
COMMITTEE OF ASTIN

Hans BÜHLMANN Honorary Chairman

David G. HARTMAN Chairman
dhartman@chubb.com

Jean H. LEMAIRE Vice Chairman (IAA-Delegate)
lemaire@wharton.upenn.edu

Henk J. KRIEK Secretary
kriekh@tillinghast.com

Nino SAVELLI Treasurer

Paul EMBRECHTS Editor

Members
Chris D. DAYKIN Yasuhide FUJII Christian HIPP

Tor EIVIND HOYLAND Edward J. LEVAY Charles LEVI

W. James MACGINNITIE (IAA-Delegate) Harry H. PANJER

COMMITTEE OF AFIR

Jean BERTHON Chairman
Alf GULDBERG Vice Chairman
Mike BARKER Secretary
Bill CHINERY Treasurer

Members
Peter ALBRECHT Arnaud CLEMENT-GRANDCOURT Eric THORLACIUS

Carla ANGELA Tor EIVIND HOYLAND David WILKIE

Robert CLARKSON Catherine PRIME (IAA nominee)

None of the COMMITTEES OF ASTIN or AFIR, or PEETERS s.a. are responsible for statements made or
opinions expressed in the articles, criticisms and discussions published in ASTIN BULLETIN.

A
S

T
IN

 B
U

L
L

E
T

IN
P

E
E

T
E

R
S

V
olum

e 33,N
o.2

N
ovem

ber 2003


�� 
������ �� ��� ��
�� ��� ���� �������� �� ���
������������� ��������� �����������

EDITORS:

Andrew Cairns

Paul Embrechts

CO-EDITORS:

Stephen Philbrick

John Ryan

EDITORIAL BOARD:

David Dickson

Alois Gisler

Marc Goovaerts

Mary Hardy

Christian Hipp

Jean Lemaire

Gary Parker

Jukka Rantala

Robert Reitano

Uwe Schmock

René Schnieper

Gary Venter

Shaun Wang

ISSN 0515-0361

Volume 33, No 2 November 2003

CONTENTS

EDITORIAL 113

DISCUSSION ARTICLES

K.K. AASE, S.-A. PERSSON
New Econ for Life Actuaries 117

H. BÜHLMANN
Comment on the Discussion Article by Aase and Persson 123

ARTICLES

P. BOYLE, M. HARDY
Guaranteed Annuity Options 125

H. BÜHLMANN, E. PLATEN
A Discrete Time Benchmark Approach for Insurance and Finance 153

M.J. GOOVAERTS, R. KAAS, J. DHAENE, Q. TANG
A Unified Approach to Generate Risk Measures 173

C. HIPP, M. VOGT
Optimal Dynamic XL Reinsurance 193

F. LINDSKOG, A.J. MCNEIL
Common Poisson Shock Models: Applications to Insurance and
Credit Risk Modelling 209

A.J. MATA
Asymptotic Dependence of Reinsurance Aggregate Claim Amounts 239

R. NORBERG
The Markov Chain Market 265

M.I. OWADALLY
Pension Funding and the Actuarial Assumption Concerning Investment 
Returns 289

G. TAYLOR
Chain Ladder Bias 313

M.V. WÜTHRICH
Claims Reserving Using Tweedie’s Compound Poisson Model 331

PEETERS

continued on next page



WORKSHOP

T. ALBRECHT
Interest-rate Changes and the Value of a Non-life Insurance Company 347

V. BRAZAUSKAS, R. SERFLING
Favorable Estimators for Fitting Pareto Models: A Study Using
Goodness-of-fit Measures with Actual Data 365

F. DE JONG, J. WIELHOUWER
The Valuation and Hedging of Variable Rate Savings Accounts 383

J.P. NIELSEN, S. SPERLICH
Prediction of Stock Returns: A New Way to Look at It 399

S. PITREBOIS, M. DENUIT, J.-F. WALHIN
Setting a Bonus-Malus Scale in the Presence of Other Rating Factors:
Taylor’s Work Revisited 419

BOOK REVIEW

H. WATERS
Rob Kaas et al., ‘Modern Actuarial Risk Theory’ 437

D. WILKIE
Mary Hardy, ‘Investment Guarantees: Modelling and Risk Management
for Equity-linked Life Insurance’ 439

MISCELLANEOUS

Report on the XXXIV International ASTIN Colloquium 449

Report on the International AFIR Colloquium 2003 453

International Conference on “Dependence Modelling: Statistical Theory
and Applications to Finance and Insurance”, Quebec City, 2004 455

XXXV International ASTIN Colloquium, Bergen, 2004 456

3rd Conference in Actuarial Science and Finance, Samos, 2004 457

Job Advertisements 459

EDITORIAL POLICY

ASTIN BULLETIN started in 1958 as a journal providing an outlet for actuarial studies in non-life
insurance. Since then a well-established non-life methodology has resulted, which is also applicable to
other fields of insurance. For that reason ASTIN BULLETIN has always published papers written from
any quantitative point of view – whether actuarial, econometric, engineering, mathematical, statistical,
etc. – attacking theoretical and applied problems in any field faced with elements of insurance and risk.
Since the foundation of the AFIR section of IAA, i.e. since 1988, ASTIN BULLETIN has opened its
editorial policy to include any papers dealing with financial risk.

We especially welcome papers opening up new areas of interest to the international actuarial profession.

ASTIN BULLETIN appears twice a year (May and November).

Details concerning submission of manuscripts are given on the inside back cover.

MEMBERSHIP

ASTIN and AFIR are sections of the International Actuarial Association (IAA). Membership is open
automatically to all IAA members and under certain conditions to non-members also. Applications
for membership can be made through the National Correspondent or, in the case of countries not
represented by a national correspondent, through a member of the Committee of ASTIN.

Members of ASTIN and AFIR receive ASTIN BULLETIN as part of their annual subscription.

SUBSCRIPTION AND BACK ISSUES

Subscription price: 80 Euro.

Payments should be sent to Peeters, Bondgenotenlaan 153, B-3000 Leuven, Belgium.

To place your order or make an inquiry please contact: Peeters, Journals Department, Bondgenoten-
laan 153, B-3000 Leuven, Belgium or e-mail: peeters@peeters-leuven.be

Orders are regarded as binding and payments are not refundable.

Subscriptions are accepted and entered by the volume. Claims cannot be made 4 months after publication
or date of order, whichever is later.

INDEX TO VOLUMES 1-27

The Cumulative Index to Volumes 1-27 is also published for ASTIN by Peeters at the above address and
is available for the price of 80 Euro.

Copyright © 2003 PEETERS



EDITORIAL

The Combination of Theory and Practice as well as Finance and Insurance
is a successful formula

Astin meetings are held in high regard and affection by the attendees; both aca-
demics and practitioners. There is a history of regular attendance, which indi-
cates the value the participants place on the meetings. The Astin Bulletin has
an excellent reputation in the insurance industry and its articles are regularly
cited and continuously referred to by other journals. However there is a school
of thought that it is all too theoretical and is therefore of limited interest to
the practising actuary. As a practising actuary, I have not found this to be the
case and without fail find practical ideas and applications from each Astin
meeting I attend and also each edition of the Astin Bulletin I read.

THE IMPORTANCE OF THEORY
Actuaries need to have a sound theoretical base to undertake their work. This
is particularly true of the general insurance and investment fields. It is very easy,
in both these areas, to believe that one is undertaking sound analyses while actu-
ally making serious mistakes or performing sub-optimally if one is not up to
date with all the theoretical developments. It is important in this context to
realise that ‘You don’t know what you don’t know’. Unfortunately this is all
too common among actuaries who pride themselves on their practicality.

DFA is a case in point. It is regarded as a very practical subject, but it is
surprising the number of DFA practitioners who have not kept up with recent
developments. The use of copulas to handle tail dependency rather than naively
assuming independence, has a major impact on capital allocation. This theory
is not new, though the ability to use it computationally is a phenomenon of
the reduction in the cost of computing power. Consequently, it has recently
become much more useful to the practitioner. There have been a number of
Astin papers that have analysed the application of copulas further and also
adapted them to modern computing technology including covering many of the
practical issues of choosing which copula to use.

Some of the developments in the theory of risk measures are also very
relevant to capital allocation and DFA. The theory can seem very abstract but
the use of non-coherent risk measures can dramatically distort the results and
cause wrong decisions to be made. A good example is the use of Var as a risk
measure. It is widely used in the banking world for market risk and where
work on capital allocation preceded that in the insurance industry. Consequently
there is a temptation in diversified financial groups to use Var as a capital allo-
cation tool for insurance risks. When that is done, it is usually with disastrous
results as there will often be an understatement of the capital requirements
for the insurance risks. Without understanding the theoretical reasons as to why



this occurs is a recipe for disaster. Var works for banks for market risk because
the risks are largely symmetrical. Under these circumstances Var will order
risks in the same way as a number of coherent risk measures. However this is
not the case with skew risks, especially if there are tail dependencies. This is
usually the situation for insurance companies and also for operational risk.
Some very large financial institutions have made some serious mistakes as a
result of not being aware of the relevant theory. For the individual actuary there
is the real risk of a career ending in tears by not being up to speed with the
theory. There are also very serious implications for the profession as a whole.

Another development is pricing methodology. The work by Wang, Panjer
et al is of major importance in providing consistent ways of pricing across
markets and perhaps even more practically for measuring the relative attrac-
tiveness of different markets or of measuring the underwriting cycle. A major
practical problem is how to maintain consistency within an organisation. The
Wang transform provides an approach that allows practical and readily imple-
mentable methodology to solve an insurance company management problem
that would otherwise be an extremely complex organisational issue.

Often the practical actuary can utilise what superficially seem to be very
theoretical papers. For example, practising actuaries are not usually interested
in probabilities of ruin and hence may be tempted to dismiss the many papers
dealing with approximations to it to be merely of interest to the academics.
However these formulae also provide an approximation to the claim frequency
on an excess of loss contract. Simple appreciation of this fact allows the
practising actuary to utilise the work in this area and thus streamline the
pricing. I have found judicial reading of such articles to be a fruitful source of
ideas.

ASTIN WELCOMES PRACTICAL PAPERS
The Astin Bulletin would welcome more papers by practising actuaries. Indeed
this would create a virtuous circle of creating more interest in the application
of theoretical developments which in turn would encourage more academic
work in this area and also more practising actuaries to participate in Astin.

It would also encourage academicians to solve problems that were com-
plex but for which practically important. Assumptions that are mathematically
convenient or elegant are not helpful to the practitioner. Solutions to problems
that are very complex are invaluable. The academics can identify fruitful areas
for them to research by understanding where the problems lie for the practi-
tioner. In any event, actuarial science is an applied science and therefore by defi-
nition must have its roots in the real world and produce relevant applications.

However it is important that Astin does not let its academic standards
slip, especially in the Bulletin. It is important that it has a high reputation for
academic rigour not only to maintain its reputation and attract academics to
publish articles. The two are not incompatible and also demonstrate to the
practitioner the importance of correct theory. However the discussions at meet-
ings cover many more of the practical aspects. This is not surprising and a
forum for transmitting these to a wider audience would be of value to the
whole profession.
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CONVERGENCE OF FINANCIAL MARKETS
The Astin Bulletin now incorporates the Journal of the Afir Section of the IAA.
This is not just an administrative convenience or a consequence of banking and
insurance converging. It is also of immense use to the practising and acade-
mic actuary alike as it allows ideas in one area to be more easily utilised in the
other. Furthermore an analysis of the different techniques provides some
insights into the differences of the two areas. For example, much of the pricing
methodology in general insurance is based on the assumption that the risk will
be held on the balance sheet of the insurer and not traded( there is no real
market place or natural short sellers for most insurance risks). However the
banking approach assumes a market based approach and the corresponding
pricing methodologies. This requires markets to exist and the ability to diversify
risk. This is not possible if the risks are too large for the number of partici-
pants in the market place. Hence the ‘insurance pricing models’ will be required
with corresponding charges for risk. However for something that can be readily
diversified, then it is likely that a market based risk charge can apply. This also
has implications for the relative pricing of reinsurance versus insurance.

Diversification by risk and also by risk class is something that the actuary
can learn from the different approaches. Financial risks usually have significant
correlations and/or tail dependencies that diversification is used to mitigate.
However this is often not the case between physical risks. Thus earthquake
risk is only correlated across zones and not world wide whereas there are world
wide correlations on credit risks and hence the problems that some insurers ran
into in recent years when they did not realise this.

Another area is risk. Many insurance company actuaries (and indeed many
nor-actuaries) intuitively believe that high risk should be handled by high
discount rates. They do not understand that this gives the wrong answers and
the need for risk neutral probabilities, martingales etc. This is an issue not just
of theory but of being exposed to different techniques. It is also an area where
incorrect methodology gives rise to wrong decisions and is heavily biased
towards long term projects.

THE FUTURE
I believe that the combination of academic and practitioner, of finance and
insurance is a powerful one. Provided we can all co-operate and communicate
together the future is bright and that we will all benefit from each other and
that the sum of the parts is much greater than the whole. Failure to keep up with
modern developments even if they seem abstruse, mathematically complicated
and difficult to apply in practice is not a sign of a lack of practicality but more
of a high risk strategy to both the individual and the profession.
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NEW ECON FOR LIFE ACTUARIES

BY

KNUT K. AASE AND SVEIN-ARNE PERSSON*

ABSTRACT

In an editorial in ASTIN BULLETIN, Hans  Bühlmann (2002) suggests it is time
to change the teaching of life insurance theory towards the real life challenges
of that industry. The following note is a response to this editorial. In Bergen we
have partially taught the NUMAT, or the NUMeraire based Actuarial Teach-
ing since the beginning of the 90’s at the Norwegian School of Economics and
Business Administration (NHH). In this short note we point out that there
may be some practical problems when these principles are to be implemented.

1. ACTUARIAL MATHEMATICS VS FINANCIAL ECONOMICS

As recognized by Bühlmann the model used in Life Insurance Mathematics is
built on the two elements: (i) mortality, and (ii) time value of money. This is,
however, not sufficient to comprise a consistent pricing theory of a financial
product, such as a private life insurance contract, a pension or an annuity.
It is rather remarkable that mathematicians have, for more that 200 years,
arrogantly (or more precisely, ignorantly) disregarded any economic principles
in pricing such products (or any other insurance products for that matter).
It should not come as a surprise that it is rather natural to use the economic
theory of contracts to study — insurance contracts.

Financial pricing of life insurance contracts often starts by assuming the
existence of a market of zero coupon bonds. The market price at time zero B0(t)
of a default free unit discount bond maturing at the future time t is typically
given by the formula

( ) ,B t E e ( )Q r s ds
0

t
0= -#

% / (1)

where r(t) is the spot interest rate process, and Q is a risk adjusted probability
measure equivalent to the originally given probability P. Standard references
such as Heath, Jarrow, and Morton (1992) or Duffie (2001) show that most
popular term structure models lead to this representation of the market price
of a unit disount bond.

1 In addition to the response from Hans Bühlmann, the authors appreciate the comments from Editor
Andrew Cairns.
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Without going into further technical details regarding such models, let us
consider some standard actuarial formulae for the most common life insurance
contracts. We consider first the two building blocks for life and pension insur-
ance regarding one life: pure endowment insurance and whole life insurance.
We start with the former, stating that “one unit’’ is to be paid to the insured
if he is alive at time t. Let t px be the probability that a person of age x shall
still be alive after time t. That is, if Tx represents the remaining life time of an
x year old representative insurance customer at the time of initiation of an
insurance contract, then t px =P(Tx > t). In the traditional framework, the single
premium for a pure endowment insurance is

x ,E e p e( )
t

ds
t x

td m dx s
t

0= =- + -+# (2)

where d is the “force of interest’’, or technical interest rate, and mx is the death
rate of an x year old insurance buyer. On the other hand, the above formula
reads in the new language

( ),E p B tt x
M

t x 0= (3)

provided the mortality risk is “diversifiable’’, or uncorrelated with the finan-
cial risk and “unsystematic’’. The superscript M will be used to indicate marked
based valuation. Notice that the difference between (2) and (3) is how we value
the “unit’’ at the inception of the contract.

The simplest way to show relation (3) is as follows: Let I(Tx > t) denote the
indicator function of the event (Tx > t), i.e., I(Tx > t) = 1 if Tx > t and zero other-
wise. Observe that E(I(Tx > t)) = t px.

By financial theory the market value of the above contract is

x
,E E e I( )

( > )t x
r s ds

T t
M Q t

0= -#
% /

where EQ{·} denotes the expectation under an equivalent martingale measure Q.
The expectation under the measure Q can alternatively be written

x x
,E e I E e Iz( )

( > )
( )

( > )
r s ds

T t t
r s ds

T t
Q t t

0 0=- -# #
% %/ /

where zt is the “density’’ process, i.e., ep z ( )
t t

r s dst

= -
0

# is a state price. Under
the stipulated conditions the state price depends only on market variables, in
this case the interest rate process, and is thus independent of the random vari-
able Tx. By this independence we get:

x x
,E e I E e E I E e pz z( )

( > )
( )

( > )
( )

t
r s ds

T t t
r s ds

T t
r s ds

t x
Qt t t

0 0 0= =- - -# # #
` j% % %/ / /

the first equality follows from independence, the second from from properties
of the probability measure Q. The result finally follows from expression (1).
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Turning to the other building block in life insurance, the whole life insurance
contract, here “a unit’’ is payable upon death. The single premium is denoted
by Ax, and is given by the formula

p e dtdA 1x t x
td

0
= -

3
-# (4)

in the traditional approach, while in the new approach it is given by

( )p B t dtA 1x t x
M

00
= +

3 �# (5)

where B�0(t) = ( )
( )
t

B t0

2

2
. Here the difference between (4) and (5) stems from how

we compute time changes in the present value of the “unit’’ in the two different
models. Again it is the difference in how we value the “unit’’ in a dynamic
financial market based framework that matters.

From these two contracts all the other standard contracts could easily be
developed. One example which we use below is term insurance, i.e., “a unit” is
payable upon death, but only if death occurs before a given horizon T. The sin-
gle premium A :x T

1
e
of the term insurance contract can be expressed as

,A e pA: :x T x T
T

T x
d= -1

e e
(6)

where p e dtdA 1:x T t x
tT d= - -

0e
# , is the single premium of the endowment insur-

ance. In the new language this formula becomes

( ) ,A B T pA:
,

:x T x T T x
M M1

0= -e e (7)

where 0( )p B t dtA 1:x T t x
TM = +

0e
�# .

This approach would also be the starting point for valuing guarantees, and
other financial derivatives that exist in this industry today. Other numeraires
than the zero cupon bond would have to be considered as the contracts may
be related to different portfolios of financial primitives.

The principles described above were indeed included in an elementary text-
book in insurance mathematics (see1 Aase (1996)) already in the beginning
of the 90’s. At NHH this could be easily done, in the Humboltian tradition,
since our program does not have any formal ties, or strings attached to the
actuarial profession, and could e.g., ignore any legal aspects or accounting
standards2.
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2 Some universities have, in our view, a too close connection to the professional industry, which in

some cases may actually hamper the natural development of the field.



POSSIBLE PROBLEMS WITH THE NEW APPROACH

There are several scientific papers on the issues raised above3, but our aim is
not to give a complete account of these here. We would, however, like to point
out a few difficulties with the new approach.

First, the above price B0(t) could, according to Bühlmann (2002), “be read
in today’s newspaper’’. A quick look at the existing markets for bonds reveals
that this is not possible, not even in highly liquid markets such as the UK Mar-
ket, see e.g., Davis and Mataix-Pastor (2003). On the contrary, there is a seri-
ous “missing markets’’ problem, meaning that the complete term structure
for maturities longer than 1 year must typically be extracted from only a small
number (maybe not more than two or three) of bond prices.

The above formulae require, on the other hand, the functions B0(t) to be
given for all t, and moreover, this should be possible at every instant, e.g., at
every day, as time goes.

Even if this difficulty could be partially overcome technically, by smooth-
ing the yield curve (see e.g., Adams and van Deventer (1994) or Cairns (1998)),
the issuer of the insurance products would face a second problem, this time of
a pedagogical nature: Identical and long term insurance contracts may obtain
discernible different single premia on consecutive days, or even within the same
day. This difference would thus be due to daily (or intra-daily!) fluctuations in
the financial market, ceteris paribus. None of these issues arise in the traditional
approach, which is based on a so-called technical interest rate, completely sep-
arated from real world financial market conditions.

Let us illustrate the latter problem here. We use term structure data for the
Norwegian market4 from the first Friday of each month in 2002. Daily obser-
vations of the 1 year, 3 year, 5 year, and 10 year interest rates were available.
These observations were interpolated to obtain the 2 year, 4 year, and the 6-9
year interest rates. Single premiums for a 10 year pure endowment and 10 year
term insurance were calculated using the Norwegian N 1963 mortality table.
The benefit is normalized to 100.

Table 1 only reports monthly changes in single premiums, and thus, does
not illustrate the potential problem of daily or even intra-daily price fluctua-
tions. However, Table 1 does indicate that monthly price changes may vary
from 0.47% to 3.44% for pure endowment single premiums. Actually, the aver-
age monthly change in the pure endowment single premium is 1.6%. For term
insurance the monthly changes in single premiums are less, from 0.02%
to 1.87%, with an average (over the 3 age groups) of the mean montly price
change of 0.92%.

The volatility of a financial asset is the (annualized) square root of the
instantaneous variance of the logarithmic return. We estimated the volatilities
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3 The authors have been involved e.g., in the following articles: See Persson (1998); Bacinello and
Persson (2002) for pricing of life insurance under stochastic interest rates, Persson and Aase (1997);
Miltersen and Persson (1999, 2003) for guarantees in life insurance, Miltersen and Persson (1999)
also briefly discuss different numeraires.

4 Found at www.norges-bank.no.



of the same 6 contracts used as examples in Table 1, but now based on daily
observations from 2002. The volatilities of all three pure endowment contracts
are identical and equal to 6.73%, which by the very nature of this contract is
the same as the volatility of the 10 year bond. The volatility of the term insur-
ance contracts are 3.47%, 3.45%, and 2.76%, for an insurance customer of age
of 40, 60, and 80 years, respectively, at the inception of the contract. These
volatilities are roughly of the same magnitude as the average of the volatilities
of the 1-10 year bonds, estimated to 3.26% from the data.

Also notice that 10 years is a relative short horizon for a life insurance or
pension contract. Both the problem of “missing markets” and of fluctuations
of the single premiums are expected to be more severe for contracts with longer
horizons.

CONCLUSIONS

We have pointed out that the approach of using financial market data to
price life insurance and pension contracts may lead to substantial variations
in the premiums charged. The variations are due to financial market volatility,
rather than any differences in idiosyncratic risk. The data period we have picked
is very normal, and one can easily envision substantially more discernable effects
in more volatile times, and in financial markets in other countries of the world.
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TABLE 1

Date Pure endowment Term Insurance
40 year 60 year 80 year 40 year 60 year 80 year

Jan 4, 02 52,26 42,36 9,90 3,09 16,00 62, 25
Feb 1, 02 52,02 42,16 9,85 3,06 15,82 61,53
Mar 1, 02 51,39 41,65 9,73 3,04 15,72 61,19
Apr 5, 02 50,38 40,84 9,54 3,02 15,63 61,02
May 3, 02 50,01 40,53 9,47 2,99 15,49 60,49
Jun 7, 02 48,94 39,67 9,27 2,95 15,25 59,67
Jul 5, 02 49,87 40,42 9,45 2,98 15,41 60,17
Aug 2, 02 51,58 41,81 9,77 3,03 15,70 61,05
Sep 6, 02 53,16 43,08 10,07 3,09 15,98 61,95
Oct 4, 02 52,86 42,84 10,01 3,08 15,96 61,93
Nov 1, 02 52,56 42,60 9,96 3,09 15,97 62,05
Dec 6, 02 53,46 43,33 10,13 3,12 16,15 62,63

Single premiums for pure endowment and term insurance contracts with benefit 100 and 10 years horizon for
male insurance customer with age 40, 60, and 80 years, respectively, at the inception of the contract. Single
premiums are calculated by NUMAT as follows: Equation (3) is used for the pure endowment contract. For
the term insurance contract we have discretized equation (7). First observe that ( ) ( )A f t B t dt

:x T x

T

0
0

=, M1

e
# where

fx(t) = mx+t t px represents the probability density of an x-year old person’s remaining life time. Then A
:x 10

, M1

e
is

discretized as 
i 1=

( )q B ix 0

10

i 1-
! , where <Pri q i T i1 1

x x
#- = -^ h represents the probability of an x-year

old customer to die in year i after the contract is initiated. The single premiums are calculated using the
prevailing term structure from the first Friday of each month in 2002 and the N 1963 mortality table.
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COMMENT ON THE DISCUSSION ARTICLE BY AASE AND PERSSON

I applaud the article as it is exactly the type of reaction to my editorial in
Astin Bulletin 32(2) that I hoped to provoke. Of course Aase and Persson’s
contribution is much more academic in style than mine which is more journa-
listic.

To my understanding there are three important messages on which every
reader of their article should reflect.

Message 1: The kind of NUMeraire based Actuarial Teaching (NUMAT)
which I have advocated has been offered since the beginning of the 90ties
at the Norwegian School of Economics and Business Administration in
Bergen and there exists even an elementary textbook [1] covering that subject
(unfortunately only in Norwegian language).

Message 2: The structure of Zero Coupon Prices needed is not so easy to get
as my editorial suggested (“You can look it up in the Financial Part of
your daily newspaper’’). Of course my wording was a tribute to the jour-
nalistic style. To talk as a scientist I would like to mention that in a recent
Diploma Thesis at ETH [2] we have interpolated from LIBOR Forward
Short Rates and from SWAP Rates to get the Zero Coupon Prices. Obvi-
ously in any real world implementation there is the necessity for modelling
the market prices and the daily newspaper does not suffice.

Message 3: Prices calculated by NUMAT are indeed volatile! This lesson
should be learned by every actuary. It means that the products sold by Life
Insurers have substantially varying market value.

As hinted in my editorial I would see the practical role of NUMAT for cal-
culating Embedded Value rather than for calculating Premiums. I take again
an example from the above mentioned Diploma Thesis:

Take an Endowment Policy (x = 50, n = 5, sum insured 50 000 CHF). Accord-
ing to the Swiss Table EKM 95 the yearly premium amounts to 9375.21 CHF.
The value of the initial reserve by NUMAT amounts to

– CHF 2325.45 based on the Zero Coupon Structure of May 2000,
– CHF 11.67 based on the Zero Coupon Structure of November 2002.

As the classical initial net reserve is nil you get the Economic Value by changing
the sign. Hence your pretty Embedded Value in May 2000 has disappeared in
November 2002.

This is again a lesson to be learned by everybody who boosts with the
“wonderful Embedded Value’’ in her/his Life Portfolio! Embedded Value is
extremely volatile and needs to be monitored continuously.
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The last message is my own:

Message 4: I hope to hear from other colleagues that they are already offering
Numeraire based Actuarial Teaching. So far the signal from Bergen is the
only one that I have received. Clearly, there are research papers where
the economic value of insurance products is discussed and explicitly cal-
culated. The point which I tried to make in my editorial was however:
NUMAT should be part of the educational curriculum of every actuary.
We academics are challenged to get the fundamental way of thinking over
to the profession!
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GUARANTEED ANNUITY OPTIONS

BY

PHELIM BOYLE AND MARY HARDY1

ABSTRACT

Under a guaranteed annuity option, an insurer guarantees to convert a poli-
cyholder’s accumulated funds to a life annuity at a fixed rate when the policy
matures. If the annuity rates provided under the guarantee are more beneficial
to the policyholder than the prevailing rates in the market the insurer has to
make up the difference. Such guarantees are common in many US tax sheltered
insurance products. These guarantees were popular in UK retirement savings
contracts issued in the 1970’s and 1980’s when long-term interest rates were
high. At that time, the options were very far out of the money and insurance
companies apparently assumed that interest rates would remain high and thus
that the guarantees would never become active. In the 1990’s, as long-term
interest rates began to fall, the value of these guarantees rose. Because of the
way the guarantee was written, two other factors influenced the cost of these
guarantees. First, strong stock market performance meant that the amounts to
which the guarantee applied increased significantly. Second, the mortality
assumption implicit in the guarantee did not anticipate the improvement in
mortality which actually occurred.

