f. The transpose of A is denoted
by A�. Vectors are taken to be of column type, hence row vectors appear as
transposed (column) vectors. The identity matrix is denoted by I, the vector
with all entries equal to 1 is denoted by 1, and the vector with all entries equal
to 0 is denoted by 0. By De=1,…,n (ae), or just D(a), is meant the diagonal matrix
with the entries of a = (a1,…,an)� down the principal diagonal. The n-dimen-
sional Euclidean space is denoted by �n, and the linear subspace spanned by
the columns of An×m is denoted by �(A).

The cardinality of a set y is denoted by |y |. For a finite set it is just its num-
ber of elements.
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2. THE MARKOV CHAIN MARKET

A. The continuous time Markov chain

At the base of everything is some probability space (W, F, �). Let {Yt}t ≥ 0 be a
continuous time Markov chain with finite state space y = {1,…,n}. We take
the paths of Y to be right-continuous and Y0 deterministic. Assume that Y is
time homogeneous so that the transition probabilities

�p Y f Y et
e

tt t= = =+
f

7 A

depend only on the length of the time period. This implies that the transition
intensities

t ,lim t
p

l
t 4 0

=ef
ef

(2.1)

e ≠ f, exist and are constant. To avoid repetitious reminders of the type “e, f ∈ y”,
we reserve the indices e and f for states in y throughout. We will frequently refer
to

e ; > ,fy l 0
ef

= $ .

the set of states that are directly accessible from state e, and denote the num-
ber of such states by

en ye = .

Put

e
l l l

;

ee e ef

f f y
= - = -$

!

!

(minus the total intensity of transition out of state e). We assume that all states
intercommunicate so that pef

t > 0 for all e, f (and t > 0). This implies that ne > 0
for all e (no absorbing states). The matrix of transition probabilities,

,pPt t= ef` j

and the infinitesimal matrix,

,lL ef= _ i

are related by (2.1), which in matrix form reads L = limt40 t
1 (Pt – I), and by the

forward and backward Kolmogorov differential equations,

t t t .dt
d P P PL L= = (2.2)
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Under the side condition P0 = I, (2.2) integrates to

.exp tP Lt = ] g (2.3)

The matrix exponential is defined in the Appendix, from where we also fetch
the representation (A.3):

.e eP DF F f c,...,t e n
t t e e

e

n
r r

1
1

1

�e
= ==

-

=

e!` j (2.4)

Here the first eigenvalue is r1 = 0, and the corresponding eigenvectors are
f1= 1 and c1� = (p1,…, pn) = limt3∞ (pe1

t ,…,pen
t ), the stationary distribution of Y.

The remaining eigenvalues, r2,…,rn, have strictly negative real parts so that,
by (2.4), the transition probabilities converge exponentially to the stationary
distribution as t increases.

Introduce

tt ,I Y e1e = =7 A (2.5)

the indicator of the event that Y is in state at time t, and

t t t-; < , , ,N t Y e Y ft t0ef #= = =" , (2.6)

the number of direct transitions of Y from state e to state f ∈ ye in the time
interval (0, t]. For f ∉ ye we define Nef

t / 0. The assumed right-continuity of Y
is inherited by the indicator processes I e and the counting processes Nef. As is
seen from (2.5), (2.6), and the obvious relationships

t t t t, ,Y eI I I N N
!;

t
e e

e

e fe ef

f f e
0= = + -! ! ` j

the state process, the indicator processes, and the counting processes carry
the same information, which at any time t is represented by the sigma-algebra
FY

t = s{Yt ; 0 ≤ t ≤ t}. The corresponding filtration, denoted by FY = {FY
t }t≥0, is

taken to satisfy the usual conditions of right-continuity and completeness, and
F0 is assumed to be trivial.

The compensated counting processes Mef, e ≠ f, defined by

t t tdM dN I dtlef ef e ef= - (2.7)

and M ef
0 = 0, are zero mean, square integrable, mutually orthogonal martin-

gales with respect to (FY, �). We feel free to use standard definitions and results
from counting process theory and refer to Andersen et al. (1993) for a background.

We now turn to the subject matter of our study and, referring to introduc-
tory texts like Björk (1998) and Pliska (1997), take basic concepts and results
from arbitrage pricing theory as prerequisites.
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B. The continuous time Markov chain market

We consider a financial market driven by the Markov chain described above.
Thus, Yt represents the state of the economy at time t, FY

t represents the infor-
mation available about the economic history by time t, and FY represents the
flow of such information over time.

