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ABSTRACT

The chain ladder forecast of outstanding losses is known to be unbiased under
suitable assumptions. According to these assumptions, claim payments in any
cell of a payment triangle are dependent on those from preceding development
years of the same accident year. If all cells are assumed stochastically inde-
pendent, the forecast is no longer unbiased. Section 5 shows that, under rather
general assumptions, it is biased upward. This result is linked to earlier work
on some stochastic versions of the chain ladder.

KEYWORDS

Chain ladder, IBNR.

1. INTRODUCTION

The chain ladder (CL) approach to estimation of a loss reserve is well known.
It is described, for example, by Taylor (2000).

Its origins are not altogether clear, but it seems likely that it originated as
a heuristic device. As such, it may be viewed as a non-parametric estimator.
The precise definition is given in Sections 2 and 3.

Kremer (1982) recognised that the CL involved a log-linear cross-classification
structure. A number of parametric stochastic versions of the CL developed from
this, eg Hertig (1985), Renshaw (1989), Verrall (1989, 1990, 1991).

Mack (1994) pointed out that these stochastic models gave mean estimates
of liability that differed from the “classical” CL estimate. While the form
of stochastic model underlying the classical CL was speculative, due to the
latter’s heuristic nature, Mack suggested one. It is distribution free. Details are
given in Section 2. Mack also identified the differences between this and the
other stochastic models.

Whereas the cross-classified models typically assume stochastic independence
of all cells in the data set, the CL (in Mack’s formulation) does not. It was shown
by Mack (1993) that the algorithm of the classical CL produced unbiased fore-
casts of liability under its own assumptions.

However, it does not necessarily do so under the alternative assumption of
independence between all cells. Some papers have studied the bias in estimates
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of liability in the parametric cross-classified models mentioned above, but little
is known of the bias in the classical CL forecast when all cells are independent.

The purpose of the present paper is to investigate the direction of bias in
this case.

2. FRAMEWORK AND NOTATION

Consider a square array X of stochastic quantities X(i, j) ≥ 0, i = 0,1, …, I;
j = 0,1,…,I.

Denote row sums and column sums as follows:
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In addition introduce the following notation for the total sum over a rectan-
gular subset of X:
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Generally, in the following, any summation of the form
a

b
! with b < a will be

taken to be zero.
In a typical loss reserving framework, i denotes accident period, j develop-

ment period, and available data will consist of observations on the triangular
subset D of X:

, , , ,..., ; , ,...,X i j i I j I iD 0 1 0 1= = = -^ h" , (2.4)

Figure 2.1 illustrates the situation.

Still in a loss reserving context, D would represent some form of claims
experience, eg claim counts or claim amounts. The loss reserving problem
consists of forecasting the lower triangle in Figure 2.1, conditional on D. There
is particular interest in forecasting R(i,I) | D, i = 1,...,I. In standard loss reser-
ving parlance, the X(i, j) are usually referred to as incremental quantities, or just
increments, and the R(i, j) as their cumulative equivalents.
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Matrix notation

Analysis of CL bias will proceed by examination of certain derivatives of the
CLF defined in Section 3. These depend ultimately on derivatives of the n̂(k).
Quantities such as ∂2n̂(k)/∂2X(i, j) require evaluation, and a matrix notation will
be useful for keeping organization among the indexes.

In the following, all vectors will be of dimension (I +1), and all matrices
of dimension (I +1) ≈ (I +1).

Let X denote the matrix [X(i, j)],i, j = 0,1,…,I. Also let ek denote the nat-
ural basis vector:

,..., , , ,..., , , ,...,e k I0 0 1 0 0 0 1
( )k

T

k
= =d n (2.5)

and define

,..., , ,...,f e 1 1 0 0
( )k

T
k
T

r

k

k0

= =
=

! d n (2.6)

where the upper T denotes transposition.
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Figure 2.1: Data array
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Under this notation, X(i, j) is selected from X as follows:

, .X i j e Xei
T

j=^ h (2.7)

Similarly,

j,R i j e Xfi
T=^ h (2.8)

j,C i j f Xei
T=^ h (2.9)

, .T i j f Xi
T

j= f^ h (2.10)

3. CHAIN LADDER FORECAST

Define the age-to-age factor

n̂( j) = T(I – j – 1, j +1) /T(I – j – 1, j)
= 1 +C (I – j – 1, j +1) /T(I – j – 1, j)

(3.1)

and 

, , .i I R i I i kR n
k I i

I 1

= -
= -

-

% t] ] ]g g g (3.2)

The value of R(i,I) calculated in this way will be referred to as the chain ladder
forecast (CLF) of R(i,I).