The emerging liabilities under these guarantees threatened the solvency of
some companies and led to the closure of Equitable Life (UK) to new business.
In this paper we explore the pricing and risk management of these guarantees.

1. INTRODUCTION

1.1. An introduction to guaranteed annuity options

Insurance companies often include very long-term guarantees in their products
which, in some circumstances, can turn out to be very valuable. Historically
these options, issued deeply out of the money, have been viewed by some insur-
ers as having negligible value. However for a very long dated option, with a
term of perhaps 30 to 40 years, there can be significant fluctuations in economic
variables, and an apparently negligible liability can become very substantial.
The case of guaranteed annuity options (GAOs) in the UK provides a dramatic
illustration of this phenomenon.

1 Both authors acknowledge the support of the National Science and Engineering Research Council
of Canada.
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Guaranteed annuity options have proved to be a significant risk man-
agement challenge for several UK insurance companies. Bolton et al (1997)
describe the origin and nature of these guarantees. They also discuss the fac-
tors which caused the liabilities associated with these guarantees to increase so
dramatically in recent years. These factors include a decline in long-term inter-
est rates and improvements in mortality. For many contracts the liability is
also related to equity performance and in the UK common stocks performed
very well during the last two decades of the twentieth century.

Under a guaranteed annuity the insurance company guarantees to convert
the maturing policy proceeds into a life annuity at a fixed rate. Typically, these
policies mature when the policyholder reaches a certain age. In the UK the most
popular guaranteed rate for males, aged sixty five, was £111 annuity per annum
per £1000 of cash value, or an annuity:cash value ratio of 1:9 and we use this
rate in our illustrations. If the prevailing annuity rates at maturity provide an
annual payment that exceeds £111 per £1000, a rational policyholder would opt
for the prevailing market rate. On the other hand, if the prevailing annuity
rates at maturity produce a lower amount than £111 per £1000, a rational pol-
icyholder would take the guaranteed annuity rate. As interest rates rise the
annuity amount purchased by a lump sum of £1000 increases and as interest
rates fall the annuity amount available per £1000 falls. Hence the guarantee cor-
responds to a put option on interest rates. In Sections two, three and four we
discuss the option pricing approach to the valuation of GAOs.

These guarantees began to be included in some UK pension policies in the
1950’s and became very popular in the 1970’s and 1980’s. In the UK the inclu-
sion of these guarantees was discontinued by the end of the 1980’s but, given
the long-term nature of this business, these guarantees still affect a significant
number of contracts. Long-term interest rates in many countries were quite high
in 1970’s and 1980’s and the UK was no exception. During these two decades
the average UK long-term interest rate was around 11% p.a. The interest rate
implicit in the guaranteed annuity options depends on the mortality assump-
tion but based on the mortality basis used in the original calculations the
break-even interest rate was in the region of 5%-6% p.a. When these options
were granted, they were very far out of the money and the insurance companies
apparently assumed that interest rates would never fall to these low levels again2

and thus that the guarantees would never become active. As we now know this
presumption was incorrect and interest rates did fall in the 1990’s.

The guaranteed annuity conversion rate is a function of the assumed inter-
est rate and the assumed mortality rate. Bolton et al note that when many of
these guarantees were written, it was considered appropriate to use a mortality
table with no explicit allowance for future improvement such as a(55). This
is a mortality table designed to be appropriate for immediate life annuities
purchased in 1955, but was still in vogue in the 1970s. However, there was a
dramatic improvement in the mortality of the class of lives on which these
guarantees were written during the period 1970-2000. This improvement meant
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that the break-even interest rate at which the guarantee kicked in rose. For
example, for a 13-year annuity-certain, a lump sum of 1000 is equivalent to an
annual payment of 111 p.a. at 5.70%. If we extend the term of the annuity to
sixteen years the interest rate rises to 7.72%. Hence, if mortality rates improve
so that policyholders live longer, the interest rate at which the guarantee
becomes effective will increase. In Section 2 we will relate these break-even rates
to appropriate UK life annuity rates.

1.2. A typical contract

To show the nature of the GAO put option we use standard actuarial nota-
tion, adapted slightly. Assume we have a single premium equity-linked policy.
The contract is assumed to mature at T, say, at which date the policyholder is
assumed to be age 65. The premium is invested in an account with market
value S(t) at time t, where S(t) is a random process. The market cost of a life
annuity of £1 p.a. for a life age 65 is also a random process. Let a65(t) denote
this market price.

The policy offers a guaranteed conversion rate of g = 9. This rate deter-
mines the guaranteed minimum annuity payment per unit of maturity pro-
ceeds of the contract; that is, £1 of the lump sum maturity value must purchase
a minimum of £1/g of annuity.

At maturity the proceeds of the policy are S(T); if the guarantee is exercised
this will be applied to purchase an annuity of S(T)/g, at a cost of (S(T)/g) a65(T).
The excess of the annuity cost over the cash proceeds must be met by the insurer,
and will be

( )
( ) ( )g

S T
a T S T65 -

If a65(T) < 9 the guarantee will not be exercised and the cash proceeds will be
annuitized without additional cost.

So, assuming the policyholder survives to maturity, the value of the guaran-
tee at maturity is

( )
( )

,maxS T g
a T

1 065 -d n= G (1)

The market annuity rate a65(t) will depend on the prevailing long-term inter-
est rates, the mortality assumptions used and the expense assumption. We will
ignore expenses and use the current long-term government bond yield as a proxy
for the interest rate assumption. We see that the option will be in-the-money
whenever the current annuity factor exceeds the guaranteed factor, which is
g = 9 in the examples used in this paper.

We see from equation (1) that, for a maturing policy, the size of the option
liability will be proportional to S(T): the amount of proceeds to which the
guarantee applies. The size of S(T) will depend on the nature of the contract
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and also on the investment returns attributed to the policy. The procedure by
which the investment returns are determined depends on the terms of the
policy. Under a traditional UK with profits contract profits are assigned using
reversionary bonuses and terminal bonuses. Reversionary bonuses are assigned
on a regular basis as guaranteed additions to the basic maturity value and are
not distributed until maturity. Terminal bonuses are declared when the policy
matures such that together with the reversionary bonuses, the investment expe-
rience over the term of the contract is (more or less) fully reflected. The size
of the reversionary bonuses depends both on the investment performance of
the underlying investments and the smoothing convention used in setting the
bonus level. The terminal bonus is not guaranteed but during periods of good
investment performance it can be quite significant, sometimes of the same
order as the basic maturity sum assured. Bolton et al (1997) estimate that with
profits policies account for eighty percent of the total liabilities for contracts
which include a guaranteed annuity option. The remaining contracts which
incorporate a guaranteed annuity option were mostly unit-linked policies.

In contrast to with profits contracts, the investment gains and losses under
a unit-linked (equity-linked) contract are distributed directly to the policyholder’s
account. Contracts of this nature are more transparent than with profits poli-
cies and they have become very popular in many countries in recent years. Under
a unit-linked contract the size of the option liability, if the guarantee is oper-
ative, will depend directly on the investment performance of the assets in which
the funds are invested. In the UK there is a strong tradition of investing in
equities and during the twenty year period from 1980 until 2000 the rate of
growth on the major UK stock market index was a staggering 18% per annum.

In this paper we consider unit-linked policies rather than with profits. Unit-
linked contracts are generally well defined with little insurer discretion. With
profits policies would be essentially identical to unit-linked if there were no
smoothing, and assuming the asset proceeds are passed through to the policy-
holder, subject to reasonable and similar expense deductions. However, the
discretionary element of smoothing, as well as the opaque nature of the invest-
ment policy for some with profits policies make it more difficult to analyse
these contracts in general. However, the methods proposed for unit-linked con-
tracts can be adapted for with profits given suitably well defined bonus and asset
allocation strategies.

1.3. Principal factors in the GAO cost

Three principal factors contributed to the growth of the guaranteed annuity
option liabilities in the UK over the last few decades. First, there was a large
decline in long-term interest rates over the period. Second, there was a signif-
icant improvement in longevity that was not factored into the initial actuarial
calculations. Third, the strong equity performance during the period served
to increase further the magnitude of the liabilities. It would appear that these
events were not considered when the guarantees were initially granted. The
responsibility for long-term financial solvency of insurance companies rests
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with the actuarial profession. It will be instructive to examine what possible
risk management strategies could have been or should have been employed to
deal with this situation. It is clear now with the benefit of hindsight that it was
imprudent to grant such long-term open ended guarantees of this type.

There are three main methods of dealing with the type of risks associated
with writing financial guarantees. First, there is the traditional actuarial reser-
ving method whereby the insurer sets aside additional capital to ensure that the
liabilities under the guarantee will be covered with a high probability. The
liabilities are estimated using a stochastic simulation approach. The basic idea
is to simulate the future using a stochastic model3 of investment returns. These
simulations can be used to estimate the distribution of the cost of the guaran-
tee. From this distribution one can compute the amount of initial reserve
so that the provision will be adequate, say, 99% of the time. The second approach
is to reinsure the liability with another financial institution such as a reinsur-
ance company or an investment bank. In this case the insurance company pays
a fee to the financial institution and in return the institution agrees to meet the
liability under the guarantee. The third approach is for the insurance company
to set up a replicating portfolio of traded securities and adjust (or dynamically
hedge) this portfolio over time so that at maturity the market value of the
portfolio corresponds to the liability under the guaranteed annuity option.

Implementations of these three different risk management strategies have
been described in the literature. Yang (2001) and Wilkie, Waters and Yang
(2003) describe the actuarial approach based on the Wilkie model. Dunbar
(1999) provides an illustration of the second approach. The insurance company,
Scottish Widows offset its guaranteed annuity liabilities by purchasing a struc-
tured product from Morgan Stanley. Pelsser (2003) analyzes a hedging strategy
based on the purchase of long dated receiver swaptions. This is described more
fully in Section 8.

In this paper we will discuss a number of the issues surrounding the valua-
tion and risk management of these guarantees. We will also discuss the degree
to which different risk management approaches would have been possible from
1980 onwards.

1.4. Outline of the paper

The layout of the rest of the paper is as follows. Section two provides back-
ground detail on the guaranteed annuity options and the relevant institutional
framework. We examine the evolution of the economic and demographic vari-
ables which affect the value of the guarantee. In particular we provide a time
series of the values of the guarantee at maturity for a representative contract.
In Section three we use an option pricing approach to obtain the market price
of the guarantee. Section Four documents the time series of market values of
the guarantee. Using a simple one-factor model it is possible to estimate the
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market value of the option. Section five examines a number of the concep-
tual and practical issues involved in dynamic hedging the interest rate risk.
Sections six and seven explore the issues involved in hedging the equity risk and
the mortality risk. One suggestion for dealing with these guarantees involves
the insurer purchasing long dated receiver swaptions. We describe this approach
in Section eight. Section nine comments on the lessons to be learned from this
episode.

2. MATURITY VALUE OF THE GUARANTEE

In this section we document the evolution of the emerging liability under the
guaranteed annuity option. Specifically we examine the magnitude of the guar-
antee for a newly maturing policy over the last two decades. In these calcula-
tions the policy proceeds at maturity are assumed to be held constant at £100,
so the cost reported is the cost % of the policy maturity cash value. We assume
the annuity purchased with the policy proceeds is payable annually in arrear
to a life age 65 at maturity, and has a five year guarantee period.

We consider three different mortality tables to determine the GAO cost.

• The a(55) mortality table represents the mortality assumptions being used
in the 1970’s to price immediate annuities. As previously mentioned, it was
calculated to be appropriate to lives purchasing immediate annuities in 1955.

• The PMA80(C10) table from this series is based on UK experience for the
period 1979-1982 and is projected to 2010 to reflect mortality improvements.
The PMA80 series became available in 1990.

• The PMA92 series was published in 1998 and the table we use, the PMA92
(C20) table, is based on UK experience for the period 1991-1994, projected
to 2020 to reflect mortality improvements.

The improvement from the a(55) table to the PMA92(C20) provides an upper
bound on the mortality improvement over the period since the last named
table only appeared at the end of the period and includes a significant pro-
jection for future mortality improvements. Wilkie Waters and Yang (2003) give
a detailed account of the year by year relevant UK male mortality experience
for the period 1984 to 2001.

The increase in longevity is quite dramatic over the period covered by these
three tables. The expectation of life for a male aged 65 is 14.3 years using a(55)
mortality, 16.9 years under the PMA80(C10) table and 19.8 years under the
PMA92(C20) table. Thus the expected future lifetime of a male aged 65
increased by 2.6 years from the a(55) table to the PMA80(C10) table. More
dramatically the expected future lifetime of a male aged 65 increased by over
five years from the a(55) table to the PMA92(C20) table.

On the basis of the a(55) mortality table, the break-even interest rate for a
life annuity. is 5.61%. That is, on this mortality basis a lump sum of 1000
will purchase an annuity of 111 at an interest rate of 5.61% p.a. effective. The
guarantee will be in the money if long-term interest rates are less than 5.61%.
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Fig 1: UK long-term interest rates 1950-2002, with interest rates levels that will trigger the guarantee
for mortality tables a(55), PMA82(C10), PMA90(C20).

As a consequence of the mortality improvement the cost of immediate annu-
ities increased significantly over this period independently of the impact of
falling interest rates. Under the PMA80(C10) table the break-even rate is 7.0%,
and under the PMA92(C20) table it is 8.2%.

Figure 1 illustrates the behavior of long-term interest rates in the UK since
1950. We note that rates rose through the later 1960s, remained quite high for
the period 1970-1990 and started to decline in the 1990s. There was a large dip
in long rates at the end of 1993 and long rates first fell below 6% in 1998 and
have hovered in the 4%-6% range until the present4 time. We also show in this
figure the break-even interest rates for the GAO according to the three mor-
tality tables.

Bolton et al (1997) provide extensive tables of the break even interest rates
for different types of annuities and different mortality tables. They assume a two
percent initial expense charge which we do not include. Thus in their Table 3.4
the value for the break even interest rate for a male aged 65 for an annuity
of 111 payable annually in arrear with a five year guarantee is 5.9%. This is
consistent with our figure of 5.6% when we include their expense assumption.

The increase in the level of the at-the-money interest rate has profound
implications for the cost of a maturing guaranteed annuity option. For example,
if the long-term market rate of interest is 5%, the value of the option for a
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Fig 2: Value of maturing guarantee per 100 proceeds based on PMA92(C20), PMA80(C10),
and a(55) mortality.

maturing policy with £100 maturity proceeds, based on a(55) is £4.45; based
on PMA80(C10) it would be £16.53 and the corresponding value based on
PMA92(C20) is £29.52. Note that we do not need any type of option formula
to perform these calculations; we apply equation (1), with S(T) fixed at 100,
and a65(T) calculated using the appropriate mortality and an interest rate of 5%
per year. Figure 2 shows the magnitude of the option liability for our bench-
mark contract under the three mortality assumptions using historical interest
rates. Since the long-term interest rate is the main determinant of the annuity
cost, we have used the yield on 2.5% consols, which are government bonds,
generally considered irredeemable5.

There is no liability on maturing contracts until the 1990’s. Also note that
the mortality assumption has a profound impact on the size of the liability.

We have already noted that during the period 1980-2000, UK equities
performed extremely well. This resulted in increased levels of bonus to the
with profits polices. For many contracts this meant that the volume of proceeds
to which the guarantee applied also increased, thereby increasing the liability
under the guarantee. In the case of unit-linked polices the gains are passed
directly to the policyholder, apart from the various expenses. If we assume
that a unit-linked contract earned the market rate of 18% minus 300 basis
points this still leaves a return of 15%. At this growth rate an initial single

132 PHELIM BOYLE AND MARY HARDY

5 In fact they may be redeemed at any time at the discretion of the Exchequer.



premium of £100 will accumulate to £1636.7 after twenty years. This growth
would be proportionately reflected in the cost of the guarantee.

To summarize, we have discussed the evolution of the value of the liability for
a sequence of maturing contracts. This analysis indicates how the three factors:

• The fall in long-term interest rates

• The improvement in mortality

• The strong equity performance

served to increase the cost of the guarantee. Note that our analysis in this
section did not require any stochastic analysis or option pricing formula. We
simply computed the value of the option at maturity each year of the period.
In the next section we discuss the evaluation of these options prior to maturity.

3. DERIVATION OF AN OPTION FORMULA

3.1. Introduction

The guaranteed annuity option is similar to a call option on a coupon bond;
the annuity payments and survival probabilities can be incorporated in the
notional coupons.

First we develop the option formula without assuming a specific model for
interest rates. Then, we will apply the Hull-White (1990) interest rate model
(also known as extended Vasicek, from the Vasicek (1977) model) to calculate
prices for the options.

We assume that the mortality risk is independent of the financial risk and
that it is therefore diversifiable. In this case it is well documented (see, for
example, Boyle and Schwartz (1977)) that it is appropriate to use determinis-
tic mortality for valuing options dependent on survival or death.

3.2. The numeraire approach

Using stochastic interest rates, the price at some future date t of a zero coupon
bond with unit maturity value, maturing at T is a random variable which we
denote D(t,T ). The term structure of interest rates at t is therefore described
by the function {D(t,T )}T > t. This term structure is assumed to be known at
time t.

So, the actuarial value at T of an immediate annuity payable to a life aged
xr at T, contingent on survival, is

( ) ( , )a T p D T T jxr j xr
j

J

1

= +
=

! (2)

where j pxr represents the appropriate survival probability. For an annuity with
an initial guarantee period of, say five years, we set the first five values of j pxr
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to 1.0. The limiting age of the mortality table is denoted by w and we set J =
(w – xr). Note that in valuing the annuity at T, the term structure is known,
and there are no random variables in this expression.

Now, to value this expression at time t < T, we use a ‘numeraire’ approach.
In the absence of arbitrage any market price deflated by a suitable numeraire
is a martingale. We can use any traded asset which has a price that is always
strictly positive as numeraire. Here we use the zero coupon bond which matures
at time T as the numeraire and we denote the associated probability measure
by the symbol QT. This is often called the ‘forward measure’. If interest rates
are constant, it is the same as the risk neutral measure in the standard Black-
Scholes framework. See Björk (1998) for more details.

Suppose V(s) is the market value at s of some payoff occurring at some time
T+ j, j ≥ 0. We use D(s,T) as the numeraire, where s ≤ T. The martingale result
means that Xs = ( , )

( )
D s T

V s is a martingale under QT, so that EQT [Xs |Ft] =Xt for any
s such that t ≤ s ≤ T. Here |Ft indicates that we are taking expectation of the
random process at time t + k given all the relevant information at t. In par-
ticular at t we know all values of D(t,s), s ≥ t.

Applying this to take expectation of the ratio ( , )
( )

D s T
V s at T, and using the fact

that D(T,T) = 1.0, we have:

( , )
( )

( , )
( )

( )D t T
V t

E D T T
V T

E V TF FQ t Q tT T
= =< 7F A (3)

( ) ( , ) ( )V t D t T E V T FQ tT
& = 7 A (4)

Equation (4) provides a valuation formula at t for any payoff V(T). The dis-
tribution QT depends on the assumption made for interest rates, and we will
discuss this later.

Now for the GAO we know from equation (1) that the payoff at maturity is6

( )
( ) ( )

V T g
S T a T gxr=

-
+

^ h

This is required for each policyholder surviving to time T, so to value at t < T
we multiply by the appropriate survival probability.

Then if G(t) is the value of this benefit at t, and letting x = xr – (T – t) we have:

( ) ( , ) ( )G t p D t T E V T FT t x Q tT
= - 7 A (5)
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(6)
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Initially we assume that S(T) is independent of interest rates. This is a very strong
assumption but it simplifies the analysis. Later we allow for correlation between
equity returns and interest rates.

We have then:

( )
( , ) ( )

( )

( )
( )

G t g
p D t T E S T

E a T g

g
p S T

E a T g

F

F

T t x Q
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T t x
Q xr t

T

T

T
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- +

- +
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^
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h
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The last line follows from the numeraire martingale result, equation (4), because
replacing V(T) with S(T) in that equation gives

( , )
( )

( )D t T
S t

E S T FQ tT
= 7 A

Inserting the expression for axr(T) from (2) we have
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The expression inside the expectation on the right hand side corresponds to a
call option on a coupon paying bond where the ‘coupon’ payment at time (T+ j)
is j pxr. This ‘coupon bond’ has value at time, T :

( , ).p D T T jj xr
j

J

1

+
=

!

The market value at time, t of this coupon bond is

( ) ( , ).P t p D t T jj xr
j

J

1

= +
=

!

So P(t) is the value of a deferred annuity, but without allowance for mortality
during deferment. With this notation our call option has a value at time, T of
(P(T ) – g)+. The numeraire approach is described more fully in Björk (1998).

3.3. Using Jamshidian’s method for coupon bond options

Jamshidian (1989) showed that if the interest rate follows a one-factor process,
then the market price of the option on the coupon bond with strike price g
is equal to the price of a portfolio of options on the individual zero coupon
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bonds with strike prices Kj, where {Kj} are equal to the notional zero coupon
bond prices to give an annuity axr(T) with market price g at T. That is, let r*

T
denote the value of the short rate for which

( , )p D T T j gj xr
j

J

1

+ =
=

*! (7)

where we use the asterisk to signify that each zero coupon bond is evaluated
using short rate  r*

T
7. Then set
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Then the call option with strike g on the coupon bond P(t) can be valued as
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where C [D(t,T+j), Kj , t] is the price at time t of a call option on the zero coupon
bond with maturity (T+ j) and strike price Kj.

We can use the call option C[P(t), g, t] to obtain an explicit expression for
the GAO value at t, G(t). Recall that
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From the numeraire valuation equation we have
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Pulling all the pieces together we have
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3.4. Applying the Hull-White interest rate model

Jamshidian’s result requires a one-factor interest rate model. We use a version
of the Hull-White (1990) model. This model is also known as extended Vasicek,
from the Vasicek (1977) model.

The short rate of interest at t is assumed to follow the process:

t( ) ( ) ( )dr t t r t dt dWk q s= - +^ h (9)
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where q (t) is a deterministic function determined by the initial term structure
of interest rates. Using the function q (t) enables us to match the model term
structure and the market term structure at the start of the projection.

Björk (1998) gives the formula for the term structure at t, using the market
term structure at initial date t = 0, as:
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where f *(0,t) is the t-year continuously compounded forward rate at t = 0, and
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This formula can be used to identify the strike price sequence {Kj} from equa-
tion (7), and also used to value the option for given values of r(t).

The explicit formula for each individual bond option under the Hull-White
model is
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The parameters k and s characterize the dynamics of the short rate of interest
under the Hull-White process.

4. VALUATION OF THE GUARANTEED ANNUITY OPTION

In this section we will derive the historical time series of market values for the
guarantee based on the formula derived in the last section. It would have been
helpful if the UK insurance companies had computed these market values
at regular intervals since they would have highlighted the emergence of the
liability under the guaranteed annuity option. The technology for pricing inter-
est rate options was in its infancy in 1980 but by 1990 the models we use were
in the public domain. An estimate of the market value of the guarantee can
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be derived from the one-factor stochastic interest rate model. We will use the
model to estimate the value of the guarantees for the period 1980-2002.

In the previous section we derived a formula for the market price of the
guaranteed annuity option using the Hull-White model. A similar formula has
also been derived by Ballotta and Haberman (2002). They start from the Heath
Jarrow Morton model and then restrict the volatility dynamics of the forward
rate process to derive tractable formulae.

We used the following parameter estimates to compute the market values
of the guaranteed annuity option
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These parameters are broadly comparable with estimates that have been
obtained in the literature based on UK data for this time period. See Nowman
(1997) and Yu and Phillips (2001).

Figure 3 illustrates how the market value of the option as percentage of the
current fund value changes over time. We assume that the option has remaining
time to maturity of ten years and that xr = 65 so that the age of the policy-
holder at the option valuation date is x = 55. We ignore the impact of lapses
and expenses and we assume that all policyholders will take up the option at
maturity if it is in their interest. The term structure at each date is obtained
by assuming that the 2.5% consol yield operates for maturities of five years and
longer. Yields for maturities one to five are obtained by a linear interpolation
between the Treasury Bill rate and the five year rate. While this procedure does
not give the precise term structure at a given time it captures the shape of the
term structure at that time.

We assume two different mortality models, a(55), representing the outdated
mortality in common use in the 1980s, and PMA92(C20), representing a rea-
sonable mortality assumption for contracts on lives currently age 55.

Figure 3 shows the very substantial effect of the mortality assumption. By
comparison with Figure 2, we see a very similar pattern of liability, but instead
of considering the maturity value of the contract, known only at the retirement
age, this figure plots the option value ten years before retirement. The similarity
of these two figures shows that the simple Hull-White model may be useful for
determining the market price of the option, even with the simplifying assump-
tion of independence of stock prices and interest rates.

Figure 4 illustrates how the cost of the guaranteed annuity option for our
benchmark contract varies with the volatility assumption. We used three
different volatility assumptions: s = .015, .025, .035. The market values are
relatively insensitive to the volatility assumption for long periods. Indeed the
only periods where we can distinguish the three separate curves corresponds
to periods when the long-term interest rate is close to the strike price of the
option. We know from basic Black Scholes comparative statics that the sensi-
tivity of an option value to the volatility is highest when the underlying asset

Parameter Value

k 0.35
s 0.025



GUARANTEED ANNUITY OPTIONS 139

Figure 3: Historical market values of GAO with 10 years to maturity, using a(55) and
PMA92(C20) mortality, per £100 of current portfolio value. Stock prices are assumed to be

independent of interest rates. Hull-White model parameters k = 0.35, s = .025.

Figure 4: Market values of GAO with 10 years to maturity using s = 0.015, 0.025, 0.035;
cost per £100 current portfolio value. Stock prices are assumed to be independent of interest rates.

k = 0.35; PMA92(C20) mortality.



price is close to the strike price. If the option is very far out of the money or
deeply in the money the price of the option is relatively insensitive to the volatil-
ity assumption. This same intuition is at work here.

The option value also depends on the assumed value of the autoregression
factor k. Figure 5 shows how the cost varies with three values; k = 0.2, 0.35 and,
1.0. Holding everything else equal, smaller values for k lead to an increase in
the option price. This is because as k decreases the overall volatility increases
— periods of low interest are more likely to be prolonged with high autocor-
relation — and higher volatility causes the option price to increase. Note that
for k = 0.2 the GAO price is much larger than the benchmark value (based on
k = 0.35) for the out-of-the-money case.

At first sight it may be surprising that a simple one-factor model can give at
least an approximate estimate of the market value of the option (per £100 portfo-
lio value), since actual interest rate dynamics are much too complicated to be cap-
tured by such a model. One reason is that we have calibrated the model to the
input term structure so that it reproduces the market prices of all the zero coupon
bonds. In addition the prices are fairly robust to the volatility assumption for the
realized market conditions, though possibly less robust to the autoregression
assumptions, particularly for the out-of-the-money periods. However we stress that
such a simple model will not be adequate for hedging purposes. Hull (2002) notes

“The reality is that relatively simple one-factor models, if used carefully,
usually give reasonable prices for instruments, but good hedging schemes
must explicitly or implicitly assume many factors.”
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Figure 5: Market values of GAO with 10 years to maturity using k = 0.2, 0.35, 1.00;
cost per £100 current portfolio value. Stock prices are assumed to be independent of interest rates.

s = 0.025; PMA92(C20) mortality.