In the market there are m + 1 basic assets, which can be traded freely and
frictionlessly (short sales are allowed, and there are no transaction costs).
A special role is played by asset No. 0, which is a “locally risk-free” bank account
with state-dependent interest rate

t
t ,r r I rt

Y e

e

e= = !

where the state-wise interest rates re, e =1,…,n, are constants. Thus, its price
process is

,exp expS r du r I dut u
t e

u
et

e

0

0 0
= =# #!c em o

where ∫ t
0 Ie

u du is the total time spent in economy state e during the period [0,t].
The dynamics of this price process is

t t t t .dS S r dt S r I dtt
e e

e

0 0 0= = !

The remaining m assets, henceforth referred to as stocks, are risky, with price
processes of the form

u t ,exp �S I du Nbt
i ie e ief ef

fe

t

e y0
= +

! e
# !!!

J

L

K
K

N

P

O
O (2.8)

i = 1,…,m, where the � ie and b ief are constants and, for each i, at least one of the
b ief is non-null. Thus, in addition to yielding state-dependent returns of the
same form as the bank account, stock No. i makes a price jump of relative size

expg b 1ief ief= -_ i

upon any transition of the economy from state e to state f. By the general Itô’s
formula, its dynamics is given by

ttt .�dS S I dt dNgi
t
i ie e ief ef

fee y
= +

!
-

e
!!!

J

L

K
K

N

P

O
O (2.9)

(Setting Si
0 = 1 for all i is just a matter of convention; it is the relative price

changes that matter.)
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Taking the bank account as numeraire, we introduce the discounted asset
prices S i

t = Si
t /S 0

t , i = 0,…,m. The discounted price of the bank account is
S 0

t / 1, which is certainly a martingale under any measure. The discounted
stock prices are

u t ,exp � r I du NbSt
i ie e e ief ef

fe

t

e y0
= - +

! e
# !!!

J

L

K
K _

N

P

O
Oi (2.10)

with dynamics

ttt ,�d r I dt dNgS Si
t
i ie e e ief ef

fee y
= - +

!
-

e
!!!

J

L

K
K _

N

P

O
Oi (2.11)

i = 1,…,m.

C. Portfolios

A dynamic portfolio or investment strategy is an m + 1-dimensional stochastic
process

, ..., ,q qqt t t
m0= ` j

where q i
t represents the number of units of asset No i held at time t. The port-

folio q must adapted to FY and the shares of stocks, (q 1
t ,…,qm

t ), must also be
FY-predictable. For a sufficiently rigorous treatment of the concept of pre-
dictability, see Andersen et al. (1993). For our purposes it suffices to know
that any left-continuous or deterministic process is predictable, the intuition
being that the value of a predictable process at any time is determined by the
strictly past history of the driving process Y. We will comment on these assump-
tions at a later point when the prerequisites are in place.

The value of the portfolio q at time t is

t t t .V SS qq �t t
i i

i

m
q

0

= =
=

!

Henceforth we will mainly work with discounted prices and values and, in
accordance with (2.10), equip their symbols with a tilde. The discounted value
of the portfolio at time t is

t .qV S�t t
q = (2.12)

The strategy q is self-financing (SF) if dV q
t  = q�t dSt or (recall dS0

t = 0)

t t t .d d dqqV SS�t t
i i

i

m
q

1

= =
=

! (2.13)
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D. Absence of arbitrage

Let
L̂ = (l̂ef)

be an infinitesimal matrix that is equivalent to L in the sense that l̂ef = 0 if
and only if lef = 0. By Girsanov’s theorem for counting processes (see e.g.
Andersen et al. (1993)) there exists a measure �̂, equivalent to �, under which
Y is a Markov chain with infinitesimal matrix L̂ . Consequently, the processes
Mef, e ∈ y, f ∈ ye, defined by

t t t ,d dN I dtMef ef e ef= - lu (2.14)

and Mef
0 = 0, are zero mean, mutually orthogonal martingales with respect to

(FY,�̂). Rewrite (2.11) as

ttt ,�d r I dt dg gS S Mi
t
i ie e ief ef

f

e ief ef

fee y y
= - + +

! !
- l

e e
! !!! u

J

L

K
K

N

P

O
O

R

T

S
SS

V

X

W
WW

(2.15)

i = 1,…,m. The discounted stock prices are martingales with respect to (FY,�̂)
if and only if the drift terms on the right vanish, that is,

,� r g l 0ie e ief ef

f y
- + =

! e
! u (2.16)

e = 1,…,n, i = 1,…, m. From general theory it is known that the existence of
such an equivalent martingale measure �̂ implies absence of arbitrage. The rela-
tion (2.16) can be cast in matrix form as

re1 – ae = Ge l̂e, (2.17)

e = 1,…,n, where 1 is m × 1 and

, , .� � g lG l
,...,

e ie
i m

e ief f e ef
f

y
y1 ,...,i m1

= = =
!