4. CHAIN LADDER MODELS

4.1. Independent accident periods

The CLF has been formulated in Section 3 just as an algorithm. No model for
the data X has yet been stated.

It is evident that the properties of the CLF will depend on the model. This
and the next sub-section consider two alternative models. The first is represented
by the following two assumptions.

Assumption 1. The increments of different accident periods are stochastically
independent in the sense that

Prob [X(i, j) | D] = Prob [X(i, j) | X(i,0),…,X(i,I – i)].

Assumption 2. E [R(i, j +1) | X(i,0),X(i,1), ...,X(i, j)] = n ( j)R(i, j). (4.1)
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Remark 1. It follows from Assumptions 1 and 2 that

E [R (i, j +1) | D] = n ( j)R (i, j) (4.2)

for any j ≥ I – i (ie future j ).

Since R (i, j +1) = R (i, j) +X (i, j +1), one may re-write (4.2) in the form:

E [X (i, j +1) | D] = [n ( j) – 1]R (i, j) (4.3)

Remark 2. It is clear from (4.3) that R (i, j) and X (i, j +1) may fail to be inde-
pendent. Generally, under Assumptions 1 and 2, the X (i, j) for fixed i may fail
to be independent.

Theorem 1 (Mack). Under Assumptions 1 and 2,

(1) n̂( j) is an unbiased estimator of n( j) for j = 0,1,…,I – 1; and
(2) the CLF R(i,I) is an unbiased estimator of E [R(i,I ) | D] for i = 1,2,…,I ;

provided that both estimators exist.

Proof. See Mack (1993). ¡

It is also convenient to re-write (4.2) in the form:

E [R(i, j +1) /R (i, j) | D] = n ( j). (4.4)

4.2. Independent increments

Replace Assumptions 1 and 2 by 1a, 2a and 3 as follows.

Assumption 1a. All increments X (i, j) are stochastically independent.

Assumption 2a. E [R(i, j +1)] /E [R(i, j)] = j( j). (4.5)

The assumption is written in this form in order to relate it to Assumption 2.
It is useful to note that an equivalent, and more natural, assumption is that

E [X(i, j)] = �(i)�( j) (4.5a)

for parameters �(i),�( j), i, j = 0,1,…,I.

Define the set

, : , , ,...,D g h g I k h k k I i I1 1 1i # #= - - + = - -^ h" , (4.6)

and

, : , , ,..., .E g h g I k h k k I i I1 1i # #= - - = - -^ h" ,
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Assumption 3. T(g,h) > 0 for each (g,h) ∈ Ei.

Remark 3. It is implicit in Assumption 2a that E [R (i, j)] ≠ 0. By the assumed
non-negativity of the X (i, j), E [R (i, j)] > 0 for each i, j.

Remark 4. A comparison of (4.4) and (4.5) indicates that n( j) and j( j) are dif-
ferent quantities (for fixed j) since

, / ,E R i j R i j1+^ ^h h6 @ # , / , .E R i j E R i j1+^ ^h h6 6@ @ (4.7)

This fact was pointed out by Mack (1994).

By Assumption 3, applied to (3.1), all n̂(k) appearing in (3.2) are defined and
strictly positive. Given the assumed non-negativity of the X(i, j), Assumption 3
is both necessary and sufficient for the chain ladder forecast to make sense.
Comment on the non-negativity requirement will be made in Section 6.

The conditions of Theorem 1 no longer hold, and so the CLF is not nec-
essarily unbiased.

5. CHAIN LADDER BIAS

The following is a somewhat technical result, but has been included here rather
than in the appendix because the symmetric appearance of rows and columns
of X in the second derivative of Y(i) is interesting.

Theorem 2. Define

.Y i k
k I i

I 1

= o
= -

-

% t] ]g g (5.1)

Then
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for (g,h) ∈ Di and h ≤ I – i,

( ) ( , )
( )

, ,
,

, , ,
,

Y i X g h
Y i

T I k k T I k k
C I k k

T i I i T I l l T I l l
R I l l

x1
2

1 1 1
1 1

1
1

1

k I i

I g

l I i

k

2

2 1

1

2

2
=

- - + - -
- - +

- -
+

- - -
-

= -

- -

= - +

!