5. HEDGING

In this section we discuss some of the issues involved in hedging the guaran-
teed annuity risk using traded securities. Although the full fledged guaranteed
annuity option depends on three stochastic variables — interest rates, stock
prices and mortality — here we just discuss the interest rate risk.

The hedging of long-term interest rate options is a difficult task. In order
to implement an effective hedging strategy we require a robust and reliable
model of interest rate dynamics over the long-term. The search for such a
model remains an area of active research and, despite some useful progress,
there appears to be no consensus on such a model. For a survey of some of
the recent work in modelling term structure dynamics see Dai and Singleton
(2003). Note that for risk management and hedging purposes we require a
model that provides a good description of the actual movements in yield curves
over time. In other words we need a model that describes interest rate move-
ments under the real world measure. For pricing we only needed the Q-mea-
sure, with parameters determined from the current market structure.

We begin by reviewing the relationship between pricing and hedging in an
ideal setting. Consider the standard no arbitrage pricing model, where there
is a perfect frictionless market with continuous trading. If the market is com-
plete, then any payoff can be hedged with traded securities. Since there is no
arbitrage the current price of the derivative must be equal to the current price
of the replicating portfolio. If an institution sells this derivative then it can
take the premium (price) and set up the replicating portfolio. As time passes
it can dynamically adjust the position, so that at maturity the value of the
replicating portfolio is exactly equal to the payoff on the derivative. In an ideal
world where the model assumptions are fulfilled, it should be possible to
conduct this replication program without needing any additional funds. The
initial price should be exactly sufficient.

In the real world the assumptions of these models are never exactly fulfilled.
For example

• The asset price dynamics will not be correctly specified.
• It will not be feasible to rebalance the replicating portfolio on a continuous

basis. Instead it has to be rebalanced at discrete intervals.
• There are transaction costs on trading.

The impact of these deviations from the idealized assumptions has been
explored in the Black Scholes Merton world. We discuss these three possible
deviations in turn.

If the process that generates the market prices deviates from the model
implicit in the pricing formula there will be additional hedging errors. This is
because the portfolio weights that would be required to replicate the payoff
under the true model will be different from the portfolio weights computed
under the assumed model. This point has been explored in the case of equity
derivatives by several authors including Bakshi, Cao and Chen (1997, 2000),
Chernov et al (2001) and Jiang and Oomen (2002), and in the case of equity-
linked life insurance by Hardy (2003).
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With discrete rebalancing, Boyle and Emanuel (1980) showed that if the
portfolio is rebalanced at discrete intervals, there will be a hedging error which
tends to zero as the rebalancing becomes more frequent. In the presence of
transaction costs the frequency of rebalancing involves a trade-off between
the size of the hedging error and the trading costs.

However in practice we may emphasize pricing at the expense of hedging
by calibrating an incorrect model to give the accurate market price of a deriv-
ative. For example, quoted swaption and cap prices are universally based on
the simple Black model. The Black model volatility that makes the market
price equal to the model price has become a standard measure for conveying
the price. However the Black model does not provide realistic dynamics for
interest rates and so it is unsuitable for hedging and risk management applica-
tions. In the same way stock option prices when the asset price dynamics follow
a process with stochastic volatility can still be quoted in terms of the Black
Scholes implied volatility. We can always find the value of the Black Scholes
volatility that reproduces the market price of the option even when the true
dynamics include stochastic volatility. However as shown by Melino and
Turnbull (1995) the use of the simple Black Scholes model, in the presence of
stochastic volatility, may lead to large and costly hedging errors, especially for
long dated options.

In the case of stochastic interest rates, several studies have shown that it is pos-
sible to have a simple model that does a reasonable job of pricing interest rate
derivatives even though the model is inadequate for hedging purposes. Canabarro
(1995) uses a two factor simulated economy to show that, although one-factor
models produce accurate prices for interest rate derivatives, these models lead to
poor hedging performance. Gupta and Subrahmanyam (2001) use actual price
data to show that, while a one-factor model is adequate for pricing caps and
floors, a two factor model performs better in hedging these types of derivatives.

Litterman and Scheinkman (1991) demonstrated that most of the varia-
tion in interest rates could be explained by three stochastic factors. Dai and
Singleton (2000) examine three factor models of the so called affine class. The
classical Cox Ingersoll Ross (1985) model and the Vasicek model are the best
known examples of the affine class. These models have the attractive property
that bond prices become exponentials of affine functions and are easy to
evaluate. Dai and Singleton find reasonable empirical support for some ver-
sions of the three factor affine model using swap market data for the period
April 1987 to August 1996.

In the context of guaranteed annuity options we require an interest rate
model that describes interest rate behavior over a longer time span. Ahn,
Dittmar and Gallant (2002) provide support for quadratic term structure models.
They are known as quadratic models because the short term rate of interest is
a quadratic function of the underlying state variables. Their empirical tests use
US bond data for the period 1946-1991 and they conclude that the quadratic
three factor model

“...provides a fairly good description of term structure dynamics and cap-
tures these dynamics better than the preferred affine term structure model
of Dai and Singleton.’’

142 PHELIM BOYLE AND MARY HARDY



Bansal and Zhou (2002) show that the affine models are also dominated by
their proposed regime switching model. Their empirical test is based on US
interest rate data for the period 1964-1995. Even a casual inspection of the data
suggests the existence of different regimes. They conclude that standard mod-
els, including the affine models with up to three factors, are sharply rejected
by the data. Regime switching models have been extensively used by Hardy
(2003) to model equity returns in the context of pricing and risk management
of equity indexed annuities.

The interest rate exposure in a guaranteed annuity option is similar to that
under a long dated swaption. Hence it is instructive to examine some recent
results on hedging swaptions. This is a topic of current interest as evidenced
by papers by Andersen and Andreasen (2002), Fan, Gupta and Ritchken (2001),
Driessen, Klaasen and Melenberg (2002), and Longstaff, Santa-Clara and
Schwartz (2001). The main conclusion of these papers is that multi-factor
models are necessary for good hedging results. However it should be noted
that the empirical tests in these papers tend to use relatively short observation
periods — around three to five years being typical. Swaption data is unavail-
able for long periods since the instruments first were created in the late 1980’s.
Hence these models are being tested over the 1995-2000 period when interest
rates were fairly stable. If the swaption data were available over longer periods,
it seems likely that a regime switching interest rate model would be required
to do an adequate hedging job.

In Section 6 we consider the GAO hedge using highly simplified assump-
tions for equities and interest rates.

6. THE EQUITY RISK

We have already shown in equation (1) that the size of the payoff on the UK
guaranteed annuity option is proportional to the amount of the maturity pro-
ceeds. This amount will depend on the stock market performance over the life
of the contract. For unit-linked policies the maturity amount depends directly
on the performance of the underlying fund. In the case of with profits con-
tracts the policy proceeds depend on the bonuses declared by the insurance
company and the size of these bonuses is directly related to stock market
performance. In general the stock market returns are passed through to the
policyholders in reversionary and terminal bonuses. In this section we discuss
how the inclusion of equity risk impacts the pricing and risk management of
the guaranteed annuity options.

We have seen in Section 3 that under some strong assumptions about the
joint dynamics of interest rates we can obtain simple pricing formula. Specif-
ically if we assume that equity returns are independent of interest rates, and
that interest rates are governed by a one-factor Hull-White model, we can
obtain a simple valuation formula for the price of the guaranteed annuity
option. The formula can be modified to handle the case when there is corre-
lation between stocks and bonds. Ballotta and Haberman have also derived a
formula under these assumptions.
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We can illustrate the key issues involved in pricing and hedging when the
equity risk is included by considering a simpler contract than the guaranteed
annuity option. This contract has the following payoff at time T

j, ( ) , ,maxP T T j S T D T T j K 0+ = + -^ ^`h h j

It corresponds to an option on the zero coupon bond which matures at time
(T+ j) and where the payoff is directly related to the value of the reference
index. This contract includes no mortality risk here and there is just one zero
coupon bond at maturity rather than a linear combination of zero coupon
bonds. However this simpler contract captures the key dependencies of the
guaranteed annuity option. The full guaranteed annuity option with correla-
tion can then be determined, using D(t,T) as numeraire, and the forward mea-
sure QT as the equivalent martingale measure:
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We can derive a closed form expression for each term in V(t) if, for example,
we assume that under the forward measure QT the random variables S(T) and
D(T,T+ j) have a bivariate lognormal distribution.

For simplicity we treat the period from t to T as a single time step, with vari-
ance-covariance matrix for log S(T) |Ft and log D(T,T+ j) |Ft :
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Assume also that under the forward measure QT the means of log S(T) /S(t) |
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This is analogous to the risk-free property in a standard Black-Scholes frame-
work, that all assets have the same expected accrual under the Q-measure.

Using properties of the bivariate lognormal distribution (see, for example,
chapter four of Boyle et al (1998)), we have
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So the option price at t for the annuity payment at T + j is
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Formula (12) incorporates both equity risk and interest rate risk. The fact that
the option is proportional to the equity S(t) arises because it is a form of quanto
option, where the payoff is essentially in units of stock rather than in cash.
Wilkie et al (2003) discuss this quanto feature. The moneyness of the option is
entirely related to the interest rate risk. Once the option is in the money, then
every extra £ of stock accumulation increases the cost of the GAO proportion-
ately. This leads to perverse incentives for the insurer acting as fund manager.

We see that the option price is an increasing function of the correlation
coefficients r. Indeed the price is quite sensitive to the values of r and for plau-
sible parameter values the option price with r = 0 is roughly double that using
r = –1, and is around one-half the price using r = 1, for all j. Correlations are
notoriously difficult to forecast and so we conclude that when the equity risk
is assumed to be correlated with the interest rate risk, pricing the option
becomes more difficult. Of course this modifies our earlier conclusions about
the effectiveness of a one-factor model in pricing the guaranteed annuity
option. Our earlier model assumed that the stock price movements were inde-
pendent of interest rate movements.

It is now well established in the empirical literature that equity prices do
not follow a simple lognormal process. There is mounting evidence that some
type of stochastic volatility model does a better job of modelling equity returns.
Hardy (2003) provides evidence that regime switching model does a good job
of fitting the empirical distribution of monthly stock returns. Andersen Ben-
zoni and Lund (2002) demonstrate that both stochastic volatility and jump
components are present in the S&P daily index returns. Several authors8 have
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shown that these models may produce significant pricing deviations from the
lognormal Black Scholes option prices. This deviation depends to some extent
on the moneyness and the term of the option. It will be less critical for shorter,
in-the-money options which are not very sensitive to the volatility.

When we turn to hedging matters become worse. There are two reasons.
First we require a good model of the joint dynamics of bonds and equities that
will be robust over long time periods. There appears to be no obvious model
that would fulfill these requirements. The lognormal assumption for the zero
coupon bond prices is a particular problem when, in practice, these prices are
highly auto-correlated. Second even if we are willing to adopt the pricing model
in (12) the resulting hedging implementation leads to some practical problems.

To hedge the option based on this simple model we would need to invest
in three securities. The first is an investment in the underlying equity index
equal to the current market value of the option. We denote the number of
units invested in the index by H1(t) where
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The second consists of an investment of H2(t) units of the zero coupon bond
which matures at time (T+ j), where
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The third consists of an investment of H3(t) units of the zero coupon bond
which matures at time (T), where
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Note that the value of the initial hedge is

H1(t)S(t) + H2(t)D (t,T+ j) + H3(t)D(t,T) = S(t)H1(t),

which is equal to the initial price of the option since the last two terms on the
left hand side cancel one another.

Suppose the hedge is to be rebalanced at time (t + h). Just before rebalancing
the value of the hedge portfolio is

H1(t)S(t + h) + H2(t)D(t+h,T+ j) + H3(t)D(t+h,T )

where S(t+h), D(t+h, T+j), D(t+h,T) denote the market prices at time (t + h)
of the three hedge assets. The new hedging weights Hi (t+h), i = 1,2,3 are com-
puted based on these new asset prices and the value of the revised hedge is
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H1(t+h)S(t+h) + H2(t+h)D(t+h,T+ j) + H3(t+h)D(t+h,T).

If the value of the hedge portfolio after rebalancing increases funds need to
be added. If the value of the hedge portfolio after rebalancing goes down funds
can be withdrawn. In an idealized world the hedge would be self financing.
However in practice hedging is done discretely, there are transactions costs
and the market movements can deviate significantly from those implied by the
model. These slippages can lead to considerable hedging errors. Some numer-
ical examples using a similar approach are given in Hardy (2003).

7. THE MORTALITY RISK

We noted earlier that there was a dramatic improvement in annuitants mor-
tality over the relevant period. This improvement was not anticipated when
the contracts were designed. The effect of this improvement was to increase
the value of the interest rate guarantee by raising the threshold interest rate at
which the guarantee became effective. The structure of the guaranteed annuity
option means that the policyholder’s option is with respect to two random
variables: future interest rates and future mortality rates. To isolate the mor-
tality option, suppose that all interest rates are deterministic but that future
mortality rates are uncertain. In this case the option to convert the maturity
proceeds into a life annuity is an option on future mortality rates. If, on matu-
rity, the mortality rates have improved9 above the level assumed in the contract
the policyholder will obtain a higher annuity under the guarantee. On the other
hand if life expectancies are lower than those assumed in the contract the guar-
antee is of no value since policyholder will obtain a higher annuity in the open
market. When interest rates are stochastic the mortality option interacts with
the interest rate option as we saw in Section Two.

Milevsky and Promsilow (2001) have recently analyzed the twin impacts of
stochastic mortality and stochastic interest rates in their discussion of guar-
anteed purchase rates under variable annuities in the United States. They model
the mortality option by modeling the traditional actuarial force of mortality
as a random variable. The expectation of this random variable corresponds to
the classical actuarial force of mortality. They show that, under some assump-
tions, the mortality option can — in principle — be hedged by the insurance
company selling more life insurance. The intuition here is that if people live
longer the losses on the option to annuitize will be offset by profits on the life
policies sold.

There may be some practical difficulties in implementing this. First, it may
not be possible to sell the insurance policies to the same type of policyholders
who hold the GAO contracts. Secondly, to implement the mortality hedging
strategy the insurer requires a good estimate of the distribution of future mor-
tality. Harking back to the UK case it would have been most unlikely for any
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insurer in the 1970’s to predict accurately the distribution of future mortality
rates. If the insurer has a sufficiently accurate estimate of the distribution of the
future mortality rates to conduct an effective hedging strategy, then it should
be able to project future mortality improvements to minimize the mortality
risk under the guarantee.

The mortality risk exposure facing insurers under the guaranteed annuity
options could have been eliminated at inception by a different contract design.
Instead of guaranteeing to pay a fixed annual amount the insurer could have
guaranteed to use a certain pre specified interest rate in conjunction with the
prevailing mortality assumption (in use at the time of retirement). Under this
revised contract design there is no additional liability incurred if mortality
improves and annuities become more expensive. This adjustment would have
significantly reduced the liabilities under the guaranteed annuity options.

8. HEDGING WITH SWAPTIONS

Swaps have became enormously important financial instruments for manag-
ing interest rate risks. They are often more suitable than bonds for hedging
interest rate risk because the swap market is more liquid. Furthermore, while
it can be difficult to short a bond, the same exposure can easily be arranged
in the swap market by entering a payer swap. Options to enter swap contracts
are known as swaptions and there is now a very liquid market in long dated
swaptions, where the option maturities can extend for ten years and the ensu-
ing swap can last for periods up to thirty years. Pelsser (2003) shows that long
dated receiver swaptions are natural vehicles for dealing with the interest rate
risk under guaranteed annuity options. In this section we discuss the feasibility
of using this approach.

Upon maturity, the owner of the swaption will only exercise it if the option
is in the money. Suppose the swaption gives its owner the option to enter
a receiver swap when the swaption matures. The counter party that enters
(or is long) a receiver swap agrees to pay the floating interest rate (e.g. Libor
or Euribor) and in return receive the fixed rate: known as the swap rate. If a
firm owns a receiver swaption with a strike price of 7% it will compare the
market swap rate with the strike rate when the swaption reaches maturity.
For example if the market swap rate at maturity is 5% then the firm should
optimally exercise the swaption because the guaranteed rate of 7% provides a
better deal. It is preferable to receive fixed rate coupons of 7% than the market
rate of 5%. By entering a receiver swaption an institution protects itself against
the risk that interest rates will have fallen when the swaption matures. This is
exactly the type of interest rate risk exposure in the guaranteed annuity option.

Pelsser shows how to incorporate mortality risk to replicate the expected
payoff under the guaranteed annuity option. He assumes, as we do, that the
mortality risk is independent of the financial risk and that the force of mor-
tality (hazard rate) is deterministic. He derives an expression for the price of
the guaranteed annuity option as a portfolio of long dated receiver swaptions.
The advantage of his approach is that the swaptions incorporate the right type
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of interest rate options. Pelsser calls this approach the static hedge since there
is no need for dynamic hedging. This is an advantage given the difficulty of
hedging long-term interest rate options with more basic securities such as
bonds and swaps. However the swaption approach still has problems in deal-
ing with the stock price risk and the risk of increasing longevity.

The presence of equity risk means that the number of swaptions has to be
adjusted in line with index movements. During a period of rising equity returns
an insurer would have to keep purchasing these swaptions and this would
become very expensive as the swaptions began to move into the money. In these
circumstances the liability under the guarantee is open ended. The swaption
solution does not deal with the equity risk.

9. LESSONS

We have discussed the three major types of risks in the guaranteed annuity
option and examined the pricing and the feasibility of hedging the risk
under these contracts. In this section we will explore the extent to which the
approaches discussed in his paper could or should have been applied. We also
suggest that this episode has implications for the eduction and training of
the actuarial profession particulary in connection with its exposure to ideas in
modern financial economics.

It is worth emphasizing that when these guarantees were being written, the
UK actuarial profession was still using deterministic methods to value liabilities.
In particular valuation and premium calculations were based on a single deter-
ministic interest rate. These methods were enshrined in the educational syllabus
and rooted in current practice. Such methods are incapable of dealing adequately
with options.

The relevant UK actuarial textbook used at the time, Fisher and Young (1965)
in discussing guaranteed annuity options stated:

“If, when the maturity date arrives, the guaranteed annuity rate is not as
good as the office’s own rates or a better purchase can be made elsewhere
the option will not be exercised. The office cannot possibly gain from the
transaction and should, therefore, at least in theory, guarantee only the
lowest rate that seem likely in the foreseeable future.

However no guidance was provided as to what level this rate should be. Fisher
and Young did suggest that conservative assumptions should be used and that
allowance should be made for future improvements in mortality.

“The option may not be exercised until a future date ranging perhaps from
5 to 50 years hence, and since it will be relatively easy to compare the yield
under the option with the then current yields it is likely to be exercised
against the office. The mortality and interest rate assumptions should be
conservative.’’

The standard actuarial toolkit in use at the time was incapable of assessing the
risks under this type of guarantee. However the guarantees were granted and

GUARANTEED ANNUITY OPTIONS 149



they gave rise to a serious risk management problem that jeopardized the sol-
vency of a number of UK companies. For many companies, the first time that
the guaranteed annuity option for maturing contract became in-the-money
was in October 1993. In December 1993, Equitable Life announced that it
would cut the terminal bonuses in the case of policyholders who opted for the
guarantee. This meant that the guaranteed annuity option policyholders who
exercised their guarantee ended up paying for their own guarantee. The affected
policyholders argued that Equitable’s action made a mockery of their guarantee.
The validity of this controversial approach became the subject of a protracted
legal dispute. Eventually, in July 2000 the House of Lords settled the matter.
It ruled against the Equitable and decreed that the practice of cutting the
terminal bonuses to pay for the guarantee was disallowed. Equitable faced
an immediate liability of 1.4 billion pounds to cover its current liability for the
guaranteed annuity options and in December 2000 was forced to close its doors
to new business. The oldest life insurance company in the world was felled by
the guaranteed annuity option.

This entire episode should provide salutary lessons for the actuarial pro-
fession. It is now clear that the profession could have benefited from greater
exposure to the paradigms of modern financial economics, to the difference
between diversifiable and non-diversifiable risk, and to the application of sto-
chastic simulation in asset-liability management would have enabled insurers
to predict, monitor and manage the exposure under the guarantee.
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A DISCRETE TIME BENCHMARK APPROACH 
FOR INSURANCE AND FINANCE

HANS BÜHLMANN1 AND ECKHARD PLATEN2

ABSTRACT

This paper proposes a consistent approach to discrete time valuation in insurance
and finance. This approach uses the growth optimal portfolio as reference unit
or benchmark. When used as benchmark, it is shown that all benchmarked
price processes are supermartingales. Benchmarked fair price processes are
characterized as martingales. No measure transformation is needed for the fair
pricing of insurance policies and derivatives. The standard actuarial pricing rule
is obtained as a particular case of fair pricing when the contingent claim is inde-
pendent from the growth optimal portfolio.
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1. INTRODUCTION

There exists a stream of literature that exploits the concept of a growth optimal
portfolio (GOP), originally developed by Kelly (1956) and later extended and
discussed, for instance, in Long (1990), Artzner (1997), Bajeux-Besnainou &
Portait (1997), Karatzas & Shreve (1998), Kramkov & Schachermayer (1999),
Korn (2001) and Goll & Kallsen (2002). Under certain assumptions the GOP
coincides with the numeraire portfolio, which makes prices, when expressed in
units of this particular portfolio, into martingales under the given probability
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measure. In Kramkov & Schachermayer (1999) and Platen (2001, 2002) it was
demonstrated that prices when benchmarked by the GOP can become super-
martingales. The notion of a numeraire portfolio was recently extended by
Becherer (2001), taking into account benchmarked prices that are supermartin-
gales when an equivalent local martingale measure exists. In standard cases
with an equivalent martingale measure the numeraire portfolio has been shown
to coincide with the inverse of the deflator or state price density, see Consta-
tinides (1992), Duffie (1996) or Rogers (1997). Furthermore, in Bühlmann
(1992, 1995) and Bühlmann et al. (1998) the deflator has been suggested for the
modeling of financial and insurance markets. Similarly, in Platen (2001, 2002,
2004) a financial market has been constructed by characterization of the GOP
as benchmark portfolio.

Within this paper we follow a discrete time benchmark approach, where we
characterize key features of a financial and insurance market via the GOP.
We do not assume the existence of an equivalent martingale measure. The con-
cept of fair pricing is introduced, where fair prices of insurance policies and
derivatives are obtained via conditional expectations with respect to the real
world probability measure. This provides a consistent basis for pricing that is
widely applicable in insurance but also in derivative pricing. Examples of a
discrete time market will be given that illustrate some key features of the bench-
mark approach.

2. DISCRETE TIME MARKET

Let us consider a discrete time market that is modeled on a given probability
space ( , , )PAX . Asset prices are assumed to change their values only at the
given discrete times

< < < <t t t0 n0 1 f 3#

for fixed n ∈ {0, 1, …}. The information available at time t in this market is
described by Ati

. In this paper we consider d + 1 primary securities, d ∈ {1,2,…},
which generate interest, dividend, coupon or other payments as income or loss,
incurred from holding the respective asset. We denote by S (j)

i the nonnegative
value at time ti of a primary security account. This account holds only units of
the j th security and all income is reinvested into this account. The 0th primary
security account is the domestic savings account. According to the above
description, the domestic savings account S(0) is then a roll-over short term
bond account, where the interest payments are reinvested at each time step.
If the j th primary security is a share, then S (j)

i is the value at time ti of such
shares including accrued dividends. Thus, the quantity S (j)

i represents the j th
cum-dividend share price at time ti. We assume that

>S 0i
j] g (2.1)

almost surely for all { , , , }j d0 1 f! .
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Now, we introduce the growth ratio h( )
i

j
1+

of the j th primary security account
at time ti 1+ in the form 

>for

otherwise

h S
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S 0

0
i
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i
j

i
j

i
j

1

1

=
+

+
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(2.2)

for { , , , }i n0 1 1f! - and { , , , }j d0 1 f! . Note that the return of S( )j at time 
ti 1+ equals h 1( )

i

j

1
-

+
. In our context the concept of a growth ratio will be more 

convenient than that of a return. We assume that i 1+h( )j is A t i 1+
-measurable and

almost surely finite. The growth rate of the domestic savings account S(0) shall
be strictly positive, that is 

>h 0( )
i 1
0
+

(2.3)

almost surely for all { , , , }i n0 1 1f! - with 0S 1( )0 = . We can express the price
of the j th primary security account at time ti, that is usually the j th cum-
dividend share price S (j)

i , in the form 

S S h( ) ( ) ( )
i

j j
l

j

l

i

0
1

=
=

% (2.4)

for { , , , }i n0 1 f! and { , , , }j d0 1 f! . Note that due to assumptions (2.1) and
(2.3) we have for the savings account 

>S 0( )
i
0 (2.5)

for all { , , , }i n0 1 f! .
In the given discrete time market it is possible to form self-financing port-

folios containing the above primary security accounts, where the changes
in the value of the portfolio are only due to changes in primary security
accounts. Since we will only consider self-financing portfolios we omit in the
following the word “self-financing”. For the characterization of a strictly positive
portfolio at time ti it is sufficient to describe the proportion i ( , )3 3! -r( )j of
its value that at this time is invested in the j th primary security account,

{ , , , }j d0 1 f! . Obviously, the proportions add to one, that is 

1( )
i
j

j

d

0

=r
=

! (2.6)

for all { , , , }i d0 1 f! . The vector process , , ,( ) ( ) ( )

i i i i

d0 1 f= =r r r r r` j$ , i ∈
, , ,n0 1 f! +, denotes the corresponding process of proportions. We assume

that ir is Ati-measurable, which means that the proportions at a given time do
not depend on any future events. The value of the corresponding portfolio at
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time ti is denoted by iS ( )r and we write , , , ,S S i n0 1( ) ( )
i f!=r r

!$ +.. Obviously,
we obtain the growth ratio hl

( )r of this portfolio at time tl in the form 

h h( ) ( ) ( )
l l

j
l
j

j

d

1
0

= r
-

=

r ! (2.7)

for { , , , }l n1 2 f! , where its value at time ti is given by the expression 

S S h( ) ( ) ( )
i l

l

i

0
1

=
=

r r r% (2.8)

for { , , , }i n0 1 f! .

3. DISCRETE TIME MARKET OF FINITE GROWTH

Let us denote by V the set of all strictly positive portfolio processes S( )r . This 
means, for a portfolio process S V( ) !r it holds ( , )h 0( )

i 1 3!+
r almost surely for 

all { , , , }i n0 1 1f! - . Due to (2.5) V is not empty. We define for a given port-
folio process S V( ) !r with corresponding process of proportions r its growth
rate gi

( )r at time ti by the conditional expectation 

logg E h A( ) ( )
i i t1 i=

+
r r

`a j k (3.1)

for all { , , , }i n0 1 1f! - . This allows us to introduce the optimal growth rate g
i

at time ti as the supremum 

supg g( )
i

S
i

V( )
=

!

r

r

(3.2)

for all { , , , }i n0 1 1f! - .
If the optimal growth rate could reach an infinite value, then the corre-

sponding portfolio would have unlimited growth. We exclude such unrealistic
behaviour by introducing the following natural condition.

Assumption 3.1 We assume that the given discrete time market is of finite growth,
that is

< ,max g
{ , , , }i n i0 1 1

3
f! -

(3.3)

almost surely.