!= =

e

e
u u_ _ _i i i

The existence of an equivalent martingale measure is equivalent to the existence
of a solution l̂e to (2.17) with all entries strictly positive. Thus, the market is
arbitrage-free if (and we can show only if) for each e, re1 – ae is in the interior
of the convex cone of the columns of Ge.

Assume henceforth that the market is arbitrage-free so that (2.15) reduces
to

tt .d dgS S Mi
t
i ief ef

fe y
=

!
-

e
!! (2.18)
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Inserting (2.18) into (2.13), we find

tt ,d dq gV S Mt
i

t
i ief ef

i

m

fe y
q

1

=
!

-
=e
!!! (2.19)

which means that the value of an SF portfolio is a martingale with respect to
(FY,�̂) and, in particular,

Vq
t = �̂ [Vq

T | Ft ] (2.20)

for 0 ≤ t ≤ T. Here �̂ denotes expectation under �̂. (The tilde, which in the first
place was introduced to distinguish discounted values from the nominal ones,
is also attached to the equivalent martingale measure because it arises from the
discounted basic price processes.)

We remind of the standard proof of the result that the existence of an
equivalent martingale measure implies absence of arbitrage: Under (2.20) one
can not have Vq

0 = 0 and at the same time have Vq
T ≥ 0 almost surely and Vq

T > 0
with positive probability.

We can now explain the assumptions made about the components of the
portfolio qt. The adaptedness requirement is commonplace and says just that
the investment strategy must be based solely on the currently available infor-
mation. Without this assumption it is easy to construct examples of arbitrages
in the present and in any other model, and the theory would become void just
as would practical finance if investors could look into the future. The require-
ment that (q1,…,qm) be FY-predictable means that investment in stocks must
be based solely on information from the strict past. Also this assumption is
omnipresent in arbitrage pricing theory, but its motivation is less obvious.
For instance, in the Brownian world ‘predictable’ is the same as ‘adapted’ due
to the (assumed) continuity of Brownian paths. In the present model the two
concepts are perfectly distinct, and it is easy to explain why a trade in stocks
cannot be based on news reported at the very instant where the trade is made.
The intuition is that e.g. a crash in the stock market cannot be escaped by
rushing money over from stocks to bonds. Sudden jumps in stock prices, which
are allowed in the present model, must take the investor by surprise, else there
would be arbitrage. This is seen from (2.19). If the qi

t, i = 1,…,m, could be any
adapted processes, then we could choose them in such a manner that dVq

t ≥ 0
almost surely and strictly positive with positive probability. For instance, we
could take them such that

tt t tt .d DV M M M M
2
1

,

ef eft

fe

ef ef

tfey y
q

t0

2 2

0

= = +
! !!e e

#!! !!!
J

L

K
K` `

]

N

P

O
Oj j

?

Clearly, Vq
T is non-negative and attains positive values with positive probability

while Vq
0 = 0, hence q would be an arbitrage.
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E. Attainability

A T-claim is a contractual payment due at time T. More precisely, it is an FY
T -

measurable random variable H with finite expected value. The claim is attain-
able if it can be perfectly duplicated by some SF portfolio q, that is,

Vq
T = H. (2.21)

If an attainable claim should be traded in the market, then its price must at
any time be equal to the value of the duplicating portfolio in order to avoid
arbitrage. Thus, denoting the price process by pt and, recalling (2.20) and (2.21),
we have

p̂t t ,�V H Ft
q= = u 7 A (2.22)

or

r .� e Hp Ft tt

T

= - #u 9 C (2.23)

(We use the short-hand re t

T
- # for re du

t

T
- u# .)

By (2.22) and (2.19), the dynamics of the discounted price process of an
attainable claim is

dp̂t t .dq gS Mt
i

t
i ief ef

i

m

fe y 1

=
!

-
=e
!!! (2.24)

F. Completeness

Any T-claim H as defined above can be represented as

H = �̂ ,djH Mt
ef

t
ef

fe

T

y0
+

!
e

# !!7 A (2.25)

where the jef
t are FY-predictable processes (see Andersen et al. (1993)). Conversely,

any random variable of the form (2.25) is, of course, a T-claim. By virtue of (2.21)
and (2.19), attainability of H means that

t

t

0

0 .

d

dq g

H V V

V S M

T

t
i

t
i ief ef

ife

T

y

q q

q

0

0

= +

= +
!