!

] ]

]

] ] ]

]

g g

g

g g g

g
> H

(5.3)
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for (g,h) ∈ Di and h > I – i,
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(5.4)

These results depend on Assumption 3 for the existence of (5.3) and (5.4), but
do not depend on the Assumptions 1a and 2a.

Proof. See appendix. ¡

Theorem 3. Under Assumptions 1a, 2a and 3, and if X (g,h) is not degenerate
for at least one (g,h) ∈ Di , the CLF R(i,I ) is biased upward as an estimate of
E [R (i,I )] in the sense that

, , > , ,
,

.E i I R i I i R i I i E R i I i
E R i IR - -

-
] ] ]

]

]
g g g

g

g
7

6

6
A

@

@
(5.5)

Also,

, > , .E i I E R i IR] ]g g7 6A @ (5.6)

Proof. See appendix. ¡

Remark 5. An alternative form of (5.6) is:

, , > , .E E i I R i I i E R i IR,R i I i --] ] ] ]g g g g7 6A @ (5.7)

Note that, in general, (5.5) does not imply that

, , > , .E i I R i I i E R i IR -] ] ]g g g7 6A @

A few words in interpretation of Theorem 3. First define

, , ,

,

L i j R i I R i j

X i h
h j

I

1

= -

=
= +

!

^ ] ^

]

h g h

g
(5.8)

which is the required loss reserve in respect of accident period i at the end of
development period j.

The forecast of L(i, j) associated with the CLF of R (i,I) is

, , , .i j i I R i jL R= -^ ] ^h g h (5.9)
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Now consider the CLF L(i, I – i), taken on the last diagonal of D, and how it
is conditioned by D. By (3.2),

, , ( )i I i R i I i kL 1
k I i

I 1

- = - -o
= -

-

% t] ]g g> H (5.10)

ie is proportional to R (i,I – i).

By Theorem 1,

.E I i E L I iL D D- = -] ]g g7 6A @ (5.11)

in the dependent case, when Assumptions 1 and 2 hold. The CLF of loss reserve
is conditionally unbiased.

On the other hand, in the independent case, when Assumption 1a holds,
L (i, j) and R (i, j) are stochastically independent since they involve disjoint sets
of the X (i, h) (see (2.1) and (5.8)). Hence

, , .E L i I i E L i I iD- = -] ]g g6 6@ @ (5.12)

If Assumptions 2a and 3 also hold, then Theorem 3 may be applied to (5.12)
to yield

, > , ,E i I i E L i I i E L i I iL D- - = -] ] ]g g g7 6 6A @ @ (5.13)

In this case, the CLF of loss reserve, taken unconditionally, is biased upward.
Note that it makes no sense to discuss whether the CLF is conditionally biased
in this case. For (5.10) shows that

,E i I iL D-] g7 A is proportional to ,R i I i-] g (5.14)

whereas (5.12) shows that

,E L i I i D-] g6 @ is independent of ,R i I i-] g. (5.15)

Then, whether ,i I iL -] g is conditionally biased upward or downward depends
on ,R i I i-] g.

6. NEGATIVE INCREMENTS

It has been assumed throughout that all X(i, j) ≥ 0. It is evident that some pos-
itivity assumption is required for Theorem 3 to hold. If, for example, one were
to apply the theorem to data that were subject to Assumption 3, and then
reverse the signs of all X (i, j), one would obtain a downward bias for the CLF
applied to the modified data.
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It is evident that Theorem 3 would continue to hold under weaker assump-
tions. For example, if the requirement on X(i, j) were weakened to require only
that Prob[X (i, j) > d > 0] > 1 – e for some e ≥ 0. Then Prob[�2f / �X 2(g,h) > 0]
could be made arbitrarily close to 1 for (g,h) ∈ Di, so that (A.25) held with strict
inequality, and Theorem 3 followed, also with strict inequality.

However, finding necessary conditions on the X (i, j) to ensure that Theo-
rem 3 holds does not appear easy. In considering such conditions, one may write
(A.40) in the form:

( , ) , ,

, ,

Y X g h
Y

T I k k T I k k

T I l l T I l l

x1
2

1
1

1 1
1

1
1 1

k h

I g

l h

k

2

2 1

2
2

=
- -

-
- - +

- -
-

-

=

- -

=

!