Furthermore, it is natural to assume that our discrete time market is such that
a portfolio exists, which attains the optimal growth rate.
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Assumption 3.2 There exists a portfolio S V( ) !r with corresponding process of
proportions r and

,S 1( )
0

=r (3.4)

such that

g g( )
i i

=r (3.5)

and

<E
h

h
A( )

( )

i

i
t

1

1
i 3

+

+
r

rJ

L

K
K

N

P

O
O

(3.6)

for all { , , , }i n0 1 1f! - and S V( ) !r . Such a portfolio is called a growth opti-
mal portfolio (GOP).

Without conditions (3.3) and (3.5) there is no basis for considering GOPs.
Also condition (3.6) is a very natural condition, which only assumes the
integrability of ratios of growth rates and thus allows to form conditional
expectations. There is an extremely wide range of models that satisfy the
Assumptions 3.1 and 3.2. These cover most established discrete time models
used in insurance and finance.

From the viewpoint of an investor, a growth optimal portfolio (GOP), can
be interpreted as a best performing portfolio because there is no other strictly
positive portfolio that in the long term can outperform its optimal growth
rate. The GOP has also another remarkable property, which we derive in the
following. Let us study the situation that an investor puts almost all of his 
wealth in a GOP S( )r and invests a vanishing small proportion ,0

2
1!i b l into 

an alternative portfolio S V( ) !r . We call the resulting portfolio the interpo-
lated portfolio V V!r, ,i r . It exhibits by (2.7) at time ti 1+ the growth ratio 

( )h
V

V
h h1, ,

, ,

, ,
( ) ( )

i
i

i
i i1

1
1 1

= = + -i i
+

+
+ +

i r r
i r r

i r r
r r (3.7)

with corresponding growth rate 

logg E h A, , , ,
i i t1 i=

+
i r r i r r

`a j k (3.8)

for { , , , }i n0 1 1f! - . To study the rate of change in the growth rate of the
interpolated portfolio let us define its derivative in the direction of the alter-
native portfolio S V( )!r at time ti, that is the limit 

lim
g

g g1
, ,

, , ( )i
i i

0
02

2
= -

i i"
= +

+

i r r

i
i

i r r r
` j (3.9)
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for { , , , }i n0 1 1f! - . We prove in Appendix A the following fundamental
identity, which will give us access to the understanding of the central role of
the GOP in pricing.

Theorem 3.3 For a portfolio S V( ) !r and { , , }i n0 1 1f! - the derivative of the
growth rate of the interpolated portfolio at time ti equals

.
g

E
h

h
A 1

, ,

( )

( )
i

i

i
t

0 1

1
i2

2
= -

i
= + +

+
i r r

i

r

rJ

L

K
KK

N

P

O
OO

(3.10)

One observes that from (3.9), (3.5) and (3.2), we must have by the optimality
property of the GOP that 

,g 0, ,q
q 0i2 #

= +

r r (3.11)

which leads by the identity (3.10) directly to the following important result.

Corollary 3.4 A portfolio process S V( ) !r is growth optimal if and only if all
portfolios S V( ) !r , when expressed in units of S( )r , are ( , )PA -supermartingales,
that is

E
h

h
A 1( )

( )

i

i
t

1

1
i #

+

+
r

rJ

L

K
KK

N

P

O
OO

(3.12)

for all { , , , }i n0 1 1f! - .

Corollary 3.4 reveals a fundamental property of the GOP. It says, all nonnega-
tive securities, when expressed in units of the GOP are supermartingales. Note
that we did not make any major assumptions on the given discrete time
market. Under the additional assumption on the existence of an equivalent
local martingale measure, a similar result has been obtained for semimartin-
gale markets in Becherer (2001). Corollary 3.4 is proved without the explicit
assumption on the existence of an equivalent risk neutral measure. The sim-
ple and direct proof of Theorem 3.3 in the Appendix avoids the technical
machinery employed in Becherer (2001). In addition, our approach is con-
structive and the fundamental equation (3.10) can be used to establish further
identities or inequalities in risk management.

Let us consider two nonnegative portfolios that are both growth optimal,
see (3.5). According to Corollary 3.4 the first portfolio, when expressed in
units of the second, must be a supermartingale. Additionally, by the same
argument the second, expressed in units of the first, must be also a super-
martingale. This can only be true if both processes are identical, which yields
the following result.

Corollary 3.5 The value process of the GOP is unique.
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Note that the stated uniqueness of the GOP does not imply that its proportions
r have to be unique.

4. FAIR PORTFOLIOS

In what follows we call prices, which are expressed in units of the GOP, bench-
marked prices and their growth ratios benchmarked growth ratios. The condi-
tion (3.6) guarantees the integrability of benchmarked growth ratios and prices 
The benchmarked price S ( )

i
r at time ti of a portfolio S( )r is defined by the rela-

tion 

S

S
S ( )

( )

( )

i
i

i=r
r

r

(4.1)

for all { , , , }i n0 1 f! . By Corollary 3.4, the benchmarked price of a strictly
positive portfolio S V( ) !r is a supermartingale, which means by (3.12), (4.1),
and (2.8) that 

,ES S A( ) ( )
i k ti$r r

a k (4.2)

for all { , ,..., }k n0 1! and { , ,..., }i k0 1! .
In common actuarial and financial valuations in competitive, liquid mar-

kets a price is typically chosen such that seller and buyer have no systematic
advantage or disadvantage. The problem of such a description is hidden in
the fact that one must specify the reference unit or numeraire and the corre-
sponding probability measure that both buyers and sellers use to calculate
their expected payoff. If one chooses the real world measure as obvious prob-
ability measure, then one needs still to determine the reference unit. We know
from Long (1990) that under certain conditions benchmarked prices are mar-
tingales. In markets with a corresponding equivalent risk neutral martingale
measure this price corresponds to the risk neutral price. For this reason we
choose in our more general setting the GOP as numeraire. By using the real
world probability measure to form expectations and the GOP as numeraire it
follows from Corollary 3.4, as shown in (4.2), that any strictly positive port-
folio price, when expressed in units of the GOP, must be a supermartingale.
This could give an advantage to the seller of the portfolio S( )r if the equality
in (4.2) is a strict one. Its expected future benchmarked payoff is in such a
case less than its present value. The only situation when buyers and sellers
are equally treated is when the benchmarked price process S( )rt is an ( , )PA -
martingale, that means 

ES S A( ) ( )
k k ti=r r

a k (4.3)

for all { , , , }k n0 1 f! and { , , , }i k0 1 f! . Equation (4.3) means that the actual
benchmarked price S ( )r

i is the best forecast of its future benchmarked values.
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Equivalently to (4.3) we have by (2.8) for the corresponding portfolio process
S( )r that 

E
h

h
A 1( )

( )

i

i
t

1

1
i =

+

+
r

rJ

L

K
KK

N

P

O
OO

(4.4)

for all { , , , }i n0 1 1f! - . This leads us naturally to the concept of fair pricing,
see also Platen (2002):

Definition 4.1 We call a value process { , { , , , }}V V k n0 1k g!= fair if its bench- 

marked value k
kV

S

V
( )
k

= r
t forms an ( , )PA -martingale.

By Definition 4.1 and application of Theorem 3.3 we directly obtain the fol-
lowing interesting characterization of fair prices.

Corollary 4.2 A given portfolio process S( )r is fair if and only if

g
0

, ,
i

0
2

2
=

i
= +

i r r

i

(4.5)

for all { , , , }i n0 1 1f! - .

Intuitively, Corollary 4.2 expresses the fact that a portfolio is fair if the maxi-
mum that the growth rate of the corresponding interpolated portfolio attains,
is a genuine maximum. This typically means that the GOP proportions must
satisfy the usual first order conditions in the direction of the portfolio. This
will happen if S( )r is in the interior of V as in this case the derivative at zero
may be taken from both sides.

5. A TWO ASSET EXAMPLE

To illustrate key features of the given discrete time benchmark approach, let
us consider a simple example of a market with two primary security accounts.
The two primary securities are the domestic currency, which is assumed to
pay zero interest, and a stock that pays zero dividends. The savings account at
time ti is here simply the constant S 1=( )0

i for { , , , }i n0 1 f! . The stock price
Si

( )1 at time ti is given by the expression 

,S S h( ) ( ) ( )
i l

l

i
1

0
1 1

1

=
=

% (5.1)

for { , , , }i n0 1 f! . Here the growth ratio l ( , )h 0( )1 3! at time tl is assumed
to be a random variable that can reach values, which are arbitrarily close
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close to 0 and 3. Since the GOP has always to be strictly positive we must
have 

[ , ]0 1( )
i
1 !r (5.2)

for all { , , , }i n0 1 f! . By (2.6) the GOP proportions ( )
i
0r and ( )

i
1r are such that

1( ) ( )
i i
0 1= -r r (5.3)

for all { , , , }i n0 1 f! . Obviously, the set V of strictly positive, portfolios S( )r

is then characterized by those portfolios with proportion i [ , ]0 1!r( )1 for all 
{ , , , }i n0 1 f! . The growth rate g( )

i
r at time ti for a portfolio S V( ) !r is accor-

ding to (3.1) given by the expression 

logg E h A1 1( ) ( ) ( )
i i i t

1
1

1
i= + -r

+
r

`aa jk k (5.4)

for all { , , , }i n0 1 1f! - . Let us now compute the optimal growth rate of this 
market, see (3.1). The first derivative of gi

( )r with respect to ir
( )1 is 
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(5.5)

and the second derivative has the form 
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(5.6)

for { , , , }i n0 1 1f! - . We note that the second derivative is always negative,
which indicates that the growth rate has at most one maximum. However, this
maximum may refer to a proportion that does not belong to the interval [ , ].0 1
To clarify such a situation we compute with (5.5) the values 

g
E h A 1( )
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i

i
i t1
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1
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i
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2
= -

r
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and
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for { , , , }i n0 1 1f! - . Due to (5.6) the first derivative 
g

( )

( )

i

i
12

2

r

r

is decreasing for
( )
i
1r increasing. If
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E h A 1( )
i t1
1

i $
+

m
`c j m (5.9)

for both 1=m and 1= -m , then (5.7) and (5.8) are of opposite sign and hence
there exists some 

i
[ , ]0 1( )1 !r such that 

g
0( )

( )

i

i
1

( ) ( )
i i
1 12

2
=

r
=

r

r r

(5.10)

for { , , , }i n0 1 1f! - . Otherwise, if condition (5.9) is violated, then the opti-
mal proportion is to be chosen at one of the boundary points. In this case the
derivative (5.5) will not be zero at the optimal proportion and we obtain not
a genuine maximum for the optimal proportion.

To check whether particular primary securities and portfolios are fair we
now specify in our example the distribution of the growth ratios. Let us consider
the case when the growth ratio hi

( )1 is independent of the past and lognormally
distributed such that 

,log h D DN( )
i
1 2+ n v` _j i (5.11)

with mean Dn , variance > 0D2v and time step size >t t 0D i i1= -+ .

1. At first, we clarify when the derivative 
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1 !r .

Because of
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for 1=m and 1= -m , (5.10) can only hold for | |
2

2

#n v . In this case it is 
also possible to show for 0D " that the optimal proportion ( )

i

1r for the
GOP reaches asymptotically the value 
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and it follows for all strictly positive portfolios S V( ) !r that 

g
0

, ,
i

0
2

2
=

i
=

i r r

i

for { , , , }i n0 1 1f! - . Thus by Corollary 4.2 all portfolios S V( ) !r are fair
if the absolute mean to variance ratio is less than 

2
1, that is 

| |
s
m

2
1

2 # . This
means, for all strictly positive benchmarked portfolios the expected log-
return of S( )1 is not allowed to be greater than half of its squared variance.

2. In the case <
s
m

2
1

2 - , when the stock significantly underperforms, then the 

situation is different. The optimal proportion is 

0( )
i
1 =r

for all { , , , }i n0 1 1f! - . For the GOP this requires to hold all investments
in the savings account. Here we get 

< ,expE
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which shows that the benchmarked stock price process 
S
SS ( )

( )

( )
1

1

= r is a strict 
supermartingale and not a martingale. Thus S( )1 is not fair according to Defi-
nition 4.1. Alternatively, we can check by Corollary 4.2 whether S( )1 is
fair. For the portfolio p with all wealth invested in stock, that is pi =

, ( , )p p 0 1( ) ( )
i i
0 1 =` j , we obtain the derivative of the corresponding interpolated

portfolio in the form 

< ,exp
g

2
1 0D

, ,
i
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2

2

2
= + -

i
n v

= +

i r r

i

de n o

which shows by Corollary 4.1 that S( )1 is not fair. On the other hand S ( )0

is clearly a martingale and thus fair.

3. For >
s
m

2
1

2 the stock is performing extremely well. The optimal propotion
is 

1( )
i
1 =r

for { , , , }i n0 1 1f! - . This means, for sufficiently large mean of the logarithm
of the growth ratio of the stock one has to hold for the GOP all investments
in the stock. In this case we get 
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< ,expE
h

h
A

2
1D( )

( )

i

i
t

1

1
0

2

i = - +n v

+

+
r

J

L

K
KK

de

N

P

O
OO

n o

which says that the benchmarked domestic savings account 
S
SS ( )

( )

( )
0

0

= r is a 

strict supermartingale. This means that S ( )0 is not a martingale and thus
by Definition 4.1 not fair. However, note that S 1( )1 = is a martingale.
For , ( , )1 0( ) ( )

i i i
0 1= =r r r` j we have then 

< .exp
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1 0

, ,
i

0
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2
= - + -

i
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= +

i r r

i

de n o

This confirms also by Corollary 4.2 that S( )0 is not fair.

This example demonstrates that benchmarked prices are not always martingales.
However, these benchmarked prices become martingales if the corresponding
derivative of the growth rate of the interpolated portfolio in the direction of
the security is zero, as follows from Corollary 4.2. Furthermore, the given log-
normal example indicates that discrete time markets with securities, where the
mean to variance ratio of the excess log-return over the risk free rate exceeds
one half, may not be fair.

6. FAIR PRICING OF CONTINGENT CLAIMS

Now, let us consider a contingent claim Hi, which is an Ati-measurable, possibly
negative payoff, expressed in units of the domestic currency and has to be paid
at a maturity date ti, { , , , }i n1 2 f! . Note that the claim Hi is not only contin-
gent on the information provided by the observed primary security accounts
S ( j)

l up until time ti, { , , , }j d0 1 f! , , , ,l i0 1 f! ! +, but as well on additional
information contained in Ati as, for instance, the occurrence of defaults or insured
events. Following our previous discussion and Definition 4.1 we obtain directly
the following formula for the fair price of a contingent claim.

Corollarly 6.1 The fair price kU ( )Hi at time tk for the contingent claim Hi satis-
fies the fair pricing formula 

k
i

i
k ,U S E

S

H
A( ) ( )

( )
H

t
i

k= r
r

J

L

K
K

N

P

O
O (6.1)

for { , , , }.k i0 1 f!

Obviously, by (4.10) all fair contingent claim prices have a corresponding bench-
marked fair price of the type 
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S

U
U( )

( )

( )

k
H

k

k
H

i

i

= r (6.2)

for all { , , , }k i0 1 f! , { , , , }i n0 1 f! , where the process k ,UU( ) ( )H Hi i= $ k ∈
{ , , , }i0 1 f , forms an ( , )PA -martingale according to Definition 4.1. The argu-
ment can be easily extended to sums of contingent claims with A -adapted matu-
rity dates. Note that all fair portfolios and fair contingent claim prices form a
price system, where benchmarked prices are ( , )PA -martingales.

If there exists only one equivalent risk neutral martingale measure, then the
pricing formula (6.1) is the standard risk neutral pricing formula, used in finance,
see Platen (2001, 2002, 2004). However note, in this paper we do not assume
the existence of such an equivalent risk neutral martingale measure and con-
sider a more general framework.

Formally, one can extend (6.1) also for assessing the accumulated value for
cashflows that occurred in the past, that is for { , , }.k i i1 2 f! + + Then we
obtain 

U
S

H
S( )

( )
( )

k
H

i

i
k

i = r
r (6.3)

for { , , }i 0 1 g! and { , , }k i i1 2 f! + + . In (6.3) we express the with earnings
accumulated tk-value of the payment Hi made at time ti. This interpretation is
important for insurance accounting as will be discussed below.

An important case arises when a contingent claim Hi with maturity ti
is independent of the value iS( )r of the GOP. Then by using (6.1) its fair price
at time tk is obtained by the formula 
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(6.5)

is the fair value at time tk of the zero coupon bond with maturity ti for k ∈
{ , , , }i0 1 f , { , , , }i n0 1 f! . The formula (6.4) reflects the classical actuarial
pricing formula that has been applied by actuaries for centuries to project
future cashflows into present values, though with an “artificial” not financial
market oriented understanding of Pi

k. Thus it turns out that the actuarial
pricing approach is in this particular case generalized by the fair pricing con-
cept that we introduced above through Definition 4.1. Note, in this case the
knowledge of the particular dynamics of the GOP is not necessary since
the zero coupon bond Pi

k carries the relevant information needed from the
GOP.
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7. FAIR PRICING OF SEQUENCES OF CASHFLOWS

For the pricing of an insurance policy the actuarial task is the valuation of a
sequence of cashflows X0, X1,…,Xn, which are paid at the times t0, t1,…, tn,
respectively. After each payment, its value is invested by the insurance company
in a strictly positive portfolio, characterized by a process of proportions p. Here
we choose an arbitrary process of proportions p, representing the investment
portfolio of the insurance company. The benchmarked fair price Q0 at time t0 for
the above sequence of cashflows is according to (6.2) given by the expression 
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O (7.1)

It follows that the benchmarked fair value Qi at time ti for { , , , }i n0 1 1f! - of
this sequence of cashflows equals the sum 

Q C Ri i i= + (7.2)

for { , , , }i n0 1 f! . Here we obtain 

,
S

X hC 1
( )

( )
i

i
k l

l k

i

k

i

1

1

0

=
+

=

-

=
r

r%! (7.3)

which expresses the benchmarked value of the already accumulated payments.
Furthermore,
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is the benchmarked fair price at time ti for the remaining payments, which is
called the prospective reserve, see Bühlmann 95. It is easy to check that the
process , { , , , }i nQ Q 0 1i f!= # - forms an ( , )PA -martingale for all choices of p
by the insurance company. When expressed in units of the domestic currency,
we have at time ti for the above sequence of cashflows the fair value 

Q S Q( )
i i i= r (7.5)

for all { , , , }i n0 1 f! .
The above result is important, for instance, for the fair pricing of life

insurance policies. Each insurance carrier can choose its own process of pro-
portions p to invest the payments that arise. However, the GOP, which is
needed to value the prospective reserve, must be the same for all insurance
companies in the same market. Above we clarified the role of the GOP for
pricing the prospective reserve. We point out that the above analysis says noth-
ing about the performance and riskiness of different investment strategies that
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the insurance carrier can choose. The growth rate for the investment portfolio
becomes optimal, if the proportions of the GOP are used. If the insurance com-
pany aims to maximize the growth rate of its investments, then the fair pricing
of an insurance policy and the optimization of the investment portfolio both
involve the GOP.

8. UNIT LINKED INSURANCE CONTRACTS

In the insurance context we look again at the cashflows n, , ,X X X0 1 f but
assume a specific form for these random variables. Intuitively, they stand now
for unit linked claims and premiums. Hence they can be of either sign. The cash-
flow at time ti is of the form 

X D S( )
i i i= r (8.1)

for { , , , }i n1 2 f! . The payments are linked to some strictly positive reference
portfolio S V( ) !r with given proportions p. The insurance contract specifies
the reference portfolio S( )r and the random variables Di, which are contingent
on the occurrence of insured events during the period ( , ]t ti i1- , for instance,
death, disablement or accidents.

The standard actuarial technique treats such contracts by using the refer-
ence portfolio process S( )r as numeraire and then deals with the unit linked ran-
dom variables , , ,D D Dn0 1 f at interest rate zero. It is reasonable to assume
that these random variables are A -adapted and independent of the reference
portfolio process S( )r .

The standard actuarial value iW ( )r of the payment stream at time ti is deter-
mined by the accumulated payments iC ( )r and the properly defined liability or
prospective reserve ri. The standard actuarial methodology assumes that the
insurer invests all accumulated payments in the reference portfolio S( )r . Then
one obtains for iW ( )r , when expressed in units of the domestic currency, the
expression 

W C r( ) ( )
i i

p p= + i (8.2)

with accumulated payments

C S D( ) ( )
i i k
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i

1

=
=

r r ! (8.3)

and the liability or actuarial prospective reserve

|r S E D A( )
i i k t

k i

n

1
i=

= +

r !e o (8.4)

for { , , , }i n0 1 f! . Observe the difference between iW ( )r and Qi as defined in
(7.5). Hence the standard actuarial pricing and fair pricing will, in general,
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lead to different results. As we have seen previously in (6.4) this is to be
expected when the cashflows are not independent of the GOP.

The benchmarked value i
i

iS

W
W ( )

( )

( )

=r
r

r

at time ti for the cashflows of this unit 

linked insurance contract is then by (8.2) of the form 

i
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(8.5)

for { , , , }i n0 1 f! . On the other hand, the benchmarked fair value Q( )r
i at time 

ti of the cashflows of this contract is according to (7.1) - (7.5) given by the expres-
sion 
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with fair prospective reserve
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for { , , , }i n0 1 f! . Under the natural condition of nonnegative fair prospective
reserves one can prove that the benchmarked fair prospective reserve is less or
equal the actuarial prospective reserve. The proof of the following inequality

relies on the supermartingale property of
S

S
( )

( )

k

k
r

r

, { , , , }k n0 1 f! and is shown in 
Appendix B.

Lemma 8.1 If
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for all { , , , }m n0 1 1f! - , then 

R ri # i (8.9)

for all { , , , }i m0 1 1f! - .

As by (8.4) we have
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the condition (8.8) of the lemma means that the insurance contract defines a
cashflow whose actuarial prospective reserve never becomes negative. This is
usually observed as a practical constraint, since insurance products that allow
for negative reserves have many defects. From (8.5) and (8.6) we immediately
have under condition (8.8) the inequality 

WQ( ) ( )
i i#r r

for { , , , }i n0 1 f! . Reverting to property (8.9) we observe that there is, in gen-
eral, a nonnegative difference 

r R 0i i $- (8.10)

between the actuarial and the fair prospective reserve. This difference is a
consequence of the classical actuarial price calculation leading to the prospec-
tive reserve ri in (8.4). Of course, the actuarial and the fair prospective reserve
coincide if one uses the GOP as reference portfolio.

CONCLUSION

We have shown that the growth optimal portfolio plays a central role for pric-
ing in finance and insurance markets. The concept of fair contingent claim
pricing has been introduced. Fair price processes, when measured in units of
the growth optimal portfolio, form martingales. For contingent claims that are
independent of the growth optimal portfolio fair prices also coincide with the
classical actuarial prices, however, in general, this is not the case.
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A. APPENDIX

Proof of Theorem 3.3

For ,0
2
1!i b l and S V( ) !r we consider the interpolated portfolio V V, , !i r r ,

that is with growth ratio 

>h 0, ,
i 1+
i r r (A.1)

given in (3.7) for { , , , }i n0 1 1f! - . One can then show, using ( )log x x 1# -
and (3.7), that 
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and

.G
h

h

h

h h1
1, ,

, ,

( )

, ,

( ) ( )

i
i

i

i

i i
1

1

1

1

1 1$ - - =
-

i+
+

+

+

+ +i r r
i r r

r

i r r

r rJ

L

K
K

N

P

O
O

(A.3)

We obtain in (A.3) for h h 0( ) ( )
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Summarizing (A.2)-(A.5) we have for { , , , }i n0 1 1f! - and S V( ) !r the upper
and lower bounds 
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where by (3.6) 
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170 HANS BÜHLMANN AND ECKHARD PLATEN



Then by using (A.6) and (A.7) it follows by the Dominated Convergence Theo-
rem that
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for { , , , }i n0 1 1f! - and S V( ) !r . This proves equation (3.10). ¡

B. APPENDIX

Proof of Lemma 8.1
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if E(Dn + Dn –1 +…+ Di +1 | Ati
) ≥ 0, for i ∈ {0,1,…,n – 1}. Taking conditional

expectation with respect to Ati
, the inequalities above become a chain, whose 

first member equals 
iS
R

( )r
i , and the last member becomes 

iS
r
( )r
i .

This proves (8.9). ¡
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A UNIFIED APPROACH TO GENERATE RISK MEASURES

BY

MARC J. GOOVAERTS1,2, ROB KAAS2, JAN DHAENE1,2, QIHE TANG2

ABSTRACT

The paper derives many existing risk measures and premium principles by min-
imizing a Markov bound for the tail probability. Our approach involves two
exogenous functions v(S) and �(S,p) and another exogenous parameter � ≤ 1.
Minimizing a general Markov bound leads to the following unifying equation:

, .z �S v SE Ep =] ]g g6 6@ @

For any random variable, the risk measure p is the solution to the unifying
equation. By varying the functions � and v, the paper derives the mean value
principle, the zero-utility premium principle, the Swiss premium principle,
Tail VaR, Yaari’s dual theory of risk, mixture of Esscher principles and more.
The paper also discusses combining two risks with super-additive properties and
sub-additive properties. In addition, we recall some of the important charac-
terization theorems of these risk measures.

KEYWORDS

Insurance premium principle, Risk measure, Markov inequality

1. INTRODUCTION

In the economic and actuarial financial literature the concept of insurance
premium principles (risk measures) has been studied from different angles.
An insurance premium principle is a mapping from the set of risks to the reals,
cf. e.g. Gerber (1979). The reason to study insurance premium principles is the
well-known fact in the actuarial field that if the premium income equals the
expectation of the claim size or less, ruin is certain. In order to keep the ruin
probability restricted one considers a risk characteristic or a risk measure for
calculating premiums that includes a safety loading. This concept is essential
for the economics of actuarial evaluations. Several types of insurance premium
principles have been studied and characterized by means of axioms as in
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2 Department of Quantitative Economics, University of Amsterdam.

ASTIN BULLETIN, Vol. 33, No. 2, 2003, pp. 173-191



Goovaerts et al. (1984). On the other hand, desirable properties for premiums
relevant from an economic point of view have been considered. An insurance
premium principle is often considered as the “price’’ of a risk (or of a tail risk
in reinsurance), as the value of a stochastic reserve, or as an indication of the
maximal probable loss. This gives the relation to ordering of risks that is
recently developed in the actuarial literature. In Artzner (1999), see also Artzner
et al. (1999), a risk measure is also defined as a mapping from the set of r.v.’s
to the reals. It could be argued that a risk measure is a broader concept than
an insurance premium calculation principle. Indeed, for a risk X, the proba-
bility �(X) = Pr[X > 1.10E[X]] is a risk measure, but this is not a premium
calculation principle because tacitly it is assumed that premiums are expressed
in monetary units. However, assuming homogeneity for a risk measure, hence
�(aX) = a�(X) for all real a > 0 and all risks X, implies that �(X) allows chang-
ing the monetary units. On the other hand, because the parameters appearing in
the insurance premium principles may depend on monetary units, the class of
insurance premiums contains the risk measures that are homogeneous as a spe-
cial case. In addition, let X be a risk variable with finite expectation and let u be
an initial surplus. Defining a transformed random variable describing risk as

�Y X u X XE 2= + -^ h6 @

also allows risk measures to depend on other monetary quantities. Conse-
quently it is difficult to give a distinction between insurance premium principles
and homogeneous risk measures. Different sets of axioms lead to different
risk measures. The choice of the relevant axioms of course depends on the
economics of the situations for which it is used. Desirable properties might be
different for actual calculation of premiums, for reinsurance premiums, or for
allocation, and so on.