-
e

#

# !!!
(2.26)

Comparing (2.25) and (2.26), we see that H is attainable iff there exist predic-
table processes q1

t ,…,qm
t such that
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,q g jSt
i

t
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t
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i
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1

=
-

=

!

for all e and f ∈ ye. This means that the ne-vector

jjt
e

t
ef

f y
=

!
e` j

is in �(Ge�).
The market is complete if every T-claim is attainable, that is, if every ne-vec-

tor is in �(Ge�). This is the case if and only if rank (Ge) = ne, which can be ful-
filled for each e only if m ≥ maxe ne, i.e. the number of risky assets is no less
than the number of sources of randomness.

3. ARBITRAGE-PRICING OF DERIVATIVES IN A COMPLETE MARKET

A. Differential equations for the arbitrage-free price

Assume that the market is arbitrage-free and complete so that the price of
any T-claim is uniquely given by (2.22) or (2.23).

Let us for the time being consider a T-claim that depends only on the state
of the economy and the price of a given stock at time T. To simplify notation,
we drop the top-script indicating this stock throughout and write just

u t .exp �S I du Nbt
e e ef ef

fe

t

e y0
= +

!
e

# !!!
J

L

K
K

N

P

O
O

Thus, the claim is of the form

.H h S I h SY
T T

e e

e
T

T= = !^ ^h h (3.1)

Examples are a European call option defined by H = (ST – K)+, a caplet defined
by H = (rT – g)+ = (rYT – g)+, and a zero coupon T-bond defined by H = 1.

For any claim of the form (3.1) the relevant state variables involved in the
conditional expectation (2.23) are (St, t, Yt). This is due to the form of the stock
price, by which

u t
ee

,exp �S S I du N NbT t
e e ef

T
ef ef

ft

T

y
= + -

!
e

# !!!
J

L

K
K `

N

P

O
Oj (3.2)

and the Markov property, by which the past and the future are conditionally
independent, given the present state Yt. It follows that the price pt is of the form

t , ,I v S tpt
e e

t
e

n

1

=
=

! ^ h (3.3)
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where the functions

ve(s, t) = �̂ r ,e H Y e S st tt
T

= =- #
9 C (3.4)

are the state-wise prices. Moreover, by (3.2) and the homogeneity of Y, we obtain
the representation

ve(s, t) = � .h s S Y eY
T t 0

T t =-
- ^ h8 B (3.5)

The discounted price (2.22) is a martingale with respect to (FY,�̂). Assume
that the functions ve(s, t) are continuously differentiable. Applying Itô to

p̂t t , ,e I v S tr e e
t

e

n

1

t
0= -

=

# ! ^ h (3.6)

we find
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t
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t
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e v S t v S t dN

e I r v S t t v S t s v S t S

v S t v S t dt
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e
t

e
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e
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t

e
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e
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h h h l

i j hj

h h h

i j hj k

i j hj

(3.7)

By the martingale property, the drift term must vanish, and we arrive at the
non-stochastic partial differential equations

, , ,

, ,

�r v s t t v s t s v s t s

v s t v s tg l1 0

e e e e e

f ef e ef

f y

2
2

2
2

- + +

+ + - =
!

e
! u

] ] ]

_` ]`

g g g

i j gj
(3.8)

with side conditions

, ( ),v s T h se e=] g (3.9)

e = 1,…,n.
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In matrix form, with

R = De=1,…,n (re), A = De=1,…,n (�e)

and other symbols (hopefully) self-explaining, the differential equations and
the side conditions are

, , , , ,

, .

s t t s t s s s t s t

s T s

Rv v A v v

v h

gL 1 0
2
2

2
2

- + + + + =

=

u] ] ] ^^

] ]

g g g h h

g g

(3.11)

There are other ways of obtaining the differential equations. One is to derive
them from the integral equations obtained by conditioning on whether or not
the process Y leaves its current state in the time interval (t,T ] and, in case it
does, on the time and the direction of the transition. This approach is taken
in Norberg (2002) and is a clue in the investigation of the assumed continu-
ous differentiability of the functions ve.

Before proceeding we render a comment on the fact that the price of a
derivative depends on the drift parameters �e of the stock prices as is seen
from (3.8). This is all different from the Black-Scholes-Merton model in which
a striking fact is that the drift parameter does not appear in the derivative
prices. There is no contradiction here, however, as both facts reflect the para-
mount principle that the equivalent martingale measure arises from the path
properties of the price processes of the basic assets and depends on the orig-
inal measure only through its support. The drift term is a path property in the
jump process world but not in the Brownian world. In the Markov chain mar-
ket the pattern of direct transitions as given by the ye is a path property, but
apart from that the intensities F do not affect the derivative prices.