!

] ]

] ]

g g

g g

;

;

E

E

so that, when the X(i, j) need not be non-negative, a sufficient condition for the
left side to be positive is that 

1/T (g+1, h) < 1/T (g,h) (6.1)

and

1/T (g, h +1) < 1/T (g,h) (6.2)

for all (g, h).

It is tempting then to contemplate stochastic versions of the inequalities, such as

E [1/T (g+1, h)] < E [1/T (g,h)] (6.3)

E [1/T (g, h +1)] < E [1/T (g,h)] (6.4)

or such.

However, the choice of such conditions to lead from Theorem 2 to the proof
of (A.25), the key to Theorem 3, is not clear.

7. CONCLUSION

Theorem 3 shows that, under certain distribution free conditions, the CLF is
biased upward. A simulation test of prediction bias in the chain ladder and
other models was carried out by Stanard (1985). One of his experiments dealt
with the case in which the total number of claims in an accident year is a Poisson
variate and is multinomially distributed over development years. It may be shown
that distinct cells in a row of the claim count triangle are then stochastically
independent, and so Theorem 3 applies.

Stanard’s simulations did in fact find upward bias in the CLF.
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Appendix

PROOF OF THEOREMS

Lemma 1. Suppose that

( )y f xi
i

n

1

=
=

% (A.1)

with x = (x1,…,xm)T and fi (x) > 0 for each i. Then

j

j
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f x
f

f f x
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i j
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k k
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2
= +
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Lemma 2 (derivatives of age-to-age factors).

( ) ,
( )

, , ,
< ,

k X g h
k

T I k k
h k

T I k k T I k k
g I k h k C I k kd d d1

1 1
1

1 1 1
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2
2 #

=
- - +

= +
-

- - - - +

- - - +

o
o

t

t

^ ]

]

] ]

^ ] ]

h g

g

g g

h g g
(A.2)

where d(.) is defined as follows:

d(C) = 1 for condition C true; (A.3)= 0 for condition C false;

and it is understood that (A.2) applies to past observations (g + h ≤ I).

Further,

( ) ,
( )

, ,
< ,

k X g h
k

T I k k T I k k
g I k h k C I k kd d1

1 1 1
1 12

2

2

22

2 #
=

- - - - +

- - - +

o
o

t
t

^ ] ]

^ ] ]

h g g

h g g
(A.4)

where this result is again understood to apply only to past observations.

Proof. By (2.10),

j, / , .T i j X g h f e e fi
T

g h
T2 2 =^ ^h h (A.5)

Write the quantity of interest n̂(k) in the abbreviated form n = N /D where N
and D denote numerator and denominator respectively. If N and D depend on
variable X, then

.

log log log
X X X

N D

N X
N

D X
D

ND D X
N N X

D

n
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1 1
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2
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2
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2
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2
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2
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2
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^
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(A.6)
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Now for n = n̂(k),

,N T I k k f X f1 1 I k
T

k1 1= - - + = - - +] g (A.7)

,D T I k k f X f1 I k
T

k1= - - = - -] g (A.8)

where the matrix notation of Section 2 has been used.

First derivatives of N and D are given by (A.5). Substitution of these into (A.6)
yields
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Note that

.

f f f f f f e f e f

f e e f
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^ ^h h
(A.10)

Substitute (A.10) into (A.9) and recall (2.9) and (2.10) to obtain
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Note that 

.f e h kdk
T

h #= ] g (A.12)

By means of this and similar relations, (A.11) reduces to:
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h k T I k k h k C I k k

d

d d

1
1 1 1 1

1 1 1 1

1

#

2
2

#

#

= - - - - + - -

= + - - - - - +

o
o -

t

t

^
] ] ^

] ] ] ]

h
g g h

g g g g

6

6

@

@

(A.13)

Note that

g I k h k
g I h h k g h I h k h k

d d

d d d d d

1 1

1 1 1

#

# #

- - = +

= - = + = + = + = = +

^ ]

^ ] ^ ] ]

h g

h g h g g
(A.14)

under the conditions of the lemma.