In this paper we present a unified approach to some important classes of
premium principles as well as risk measures, based on the Markov inequality
for tail probabilities. We prove that most well-known insurance premium
principles can be derived in this way. In addition, we will refer to some of the
important characterization theorems of these risk measures.

Basic material on utility theory and insurance goes back to Borch (1968,
1974), using the utility concept of von Neumann and Morgenstern (1944).
The foundation of premium principles was laid by Bühlmann (1970) who intro-
duced the zero-utility premium, Gerber (1979) and comprehensively by Goo-
vaerts et al. (1984). The utility concept, the mean-value premium principle
as well as the expected value principle can be deduced from certain axioms.
An early source is Hardy et al. (1952). The Swiss premium calculation princi-
ple was introduced by Gerber (1974) and De Vijlder and Goovaerts (1979).
A multiplicative equivalent of the utility framework has led to the Orlicz princi-
ple as introduced by Haezendonck and Goovaerts (1982). A characterization
for additive premiums has been introduced by Gerber and Goovaerts (1981),
and led to the so-called mixture of Esscher premium principles. More recently,
Wang (1996) introduced in the actuarial literature the distortion functions into
the framework of risk measures, using Yaari’s (1987) dual theory of choice
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under risk. This approach can also be introduced in an axiomatic way. Artzner
(1999) restricted the class of Orlicz premium principles by adding the require-
ment of translation invariance to its axioms, weakened by Jarrow (2002).
This has mathematical consequences that are sometimes contrary to practical
insurance applications. In the 1980’s the practical significance of the basic
axioms has been discussed; see Goovaerts et al. (1984). On the same grounds
Artzner (1999) provided an argumentation for selecting a set of desirable axioms.
In Goovaerts et al. (2003) it is argued that there are no sets of axioms gener-
ally valid for all types of risky situations. There is a difference in desirable
properties when one considers a risk measure for allocation of capital, a risk
measure for regulating purposes or a risk measure for premiums. There is a
parallel with mathematical statistics, where characteristics of distributions may
have quite different meanings and uses, like e.g. the mean to measure central
tendency, the variance to measure spread, the skewness to reflect asymmetry
and the peakedness to measure the thickness of the tails. In an actuarial
context, risk measures might have different properties than in other economic
contexts. For instance, if we cannot assume that there are two different rein-
surers willing to cover both halves of a risk separately, the risk measure (pre-
mium) for the entire risk should be larger than twice the original risk measure.

This paper aims to introduce many different risk measures (premium prin-
ciples) now available, each with their desirable properties, within a unified
framework based on the Markov inequality. To give an idea how this is
achieved, we give a simple illustration.

Example 1.1. The exponential premium is derived as the solution to the utility
equilibrium equation

,e eE E( ) ( )w X wb b p- = -- - - -
8 8B B (1.1)

where w is the initial capital and u(x) = – e –bx is the utility attached to wealth level x.
This is equivalent to

,eE 1( )Xb p =- -
8 B (1.2)

hence we get the explicit solution

.log eEp b
1 Xb= 8 B (1.3)

Taking Y = ebX and y = ebp and applying Pr[Y > y] ≤ y
1E[Y ] (Markov inequality),

we get the following inequality for the survival probabilities with X:

> .Pr X
e

eEp 1 X
bp

b#6 8@ B (1.4)

For this Markov bound to be non-trivial, the r.h.s. of (1.4) must be at most 1.
It equals 1 when p is equal to the exponential(b) premium with X. This procedure
leads to an equation which gives the premium for X from a Markov bound.
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Two more things must be noted. First, for fixed p, we write the bound in (1.4)
as f (b) = E[eb(X – p)]. Since f �(b) = E[(X – p)2eb(X – p)] > 0 the function f (b) is
convex in some relevant b-region. The risk aversion b0 for which this bound f (b)
is minimal has f�(b0) = 0, hence p = E[Xeb0X] / E[eb0X], which is the Esscher pre-
mium for X with parameter b0. This way, also the Esscher premium has been linked
to a Markov bound. The r.h.s. of (1.4) equals 1 for b = 0 as well, and is less than
or equal to 1 for b in the interval [0,b1], where b1 is the risk aversion for which
the exponential premium equals p. Second, if p = b

1 logE[e bX] holds, we have the
following exponential upper bound for tail probabilities: for any k > 0,

> .Pr X k
e

e eEp 1
( )k

X k
b p

b b#+ =+
-

6 8@ B (1.5)

Using variations of the Markov bound above, the various equations that gen-
erate various premium principles (or risk measures) can be derived. Section 2
presents a method to do this, Section 3 applies this method to many such
principles, and discusses their axiomatic foundations as well as some other
properties; Section 4 concludes.

2. GENERATING MARKOVIAN RISK MEASURES

Throughout this paper, we denote the cumulative distribution function (cdf) of
a random variable S by FS. For any non-negative and non-decreasing function
v (s) satisfying

< ,v SE 3+] g6 @ (2.1)

we define an associated r.v. S* having a cdf with differential

S
S( ) ( )

( ) ( )
, < < .F s v S

v s F s
sd E

d
3 3= - +*

6 @
(2.2)

It is easy to prove that

> > , < < .Pr PrS Sp p p3 3# - +*6 8@ B (2.3)

For any Lebesgue measurable bivariate function � (�, �) satisfying

, ,z s Ip ( > )s p$] g (2.4)

we have the following inequalities:

> , .Pr zS SE I Ep p( > )S p #= *
* *_ i8 8 8B B B (2.5)

Then it follows from (2.3) that

> ( )
( , ) ( )

.Pr
z

S v S
S v S

E
E

p
p

#6
6

6
@

@

@
[GMI]
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This is a generalized version of the Markov inequality, which has S ≥ 0 with
probability 1 and p ≥ 0, �(s,p) = s /p and v (s) / 1. Therefore, we denote it by
the acronym [GMI]. Similar discussions can be found in Runnenburg and
Goovaerts (1985), where the functions v(�) and �(�,�) are specified as v(�) / 1
and �(s,p) = f(s) /f(p), respectively, for some non-negative and non-decreasing
function f (�).

For the inequality [GMI] to make sense, the bivariate function �(s,p) given
in (2.4) and the r.v. S should satisfy

, ( ) <z S v SE p 3+] g6 @ (2.6)

for all relevant p. Note that if (2.6) holds for some – ∞ < p < +∞ then (2.1) does
as well. By assuming (2.6), it is clear that the family of r.v.’s S considered in
the inequality [GMI] is restricted, in the sense that the right tail of S can not
be arbitrarily heavy. For the given functions �(�,�) and v(�) as above, we intro-
duce below a family of all admissible r.v.’s that satisfy (2.6):

: ( , ) ( ) < .argz� S S v SE for all l ep p,z v 3= +6 @# - (2.7)

Sometimes we are interested in the case that there exists a minimal value p (�)
M such

that [GMI] gives a bound

M> ( )
,

.Pr
z

�S v S
S v S
E

E
p

p
1

M# # #
^ ]h g

7
6

7
A

@

A
(2.8)

Note that (2.8) produces an upper bound for the �-quantile q�(S) of S.
For each 0 ≤ � ≤ 1, the restriction (2.4) on �(�,�) allows us further to introduce
a subfamily of ��,v as follows:

: ( )
,

.arg
z

�� S v S
S v S

E
E

for all l e
p

p, ,z �v #=
] ]g g

6

6

@

@
) 3 (2.9)

If in (2.4) the function �(s,p) is strictly smaller than 1 for at least one point
(s,p), then it is not difficult to prove that there are some values of 0 ≤ � < 1
such that the subfamilies ��,v,� are not empty. We also note that ��,v,� increases
in � ≥ 0.

Hereafter, for a real function f(�) defined on an interval D and a constant b
in the range of the function f (�), we write an equation f (p) = b with the under-
standing that its root is the minimal value of p satisfying the inequalities
f (p) ≤ b and max{f (x) | x ∈ (p – e, p + e) � D} ≥ b for any e > 0. With this con-
vention, the minimal value p (�)

M such that the second inequality in (2.8) holds
is simply the solution of the equation

( )
,

.
z

�v S
S v S
E

E pM
=

^ ]h g

6

7

@

A
[UE�]
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When � = 1, we call

( )
,z
v S

S v S
E

E p
1

M
=

^ ]h g

6

7

@

A
[UE]

the unifying equation, or [UE] in acronym. This equation will act as the uni-
fying form to generate many well-known risk measures. The equation [UE]
gives the minimal percentile for which the upper bound for the tail probabil-
ity of S still makes sense. It will turn out that these minimal percentiles cor-
respond to several well-known premium principles (risk measures). It is clear
that the solution of the equation [UE] is not smaller than the minimal value
of the r.v. S.

Definition 2.1. Let S be an admissible r.v. from the family ��,v,� for some 0 ≤
� ≤ 1, where � = �(�,�) and v = v(�) are two given measurable functions with �
satisfying (2.4) and v non-negative and non-decreasing. The solution p (�)

M of the
equation [UE�] is called a Markovian risk measure of the r.v. S at level �.

Remark 2.1. About the actuarial meaning of the ingredients �(�,�), v (�) and �
in Definition 2.1 we remark that � represents a confidence bound, which in prac-
tical situations is determined by the regulator or the management of an insurance
company. In principle the actuarial risk measures considered are intended to
be approximations (on the safe side) for the VaR of order �, and to have some
desirable actuarial properties such as additivity, subadditivity, or superadditivity,
according to actuarial applications for calculating solvency margins, for RBC
calculations, as well as for the top-down approach of premiums calculations. The
functions �(�,�) and v (�) are introduced to derive bounds for the VaR, so that
these bounds have some desirable properties for applications. In addition, because
a risk measure provides an upper bound for the VaR, it might be interesting to
determine the minimal value of the risk measure attached by the different choices
of �(�,�) and v (�).

Remark 2.2. Clearly, given the ingredients �(�,�), v(�) and �, the Markovian risk
measure p (�)

M (S) involves only the distribution of the admissible r.v. S. A Markovian
risk measure provides an upper bound for the VaR at the same level. By selecting
appropriate functions � the Markovian risk measures can reflect desirable proper-
ties when adding r.v.’s in addition to their dependence structure.

Remark 2.3. Let X1 and X2 be two admissible r.v.’s, with Markovian risk mea-
sures p (�)

M (X1) and p (�)
M (X2). Then we have

> ( ) , > ( ) .Pr Pr� �X X X Xp p( ) ( )� �
M M1 1 2 2# #8 8B B (2.10)

We can obtain from the equation [UE�] that

2 2> ( ) ( )Pr �X X X Xp p( ) ( )� �
M M1 1 #+ +8 B (2.11)
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• in case X1 and X2 are independent when the risk measure p (�)
M involved is sub-

additive for sums of independent risks;
• in case X1 and X2 are comonotonic when the risk measure p (�)

M involved is sub-
additive for sums of comonotonic risks;

• for any X1 and X2, regardless of their dependence structure, in case a sub-
additive risk measure p (�)

M is applied.

3. SOME MARKOVIAN RISK MEASURES

In what follows we will provide a list of important insurance premium principles
(or risk measures) and show how they can be derived from the equation [UE].
We will also list a set of basic underlying axioms. In practice, for different sit-
uations different sets of axioms are needed.

3.1. The mean value principle

The mean value principle has been characterized by Hardy et al. (1952);
see also Goovaerts et al. (1984), Chapter 2.8, in the framework of insurance
premiums.

Definition 3.1. Let S be a risk variable. For a given non-decreasing and non-
negative function f (�) such that E[ f (S)] converges, the mean value risk measure
p = pf is the root of the equation f (p) = E[ f (S)] .

Clearly, we can obtain the mean value risk measure by choosing in the equation
[UE] the functions �(s,p) = f(s) / f(p) and v(�)/ 1. As verified in Goovaerts et al.
(1984), p. 57-61, this principle can be characterized by the following axioms
(necessary and sufficient conditions):

A1.1. p(c) = c for any degenerate risk c ;
A1.2. Pr[X ≤ Y] = 1 ( p(X) ≤ p(Y);
A1.3. If p(X) = p(X�), Y is a r.v. and I is a Bernoulli variable independent of

the vector {X, X�,Y}, then p(IX+(1– I )Y) = p(IX�+ (1– I )Y).

Remark 3.1. This last axiom can be expressed in terms of distribution functions
by assuming that mixing FY with FX or with FX� leads to the same risk measure,
as long as the mixing weights are the same.

Remark 3.2. Under the condition that E[ f(S)] converges one obtains as an upper
bound for the survival probability

>
( ) ( )

.Pr S u f u
f S

f u
fE

p p p
p

#+
+

=
+] ]g g

6
6

@
@

(3.1)

Specifically, when E[e�S] < ∞ for some � > 0 one obtains e–�u as an upper bound
for the probability Pr[S >p + u], see the example in Section 1. In case p� is the
root of E[ f (S)] = �f (p), by the inequality [GMI] one gets Pr[S ≥ p�] ≤ �.
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3.2. The zero-utility premium principle

The zero-utility premium principle was introduced by Bühlmann (1970).

Definition 3.2. Let u(�) be a non-decreasing utility function. The zero-utility pre-
mium p(S) is the solution of u (0) = E[u (p – S )].

We assume that either the risk or the utility function is bounded from above.
Because u(�) and u(�) + c define the same ordering in expected utility, the utility
is determined such that u(x) → 0 as x → + ∞. To obtain the zero-utility premium
principle, one chooses in the equation [UE] the functions �(s,p) = u (p – s) /
u (0) and v(�) / 1.

In order to relate the utility to the VaR one should proceed as follows. By
the inequality [GMI], we get

> ,Pr �S u
u S

Ep
p

0�
�#

-

- -
=

]

^

g

h
7 =A G (3.2)

where p� is the solution of the equation E[u(p – S )] = �u(0). The result
obtained here requires that the utility function u (�) is bounded from below.
However, this restriction can be weakened by considering limits for translated
utility functions.

Let the symbol )eu represent the weak order with respect to the zero-utility
premium principle, that is, X )eu Y means that X is preferable to Y. We write
X +eu Y if both X )eu Y and Y )eu X. It is well-known that the preferences of a
decision maker between risks can be described by means of comparing expected
utility as a measure of the risk if they fulfill the following five axioms which
are due to von Neumann and Morgenstern (1944) (combining Denuit et al.
(1999) and Wang and Young (1998)):

A2.1. If FX = FY then X+euY;

A2.2. The order )eu is reflexive, transitive and complete;

A2.3. If Xn )eu Y and FXn
→ FX then X )eu Y;

A2.4. If FX ≥ FY then X )eu Y;

A2.5. If X )eu Y and if the distribution functions of X�p and Y �p are given by
FX �p(x) = pFX (x) + (1 – p)FZ(x) and FY�p(x) = pFY(x) + (1 – p)FZ(x) where
FZ is an arbitrary distribution function, then X�p )eu Y�p for any p ∈ [0,1].

From these axioms, the existence of a utility function u (�) can be proven, with
the property that X )eu Y if and only if E[u (–X )] ≥ E[u (–Y)].

3.3. The Swiss premium calculation principle

The Swiss premium principle was introduced by Gerber (1974) to put the mean
value principle and the zero-utility principle in a unified framework.
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Definition 3.3. Let w(�) be a non-negative and non-decreasing function on � and
0 ≤ z ≤ 1 be a parameter. Then the Swiss premium principle p = p(S) is the root
of the equation

.w S z w zE p p1- = -] ]^g g h6 @ (3.3)

This equation is the special case of [UE] with �(s,p) = w(s – zp) / w((1 – z)p) and
v (�) / 1. It is clear that z = 0 provides us with the mean value premium, while
z = 1 gives the zero-utility premium. Recall that by the inequality [GMI], the
root p� of the equation E[w(S – zp)] = �w((1 – z)p) determines an upper bound
for the VaR�.

Remark 3.3. Because one still may choose w(�), it can be arranged to have
supplementary properties for the risk measures. Indeed if we assume that w(�) is
convex, we have

( ( ) ( ).X Y X Yp pcx# # (3.4)

See for instance Dhaene et al. (2002a, b) for the definition of ≤ cx (convex order).
For two random pairs (S1, S2) and (S“ 1, S“ 2) with the same marginal distributions,
we call (S1, S2) more related than (S“ 1, S“ 2) if the probability Pr[S1 ≤ x, S2 ≤ y] that
S1 and S2 are both small is larger than that for S“ 1 and S“ 2, for all x and y; see
e.g. Kaas et al. (2001), Chapter 10.6. In this case one gets from (3.4)

p(S“ 1+S“ 2) ≤ p(S1+S2). (3.5)

The risk measure of the sum of a pair of r.v.’s with the same marginal distribu-
tions depends on the dependence structure, and in this case increases with the
degree of dependence between the terms of the sum.

Remark 3.4. Gerber (1974) proves the following characterization: Let w(�) be strictly
increasing and continuous, then the Swiss premium calculation principle generated
by w(�) is additive for independent risks if and only if w(�) is exponential or linear.

3.4. The Orlicz premium principle

The Orlicz principle was introduced by Haezendonck and Goovaerts (1982)
as a multiplicative equivalent of the zero-utility principle. To introduce this
premium principle, they used the concept of a Young function c, which is a
mapping from �+

0 into �+
0 that can be written as an integral of the form

( ) ( ) , ,x f t t xdc 0
x

0
$= # (3.6)

where f is a left-continuous, non-decreasing on �+
0 satisfying f (0) = 0 and

limx→+∞ f(x) = +∞. It is seen that a Young function c is absolutely continuous,
convex and strictly increasing, and has c�(0) = 0. We say that c is normalized
if c(1) = 1.
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Definition 3.4. Let c be a normalized Young function. The root of the equation

E[c (S /p)] = 1 (3.7)

is called the Orlicz premium principle of the risk S.

The unified approach follows from the equation [UE] with �(s,p) replaced by
c(s /p) and v (s) / 1. The Orlicz premium satisfies the following properties:

A4.1. Pr[X ≤ Y ] = 1 ( p(X ) ≤ p(Y );
A4.2. p(X ) = 1 when X / 1;
A4.3. p(aX) = ap(X) for any a > 0 and any risk X;
A4.4. p(X +Y) ≤ p(X ) + p(Y).

Remark 3.5. A4.3 above says that the Orlicz premium principle is positively
homogenous. In the literature, positive homogeneity is often confused with cur-
rency independence. As an example, we look at the standard deviation principle
p1(X) = E[X] + � �� [X] and the variance principle p2(X) = E[X] + b � Var [X],
where � and b are two positive constants, � is dimension-free but the dimension
of 1/b is money. Clearly p1(X) is positive homogenous but p2(X) is not. But it
stands to reason that when applying a premium principle, if the currency is
changed, so should all constants having dimension money. So going from BFr to
Euro, where 1 Euro . 40 BFr, the value of b in p2(X) should be adjusted by the
same factor. In this way both p1(X) and p2(X) are independent of the monetary
unit.

Remark 3.6. These properties remain exactly the same for risks that may also
be negative, such as those used in the definition of coherent risk measures by
Artzner (1999). Indeed if p(–1) = –1 and one extends these properties to r.v.’s
supported on the whole line �, then

p(X + a – a) ≤ p(X + a) – a. (3.8)

Hence p(X + a) ≥ p(X) + a and consequently p(X+ a) = p(X) + a.

The interested reader is referred to Haezendonck and Goovaerts (1982).
If in addition translation invariance is imposed for non-negative risks, it turns
out that the only coherent risk measure for non-negative risks within the class
of Orlicz principles is an expectation p(X) = E[X].

Remark 3.7. The Orlicz principle can also be generalized to cope with VaR�.
Actually, from the inequality [GMI], the solution p� of the equation E[c(S/p)]
= � gives Pr[S >p�] ≤ �.

3.5. More general risk measures derived from Markov bounds

For this section, we confine to risks with the same mean. We consider more
general risk measures derived from Markov bounds, applied to sums of pairs
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of r.v.’s, which may or may not be independent. The generalization consists
in the fact that we consider the dependence structure to some extent in the
risk premium, letting the premium for the sum X +Y depend both on the dis-
tribution of the sum X +Y and on the distribution of the sum Xc +Yc of the
comonotonic (maximally dependent) copies of the r.v.’s X and Y. Because of this,
we denote the premium for the sum X +Y by p(X,Y) rather than by p(X +Y ).
When the r.v.’s X and Y are comonotonic, however, there is no difference in
understanding between the two symbols p(X,Y ) and p(X +Y ).

Taking p(X) simply equal to p(X,0), we consider the following properties:

A5.1. p(aX) = ap(X) for any a > 0;
A5.2. p(X + b) = p(X)+ b for any b ∈ �;
A5.3a. p(X,Y) ≤ p(X) + p(Y);
A5.3b. p(X,Y) ≥ p(X) + p(Y);
A5.3c. p(X,Y) = p(X) + p(Y).

Remark 3.8. A5.3a describes the subadditivity property, which is realistic only in
case diversification of risks is possible. However, this is rarely the case in insur-
ance. Subadditivity gives rise to easy mathematics because distance functions
can be used. The superadditivity property for a risk measure (that is not Artzner
coherent) is redundant in the following practical situation of capital allocation
or solvency assessment. Suppose that two companies with risks X1 and X2 merge
and form a company with risk X1 + X2. Let d1, d2 and d denote the allocated capi-
tals or solvency margins. Then, with probability 1,

(X1+X2 – d1 – d2)+ ≤ (X1 – d1)++ (X2 – d2)+. (3.9)

This inequality expresses the fact that, with probability 1, the residual risk of the
merged company is smaller than the risk of the split company. In case d ≥ d1 + d2,
one gets, also with probability 1,

(X1+X2 – d )+ ≤ (X1 – d1)++ (X2 – d2)+. (3.10)

Hence in case one calculates the capitals d1, d2 and d by means of a risk measure
it should be superadditive (or additive) to describe the economics in the right way.
Subadditivity is only based on the idea that it is easier to convince the shareholders
of a conglomerate in failure to provide additional capital than the shareholders
of some of the subsidiaries. Recent cases indicate that for companies in a finan-
cial distress situation splitting is the only way out.

Remark 3.9. It should also be noted that subadditivity cannot be used as an
argument for a merger of companies to be efficient. The preservation (3.9) of the
inequality of risks with probability one expresses this fact; indeed

p((X1+X2 – d1 – d2)+) ≤ p((X1 – d1)++ (X2 – d2)+) (3.11)

expresses the efficiency of a merger. It has nothing to do with the subadditivity.
A capital d < d1 + d2, for instance derived by a subadditive risk measure, can only
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be considered if the dependence structure allows it. For instance if d is determined
as the minimal root of the equation 

p((X1+X2 – d )+) = p((X1 – d1)++ (X2 – d2)+), (3.12)

d obviously depends on the dependence between X1 and X2. Note that in (X1 – d1)+ +
(X2 – d2)+, the two terms are dependent. Taking this dependence into account, the
risk measure providing the capitals d, d1 and d2 will not always be subadditive,
nor always superadditive, but may instead exhibit behavior similar to the VaR, see
Embrechts et al. (2002).

Let c(�) be a non-decreasing, non-negative, and convex function on � satisfying
limx→+∞ c(x) = +∞. For fixed 0 < p < 1, we get, by choosing v(�) = 1, the equality

X Y

X Y

+

+ +, , ( ) ( )

( )
z X Y

F p

X Y F p
p c c

p1
1

1

1

c c

c c

$=
-

+ -
-

-J

L

K
K]
_ N

P

O
Og

i
(3.13)

and by solving [UE] for p, the following risk measure for the sum of two r.v.’s:

X Y

X Y

+

+ +

( , ) ( )

( )
( )

X Y F p

X Y F p
E c

p
c 11

1
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c c

-
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V

X
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W
W

(3.14)

for some parameter 0 < p < 1. Hereafter, the pth quantile of a r.v. X with d.f.
FX is, as usual, defined by

X X( ) ( ) , , .inf �F p x F x p p 0 11 ! $ !=-
6 @" , (3.15)

It is easily seen that there exists a unique constant a(p) > 0 such that

X Y+ +

( )
( )

( ).a p
X Y F p

E c c 1

1
c c+ -

=
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(3.16)

Thus p(X,Y) = F –1
Xc+Yc (p) + a(p). Especially, letting Y be degenerate at 0 we get

p(X) > F –1
X (p).

Now we check that A5.1, A5.2 and A5.3a are satisfied by p (subadditive
case). In fact, the proofs for the first two axioms are trivial. As for A5.3a , we
derive

X Y

X Y

+

+ +

( ) ( ) ( )
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This proves A5.3a .

Remark 3.10. If the function c(�) above is restricted to satisfy c(1) = c�(1), then
it can be proven that the risk measure

X X +
( ) ( ) ( )X F p X F pEpl

1 1= + -- -
` j: D (3.18)

gives the lowest generalized Orlicz measure. In fact, since c is convex on � and
satisfies c(1) = c�(1), we have

c ((x)+) ≥ c (1) · (x)+ for any x ∈ �. (3.19)

Let p(X) be a generalized Orlicz risk measure of the risk X, that is, p(X) is the
solution of the equation
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By (3.19) and recalling that p(X) > F –1
X (p), we have
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which implies that

X X +
( ) ( ) ( ) ( ).X F p X F p XEp pl

1 1$ + - =- -
` j9 C (3.22)

Remark 3.11. Now we consider the risk measure
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for some parameter 0 < p < 1. Similarly as in Remark 3.12, if the function c(�)
is restricted to satisfy c(1) = c�(1), we obtain the lowest risk measure as

X X X+
( ) ( ) ( ) > ( ) .X F p p X F p X X F pE Ep

1
11 1 1= +
-

- =- - -
` j9 8C B (3.24)

Remark 3.12. Another choice is to consider the root of the equation

( ) ( ) ,�X X
X X

E E
E

c c p1
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=d n

6

6
=

@

@
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defining, in general terms, a risk measure for the deviation from the expectation.
As a special case when c(t) / t2I(t ≥0) one gets

( ) .
�

X X
X

Ep
s

= +6
6

@
@

(3.26)

Note that both (3.24) and (3.26) produce an upper bound for the �-quantile q�(X)
of X.

Remark 3.13. For a risk variable X, one could consider a risk measure pc(X) which
is additive, and define another risk measure �(X), where the deviation a (X) =
�(X) – pc(X) is determined by

( )
( )

( ).a X
X X

E c
p

c 1c-
=e o> H (3.27)

Here the role of pc(X) is to measure central tendency while a(X) measures the
deviation of the risk variable X from pc(X). If pc(X) is positively homogenous,
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translation invariant and additive, then �(X) is positively homogenous and trans-
lation invariant. The measure �(X) may be subadditive or superadditive, depending
on the convexity or concavity of the function c(�).

3.6. Yaari’s dual theory of choice under risk

Yaari (1987) introduced the dual theory of choice under risk. It was used by
Wang (1996), who introduced distortion functions in the actuarial literature.
A distortion function is defined as a non-decreasing function g : [0,1] $ [0,1]
such that g (0) = 0 and g (1) = 1.

Definition 3.5. Let S be a non-negative r.v. with d.f. FS, and g (�) be a distortion
function defined as above. The distortion risk measure associated with the dis-
tortion function g is defined by

( ) .g F x xdp 1 S
0

= -
3+

# ^ h (3.28)

Choosing the function �(�,�) in the equation [UE] such that �(s,p) = s /p and
using the left-hand derivative g�– (1– FS(s)) instead of v (s), using integration by
parts we get the desired unifying approach. The choice of v (�), which at first
glance may look artificial, is very natural if one wants to have E[v(S)] = 1.