B. Identifying the strategy

Once we have determined the solution ve(s, t), e = 1,…,n, the price process is
known and given by (3.3).

The duplicating SF strategy can be obtained as follows. Setting the drift
term to 0 in (3.7), we find the dynamics of the discounted price;

dp̂t t, , .e v S t v S t dg M1r f
t

ef e
t

fe

ef

y

t
0= + -

!

-
- -

e

# !! _` ^` i j hj (3.12)

Identifying the coefficients in (3.12) with those in (2.24), we obtain, for each
time t and state e, the equations

t t- , , ,S v S t v S tq g g1i

i

m
i ief f

t
ef e

t
1

= + -
=

- -! _` ^i j h (3.13)
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f ∈ ye. The solution (q i,e
t )i=1,…,m certainly exists since rank(Ge) ≤ m, and it is

unique if rank(Ge) = m. It is a function of t and St– and is thus predictable.
Finally, q0 is determined upon combining (2.12), (2.22), and (3.6):

r
t t t, .e I v S t Sq qt
e e

t
i

i

m
i

e

n
0

11

t

0= --

==

# !! ^e h o

This function is not predictable.

C. The Asian option

As an example of a path-dependent claim, let us consider an Asian option, which

is a T-claim of the form H S d KtT t
1

0
= -

+T#a k , where K ≥ 0. The price process is

r

t , , ,
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r
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T
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The discounted price process is

p̂t t
r , , .e I v t S S dte e

t
t

e

n

t
01

t
0= -

=

## ! c m

We are lead to partial differential equations in three variables.

D. Interest rate derivatives

A particularly simple, but important, class of claims are those of the form H =
hYT. Interest rate derivatives of the form H = h(rT) are included since rt = rYt.
For such claims the only relevant state variables are t and Yt, so that the func-
tion in (3.4) depends only on t and e. The differential equations (3.8) and the
side condition (3.9) reduce to

t t t t ,dt
d v r v v v le e e f e

f

ef

y
= - -

!
e

! u` j (3.14)

.v hT
e e= (3.15)
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In matrix form:

,

.
dt
d v v

v h

LRt t

T

= -

=

u_ i

Similar to (2.3) we arrive at the explicit solution

.exp T tv R hLt = - -u^ ]h g" , (3.16)

It depends on t and T only through T – t.
In particular, the zero coupon bond with maturity T corresponds to h = 1.

We will henceforth refer to it as the T-bond in short and denote its price pro-
cess by p(t,T) and its state-wise price functions by p(t,T) = (pe(t,T))e=1,…,n;

, .expt T T tp RL 1= - -u] ^ ]g h g" , (3.17)

For a call option on a U-bond, exercised at time T(<U) with price K, h has
entries he = (pe(T,U) – K)+.

In (3.16)-(3.17) it may be useful to employ the representation (A.3),

.exp T t eR DL F F,...,
( )

e n
T t

1
1e

- - = =
- -tu u uu

^ ] `h g j" , (3.18)

4. RISK MINIMIZATION IN INCOMPLETE MARKETS

A. Incompleteness

The notion of incompleteness pertains to situations where there exist contingent
claims that cannot be duplicated by an SF portfolio and, consequently, do not
receive unique prices from the no arbitrage postulate alone. In Paragraph 2F
we alluded to incompleteness arising from a scarcity of traded assets, that is,
the discounted basic price processes are incapable of spanning the space of all
martingales with respect to (FY,�̂) and, in particular, reproducing the value
(2.25) of every financial derivative.

B. Risk minimization

Throughout this section we will mainly be working with discounted prices
and values without any other mention than the tilde notation. The reason is
that the theory of risk minimization rests on certain martingale representation
results that apply to discounted prices under a martingale measure. We will be
content to give just a sketchy review of some main concepts and results from
the seminal paper of Föllmer and Sondermann (1986) on risk minimization.
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Let H be a T-claim that is not attainable. This means that an admissible
portfolio q satisfying

V HT
q =

cannot be SF. The cost by time t of an admissible portfolio q is denoted by
Cq

t and is defined as that part of the portfolio value that has not been gained
from trading:

t t .dqC V S�
tq q

t t
0

= - #

The risk at time t is defined as the mean squared outstanding cost,

.�R C C FT t t
q q q 2

= -t
u ` j: D (4.1)

By definition, the risk of an admissible portfolio q is

t ,� dqR H V S F�
t

T
t

q q
t t

2

= - -t #u c m= G

which is a measure of how well the current value of the portfolio plus future
trading gains approximates the claim. The theory of risk minimization takes
this entity as its objective function and proves the existence of an optimal
admissible portfolio that minimizes the risk (4.1) for all t ∈ [0,T ].