Substituting (A.14) into (A.13) yields (A.2) as required.
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To prove (A.4), return to (A.6). In this abbreviated notation there, take a second
derivative:

X X X Xn
n

n
n

n
n1 1 1

2

2 2

2
2

2
2

2
2

2
2

= -b bl l (A.15)

Now (A.6) yields

X X N X
N

N X
N

D X
D

D X
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n
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2

2 2
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2 2

2
2

2
2

2
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2
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2
2

2
2

= - - +b b bl l l (A.16)

By (A.5), (A.7) and (A.8), �2N /�X 2 = �2D /�X 2 = 0, so that (A.16) reduces to

X X D X
D

N X
N

D X
D

N X
N

X D X
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N X
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n
n
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n

1 1 1 1 1
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2
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2
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2
2

2
2

2
2

2
2

2
2

2
2

= - +

= - +

b b b

b b

l l l

l l

(A.17)

by (A.6).

Substitution of (A.17) in (A.15), and use of (A.6) again yields

X X D X
D

n
n

n
n1

2
1 1

2

2

2
2

2
2

2
2

= - b bl l (A.18)

By (A.8),

/ , <D X g h f e e f g I k h kd dI k
T

g h
T

k12 2 #= = -- -^ ^ ]h h g (A.19)

Substitute (A.2) and (A.19) into (A.18) and note that the term involving
d (h = k + 1) vanishes because d (h = k + 1) d (h ≤ k) = 0.

The result is (A.4), as required. ¡

Lemma 3 (multivariate Jensen inequality). Let X = (X1, …, Xm)T where the
Xk are stochastically independent random variables. Let f : Rm → R be twice
differentiable in all its arguments, and suppose that

/f X X 0k
2 22 2 $] g for all X and for k = 1, 2, …, m. (A.20)

Then

.E f X f E X$] ^g h6 6@ @ (A.21)

If strict inequality holds in (A.20) for at least one k, and Xk is not degenerate,
then strict inequality holds in (A.21).
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Proof. An elegant proof of (A.21) appears in Kallenberg (1997, p. 49). It is re-
proved below in order to obtain the strict inequality.

Let m = (m1,…,mm)T = E [X]. Expand f (X) as the Taylor series:

m

m m

m m m,..., , ,..., , /

,..., , /

f X f X X X f X X X

X f X X X

m m m

m z

m m m

m m m

1 1 1 1

2
1 2 2

1 1
2

2 2

2 2

= + -

+ -

- -

-

] ^ ^ ^

^ ^

g h h h

h h
(A.22)

where zm = mm + qm (Xm – mm) for some 0 < qm < 1.

Now expand f (X1,…,Xm –1, mm) similarly, then f (X1,…,Xm –2, mm –1, mm), and so
on to obtain

k

k k

k k

,..., , ,..., /

,..., , , ,..., / .

f X f X f X X X

X f X X X

m m m m

m z m m

k k k m
k

m

k

m

k k k m

1 1
1

2
1

1

2 2
1 1 1

2

2 2

2 2

= + -

+ -

-
=

=
- +

!

!

] ^ ^ ^

^ ^

g h h h

h h

(A.23)

Take expectations on both sides of (A.23). Note that

k k

k k

k

k

,..., , ,..., /

,..., , ,..., /

E X f X X X

E X E f X X X

m m m

m m m

0

k k m

k k m

1 1

1 1

2 2

2 2

-

= -

=

-

-

^ ^

^ ^

h h

h h

7

7

A

A (A.24)

where the middle step follows from the stochastic independence of Xk from
(X1,…,Xk–1).

By (A.20),

k kk,..., , , ,..., /E X f X X Xm z m m 0k k k m
2 2

1 1 1
22 2 $- - +^ ^h h9 C (A.25)

with strict inequality if strict inequality holds in (A.20) and Xk is not degen-
erate.

The lemma then follows. ¡

Proof of Theorem 2. Consider Y(i) defined by (5.1), with n̂(k) defined by (3.1)
and (2.3). The observations X (g,h) involved in the n̂(k) constituting Y(i) are
just those in Di. This justifies (5.2).

Now consider (g,h) ∈ Di. Note that Lemma 1 is applicable to Y(i) because of
(5.1). Hence
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( ) ,
( )

( ) ,
( )

( ) ( ) ,
( )

,
( )

.Y i X g h
Y i

k X g h
k

k l X g h
k

X g h
l1 1 1

!
,k I i

I

k l
k l I i

I

2

2 1

2

2 1

2

2

2

2
2
2

2
2

= +
o

o
o o

o o

= -

-

= -

-

! !t

t

t t

t t

^ ^ ^ ^h h h h
(A.26)

In this equation I – i ≤ k ≤ I – 1. Since (g,h) ∈ Di it is also the case that h – 1 ≤
k ≤ I – 1 – g. This yields max{I – i, h – 1} ≤ k ≤ I – 1 – g.