This risk measure can be characterized by the following axioms:

A6.1. Pr[X ≤ Y] = 1 ( p(X) ≤ p(Y);
A6.2. If risks X and Y are comonotonic then p(X +Y) = p(X) + p(Y);
A6.3. p(1) = 1.

Remark 3.14. It is clear that this principle results in large upper bounds because

X ( )
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It is also clear that the set of risks for which p is finite contains all risks with
finite mean.

3.7. Mixtures of Esscher principles

The mixture of Esscher principles was introduced by Gerber and Goovaerts
(1981). It is defined as follows:

Definition 3.6. For a bounded r.v. S, we say a principle p = p(S) is a mixture of
Esscher principles if it is of the form

( ) ( ) ( ) ( ) ( ) ( ) ( ),z z zS F t F t Fdp 1F 3 3 3 3= - - + + - + +
3

3

-

+
# ^ h (3.30)
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where F is a non-decreasing function satisfying 0 ≤ F(t) ≤ 1 and � is of the form

( ) ( ) , .logz z �t t t e td
d ES

tS != = 8 B (3.31)

Actually we can regard F as a possibly defective cdf with mass at both – ∞ and
+ ∞. Since the variable S is bounded, �(– ∞) = min[S] and �(+ ∞) = max[S].
In addition, �S(t) is the Esscher premium of S with parameter t ∈ �.

In the special case where the function F is zero outside the interval [0, ∞],
the mixture of Esscher principles is a mixture of premiums with a non-negative
safety loading coefficient. We show that in this case the mixture of Esscher pre-
miums can also be derived from the Markov inequality. Actually,

( ) ( ) ( ) ( ) ( ) ( ) ( ).z z zS t F t F t F td dp 1
,F

0 0
3 3= + - + + =

3

3

+

+
# #^ h

5 ?
(3.32)

It can be shown that the mixture of Esscher principles is translation invari-
ant. Hence in what follows, we simply assume, without loss of generality, that
min[S] ≥ 0 because otherwise a translation on S can be used. We notice that,
for any t ∈ [0,+∞],

( ) .z t
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E
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B

B
@ (3.33)

The inequality (3.33) can, for instance, be deduced from the fact that the variables
S and etS are comonotonic, hence positively correlated. Since we have assumed
that min[S] ≥ 0, now we choose in [GMI] the functions v (�) / 1 and �(s,p) =
s /p, then we obtain that

> , ( ) ( ),Pr z zS S S t F tE E dp p p p
1 1

,0
# # #

3+
#] g6 6 6
5

@ @ @
?

(3.34)

where the last step in (3.34) is due to the inequality (3.33) and the fact that
F([0,+∞]) = 1. Letting the r.h.s. of (3.34) be equal to 1, we immediately obtain (3.32).

We now verify another result: the tail probability Pr[S > p + u] decreases expo-
nentially fast in u ∈ [0,+∞). The proof is not difficult. Actually, since the risk
variable S is bounded, it holds for any � > 0 that

> .Pr exp exp� �S u u SEp p $#+ - +] g6 6@ @" !, + (3.35)

Hence, in order to get the announced result, it suffices to prove that, for some
� > 0,
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or equivalently to prove that, for some � > 0,

( ) ( ).log exp z� �S t F tE d
,0

#
3+

#6
5

@
?

! + (3.36)

In the trivial case where the risk S is degenerate, both sides of (3.36) are equal
for any � > 0. If F is not degenerate, the Esscher premium � (t) is strictly
increasing in t ∈ [0,+∞], and we can find some �0 > 0 such that

( ) ( ) ( )z z� t F td
,0

#
3+

#
5 ?

(3.37)

holds for any � ∈ [0, �0]. Thus in any case we obtain that (3.36) holds for any
� ∈ [0, �0]. We summarize:

Remark 3.15. For the mixture of Esscher premiums p defined above, if F is con-
centrated on [0,+∞], then

>Pr exp �S u up 0#+ -6 @ " , (3.38)

holds for any u ≥ 0, where the constant �0 > 0 is the solution of the equation

( ) ( ) ( ).z z� t F td
,0

=
3+

#
5 ?

(3.39)

The mixture of Esscher premiums is characterized by the following axioms; see
Gerber and Goovaerts (1981):

A7.1. �X1
(t) ≤ �X2

(t) ∀t ∈ � ( pF (X1) ≤ pF (X2);

A7.2. It holds for any two independent risks X1 and X2 that

.X X X Xp p pF F F1 2 1 2+ = +^ ^ ^h h h (3.40)

Hence this risk measure is additive for independent risks. When the function F
in (3.32) is non-zero only on the interval [0,∞], the premium contains a positive
safety loading.

4. CONCLUSIONS

This paper shows how many of the usual premium calculation principles (or
risk measures) can be deduced from a generalized Markov inequality. All risk
measures provide information concerning the VaR, as well as the asymptotic
behavior of Pr[S > p + u]. Therefore, the effect of using a risk measure and
requiring additional properties is equivalent to making a selection of admis-
sible risks. Notice that when using a risk measure, additional requirements are
usually needed about convergence of certain integrals. In this way, the set of
admissible risks is restricted, e.g. the one having finite mean, finite variance,
finite moment generating function and so on.
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ABSTRACT

We consider a risk process modelled as a compound Poisson process. We find
the optimal dynamic unlimited excess of loss reinsurance strategy to minimize
infinite time ruin probability, and prove the existence of a smooth solution of
the corresponding Hamilton-Jacobi-Bellman equation as well as a verification
theorem. Numerical examples with exponential, shifted exponential, and Pareto
claims are given.

KEYWORDS

Stochastic control, Ruin probability, XL reinsurance

1. INTRODUCTION

Assume an insurance company has the possibility to choose and buy dynam-
ically an unlimited excess of loss reinsurance. For this situation, stochastic
control theory is used to derive the optimal reinsurance strategy which mini-
mizes ruin probability when the reinsurer computes his premium according to
the expected value principle. The corresponding problem has been solved by
Schmidli (2000) for the case of dynamic proportional reinsurance.

We model the risk process Rt of an insurance company by a Lundberg
process with claim arrival intensity l and absolutely continuous claim size
distribution Q. The number of claims At in a time interval (0,t] is a Poisson
process with intensity l, and the claim sizes i , , ,U i 1 2 f= are positive iid vari-
ables independent of At. Let Ti be the occurrence time of the i-th claim,

, , ,i c1 2 f= the premium intensity of the insurer which contains a positive
safety loading

> ,c E Uim 7 A

and s R0= the initial reserve. Then – without reinsurance – the surplus of the
insurance company at time t is
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iR s ct U
i

A

1

= + -
=

t

t

! .

The reinsurer uses the expected value principle with safety loading > 0i for pre-
mium calculation. We assume ( ) > ,E U c1 i+ i m 6 @ because otherwise the insurer
could get rid of all his risk by reinsuring his total portfolio.

Excess of loss reinsurance is a non proportional risk sharing contract
in which, for a given retention level b 0$ a claim of size U is divided into
the cedent’s payment { , }U bmin and the reinsurer’s payment ( )U b- =+

{ , }U U bmin- . In this paper the retention level is assumed to be chosen dynam-
ically, i.e. the insurer adjusts the retention level bt at every time t 0$ , based on
the information available just before time t:t If F is the sigma-field generated
by , ,R u tu # then bt is assumed to be predictable (a pointwise limit of left con-
tinuous tF adapted processes), i.e. it is a measurable function of s and the
times and sizes of claims occurring before t. It can be represented by a sequence
of functions , , , ,n 0 1 2n f=r with : R Rn

n2 1"r + measurable and

( , , , , , , ) < .b T T U U t T T t Tfort n n n n n n1 1 1f f #= -r +

We will show that the optimal reinsurance strategy exists and is given via a feed-
back equation of the following form:

( )b b Rt t
b= - ,

where Rt
b is the surplus process with strategy bt, and b(s) is a measurable func-

tion. In particular, the optimal strategy is Markovian, i.e. it depends on the
actual surplus only and not on the history of the process. Let bt be an arbi-
trary dynamic reinsurance strategy. Then with ( ) ,1= +t i m

,minR s ct E U b dx U bt
b

x i T
i

At

10 i

t

= + - - -t +

=

# !^ h9 C $ . (1)

is the surplus process under the strategy bt.
Our aim is to minimize ruin probability which is the same as maximizing

survival probability. The ruin time tb is the first time the surplus of the insur-
ance company ever becomes negative using reinsurance strategy bt. It is given by

: < .inf t R0 0b t
b$=x $ .

Then we can write the ruin probability as

( ) ( < ).s Pb b 3=} x

With

b( ) | ( )s P R s s1b b 03= = = = -d x }^ h
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we will compute the function

( ) ( ) ,sups s
b

b=d d" ,

and find an optimal strategy t ,b) such that ( ) ( ).s sb=d d )

A more realistic problem would have a loading of the reinsurer which varies
with the retention level (e.g. if instead of the expected value principle one
would use the variance principle). Furthermore, one should also consider lim-
ited XL-covers, and then both, the retention and the limit, will be considered
as control variables, see [7].

2. HAMILTON-JACOBI-BELLMAN EQUATION

The computation of the optimal reinsurance strategy is based on the classical
Hamilton-Jacobi-Bellman equation which can be derived heuristically consid-
ering (1) on a short time interval [ , ]D0 in which a constant strategy b is used.
One of the following two cases can occur:

1. There is no claim in [ , ],D0 which happens with probability ( ).oD D1 - +m
Then the reserve of the company at time D is given by

( [( ) ]) .R s c E U b DD= + - -t +

2. There is exactly one claim with claim size U Q+ in ( , ]D0 and this happens
with probability ( )oD D+m . Then the reserve can be written as

( [( ) ]) { , }.minR s c E U b U bDD= + - - -t +

Taking expectations and averaging over all possible claim sizes, we arrive at the
equation

( ) ( ) ( ) { , }

( ) ( ) ( ).

mins o E s c E U b U b

o s c E U b o

D D

D D D D1

b = + + - - -

+ - + + - - +

d m d t

m d t

+

+

^ ``

^ ``

h j j

h j j

89

8

B C

B

For D 0" we obtain for a smooth function ( )sd

{ , } ( ) [( ) ] ( )minE s U b s c E U b s0 l= - - + - -m d md t d+
^ _h i6 @

and finally by maximizing over all possible values for b the Hamilton-Jacobi-
Bellman equation for our optimization problem:

{ , } ( ) ( [( ) ]) ( )sup minE s U b s c E U b s0
>b 0

l= - - + - -m d d t d+
^ h6 @# - (2)

An optimal strategy is derived from a solution (d(s), b*(s)) of the equation (2),
where b*(s) is the point at which the supremum in (2) is attained.
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The insurance company has a non negative net premium income if

[( ) ].c E U b$ -t +

Let b be the value where equality holds:

[( ) ].c E U b= -t +

Since we are looking for a nondecreasing solution of equation (2) we can
rewrite it as

( )
( )

( ) { , }
.inf

min
s

c E U b
s E s U b

>b b
l =

- -

- -
d m

t

d d
+

^ h

8

6

B

@
* 4 (3)

3. EXISTENCE OF A SOLUTION

In this section we shall prove the existence of a solution of equation (2). This
will be done through a monotonicity argument, similar to the approach in [2].

Theorem 1 Assume the claim size distribution Q is absolutely continuous. There
exists a nondecreasing solution V(s) of the Hamilton-Jacobi-Bellman equation (2)
which is continuous on [ , ),0 3 continuously differentiable on ( , ),0 3 with V(s) = 0
for s < 0, and V(s) → 1 for .s " 3

Proof. Define a sequence Vn(s) via ( ) ( ),V s s0 0= d the ruin probability without
reinsurance (which means b 3= or b = M if ( )P U M 0$ = ) for n = 0, and
through the recursion

( )
[( ) ]

( ) ( { , })
, , , .inf

min
V s

c E U b
V s E V s U b

n 0 1
>n b

n n
1

0
l f=

- -

- -
=m

t+ +

7 A
) 3 (4)

We show by induction that V�n (s), n = 0,1,2,… is a decreasing sequence. For
n = 0 we have

0
0 0( )

( ) [ ( )]
V s c

V s E V s U
=

- -
ml

(see [1]. p. 4) and from (4) we get for n = 0:

1 ( )
[( ) ]

( ) [ { , } ]
.inf

min
V s

c E U b
V s E V s U b

>b 0

0 0=
- -

- -
m

t +l
^ h

( 2

Thus we have 01 ( ) ( )V s V s#l l for all s ≥ 0. Now let n ≥ 1 and s be fixed. For all b
we have
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( )( [( ) ]) ( ) [ ( { , })]

( )

( )

( ) { , } .

min

min

V s c E U b V s E Vn s U b

E V u du

E V u du

V s E V s U b

{ , }

{ , }

min

min

n n

ns U b

s

ns U b

s

n n

1

1

1 1

#

#

- - - -

=

= - -

t m m

m

m

m m

+
+

-

-
-

- -

#

#

l

l

l

^ h

;

;

7

E

E

A

Here we used the induction hypothesis n ( ) ( )V s V sn 1# -
l l for all s ≥ 0. Since b

was arbitrary, we can switch to the infimum which gives us the required result

n n1+ ( ) ( ).V s V s#l l

So V�n (s) is a decreasing sequence of continuous functions, and since V�n (s) > 0
the sequence V�n (s) converges to a function g(s), and with

( ) ( )V s g u du1
s

= -
3

#

we have a nondecreasing continuous function V(s) satisfying

( )
( )

( ) { , }
.inf

min
g s

c E U b
V s E V s U b

b b
=

- -

- -
m

t$ +

^ h

8

6

B

@
* 4

What is left is a proof for continuity of g(s): then

( ) ( )V s g s=l

is continuous, and V(s) satisfies equation (2). We first show that g(s) > 0 for
all s ≥ 0. The function g(s) is the limit of the functions V�n (s). If the infimum
in (4) is not attained in ,b s6 @ then it is attained at ,b 3= and hence V�n (s) and
V�0 (s) are proportional for small s, i.e.

( ) ( ), < .V s V s s b0n 0? #l l

Furthermore,

( )
( )

> ,g c
V

0
0

0=
m

which implies g(s) > 0 for < .s b0 # Assume that

{ : ( ) }< .infs s g s 00 3= =

Then ,s b0 $ and there exists <s s s b0 0# + for which g(s) = 0 or
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( ) ( { , }

( ) [ ( { , })] ,

inf min

min

V s E V s U b

V s E V s U b 0

b b
- - =

- - =

$
6 @" ,

i.e. ( ) ( )V s V s b= - (notice that ( > ) >P U b 0). Then

( ) ( )g u du g u du0
s b

s

s b

s 0
$=

--
##

which contradicts the choice of s0.
We next show that in the definition of the functions ( ), ,V s s Kn # the infi-

mum can be restricted to the region [ , ],b1 3 where > .b b1 Assume the contrary,
i.e. there exists a sequence s K0 n# # and b bn" such that

n 1+
n( )

[( ) ]
( ) [ ( { , })]

( ) .
min

V s
c E U b

V s E V s U b
n V s n
1 1

n
n

n n n n
n n1$ $

- -

- -
- -m

t + +
l l

Since n 0( ) ( )V s V s0 # #l l and [( ) ] ,c E U b 0n "- -t + we obtain

n n( ) [ ( { , })] ,minV s E V s U b 0n n n "- -

and therefore for each accumulation point s0 of the sequence sn

( ) , ( ),minV s E V s U b g s00 0 0- - = =^ h7 A! +

a contradiction.
Finally, the relation

| ( ) ( )|

[( ) ]
( ) { , }

[( ) ]
( ) { , }

sup
min min

g x g y

c E U b
V x E V x U b

c E U b
V y E V y U b

b b1

#

-

- -

- -
-

- -

- -
m

t
m

t$
+ +

^ ^h h6 6@ @

for ,x y 0$ implies continuity of g(s). ¬

Remark 1 Let 

( , )
[( ) ]

( ) [ ( { , })]min
V s b

c E U b
V s E V s U b

=
- -

- -
m

t +

where V(s) is a smooth solution of the Bellman equation (3) with the properties
of Theorem 1. Then the infimum over b b$ is either

( ( ) [ ( )])c V s E V s U- -
m

(no reinsurance or b 3= ) or
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[( ) ]
( ) [ ( )] ( ) { }

c E U s
V s E V s U V P U s0 $

- -

- - -
m

t +

( )b s= or

[( ) ]
( ) [ ( { , })]

.inf
min

c E U b
V s E V s U b

< <b b s - -

- -
m

t +( 2

Since V(s,b) has a continuous derivative w.r.t. b in ( , )b s this last infimum – if
attained in this interval – is attained at the point b for which this derivative is
zero or

( ) ( ).V s b V s- =m tl l

So in each case there is (possibly more than) one point ( , ]b b 3! at which the infi-
mum is attained, and a measurable selection of these points yields a measurable
function b(s). The corresponding strategy b)t is admissible, it can be represented by

( , , , , , , ) ( ( ) ( )),T T U U t b R T B tn n n n1 1f f = +r

where R(Tn) is a measurable function of , , , , ,T T U Un n1 1f f and

( ) [( ) ] .B t ct E U b dxx
t

0
= - -t +#

The retention b 3= (no reinsurance) will be optimal for small values of :s For
<s b b# we have

( , )
[( ) ]

( ) [ ( )]
V s b

c E U b
V s E V s U

=
- -

- -
m

t +

which is maximal for .b 3=

Remark 2. The function V(s) will not be concave in general: notice that the
survival probability ( )s0d will not be concave in general, and ( )V sl will be pro-
portional to 0( )sdl for .s b0 # # However, if ( )s0d is concave, the function V(s)
constructed above will be concave, too. To see this we have to show that all
the above functions Vn(s) are concave which is done by induction. If Vn(s) is
concave, then for s ≥ 0 and h > 0 we have for arbitrary b

( ) [ ( { , })]

( )

( )

( ) ,

min

min

V s h E V s h U b

E V u du

E V u du

V s E V s U b

{ , }

{ , }

min

min

n n

ns h U b

s h

ns U b

s

n n

#

+ - + -

=

= - -

+ -

+

-

#

#

l

l

^ h7 A! +

OPTIMAL DYNAMIC XL REINCURANCE 199



and hence

n 1+n 1+ ( ) ( ).V s h V s#+l l

4. VERIFICATION THEOREM

In this section we will show that the strategy b)t derived from the maximizer ( )b s)

in (2) maximizes the survival probability. This is done through the following
verification theorem. Notice that this theorem also implies uniqueness of the
solution.

Theorem 2 The strategy b
t
) maximizes survival probability: For any s > 0 and

arbitrary predictable strategy bt with survival probability d(s) we have

( ) ( ),V s s$ d

with equality for .b bt t= )

Proof. Let V(s) be the smooth solution of (3) constructed in chapter 3, for which

( )V s0 1# #

and

( ) .limV s 1
s

=
" 3

We write R(t) and R*(t) for the risk process of the insurance company with
reinsurance strategy bt and b*

t , respectively, and initial capital s. Let t and t*

be the corresponding ruin times, X*
t , Xt the stopped processes and W *

t , Wt the
stopped processes, transformed by V(s), i.e.

( ) { , } ,

( ) { , } .

min

min

W V X V R t

W V X V R t

t t

t t

= =

= =

x

x

) ) ) *_`

^^

ij

hh

Then, as in [5], p. 80, (2.16), we obtain

[ ] ( ) ( ) [( ) ]

[ ( { , }) ( )] ,min

E W V s E V X c E U b ds

E V X U b V X ds

t s s
t

s s s
t

0

0

= + - -

+ - -

t

m

+#

#

l _ i;

E

and a corresponding formula for W *
t . From the Hamilton-Jacobi-Bellman equa-

tion (2) we see that for all t > 0
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t[ ] ( ) [ ].E W V s E Wt$=) (5)

Assume first that the predictable strategy bt satisfies

> ,for allb B t0 0t $ $ (6)

where B satisfies { > }> .P U B 0 We show that in this case the process R(t) is
unbounded on { }3=x . For this we prove

{ ( )P R t M# for all t 0$ and } 03= =x (7)

for all M > 0. With > ( ) /n M c B+ the probability of more than n claims of size
larger than B in an interval of length 1 is positive. Since the claims process has
stationary and independent increments, with probability 1 there are more than
n such claims in an interval [ , ].t t 1+ For ( )R t M# we have

( ) < ,R t M c nB1 0#+ + -

i.e. < .3x This proves (7).
For arbitrary e we now construct a strategy b

t
+ with risk process ( )R t+ and

ruin time x+ such that {P 3=x and < }< e3x+ and ( )R t " 3+ on { 3=x
and }3=x+ . Let M > s be sufficiently large such that ( ) <M e1 0- d let T =

{ : ( ) }inf t R t M= which is finite almost everywhere on { },3=x and define

> .

if

if
b

b t T

t Tt
t

3

#
=+
*

The strategy bt
+ is predictable, and

{ , < } ( ) < .P M e1 03 3 #= -x x d+

Furthermore, <T 3 implies ( ) .R t " 3+

Now repeat the above reasoning leading to (5) for ( )R t+ instead of ( ).R t We
obtain

{ , } ( ) { , } ,min minE V R t V s E V R t$=x x) ) + +
_` _`ij ij8 8B B

and with t" 3 we arrive with ( ( ))V R 0=x) ) and ( ( ))V R 0=x+ + at

{ } ( ) { }
{ } .

P V s P
P e

and3 3 3

3

$ $

$

= = =

= -

x x x

x

) +

Since e was arbitrary, this is our assertion for the special case of a strategy bt
with property (6). In particular, since any solution V(s) of (3) in the sense of
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Theorem 1 will produce a strategy satisfying (6), we have uniqueness of the 
solution and ( ) { }.V s P 3= =x)

Next we show that for premium intensities ,c c with >c c we have

( ) ( ) ,W s W s sfor all 0l l$ $

where ( )W s and ( )W s are solutions to (3) with c and ,c respectively and 
( ) ( ) .W W0 0= = a Notice, that ( )W s and ( )W s do not solve (3) in the sense of

Theorem 1, the conditions ( )W s 1" for s " 3 and ( )W s 1" for s " 3 will not
hold. Let n( ), ( )W s W sn be the sequences constructed in the proof of Theorem 1
converging to ( )W s and ( )W s with ( ),W s respectively ( )W s defined by 

( ) ( ) ( ) ( ) ,W s g u du W s g u duand
ss

00
= + = +a a ##

where ( ), ( )g s g s are the limits of the sequences W �n (s), W �n (s). We prove by
induction that

l l( ) ( ), , , , .W s W s n 0 1 2n n f$ = (8)

For n = 0 we have

( ) ( ( ) [ ( )]),

( ) ( ( ) [ ( )]).

W s c W s E W s U

W s c W s E W s U

0 0 0

0 0 0

l

l

= - -

= - -

m

m

At s = 0 we have W �0 (s) > W�0 (s). Assume now that

{ : ( ) ( )}< .infs s W s W s0 0 0
l l 3#=

By continuity, > .s 00 Then

( ) ( ) ( ) < ( ),W s c E W u du c E W u du W s
s U

s

s U

s
0 0 0 0 0 0

0

0

0

0
l l l l#=

m m
- -

# #< <F F

a contradiction. Assume now that (8) holds for n. Then for all b > 0

( ) [ ( { , })] ( )

( ) ( ) ( { , })

min

min

W s E W s U b E W u du

E W u du W s E W s U b

{ , }

{ , }

min

min

n n ns U b

s

ns U b

s

n n

l

l

$- - =

= - -

-

-

#

#

;

; 8

E

E B

which implies n n1 1+ +
( ) ( )W s W s$� � and finally the desired result ( ) ( )W s W s$ for

all s.
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Now let cn converge monotonically to c from above, and ( )W sn the corre-
sponding solutions of (3) with cn instead of .c Then the sequence of functions

( )W snl is monotone and bounded by ( ),W s0l the function corresponding to c.
Let ( )g s and ( )W s be the limits of ( )W snl and ( ),W sn respectively. As in the
proof of Theorem 1 we obtain continuity of ( ),g s and so ( ) ( )W s g sl = and

( )W s is a solution of (3) with c. Uniqueness of the solution for every a implies
( ) ( ).W s W s0=

To obtain a solution V(s) of (3) satisfying ( )V s 1" for s " 3 let ( )V sn be a
sequence of functions with

( )
( )

( ),V s
V

W s
0

n
n

n= a

then for n " 3 we have

( ) ( )

( ) ( ).

V s W s

V s V s

orn

n

0"

"

a
c

cl

For s " 3 we have

( ) ( )W s V s1 0= =a
c

cl

and therewith .1=cl The same argumentation with n ( )V s instead of ( )V sn leads
us to ( )V s with ( ) ( )V s V s$ for > .c c For fixed s and arbitrary small > 0f we
can find >c c for which

( ) < ( ) .V s V s + f

Let ( )R t be the risk process with strategy ,bt premium intensity c and x its
ruin time. Then on { }3=x we have ( )R t " 3 and hence, with $x x

{ } ( ( { , }))

( ( { , })) ( )< ( ) .

lim min

lim min

P E V R t

E V R t V s V s

1{ }t

t

3

# #

= =

+

x x

x f

"

"

3
3

3

=x8

6

B

@

So with 0"f

{ } ( ) { }P V s P3 3$ $= =x x)

which proves the verification theorem. ¬

5. NUMERICAL EXAMPLES

Here we present numerical computations for three different claim size distrib-
utions. Our first example has exponential claim sizes with mean 1/m. Even in
this simple case it seems to be impossible to find an analytical solution of (2).
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Figure 1: Survival probabilities

The survival probability of an insurance company using no reinsurance, i.e.
bt = ∞ for all t, can be expressed explicitly by

( ) exps mc m c s1= - - -d m m
cc m m (9)

(see [4]. p. 164). We will use the same parameters as in [6], i.e. ,m 1= (which
implies 1=n ), ,1=m premium rate .c 1 5= and . .1 7=t Since ( )V 0 is unknown
we start with ( ) ( )V 0 0= d from (9) and norm the function ( )V s replacing ( )V s
by ( )V s V s1^ h where s1 is sufficiently large. Figure 1 gives the survival proba-
bilities for no reinsurance (lower graph) and for optimal excess of loss rein-
surance (upper graph) for reserves [ , ].s 0 15! We see that optimal excess of loss
reinsurance gives a considerably higher survival probability. Figure 2 gives the
optimal strategy ( )b s) for values [ , ];s 0 5! for s 5$ the optimal strategy is
nearly constant. For small s the optimal strategy is, as expected, to keep the
whole risk. At the point .s 0 376. the optimal strategy is ( ) ,b s s= which means
that independent of the following claim size the reserve remains nonnegative
immediately after the claim. For .s 0 797L we have to choose strategies ( )<b s s
and the optimal strategy tends to be constant. Figure 3 is used to explain the
optimal strategy presented in Figure 2. For each curve we fixed s ( .s 0 4= at
upper graph, then . , . , . , .s s s s0 59 0 6 0 61 0 8= = = = and finally .s 0 9= at lowest
graph) and calculated ( , )V s b (defined in Remark 1) for varying [ . , ]b 0 15 1! .
For s small ( , )V s b is minimized for .b 3= For [ . , . ]s 0 376 0 797! the minimum
is achieved at the jump, which means .b s= For larger values of ,s here for
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example .s 0 9= the minimal ( , )V s b is achieved at a point before the jump.
Looking at

{ , } ( ) ( ) ( )( ( ))minE s U b s x f x dx s b F b1
b

0
- = - + - -d d d#^ h6 @

we can see why the jumps occur, if b > s the term ( )( ( ))s b F b1- -d equals
zero. Figure 4 gives the optimal strategy ( ), [ , ]b s s 0 15!) in the case of a
non concave solution V(s). To achieve such a V(s) we use a distribution with
density

( ) , >expp x m m x x1 1= - -]^^ ghh

which is an exponential distribution shifted by 1, and solve the corresponding
Hamilton-Jacobi-Bellman equation for parameters m = 1, l = 1 and premium
rates c = 3 and r = 3.5. Notice that in this case we have to choose c > 2 to keep
the condition > [ ].c E Uim In the last example we consider Pareto distributed
claim sizes with parameter ,a 2= i.e. claims with density

( ) ( ) , > .p x x x2 1 03= + -

Like in the first example we choose l = 1 and the premium rates c = 1.5 and
r = 1.7. Without reinsurance the survival probability at s = 0 is
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Figure 2: Optimal strategy for exponential distribution



Figure 4: Optimal strategy for shifted exponential distribution
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Figure 3: V (s,b) for different values of s and varying b



( ) ( ) .c a0 1
1

= -
-

d m

In Figure 5 we show the optimal reinsurance strategy for s ∈ [0, 5] Contrary
to the case of exponential distributed claim sizes there exists no interval in
which we can choose ( ) .b s s=) The optimal strategy for large values of s is con-
stant, ( ) .b s 0 8077.) for s = 5.
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Figure 5: Optimal strategy for Pareto distribution





COMMON POISSON SHOCK MODELS:
APPLICATIONS TO INSURANCE AND CREDIT RISK MODELLING 

BY

FILIP LINDSKOG* AND ALEXANDER J. MCNEIL*

ABSTRACT

The idea of using common Poisson shock processes to model dependent event
frequencies is well known in the reliability literature. In this paper we examine
these models in the context of insurance loss modelling and credit risk model-
ling. To do this we set up a very general common shock framework for losses
of a number of different types that allows for both dependence in loss
frequencies across types and dependence in loss severities. Our aims are three-
fold: to demonstrate that the common shock model is a very natural way of
approaching the modelling of dependent losses in an insurance or risk man-
agement context; to provide a summary of some analytical results concerning
the nature of the dependence implied by the common shock specification;
to examine the aggregate loss distribution that results from the model and its
sensitivity to the specification of the model parameters.