The proof is constructive and provides a recipe for determining the optimal
portfolio. One commences from the intrinsic value of H at time t defined as

t .�V H FH
t= u 7 A (4.2)

This is the martingale that at any time gives the optimal forecast of the claim
with respect to mean squared prediction error under the chosen martingale
measure. By the Galchouk-Kunita-Watanabe representation, it decomposes
uniquely as

t t ,� d LqV H SH H
t t

Ht

0

�= + +#u 7 A (4.3)

where LH is a martingale with respect to (F,�̂) which is orthogonal to the
martingale S. The portfolio qH defined by this decomposition minimizes the
risk process among all admissible strategies. The minimum risk is

.� d LR FH H
t

T
tt

=t #u ; E (4.4)
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C. Unit-linked insurance

As the name suggests, a life insurance product is said to be unit-linked if the
benefit is a certain share of an asset (or portfolio of assets). If the contract
stipulates a prefixed minimum value of the benefit, then one speaks of unit-
linked insurance with guarantee. A risk minimization approach to pricing and
hedging of unit-linked insurance claims was first taken by Møller (1998), who
worked with the Black-Scholes-Merton financial market. We will here sketch
how the analysis goes in our Markov chain market, which is a particularly
suitable partner for the life history process since both are intensity-driven.

Let Tx be the remaining life time of an x years old who purchases an
insurance at time 0, say. The conditional probability of survival to age x + u,
given survival to age x + t (0 ≤ t < u), is

x x> > ,� T u T t e dsmx st

u

= - +#
7 A (4.5)

where my is the mortality intensity at age y. Introduce the indicator of survi-
val to age x + t, It = 1[Tx > t], and the indicator of death before time t, Nt =
1[Tx ≤ t] = 1 – It. The latter is a (very simple) counting process with intensity
It mx+t, and the associated (F,�) martingale M is given by

.dM dN I dtmt t t x t= - + (4.6)

Assume that the life time Tx is independent of the economy Y. We will be
working with the martingale measure �̂ obtained by replacing the intensity
matrix L of Y with the martingalizing L̂ and leaving the rest of the model
unaltered.

Consider a unit-linked pure endowment benefit payable at a fixed time T,
contingent on survival of the insured, with sum insured equal to the price
ST of the (generic) stock, but guaranteed no less than a fixed amount g. This
benefit is a contingent T-claim,

.H S g IT T0= ^ h

The single premium payable as a lump sum at time 0 is to be determined.
Let us assume that the financial market is complete so that every purely
financial derivative has a unique price process. Then the intrinsic value of
H at time t is

VH
t = p̂t It

m ,e t
- T#

where p̂t is the discounted price process of the derivative ST 0 g, and we have
used the somewhat sloppy abbreviation mdumx u t

T

t

T
=+ ## .

Using Itô together with (4.5) and (4.6) and the fact that Mt and p̂t almost
surely have no common jumps, we find
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dVH
t = dp̂t It–

me t
-

T# + p̂t –It–
me t

-
T# mx+tdt + (0 – p̂t –

me t
-

T# )dNt

= dp̂t It
me t

-
T# – p̂t

me t
-

T# dMt.

It is seen that the optimal trading strategy is that of the price process of the
sum insured multiplied with the conditional probability that the sum will be
paid out, and that

dLH
t = me t- -

T# p̂t dMt.

Using d〈M〉t = It mx+t dt (see Andersen et al. (1993)), the minimum risk (4.4) now
assumes the form

m
t tt , ,� pe I d I e I R S tm tR FH

xt

T
t t

r e

e

e
tt

2 2 2
T t

t 0= =-
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-
t # # # !u ^ h; E (4.7)

where
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Working along the lines of the proof of (3.8), this time starting from the mar-
tingale

m

m

t

t t

t t

t , ,

� pM e I d

e e I d I e I R S t

m t

p m t

FR
x

T

t

r
x

t

t
r e e

t
e

t

t

2 2

0

2 2 2

0

2

T

T t

t

t

t

0 0

=

= +

-
+

- -
+

-

#

#

#

# # # !

u

^ h

; E

we obtain the differential equations
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e
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!
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e
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]`

__`

gj

i i j
(4.8)

These are to be solved in parallel with the differential equations (3.8) and are
subject to the conditions

( , ) .R s t 0e = (4.9)

D. Trading with bonds: How much can be hedged?

It is well known that in a model with only one source of randomness, like the
Black-Scholes-Merton model, the price process of one zero coupon bond will
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determine the value process of any other zero coupon bond that matures at
an earlier date. In the present model this is not the case, and the degree of
incompleteness of a given bond market is therefore an issue.