Therefore, there are two cases to be considered:

• In the case h ≤ I – i one has I – i ≤ k ≤ I – 1 – g

• In the case h ≥ I – i + 1 one has h – 1 ≤ k ≤ I – 1 – g.

Case I: h ≤ I – i.

In this case

g < I – k, h ≤ k. (A.27)

Under these conditions, combination of (3.1) with (A.2) gives 

2n̂(k) / 2X (g,h) = –C (I – k –1, k +1) / T 2(I – k –1, k). (A.28)

Similarly, combination of (3.1) with (A.4) gives

22n̂(k) / 2X 2(g,h) = 2C (I – k –1, k +1) / T 3(I – k –1, k). (A.29)

Substitution of (3.1), (A.28) and (A.29) into (A.26) yields

( ) ,
( )

, ,
,

, , , ,
, ,

, ,
,

, , ,
,

Y i X g h
Y i

T I k k T I k k
C I k k

T I k k T I k k T I l l T I l l
C I k k C I l l

T I k k T I k k
C I k k

T I k k T I l l T I l l
C I l l

1 2
1 1 1

1 1

2 1 1 1 1 1 1
1 1 1 1

2 1 1 1
1 1

1
1

1 1 1
1 1

k I i

I g

l I i

k

k I i

I g

k I i

I g

l I i

k

2

2

2

1

11

1

1

#

2

2
=

- - + - -

- - +

+
- - + - - - - + - -

- - + - - +

=
- - + - -

- - +

- -
+

- - + - -
- - +

= -

- -

= -

-

= -

- -

= -

- -

= -

-

!

!!

!

!

^ ] ]

]

] ] ] ]

] ]

] ]

]

] ] ]

]

h g g

g

g g g g

g g

g g

g

g g g

g
= G

(A.30)

Note that Assumption 3 implies that T (g,h) > 0 for (g,h) ∈ Di, and so guar-
antees the existence of all ratios in (A.30).

Note also that, by (2.2), the second member within the square bracket may
be expanded as follows:

, ,
,

, ,T I l l T I l l
C I l l

T I l l T I l l1 1 1
1 1

1
1

1 1
1

- - + - -
- - +

=
- -

-
- - +] ]

]

] ]g g

g

g g
(A.31)
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Substitute (A.31) into the square bracket in (A.30) to obtain

, , ,

, , ,

, , ,
,

T I k k T I l l T I l l

T i I i T I l l T I l l

T i I i T I l l T I l l
R I l l

1
1

1
1 1

1
1

1
1 1

1
1

1

l I i

k

l I i i

k

l I i

k

l I i

k

1

1

1

- -
+

- -
-

-

=
- -

+
- -

-
-

=
- -

+
- - -

-

= -

-

= - +

= - +

= - +

! !

!

!

] ] ]

] ] ]

] ] ]

]

g g g

g g g

g g g

g

; E (A.32)

by (2.1).

Substitute (A.32) for the square bracket in (A.30) to obtain

( ) ,
( )

, ,
,

, , ,
,

.

Y i X g h
Y i

T I k k I k k
C I k k

T i I i T I l l T I l l
R I l l

1
2

1 1 1
1 1

1
1

1

k I i

I g

l I i

k

2

2 1

1

#
2

2
=

- - + - -
- - +

- -
+

- - -
-

= -

- -

= - +

!

!

^ ] ]

]

] ] ]

]

h g g

g

g g g

g
> H

(A.33)

This proves (5.3).

Case II: h > I – i.

It follows from the argument immediately preceding the proof of Case I that

g < I – k, k ≥ h – 1 (A.34)

(A.34) may be written as the two sub-cases:

k = h – 1
and 
g < I – k, h ≤ k.