1. INTRODUCTION

Suppose we are interested in losses of several different types and in the num-
bers of these losses that may occur over a given time horizon. More concretely,
we might be interested in insurance losses occurring in several different lines of
business or several different countries. In credit risk modelling we might be
interested in losses related to the default of various types of counterparty.
Further suppose that there are strong a priori reasons for believing that the
frequencies of losses of different types are dependent. A natural approach to
modelling this dependence is to assume that all losses can be related to a series
of underlying and independent shock processes. In insurance these shocks might
be natural catastrophes; in credit risk modelling they might be a variety of eco-
nomic events such as local or global recessions; in operational risk modelling
they might be the failure of various IT systems. When a shock occurs this may
cause losses of several different types; the common shock causes the numbers
of losses of each type to be dependent.

* Research of the first author was supported by Credit Suisse Group, Swiss Re and UBS AG through
RiskLab, Switzerland. We thank in particular Nicole Bäuerle for commenting on an earlier version
of this paper.
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This kind of construction is very familiar in the reliability literature where
the failure of different kinds of system components is modelled as being
contingent on independent shocks that may affect one or more components.
It is commonly assumed that the different varieties of shocks arrive as inde-
pendent Poisson processes, in which case the counting processes for the differ-
ent loss types are also Poisson and can be easily handled analytically. In reli-
ability such models are known as fatal shock models, when the shock always
destroys the component, and non-fatal shock models, or not-necessarily-fatal
shock models, when components have a chance of surviving the shock. A good
basic reference on such models is Barlow and Proschan (1975) and the ideas
go back to Marshall and Olkin (1967).

In this paper we set up a very general Poisson shock model; the dimension
is arbitrary and shocks may be fatal or not-necessarily-fatal. We review and gen-
eralise results for the multivariate Poisson process counting numbers of failures
of different types. We also consider the modelling of dependent severities.
When a loss occurs, whether in insurance or credit risk modelling, a loss size
may be assigned to it. It is often natural to assume that losses of different
types caused by the same underlying shock also have dependent severities. We set
up general multivariate compound Poisson processes to model the losses of
each type. Our interest focusses on three distributions in particular, and their
sensitivity to the finer details of the parameterization of the model:

• The multivariate compound Poisson distribution of the cumulative losses
of different types at some fixed point in time.

• The multivariate exponential distribution of the times to the first losses of
each type.

• The univariate compound Poisson aggregate loss distribution at a fixed time
point.

There have been a number of other related papers in this area in recent years,
particularly concentrating on the second of these issues. In Savits (1988) non-
homogeneous Poisson shock processes are investigated and the effect of dif-
ferent mean functions for the shock processes on the distributional properties
of the joint component lifetimes is studied. In Li and Xu (2001) the authors
investigate stochastic bounds and dependence properties of the joint component
lifetime distribution for rather general shock arrival processes. In particular
the effect of dependent interarrival times of the shocks and the effect of simul-
taneous shock arrivals on the joint component lifetime distribution are inves-
tigated; the joint impact of these two types of dependency on the behaviour
of the system is analysed.

The present paper is structured as follows. In Section 2 we describe the gen-
eral not-necessarily-fatal-shock model with dependent loss frequencies and
dependent loss severities. In Section 3 we ignore loss severities and examine the
multivariate distribution of loss frequencies and the consequences for the aggre-
gate loss frequency distribution of specifying the shock structure in different
ways. An important key to analysing the model is to see that it may be written
in terms of an equivalent fatal shock model. This facilitates the approximation
of the aggregate loss frequency distribution using the Panjer recursion approach
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and also makes it very easy to analyse the multivariate exponential distribution
of the times to the first losses of each type. In section 4 the analysis is gener-
alised by including dependent loss severities. The dependence in severities is
created using copula techniques and the object of interest is now the tail of the
overall aggregate loss distribution. Sections 3 and 4 are illustrated with a stylized
insurance example; Section 5 consists of an extended example of how the
model might be applied to the modelling of portfolio credit risk.

2. THE MODEL

2.1. Loss Frequencies

Suppose there are m different types of shock or event and, for , , ,e m1 f= let

( ),N t t 0( )e $# -

be a Poisson process with intensity ( )em recording the number of events of type e
occurring in (0, t]. Assume further that these shock counting processes are
independent. Consider losses of n different types and, for , , ,j n1 f= let

( ),N t t 0j $$ .

be a counting process that records the frequency of losses of the j th type occur-
ring in (0, t].

At the rth occurrence of an event of type e the Bernoulli variable I ,
( )
j r
e indi-

cates whether a loss of type j occurs. The vectors

, ,I II( )
,

( )
,

( )
r
e

r
e

n r
e

1
f= l

` j

for , , ( )r N t1 ( )ef= are considered to be independent and identically distributed
with a multivariate Bernoulli distribution. In other words, each new event rep-
resents a new independent opportunity to incur a loss but, for a fixed event, the
loss trigger variables for losses of different types may be dependent. The form
of the dependence depends on the specification of the multivariate Bernoulli
distribution and independence is a special case. We use the following notation
for p-dimensional marginal probabilities of this distribution (where the sub-
script r is dropped for simplicity).

, , , , , , , { , }.P I i I i p i i i i 0 1( ) ( )
, ,

( )
j
e

j j
e

j j j
e

j j j jp p p p p1 1 1 1 1
f f f != = =

fb al k

We also write ( )p p1( ) ( )

j
e

j
e= for one-dimensional marginal probabilities, so that

in the special case of conditional independence we have

( , , )p p1 1, ,
( ) ( )
j j
e

j
e

k

p

1
p k1

f =
f

=

%
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The counting processes for events and losses are thus linked by

j ,j r( ) .N t I ( )
( )

e

r

N t

e

m

11

( )e

=
==

!! (1)

Under the Poisson assumption for the event processes and the Bernoulli
assumption for the loss indicators, the loss processes { ( ), }N t t 0j $ are clearly
Poisson themselves, since they are obtained by superpositioning m indepen-
dent (possibly thinned) Poisson processes generated by the m underlying event
processes. ( ( ), , ( ))N t N tn1 f l can be thought of as having a multivariate Poisson
distribution.

However the total number of losses j 1=( ) ( )N t N tj

n
= ! is in general not

Poisson but rather compound Poisson. It is the sum of m independent com-
pound Poisson distributed random variables as can be seen by writing

( ) .N t I ,
( )

( )

j r
e

j

n

r

N t

e

m

111

( )e

=
===

!!! (2)

The compounding distribution of the eth compound Poisson process is the 
distribution of jj 1=

I ( )en! , which in general is a sum of dependent Bernoulli vari-
ables. We return to the compound Poisson nature of the process {N(t), t ≥ 0}
after generalising it in the next section.

2.2. Adding Dependent Severities

We can easily add severities to our multivariate Poisson model. Suppose
that when the rth event of type e occurs a potential loss of type j with sever-
ity ,j rX ( )e can occur. Whether the loss occurs or not is of course determined 
by the value of the indicator ,j r ,I ( )e which we assume is independent of X (e)

j,r .
The potential losses { , , , ( ), , ,X r N t e m1 1,

( ) ( )
j r
e ef f= = } are considered to be iid

with distribution Fj. Potential losses of different types caused by the same event
may however be dependent. We consider that they have a joint distribution
function F. That is, for a vector Xr

( )e of potential losses generated by the same
event we assume

, , .X X FX( )
,

( )
,

( )
r
e

r
e

n r
e

1
f += l

` j

In a more general model it would be possible to make the multivariate distri-
bution of losses caused by the same event depend on the nature of the under-
lying event e. However, in practice it may make sense to assume that there is
a single underlying multivariate severity distribution which generates the sever-
ities for all event types. This reflects the fact that it is often standard practice
in insurance to model losses of the same type type as having an identical claim
size distribution, without necessarily differentiating carefully between the events
that caused them.
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The aggregate loss process for losses of type j is a compound Poisson process
given by

( ) .Z t I X,
( )

,
( )

( )

j j r
e

j r
e

r

N t

e

m

11

( )e

=
==

!! (3)

The aggregate loss caused by losses of all types can be written as

( ) ,Z t I X I X,
( )

,
( )

( )
( ) ( )

( )

j r
e

j r
e

j

n

r

N t

e

m

r
e

r
e

r

N t

e

m

111 11

( ) ( )e e

= =
=== ==

!!! !! l (4)

and is again seen to be a sum of m independent compound Poisson distribu-
ted random variables, and therefore itself compound Poisson distributed.
Clearly (2) is a special case of (4) and (1) is a special case of (3). Thus we can
understand all of these processes by focusing on (4). The compound Poisson
nature of Z(t) can be clarified by rewriting this process as

( )Z t Yd
( )

s
s

S t

1

=
=

! ,

where { ( ), }S t t 0$ is a Poisson process with intensity ( )e
e

m

1
=m m

=
! , counting 

all shocks s generated by all event types, and where the random variables
Y1,…,YS(t) are iid and independent of {S(t), t ≥ 0}. Y1 has the stochastic rep-
resentation

( ) ,Y Ud I X1 ( )e

e

m

1
1

( ) / , ( ) /j j
j
e

j

e

11

1=
= ==

-
m m m m! !!

l

_e i o

where U, I(e), X are independent, U is uniformly distributed on (0,1), I(e) is a
generic random vector of indicators for shocks of event type e, and X is a
generic random vector of severities caused by the same shock. In words: a
shock s is of event type e with probability /( )em m.

We consider two examples that fit into the framework of the model we
have set up. The first one, an insurance application of the model, we continue
to develop throughout the paper. The second one, a credit risk application, is
presented separately in Section 5.

2.3. Insurance example: natural catastrophe modelling

Fix n = 2, m = 3. Let 1( )N t and ( )N t2 count windstorm losses in France and
Germany respectively. Suppose these are generated by three different kinds of
windstorm that occur independently. ( )N t( )1 counts west European windstorms;
these are likely to cause French losses but no German losses. ( )N t( )2 counts
central European windstorms; these are likely to cause German losses but no
French losses. ( )N t( )3 counts pan-European windstorms, which are likely to
cause both French and German losses.
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3. THE EFFECT OF DEPENDENT LOSS FREQUENCIES

To begin with we look at the distribution of the random vector (N1(t),…,
Nn(t))�, particularly with regard to its univariate and bivariate margins as well
as the correlation structure. Part 2 of the following proposition is from Barlow
and Proschan (1975), p. 137.

Proposition 1.

1. {( ( ), , ( )) , }N t N t t 0n1 f $l is a multivariate Poisson process with

j( ( ))E N t t p( ) ( )e
j
e

e
m

1
= m

=
! . (6)

2. The two-dimensional marginals are given by

( ( ) , ( ) )

! ! !

( , ) ( , ) ( , )
,

P N t n N t n e

i n i n i

tp tp tp1 1 1 0 0 1

( ( , ) ( , ) ( , ))

, , ,
{ , }min

j j k k
t p p p

j k

j k
i

j k
n i

j k
n i

i

n n

1 1 1 0 0 1

0

, , ,j k j k j k

j k
j k

#= = =

- -

m m m

- + +

- -

=

m

!
` ^

` ` `

j h

j j j (7)

where ( )e
e
m

1
=m m

=
! and

( , ) ( , ), , { , }.p i i p i i i i 0 1,
( )

,
( )

j k j k
e

j k
e

j k j k
e

m
1

1

!= m m-

=

!

3. The covariance and correlation structure is given by

( ), ( ) ( , )cov N t N t t p 1 1( )
,

( )
j k

e
j k
e

e

m

1

= m
=

!` j (8)

and

( ), ( )
( , )

.N t N t

p p

p 1 1

( ) ( ) ( ) ( )

( )
,

( )

j k
e

j
e

e

m
e

k
e

e

m

e
j k
e

e

m

1 1

1=t

m m

m

= =

=

! !

!
`

e e

j

o o

Proof

1. obvious using thinning and superposition arguments for independent
Poisson processes.

2. is found in Barlow and Proschan (1975), p. 137.
3. is a special case of Proposition 7 (part 2).

¡

Clearly, from Proposition 1 part 3, a necessary condition for Nj(t) and Nk(t) 
to be independent is that ( , )p 1 1 0

,

( )

j k
e = for all e; i.e. it must be impossible for 
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losses of types j and k to be caused by the same event. If for at least one event
it is possible that both loss types occur, then we have positive correlation
between loss numbers. However Proposition 1, part 2 allows us to make a stronger
statement.

Corollary 2. Nj(t) and Nk(t) are independent if and only if ( , )p 1 1 0,
( )
j k
e = for all e.

Note that if ( , )p 1 1 0,
( )
j k
e = for all ,j k with j k! , then

( , ) ( ) ( , , )

.

P P I

p p p

p

I 1 1

1 1 1 1 1 1

1

0( )
,

( )

( )
,

( )
, ,

( )

<

( )

r
e

j
n

j r
e

j
e

j k
e n

n
e

j kj

n

j
e

j

n

1

1
1

1

1

,

f f

= = - =

= - - + + -

= -

f

=

-

=

=

!!

!

J

L

K
K

` a

N

P

O
O

j k% /

Hence if >p 1( )

j

e

j

n

1=
! for some e, then ( , ) >p 1 1 0,

( )
j k
e for some j k! , or equiv-

alently:

Corollary 3. If >p 1( )
j
e

j
n

1=
! for some e, then ( ), , ( )N t N tn1 f are not indepen-

dent.

Thus if we begin by specifying univariate conditional loss probabilities p(e)
j it

is not always true that a shock model can be constructed which gives inde-
pendent loss frequencies.

We have already noted that the process of total loss numbers N(t) = 
( )N tjj

n

1=
! is in general not Poisson (but rather a sum of independent compound

Poissons). If there is positive correlation between components j ( )N t then
( ),N t t 0$! + itself cannot be a Poisson process since it is overdispersed with

respect to Poisson. It can easily be calculated (see Proposition 9 later) that

( ) ( ), ( ) > ( )var covN t N t N t E N tj k
k

n

j

n

11

=
==

!!^ ` ^h j h (9)

Suppose we define a new vector of independent Poisson distributed loss coun-

ters Nj(t) such that ( ) ( )t N t
dN j j= . Clearly ( ) ( )t tN N jj

n

1
=

=
! is Poisson distribu-

ted and

( ) ( ) ( ) .var t E t E N tN N= =_ _ ^i i h

The case where the components Nj(t) are dependent is clearly more dangerous
(in the sense of higher variance) than the case with independent components.
Although the expected number of total losses is the same in both cases the
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variance is higher in the dependent case and, using (9) and (8), we can calcu-
late the inflation of the variance that results from dependence.

3.1. Insurance example (continued)

Consider a 5 year period and suppose French losses occur on average 5 times
per year and German losses on average 6 times per year; in other words we
assume 51=m and .62=m We consider three models for the dependence between
these loss frequencies.

• Case 1: No common shocks. If there are no common shocks, then N(5) = 
( ) ( )N N5 51 2+ has a Poisson distribution with intensity l = l1 + l2 = 5 + 6 = 

11.

In reality we believe that there are common shocks, in our case particularly the
pan-European windstorms. Suppose west, central and pan-European wind-
storms occur on average 4, 3 and 3 times per year respectively. In terms of
event intensities we have

, .and4 3 3( ) ( ) ( )1 2 3= = =m m m

In terms of the indicator probabilities we assume that empirical evidence and
expert judgement has been used to estimate

/ , / , / , / , / /p p p p p pand1 2 1 4 1 6 5 6 5 6 5 6( ) ( ) ( ) ( ) ( ) ( )
1
1

2
1

1
2

2
2

1
3

2
3= = = = = =

which means that, although unlikely, west European windstorms can cause
German losses and central European windstorms can cause French losses.
Note that these choices provide an example where the assumption of no com-
mon shocks is not only unrealistic but also impossible. To see this consider
Corollary 3 and note that >p p 1( ) ( )

1

3

2

3+ .
To make sure that our estimates of event frequencies and indicator proba-

bilities tally with our assessment of loss frequencies we must have that 

, , .p p p j 1 2( ) ( ) ( ) ( ) ( ) ( )
j j j j

1 1 2 2 3 3= + + =m m m m

However the specification of the univariate indicator probabilities is insuffi-
cient to completely specify the model. We need to fix the dependence struc-
ture of the bivariate indicators ,I I( ) ( )e e

1 2
l_ i for , ,e 1 2 3= . For simplicity we will

consider two possibilities.

• Case 2: Independent indicators.

( , ) , , .p p p efor1 1 1 2 3,
( ) ( ) ( )e e e
1 2 1 2

= =
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• Case 3: Positively dependent indicators.

( , ) , , .p p p efor1 1 1 2 3,
( ) ( ) ( )e e e
1 2 1 2

$ =

To be specific in Case 3 we will consider ( , ) ,minp p p1 1
,

( ) ( ) ( )e e e

1 2 1 2
= ` j, which is the 

strongest possible dependence between the indicators, sometimes known as
comonotonicity; the random variables , ,X Xn1 f are said to be comonotonic if
there exist increasing functions , , :� �v vn1 "f , and a random variable Z such 
that ( , , ) ( ( ), , ( ))X X v Z v Z

d
n n1 1f f l=l . For more on comonotonicity see Wang 

and Dhaene (1998) and the references therein. See also Joe (1997) for some
discussion of dependence bounds in multivariate Bernoulli models. In terms
of interpretation in our application this means:

• if a west European windstorm causes a German loss, then with certainty it
also causes a French loss;

• if a central European windstorm causes a French loss, then with certainty
it also causes a German loss;

• if a pan-European windstorm causes one kind of loss, then with certainty
it causes the other kind of loss.

For cases 1, 2 and 3 we get ( ( )) ,var N 5 55 85= and 95 respectively. Of more
interest than the variance as a measure of the riskiness of ( )N 5 are the
tail probabilities ( ( ) > )P N k5 . In this example these probabilities can be cal-
culated analytically using formula (7) for the bivariate frequency function.
The left plot in Figure 1 shows exceedence probabilities ( ( ) > )P N k5 , for
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and 3 (upper). Right: Ratios of such exceedence probabilities for cases 1-2 (lower) and 1-3 (upper).



, , , ,k 70 71 90f= for the three cases. The right plot shows by which factor such
an exceedence probability is underestimated by case 1 if the correct model
would be given by case 2 or 3. Clearly, both the presence of common shocks
and then the subsequent addition of dependent indicators have a profound
effect on the aggregate frequency distribution of N(5).

3.2. The Equivalent Fatal Shock Model

The not-necessarily-fatal shock model set up in the previous section has the
nice property of being easily interpreted. As we will now show this model has
an equivalent representation as a fatal shock model. Basically, instead of count-
ing all shocks, we only count loss-causing shocks. From this representation we
can draw a number of non-trivial conclusions about our original model.

Let S be the set of non-empty subsets of , , n1 f! +. For s S! we intro-
duce a new counting process s ( )tN , which counts shocks in (0, t] resulting
in losses of all types in s only. Thus if { , , }s 1 2 3= , then ( )tNs counts shocks
which cause simultaneous losses of types 1, 2 and 3, but not of types 4 to n.
We have

( ) ( ) ,t IN 1 | | | |
,

( )

:

( )

s
s s

k r
e

k s
s s sr

N t

e

m

11

( )e
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==

%!!! l
l

l l

where ( ) I1 | | | |
,

( )
:

s s
k r
e

k ss s s
-

!4
- %! l

ll l
is an indicator random variable which takes  

the value 1 if the rth shock of type e causes losses of all type in s only, and the
value 0 otherwise. Furthermore let N(t) count all shocks in (0, t] which result
in losses of any kind. Clearly we have

( ) ( )t tN Ns
s S

=
!

! .

The key to a fatal shock representation is the following result.

Proposition 4.

1. ( ),t tN 0s $" , for s S! are independent Poisson processes with intensities

( ) ,p1( ) | | | | ( )

:
s

e s s
s
e

s s se

m

1

= -m m
4

-

=

!! l
l
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where p P I 1( )
,

( )
s
e

k r
e

k s= =
!

%l l` j, and

2. { ( ), }t tN 0$ is a Poisson process with intensity

.P I1 0( ) ( )
s

e
r
e

e

m

s S 1

= = - =m m m
! =

!!u `a jk
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Proof. Let ( )J I1,
( ) | | | |

,
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:s r
e s s
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e

k ss s s
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ll l
. First note that the random vari-

able J ,
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Poisson process with intensity ( ) . ( ),p t tN1 0( ) | | | | ( )
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$-m
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(the probability that the rth shock of type e causes at least one loss) does not
depend on r, thinning and superpositioning arguments give that { ( ), }t tN 0$

is a Poisson process with intensity P I1 0( ) ( )
s

e
r
e

e

m

s S 1
= = - =m m m

! =
!!u __ ii.

Each jump in the process ( ),t tN 0$" , corresponds to a jump in exactly one of
the processes ( ),t tN 0s $" , for s ∈ S. Given a jump in ( ),t tN 0$" ,, the proba-
bility of the jump being in ( ),t tN 0s $" , is given by /qs s= m mu for s ∈ S. Order
the l = | |S 2 1n= - non-empty subsets of , ,n1 f! + in some arbitrary way.

Then
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It follows that the processes ( ),t tN 0s $# - for s ∈ S are independent Poisson
processes.

¡

Since the Poisson processes ( ),t tN 0s $# - for s ∈ S are independent and since
the loss counting processes may be written as

( ) ( ),N t tN
:

j s
s j s

=
!

!
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it also follows that we have obtained a fatal shock model representation for
the original not-necessarily-fatal set-up.

Furthermore, since 0s =m for all s with | |s 2$ if and only if p(e)
j,k (1,1) = 0 

for all e and all j,k with ,j k! Corollary 2 concerning pairwise independence 
can be strengthened.

Corollary 5. ( ), , ( )N t N tn1 f are independent if and only if p(e)
j,k (1,1) = 0 for 

all e and all j,k with j k! .

A direct consequence of the fatal shock model representation of the original
not-necessarily-fatal shock model is that the multivariate distribution of the 
times to first losses can be easily analysed. Let Tj = inf{t : Nj (t) > 0} denote 
the time to the first loss of type j. We now consider briefly the distribution of

, ,T Tn1 f l^ h whose dependence structure is well understood. For s S! let 
: ( ) > .infZ t tN 0s s= # - Zs s S!

" , are independent exponential random variables 
with parameters .s s S

m
!

" , Hence

jj : ( ) > : ( ) >inf inf minT t N t t t ZN0 0
: :s

s j s s j s s= = =
! !

!$ *. 4

and , , , ,min minT T Z Z
: :

n
s s

s
s n s

s1
1

f f=
! !

^ bh l. Survival probabilities for , ,T Tn1 f^ h can

be calculated as follows.
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The multivariate exponential distribution with this joint survival probability is
the multivariate exponential distribution of Marshall and Olkin (Marshall and
Olkin (1967)). The distribution has been studied extensively, see Barlow and
Proschan (1975), Joe (1997), Marshall and Olkin (1967) or Nelsen (1999). The
multivariate exponential distribution of Marshall and Olkin has the property
that

> , , > > , , > > , , > ,P T t s T t s T t T t P T s T sn n n n n n n1 1 1 1 1 1 1f f f+ + =_ ^i h

for all t1, …, tn, s1, …, sn > 0. This is the multivariate version of the lack of
memory property which is well known for the univariate exponential distribu-
tion. Not that this does not apply to general multivariate distributions with
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exponential marginals. The expression for the joint survival probability (10)
might not be very convenient to work with if the model was set up as a not-
necessarily-fatal shock model. However, it can easily be rewritten in a more
convenient form.
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Recall that for a Poisson process with intensity m, the time to the kth jump
is G(k, 1/m)-distributed, where G(·,·) denotes the Gamma distribution.
Hence the time to the kth loss-causing shock is G(k, 1/l)-distributed, where 

P I1 0( ) ( )e
r
e

e

m

1
= - =m m

=
!u __ ii. The time to the kth loss is : ( ) ,inf t N t k$! + where 

( ) ( ).N t i tN
:

s
s s ii

n

1

=
==

!!

( ),N t t 0$! + is in general not a Poisson process but rather a compound Pois-
son process, the time to the kth jump is still ( , / )k 1G mu -distributed but there are
non unit jump sizes. By noting that the probability that the time to the kth
loss is less than or equal to t can be expressed as ( ( ) )P N t k$ , it is clear that
the distribution of the time to the kth loss can be fully understood from the
distribution of N(t) for t ≥ 0, and this distribution can be evaluated using
Panjer recursion or other methods.

3.3. Panjer Recursion

If there are common shocks, then j( ) ( )N t N t
j

n

1
=

=
! does not have a Poisson 

distribution. In our insurance example we have considered only two loss types
and it is thus easy to calculate the distribution of N(t) directly using convolu-
tion and the bivariate frequency function in (7). A more general method of
calculating the probability distribution function of N(t), which will also work
in higher dimensional examples, is Panjer recursion (Panjer (1981)). We use
the notation of the preceding section. In addition, let Wi denote the number
of losses due to the i th loss-causing shock. The total number of losses, N(t),
has the stochastic representation

k( ) ,N t Wd
( )

k

tN

1

=
=

!

where , , ( )W W Wd
( )tN1 f = are iid and independent of ( )tN . The probability 

( ( ) )P N t r= can now easily be calculated using Panjer recursion.
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Proposition 6.
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Proof. The formula (11) follows from Theorem 4.4.2, p. 119 in Rolski, Schmidli,
Schmidt and Teugels (1998), and that the maximum number of losses due to
a loss-causing shock is n. The probability that a loss-causing shock causes
exactly k losses is given by ( ) ,P W k
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The expression of the probability that a loss-causing shock causes n losses
can be simplified to
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For large n, say n > 100, the usefulness of the Panjer recursion scheme relies 
heavily on the calculation of p( )

: s

e

s s k=
! for { , , }k n1 f! . We now look at two 

specific assumptions on the multivariate Bernoulli distribution of I( )e condi-
tional on a shock of type e. The assumption of conditional independence is
attractive for computations since in this case
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The latter assumption leads to very efficient computations of p( )
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where n i
k 1

-
-

d n is the number of subsets of size k of { , , }n1 f with i as smallest 

element.