Suppose an agent faces a contingent T-claim and is allowed to invest only
in the bank account and a finite number m of zero coupon bonds with matu-
rities Ti , i = 1, …, m, all post time T. The scenario could be that regulatory
constraints are imposed on the investment strategy of an insurance company.
The question is, to what extent can the claim be hedged by self-financed trading
in these available assets?

An allowed SF portfolio q has a discounted value process Vq
t of the form

t i it t, , ,d t T t T d d Qq qV p p M Mi

i

m
f e

fe

ef
t
e

t
e

t
ey

q

1

�= - =
!= e

! !! !^ ^_ h hi

where q is predictable, Me
t = (Mef

t )f ∈ye is the ne-dimensional vector comprising
the non-null entries in the e-th row of Mt = (Mef

t ), and

Q Y Qt
e e

t= ,

where

,...,e n1=
, , , ..., , ,t T t T t TQ p p pt

e
i i m= =,...,i m1=

^_ ^ ^_hi h hi (4.10)

and Ye is the ne × n matrix which maps Qt to f y!( ( , ) ( , ))t T t Tp p ,...,f
i

e
i

i m1- =
e . If e.g.

yn = {1,…,p}, then Yn = (Ip×p, 0 p× (n–p–1), –1p×1).
The sub-market consisting of the bank account and the m zero coupon

bonds is complete in respect of T-claims iff the discounted bond prices span
the space of all martingales with respect to (FY, �̂) over the time interval [0,T].
This is the case iff, for each e, rank(Qe

t ) = ne. Now, since Ye obviously has full
rank ne, the rank of Qe

t is determined by that of Qt in (4.10). We will argue
that, typically, Qt has full rank. Thus, suppose c = (c1,…,cm)� is such that

.Q c 0t
n 1= #

Recalling (3.17), this is the same as

,expc TRL 1 0i i
i

m

1

- =
=

! u^ h" ,

or, by (3.18) and since F̂ has full rank,

.c eD F 1 0, ...,e n i
i

m
T

1
1

1e
i ==

=

-t! uu
e o (4.11)
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Since F̂–1 has full rank, the entries of the vector F̂–11 cannot be all null. Typi-
cally all entries are non-null, and we assume this is the case. Then (4.11) is
equivalent to

i , ,..., .c e e n0 1i
i

m
T

1

e
= =

=

t! u (4.12)

Using the fact that the generalized Vandermonde matrix has full rank (see
Gantmacher (1959)), we know that (4.12) has a non-null solution c if and
only if the number of distinct eigenvalues r̂e is less than m. The role of the
Vandermonde matrix in finance is the topic of a parallel paper by the author,
Norberg (1999).

In the case where rank(Qe
t ) < ne for some e we would like to determine the

Galchouk-Kunita-Watanabe decomposition for a given FY
T -claim. The intrin-

sic value process (4.2) has dynamics of the form
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where je
t = (jef

t )f ∈ye is predictable. We seek its appropriate decomposition (4.3)
into
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such that the two martingales on the right hand side are orthogonal, that is,
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where L̂e = D(l̂e). This means that, for each e, the vector je
t in (4.13) is to be

decomposed into its 〈 , 〉L̂e projections onto �(Qe
t ) and its orthocomplement.

From (A.4) and (A.5) we obtain

t ,Q Pq jt
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Furthermore,

t t ,I Ph je e
t
e= -_ i (4.15)

and the minimum risk (4.4) is

t t .� I dl thR FH e ef ef
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(4.16)

The computation goes as follows: The coefficients jef involved in the intrinsic
value process (4.13) and the state-wise prices pe(t,Ti ) of the Ti -bonds are
obtained by simultaneously solving (3.8) and (3.14), starting from (3.11) and
(3.15), respectively, and at each step computing the optimal trading strategy q
by (4.14) and the h from (4.15). The risk may be computed in parallel by
solving differential equations for suitably defined state-wise risk functions.
The relevant state variables depend on the nature of the T-claim as illustrated
in the previous paragraph.

5. DISCUSSION OF THE MODEL

A. Versatility of the Markov chain

By suitable specification of y, L, and the asset parameters re, �ie, and bief, we
can make the Markov chain market reflect virtually any conceivable feature a
real world market may have. We can construct a non-negative mean reverting
interest rate. We can design stock markets with recessions and booms, bullish
and bearish trends, and crashes and frenzies and other extreme events (not in
the mathematical sense of the word, though, since the intensities and the jump
sizes are deterministic). We can create forgetful markets and markets with
long memory, markets with all sorts of dependencies between assets — hier-
archical and others. In the huge class of Markov chains we can also find an
approximation to virtually any other theoretical model since the Markov chain
models are dense in the model space, roughly speaking. In particular, one can
construct a sequence of Markov chain models such that the compensated mul-
tivariate counting process converges weakly to a given multivariate Brownian
motion. An obvious route from Markov chains to Brownian motion goes via
Poisson processes, which we will now elaborate a bit upon.