Then Lemma 2 gives

, ,X g h
h

T I h h
1

1
1

2
2 -

=
- -

ot

^

]

]h

g

g
(A.35)

,X g h
h 1

02

2

2

2 -
=

ot

^

]

h

g

(A.36)

, ,
,

, ,X g h
k

T I k k
C I k k

k h g I k
1

1 1
122

2
$ #= -

- -

- - +
- -

ot

^

]

]

]

h

g

g

g
(A.37)
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, ,
,

, , .
X g h

k
T I k k
C I k k

k h g I k
1

2 1 1
12

2

32

2
$ #=

- -

- - +
- -

ot

^

]

]

]

h

g

g

g
(A.38)

Substitute (A.35) – (A.38) into (A.26) to obtain

(A.39)

( ) ,
( )

, ,

, ,

, ,

, ,
,

, ,
,

, ,
,

, , ,
,

.

Y i X g h
Y i

h X g h
h

k X g h
k

k l X g h
k

X g h
l

h X g h
h

k X g h
k

T I k k T I k k
C I k k

T I k k T I k k
C I k k

T I l l T I l l
C I l l

T I h h T I k k T I k k
C I k k

1
1

1 1 1

1

1
2 1 1

2
1 1 1

1 1

2
1 1 1

1 1
1 1 1

1 1

2
1 1 1

1 1

!
,

k h

I g

k l
k l h

I g

k h

I g

k h

I g

k h

I g

l h

k

k h

I g

2

2

2

2 1

2

2

1

1

2

1

1 1

1

2

2

2

2

2

2

2
2

2
2

2
2

2
2

=
-

-
+

+

+
-

-

=
- - + - -

- - +

+
- - + - -

- - +
- - + - -

- - +

-
- - - + - -

- - +

o
o

o
o

o o
o o

o
o

o
o

=

- -

=

- -

=

- -

=

- -

=

- -

=

-

=

- -

!

!

!

!

! !

!

t

t

t

t

t t

t t

t

t

t

t

^ ] ^

]

] ^

]

] ] ^

]

^

]

] ^

]

] ^

]

] ]

]

] ]

]

] ]

]

] ] ]

]

h g h

g

g h

g

g g h

g

h

g

g h

g

g h

g

g g

g

g g

g

g g

g

g g g

g

As in Case I, Assumption 3 guarantees the existence of all the ratios in (A.39).
Now apply (A.31) and use the same mode of calculation as led from (A.30)

to (A.33). Then (A.39) becomes:

( ) ,
( )

, ,
,

, ,
,

.

Y i X g h
Y i

T I k k T I k k
C I k k

T I l l T I l l
R I l l

1
2

1 1 1
1 1

1

k h

I g

l h

k

2

2 1

#
2

2
=

- - + - -
- - +

- - -
-

=

- -

=

!

!

^ ] ]

]

] ]

]

h g g

g

g g

g
(A.40)

This proves (5.4). ¡

Proof of Theorem 3. Consider Y(i) defined by (5.1). By Theorem 2,

22Y(i) / 2X 2(g,h) ≥ 0 for all (g,h)

with strict inequality for some (g,h), namely those in Di. It follows from a mul-
tivariate form of Jensen’s inequality (see Lemma 3) that

( ) >E Y i i kY
k I i

I 1

= o
= -

-

% r] ]g g6 @ (A.41)
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where Y(i) is the value obtained by replacing each X (g,h) in Y(i) by its expec-
tation, and n (k) is similarly defined.

By (3.1),

, / ,

, / , ( . )

, . .

k E T I k k E T I k k

E R g k E R g k

k

by

byj

1 1 1

1 2 3

4 5
g

I k

g

I k

0

1

0

1

= - - + - -

= +

=

o

=

- -

=

- -

! !

r ] ] ]

^ ^

] ]

g g g

h h

g g

6 6

6 6 6

@ @

@ @ @ (A.42)

Substitute (A.42) in (A.41):

> , / ,E Y i k E R i I E R i I ij
k I i

I 1

= -
= -

-

%] ] ] ]g g g g6 6 6@ @ @ (A.43)

by (4.5). This proves (5.5).

Now take expectations on both sides of (3.2):

, , > , , ..E i I E R i I i E Y E R i I by AR 34= -] ] ] ]g g g g7 6 6 6A @ @ @ (A.44)

The first step leading to (A.44) is justified as follows. Y(i) is defined by (5.1)
and n̂(k) by (3.1), which shows that the rows of X involved in Y(i) are 0,1,…,
i – 1. Thus, R (i,I – i) and Y(i) are stochastically independent.

¡
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