B. Poisson markets

A Poisson process is totally memoryless whereas a Markov chain recalls which
state it is in at any time. Therefore, a Poisson process can be constructed by
suitable specification of the Markov chain Y. There are many ways of doing
it, but a minimalistic one is to let Y have two states y = {1,2} and intensities
l12 = l21 = l. Then the process N defined by Nt = N12

t + N21
t (the total number
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of transitions in (0, t]) is Poisson with intensity l since the transitions counted
by N occur with constant intensity l.

Merton (1976) introduced a simple Poisson market with

t

t

,S e

S e ,�

rt

t Nb

0

1 t

=

= +

where r, �, and b are constants, and N is a Poisson process with constant
intensity l. This model is accommodated in the Markov chain market by let-
ting Y be a two-state Markov chain as prescribed above and taking r1 = r2 = r,
�1 = �2 = �, and b12 = b21 = b. The no arbitrage condition (2.17) reduces to
l̂ > 0, where l̂ = (r – �) /g and g = eb – 1. When this condition is fulfilled, l̂ is
the intensity of N under the equivalent martingale measure.

The price function (3.5) now reduces to an expected value in the Poisson
distribution with parameter l̂ (T– t) :
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A more general Poisson market would have stock prices of the form

tt ,exp �S t Nbi i ij j
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O
O

i = 1, …, m, where the Nj are independent Poisson processes. The Poisson pro-
cesses can be constructed by the recipe above from independent Markov chains
Y j, j = 1, …, n, which constitute a Markov chain, Y = (Y 1, …,Yn).

C. On differentiability and numerical methods

The assumption that the functions ve(s, t) are continuously differentiable is
not an innocent one and, in fact, it typically does not hold true. An example
is provided by the Poisson market in the previous paragraph. From the
explicit formula (5.1) it is seen that the price function inherits the smoothness
properties of the function h, which typically is not differentiable everywhere
and may even have discontinuities. For instance, for h(s) = (s –K)+ (European
call) the function v is continuous in both arguments, but continuous differen-
tiability fails to hold on the curves {(s, t); s e�(T– t) + nb = K}, n = 0,1,2,… This
warning prompts a careful exploration and mapping of the Markov chain terrain.
That task is a rather formidable one and is not undertaken here. Referring to
Norberg (2002), let it suffice to report the following: From a recursive system
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of backward integral equations it is possible to locate the positions of all points
(s, t) where the functions ve are non-smooth. Equipped with this knowledge
one can arrange a numerical procedure with controlled global error, which
amounts to solving the differential equations where they are valid and gluing
the piece-wise solutions together at the exceptional points where they are not.
For interest rate derivatives, which involve only ordinary first order differential
equations, these problems are less severe and standard methods for numerical
computation will do.
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A. Appendix: Some useful matrix results

A diagonalizable square matrix An×n can be represented as

,A D r r cF F,...,e n
e e e e

e

n

1
1

1

�= = z=
-

=

!_ i (A.2)

where the ze are the columns of Fn×n and the ce� are the rows of F–1. The re

are the eigenvalues of A, and ze and ce� are the corresponding eigenvectors,
right and left, respectively. Eigenvectors (right or left) corresponding to eigen-
values that are distinguishable and non-null are mutually orthogonal. These
results can be looked up in e.g. Karlin and Taylor (1975).

The exponential function of An×n is the n × n matrix defined by

( ) ! ,exp p e eA A D cF F1
,...,

p
e n

e e

e

n

p

r r
1

1

10

�e e
= = = z

3

=
-

==

!! _ i (A.3)

where the last two expressions follow from (A.2). This matrix has full rank.
If Ln×n is positive definite symmetric, then 〈j1, j2〉L = j�1Lj2 defines an inner

product on �n. The corresponding norm is given by ||j||L = 〈j, j〉1/2
L . If Qn×m

has full rank m (≤ n), then the 〈 ·, · 〉L-projection of j onto �(Q) is

jQ = PQj, (A.4)

where the projection matrix (or projector) PQ is

PQ = Q(Q�LQ)–1Q�L. (A.5)

The projection of j onto the orthogonal complement �(Q)⊥ is

jQ⊥ = j – jQ = (I – PQ)j.
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