4. THE EFFECT OF DEPENDENT SEVERITIES

We now consider adding severities to our shock model and study the multi-
variate distribution of ( ), , ( )Z t Z tn1 f l^ h . Again we can calculate first and
second moments of the marginal distributions and correlations between the
components.

Proposition 7.

1. {( ( ), , ( )) , }Z t Z t t 0n1 f l $ is a multivariate compound Poisson process. If
(| |)<E X j 3, then

( ) ( ) .E Z t E X E N tj j j=` ` `j j j
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2. If , <E X E X
j k
2 2 3` `j j , then the covariance and correlation structure is given

by
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1. is easily established from formula (3).
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Now consider the distribution of the total loss ( ) ( ).Z t Z tjj

n

1
=

=
! The expected

total loss is easily calculated to be

( ) ( ) ,E Z t E X E N tj j
j

n

1

=
=

!^ ` `h j j

and higher moments of Z(t) can also be calculated, by exploiting the com-
pound Poisson nature of this process as shown in (5). Since {Z(t), Z ≥ 0} is the
most general aggregate loss process that we study in this paper we collect some
useful moment results for this process.
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Lemma 8. The pth derivative of the characteristic function ( )Z t{ of ( )Z t satisfies
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where Y{ denotes the characteristic function of Y.
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Using Lemma 8, the moments of Z(t) can be calculated as follows.

Proposition 9.

1. If they exist, the 2nd and 3rd order central moment of Z(t) are given by
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2. Whenever they exist, the non-central moments of Z(t) are given recursively by
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with ( )E Y k 1+ given by (15).
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Proof

1. For a compound Poisson process of the form (5) the formula (14) is well
known. We can calculate that for all p
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k k k={ for , ,k p1 f= . The conclu-
sion follows by applying this to (13).

¡

We are particularly interested in the effect of different levels of dependence
between both loss frequencies and loss severities on the tail of the distribution
of Z(t), and on higher quantiles of this distribution. The distribution of Z(t)
is generally not available analytically but, given the ease of simulating from our
Poisson common shock model, it is possible to estimate quantiles empirically
to a high enough degree of accuracy that differences between different depen-
dence specifications become apparent.

It is also possible, given the ease of calculating moments of Z(t), to use a
moment fitting approach to approximate the distribution of Z(t) with various
parametric distributions, and we implement this approach in the following
example.

4.1. Insurance example (continued)

Assume that French and German severities are Pareto(4,3) distributed, i.e.

( ) , , , , , .F x P X x x E X E X E X i1
3

3
1 3 27 1 2i i i i i

4
2 3#= = -

+
= = = =^ b ^ ` `h l h j j

We have to fix the dependence structure of potential losses (X1, X2)� at the
same shock. We do this using the copula approach. The copula C of (X1, X2)� is
the distribution function of (F1(X1), F2(X2))�. The distribution function of
(X1, X2)� can be expressed in terms of C as

, ,F x x C F x F x1 2 1 1 2 2=^ ^ ^_h h hi.
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For more on copulas see Embrechts, McNeil and Straumann (2001), Nelsen
(1999) or Joe (1997). We consider three cases.

• Independent severities:

, .F x x F x F x1 2 1 1 2 2=^ ^ ^h h h

• Positively dependent severities with Gaussian dependence:

, , ,F x x C F x F xGa
1 2 1 1 2 2= t^ ^ ^_h h hi

where

( , ) .expC u v
s st t

dsdt
2 1

1

2 1

2
/

( )( ) vuGa
2 1 2 2

2 211
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- -
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r t t
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33 --t
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##
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and ( , )0 1!t .

• Positively dependent severities with Gumbel dependence:

, , ,F x x C F x F xGu
1 2 1 1 2 2= i^ ^ ^_h h hi

where

( , ) ( ) ( ) ,exp log logC u v u v
/Gu 1

= - - + -i
i i i

a k# -

and > 1i .

For both of the positive dependence models we will parameterize the copulas
such that Kendall’s rank correlation (t) (see e.g. Embrechts, McNeil and Strau-
mann (2001) for details) between X1 and X2 is 0.5. This is achieved by setting

.sin and
2 1

1
= =

-
t r x i xb l

As we have discussed there are several possibilities for modelling the tail of
( )Z 5 . One approach is to fit a heavy-tailed generalised F-distribution (referred

to as a generalised Pareto distribution in Hogg and Klugman (1994)) to ( )Z 5
using moment fitting with the first three moments. The distribution function
is given by

( ) , , > , > , > ,H x G k
k

x for k2 2 0 0 0, , k = a
m
a a ma m b l

where ( , , )G 1 2 $o o is the distribution function for the F-distribution with n1 and
n2 degrees of freedom. The nth moment exists if � > n and is then given by

( ) ( ) .k i in

i

n

i

n

0

1

1

+ -m a
-

-

=

% %e eo o
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By calculating the first three moments of Z(5) for different frequency and
severity dependencies we fit generalised F-distributions and study the differ-
ence in tail behaviour. Figure 2 shows quantiles of generalised F-distributions
determined by fitting the first three moments to Z(5) for case 1, 2 and 3 and
for different dependence structures between the severities. It clearly shows the
effect of common shocks on the tail of Z(5) and perhaps even more the dras-
tic change in tail behaviour when adding moderate dependence between the
severities.
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Figure 2: The curves from lower to upper show the quantiles H ( )q, , k
1-

a m of moment fitted generalised
F-distributions for case 1, 2 and 3 and q ∈ [0.900, 0.995]. The first three moments coincide with those

of Z(5).

It should be noted that the quantile estimates of Z(5) given by moment
fitted generalised F-distributions are slight overestimates of the true quantiles
for [ . , . ]0 900 0 995!a . However the accuracy is sufficient to show the major
differences between the quantile curves of Z(5) for our different copula choices.

5. APPLYING THE METHODOLOGY TO PORTFOLIO CREDIT RISK

We consider here the problem of quantifying risk in large portfolios of default-
able assets, the simplest example being loan portfolios. Models that are used
for this purpose address the phenomenon of dependent defaults and a number



of approaches have been suggested in the literature in recent years and imple-
mented in widely-used industry solutions such as the model proposed by the
KMV corporation (KMV-Corporation 1997), the model of the RiskMetrics
group (RiskMetrics-Group 1997), or CreditRisk+, developed by Credit Suisse
Financial Products (Credit-Suisse-Financial-Products 1997). In this section we
describe how the common Poisson shock model provides a simple alternative
framework for modelling portfolio credit risk.

We emphasise that our focus here, and that of the industry models, is on
overall portfolio credit risk. We are less concerned with providing detailed analy-
sis of the individual default potential of a single credit risk, such as is required
in the pricing of defaultable bonds or standard credit derivatives. For this pur-
pose the class of default intensity models has emerged as the most important;
see for example Jarrow and Turnbull (1995).

5.1. Poisson shock models for defaults

We consider a portfolio of loans and develop a shock model by considering
that every counterparty in the portfolio defines a loss type and that a variety
of different kinds of economic shock may lead to the default of these coun-
terparties: global shock events may potentially affect all counterparties; sector
shock events may affect only certain kinds of company, such as companies in
a particular geographical area or companies concentrated on a particular indus-
try; idiosyncratic shock events (such as an episode of bad management) may
affect only individual counterparties; one might also think of endogenous shock
events where the default of important primary counterparties might affect
other counterparties, so that default was contagious.

In all cases the common shock construction means that defaults of indi-
vidual counterparties are modelled by the first events in a series of dependent
Poisson process. Suppose the random vector T = T1, …, Tn )� describes the
times to default for the n counterparties in the portfolio. In Section 3.2 we
observed that this vector of default times has a multivariate exponential
distribution with the Marshall-Olkin survival copula. Suppose that time is
measured in years and that we are interested in the portfolio credit loss dis-
tribution for a time horizon of 1 year; suppose further that the exposures (loan
sizes) are known and given by , ,e en1 f . If we neglect interest rates and assume
that nothing is recovered from defaulted firms then the overall portfolio loss
is given by

.L e 1i T
i

n

1
1

i
= #

=

!
! +

Frey and McNeil (2001) have shown that the distribution of L is fully deter-
mined by the set of individual default probabilities { ( ), , , }p P T i n1 1i i f#= =
and the copula C of the vector T; the exponential distributional form for the
margins of T is not a critical feature of the model. They also show that the tail
of the distribution of L and related risk measures are often much more sensitive
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to the assumptions about the dependence between the defaults as summarised
by the copula, than they are to the accurate specification of individual default
probabilities.

5.2. Relation of the shock model to standard models

All other models that have been suggested for portfolio credit risk also imply mul-
tivariate distributions for the vector of default times of the portfolio members.
Regardless of whether these models are set up as one-period or multi-period
models, or whether they assume constant intensities of default (as in the Pois-
son shock model), non-homogeneous intensities or stochastic intensities, they
all imply a distribution for the counterparty survival times. From model to
model, these distributions will vary with respect to both their marginal distri-
butions and their copulas, but as far as determining the loss distribution is
concerned, if they have been calibrated to give broadly similar individual default
probabilities it is the copula that will be decisive in determining the tail of the
portfolio loss distribution.

Both KMV and CreditMetrics may be considered to descend from the firm-
value model of Merton (1974), where default is modelled as occurring when
the asset value of a company falls below its liabilities, and asset value changes
are considered to have a multivariate normal distribution. Although this
appears very different to the Poisson shock model, as far as the loss distribu-
tion for a fixed time horizon is concerned, both KMV and CreditMetrics are
in fact structurally equivalent to a model in which default times have a multi-
variate exponential distribution with the Gaussian copula (i.e. the copula that
describes the dependence inherent in a multivariate normal distribution); see
Li (1999) and Frey and McNeil (2001) for more detail. Thus the crucial dif-
ference in the one-period framework lies in the fact that these industry models
imply a Gaussian copula whereas common shocks imply a Marshall-Olkin
copula to describe the dependence of the survival times.

The CreditRisk+ model employs a mixture-modelling philosophy which
assumes that conditional on a vector of independent gamma-distributed macro-
economic factors, the default of a counterparty occurs independently of other
counterparties and is the first event in a Poisson process with an intensity that
depends on these factors. Survival times are not exponential (but rather con-
ditionally exponential), but for portfolio risk modelling in a one-period setting,
this is again not a decisive factor. Assuming that the model has been calibrated
to give plausible values for individual default probabilities, it is the copula of
the default times that is most important in determining the overall loss distri-
bution, although this copula is difficult to isolate in closed form in the general
version of CreditRisk+.

There have been a number of papers on the subject of extending the inten-
sity-based approach to modelling the default of single counterparties to
obtain models for dependent defaults of several counterparties, principally
with the problem of pricing so-called basket credit derivatives in mind; see
Schoenbucher and Schubert (2001) for a useful summary of these approaches.
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We mention in particular a model of Duffie and Singleton (1995) where indi-
vidual defaults follow Cox processes with stochastic intensities. These intensi-
ties may jump (by a random amount) when certain common shocks occur
which have the potential to affect all counterparties, or when idiosyncratic
shocks occur affecting an individual company; as in our model shocks occur
as Poisson processes. Our model can be thought of a cruder version of the
Duffie & Singleton model with constant and deterministic intensities for indi-
vidual defaults.

5.3. Setting up the shock model

Consider a loan portfolio consisting of n obligors. Suppose the counterparties
can be divided into K geographical or industry sectors. We consider a model
where obligors are subject to idiosyncratic, sector and global shocks, so that
there are a total of m n K 1= + + shock event processes.

Suppose that the jth obligor belongs to sector k = kj where k ∈ {1,…,K}.
From formula (6) we know that Nj (t), the number of defaults of obligor j in
(0,t] is Poisson with intensity given by

, ,p p k k j( ) ( ) ( ) ( ) ( )
j

j
j
n k n k

j
m m= + + =m m m m+ +

^ h

where the three terms represent the contributions to the default intensity of
idiosyncratic, sector and global events respectively. Note that in general this
intensity will be set so low that the probability of a firm defaulting more than
once in the period of interest can be considered negligible.

This is a very general model and to obtain a model that we would have a
hope of calibrating in a real application we need to drastically reduce the num-
ber of parameters in the model. We assume first that companies can be grouped
together into rating classes within which default rates can be considered con-
stant and known. It is very common in portfolio default risk modelling to base
the assessment of default intensities for individual companies on information
about historical default rates for similarly rated companies. Suppose that the
jth obligor belongs to rating category l = l ( j) where l ∈ {1,…,L}. We assume
for the overall default intensity jm that

, , , , .l l j j n1,j ltotal f= = =m m ^ h (16)

To achieve (16) we assume that the rate of occurrence of idiosyncratic shocks
also depends only on the rating category and we adopt the notation 

, , , , ,

, , , ,

.

l l j j n

k K

1

1

,

( )
,

( )

j
l

n k
k

m

sec

idio

tor

global

f

f

= = =

= =

=

m m

m m

m m

+

] ^g h
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Clearly we now have a total of L + K + 1 shock intensities to set.
We assume also that the conditional default probabilities given the occur-

rence of sector shocks only depend on the rating class of the company and write
for an obligor j

, .p s l l j( )
,j

n k
k l= =+

^ h

We assume moreover that the default indicators for several companies in the
same sector are conditionally independent given the occurrence of an event in
that sector. Analogously, we assume that the conditional default probabilities
given the occurrence of global shocks depend on both rating class and sector
of the company and write

, , .p g l l j k k j( )
,j

m
k l= = =^ ^h h

We assume that the default indicators for any group of companies are condi-
tionally independent given the occurrence of a global event.

In total we have 2KL conditional default probabilities to set and we have
the system of equations

, , , , , , ,s g k K l L1 1, , , , ,l l k l k k lsectotal idio tor global f f= + + = =m m m m

subject to the constraint, imposed by (16), that

, .s g s g k k, , , , , ,k l k k l k l k k lsec sector global tor global 6 l!+ = +m m m ml ll (16)

5.4. Understanding the factors determining the risk

We are interested in the behaviour of N(t), the total number of defaults, for
fixed t. If we suppose that the individual default rates have been fixed then

( ( ))E N t has been fixed. However, depending how we set the various shock
intensities and individual default probabilities the risk inherent in N(t) may
vary considerably. If we measure risk by variance we can get analytically an
idea of which factors affect the risk by considering

( ) ( ) ( ), ( )var covN t E N t N t N t
, :

j j
j j j j

1 2

1 2 1 2

- =
!

!^ ^ `h h j.

For simplicity we set t = 1 and consider a model with one rating class (L = 1)
and assume that the conditional default probabilities do not depend on the
sector for all global shocks ( , )g g k,k 1 6= . Let there be nk obligors in sector k.
We have for j j1 2! that

j j( ), ( )
,

,
cov N N

g k j k j

g s k j k j k
1 1

,k ksec

2
1 2

2 2
1 2

global

global tor
1 2

!
=

+ = =

m

m m
`

^ ^

^ ^
j

h h

h h
*
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which allows us to calculate that

( ( )) ( ( )) ( ) .var N E N n n g n n s1 1 ,k k k k
k

K

sec
2 2 2 2

1
global tor- = - + -m m

=

!_ i

In view of (17) we have that sk lsector,k, the intensity of default due to sector
shocks in sector k, must be equal for all k in this special case. If we write
dglobal = glglobal and dsector = sk lsector,k, ∀k, for the default intensities due to global
or sector causes we obtain finally

( ( )) ( ( )) ( ) .var N E N n n g n n s1 1 k k k
k

K

sec
2 2

1
global tor- = - + -d d

=

!_ i

This expression allows us to draw two broad conclusions about the riskiness
of the model as measured by the variance of the number of defaults.

• The higher the portion of the default intensity that we attribute to sector and
global shocks (common shocks) the riskier the model. As before, the only
way we can have a Poisson distribution for N(1) is if the default intensity
can be attributed entirely to idiosyncratic shocks.

• Suppose we assume common shocks and fix the portions of the default
intensity that we attribute to common shocks (dglobal and dsector). The overall
risk also depends on how we set the conditional default probabilities g and sk.
Low shock intensities and high conditional default probabilities are riskier
than the other way around.

These conclusions are confirmed in the following simulation example where
we allow two rating categories and more heterogeneous conditional default
probabilities.

5.5. A simulation study

In our examples we take t = 1 year and consider K = 4 sectors and L = 2
rating categories; we assume that overall default rates for these categories are
ltotal,1 = 0.005 and ltotal,2 = 0.02. Let nk,l denote the number of companies in
rating class l and sector k. We set

, , , ,

, , , .

n n n n

n n n n

10000 20000 15000 5000

10000 25000 10000 5000
, , , ,

, , , ,

1 1 2 1 3 1 4 1

1 2 2 2 3 2 4 2

= = = =

= = = =

In the following two cases we investigate the sensitivity of the tail of N(1) to
the specification of model parameters. Results are based on 10000 simulated
realizations of N(1) and models are compared with respect to estimates of the
95% and 99% quantiles.

• Case 1
We study the effects of increasing the intensity of the common shocks
and decreasing the intensity of the idiosyncratic shocks when the univariate
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conditional default probabilities are held constant. We set the values of these
parameters to be

( , , , , , , , )

( . , . , . , . , , . , . , . )
( , , , , , , , )

( . , . , . , . , , . , . , ) .

s s s s s s s s

g g g g g g g g
0 25 0 08 0 05 0 1 1 0 3 0 25 0 25 10

0 25 0 1 0 4 0 1 1 0 5 1 5 1 10

, , , , , , , ,

, , , , , , , ,

1 1 2 1 3 1 4 1 1 2 2 2 3 1 4 2

2

1 1 2 1 3 1 4 1 1 2 2 2 3 1 4 2

2

=

=

-

-

We have some flexibility in choosing the intensities 

( . , . , . , . , . , . , . ) . , . , . , . , . , . , .
. , . , . , . , . , . , . . , . , . , . , . , . , . ) .

0 005 0 02 0 0 0 0 0 0 0 0 0 0 0 004 0 016 0 2 1 0 0 4 0 8 0 2
0 002 0 008 0 6 3 0 1 2 2 4 0 6 0 0 0 0 1 0 5 0 2 0 4 0 1 0

" "

"

]

] ^

g

g h

Hence we start with the special case of no common shocks and a situation
where every individual default process Nj(t) is independent Poisson and the
total number of defaults N(t) is Poisson. In the second model we still attribute
80% of the default intensities lj to idiosyncratic shocks, but we now have 20%
in common shocks. In the third model we have 60% in common shocks and
in the final model we have only common shocks. The effect of the increas-
ing portion of defaults due to common shocks on the distribution of N(1)
is seen in Figure 4 and empirical quantiles of N(1) are given in Table 1.

• Case 2
Suppose we attribute 40% of defaults for companies in both ratings classes
to idiosyncratic shocks and 60% to common shocks. That is we assume  

( , ) ( . , . ).0 002 0 008, ,1 2idio idio =m m

Suppose, for both rating classes, we attribute to sector specific causes, 20%
of defaults of sector 1 companies, 50% of defaults of sector 2 companies,
10% of defaults of sector 3 companies and 40% of defaults of sector 4 com-
panies. Moreover we believe that the frequencies of sector and global shocks
are in the ratio

: : : : : : : :1 5 2 4 1, , , ,1 2 3 4sector sector sector sector global=m m m m m

We have now specified the model up to a single factor f. For any .f 0 05$
the following choices of model parameters would satisfy our requirements 

( , , , , )

( . , . , . , . , . )

( , , , , , , , )

( . , . , . , . , , , . , )

f

s s s s s s s s

f

0 2 1 0 0 4 0 8 0 2

1
0 5 0 25 0 125 0 25 2 1 0 5 1 10

, ,

, , , , , , , ,

3 4

1 1 2 1 3 1 4 1 1 2 2 2 3 1 4 2

2

sector,1 sector,2 sector sector global

=

=

m m m m m

-
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( , , , , , , , )

( , . , . , . , , , , ) .

g g g g g g g g

f
1

1 0 25 1 25 0 5 4 1 5 2 10

, , , , , , , ,1 1 2 1 3 1 4 1 1 2 2 2 3 1 4 2

2= -

The condition f ≥ 0.05 is to ensure that s1
1,…, s4

2, g1
1,…, g4

2 ≤ 1. When f is
increased by a factor Df the intensities of the common shocks are increased
by a factor Df and the univariate conditional default probabilities are
decreased by a factor 1/Df. The effect of increasing f on the distribution of
N(1) is seen in figure 3, where histograms are plotted by row for f = 1,2,4,8.
The key message is as anticipated that low shock intensities and high con-
ditional default probabilities are more riskier than the other way around. Values
for the empirical 95th and 99th percentiles of the distribution of N(1) are
given in Table 1.
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Figure 3: Histograms of 10000 independent simulations of N(1), the number of defaults in a one year
period, for f 1= (upper left), f 2= (upper right), f 4= (lower left) and f 8= (lower right).

TABLE 1

EMPIRICAL QUANTILES OF N(1) CORRESPONDING TO THE SAMPLES OF SIZE 10000 SHOWN IN FIGURES 3 AND 4.

Case 1 Case 2
f =1 f =2 f =4 f =8 f =1 f =2 f =4 f =8

a = 0.95 2742 2307 1957 1734 1308 1769 2106 2346
a = 0.99 3898 2889 2381 1972 1331 2180 2622 2948



5.6. Conclusion

Clearly the calibration of such models is a difficult and highly judgemental
enterprise and the method would seem most useful as a broad brush approach
to assessing the risk of a portfolio about which relatively little is known; it
might be useful for instance in generating possible future loss scenarios under
a variety of assumptions about the frequency and severity of economic down-
turns. Obviously the higher the number of rating classes and sectors that are
introduced the more difficult the calibration will prove to be. Our analysis in
Section 5.4 and our simulations in Section 5.5 suggest that calibration might
proceed along the following lines.

1. For each combination of rating class and sector, historical data on defaults
should be used to estimate what proportions can be attributed to idiosyn-
cratic, sector or global causes. In determining these proportions the con-
straints imposed by (16) must be respected.

2. Having carved up the individual intensities into these three portions we
should then attempt to determine the relative intensity of sector and global
events.

3. Bearing in mind that the conditional default probabilities can have a pro-
found impact on the loss distribution we now fix the absolute intensity of
sector and global shocks as well as these conditional default probabilities;
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Figure 4: Histograms of 10000 independent simulations of N(1) when increasing the intensities of the
common shocks and decreasing the intensities of the idiosyncratic shocks while holding the univariate

conditional default probabilities fixed. (1) upper left, (2) upper right, (3) lower left, (4) lower right.



for conservatism we err on the side of underestimating shock intensities
and overestimating conditional default probabilities.

REFERENCES

BARLOW, R., and PROSCHAN, F. (1975) Statistical Theory of Reliability and Life Testing. Holt, Rine-
hart & Winston, New York.

CREDIT-SUISSE-FINANCIAL-PRODUCTS (1997) CreditRisk+ a Credit Risk Management Framework.
Technical Document, available from htpp://www.csfb.com/creditrisk.

DUFFIE, D., and SINGLETON, K. (1998) Simulating Correlated Defaults. Working paper, Graduate
School of Business, Stanford University.

EMBRECHTS, P., MCNEIL, A., and STRAUMANN, D. (2001) Correlation and dependency in risk man-
agement: properties and pitfalls. In Risk Management: Value at Risk and Beyond, ed. by
M. Dempster. Cambridge University Press, Cambridge.

FREY, R., and MCNEIL, A. (2001): Modelling dependent defaults. Preprint, ETH Zürich, avail-
able from http://www.math.ethz.ch/ˆfrey.

HOGG, R., and KLUGMAN, S. (1984) Loss Distributions. Wiley, New York.
JARROW, R., and TURNBULL, S. (1995) Pricing Derivatives on Financial Securities Subject to

Credit Risk. Journal of Finance, L(1), 83-85.
JOE, R. (1997) Multivariate Models and Dependence Concepts. Chapman & Hall, London.
KMV-CORPORATION (1997) Modelling Default Risk. Technical Document, available from http://

www.kmv.com.
LI, D. (1999) On Default Correlation: A Copula Function Approach. Working paper, RiskMet-

rics Group, New York.
LI, H., and XU, S. (2001) Stochastic bounds and dependence properties of survival times in a mul-

ticomponent shock model. Journal of Multivariate Analysis 76, 63-89.
MARSHALL, A., and OLKIN, I. (1967) A multivariate exponential distribution. Journal of Amer-

ican Statistical Association 62, 30-44.
MERTON, R. (1974) On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.

Journal of Finance 29, 449-470.
NELSEN, R.B. (1999) An Introduction to Copulas. Springer, New York.
PANJER, H. (1981) Recursive evaluation of a family of compound distributions. ASTIN Bulletin

12, 22-26.
RISKMETRICS-GROUP (1997) CreditMetrics – Technical Document, available from http://www.

riskmetrics.com/research.
ROLSKI, T., SCHMIDLI, H., SCHMIDT, V., and TEUGELS, J. (1998) Stochastic Processes for Insurance

and Finance. Wiley, Chichester.
SAVITS, T. (1988) Some multivariate distributions derived from a non-fatal shock model. Journal

of Applied Probability 25, 383-390.
SCHÖNBUCHER, P., and SCHUBERT, D. (2001) Copula-dependent default risk in intensity models.

Working paper.
WANG, S., and DHAENE, J. (1998) Comonotonicity, correlation order and premium principles.

Insurance: Mathematics and Economics 22, 235-242.

FILIP LINDSKOG

Risklab
Federal Institute of Technology
ETH Zentrum 
CH-8092 Zurich
Tel.: +41 1 632 67 41
Tel.: +41 1 632 10 85
lindskog@math.ethz.ch

COMMON POISSON SHOCK MODELS 237



ALEXANDER J. MCNEIL

Department of Mathematics
Federal Institute of Technology
ETH Zentrum
CH-8092 Zurich
Tel.: +41 1 632 61 62
Tel.: +41 1 632 15 23
mcneil@math.ethz.ch

238 FILIP LINDSKOG AND ALEXANDER J. MCNEIL



ASYMPTOTIC DEPENDENCE OF REINSURANCE AGGREGATE 
CLAIM AMOUNTS

ANA J. MATA*
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ABSTRACT

In this paper we study the asymptotic behaviour of the joint distribution of rein-
surance aggregate claim amounts for large values of the retention level under
various dependence assumptions. We prove that, under certain dependence
assumptions, for large values of the retention level the ratio between the joint
distribution of the aggregate losses and the product of the marginal distributions
converges to a constant value that only depends on the frequency parameters.

KEYWORDS

Dependent risks, excess of loss, reinsurance layers, multivariate Panjer recursion,
asymptotic independence.

1. INTRODUCTION

Recently the importance of modelling dependent insurance and reinsurance risks
has attracted the attention of actuarial practitioners and scientists. Even though
classical theories have been developed under the assumption of independence
between risks, there are practical cases where this assumption is not valid.

In a recent paper Embrechts, McNeil and Straumann (2001) wrote:
“Although insurance has traditionally been built on the assumption of inde-

pendence and the law of large numbers has governed the determination of pre-
miums, the increasing complexity of insurance and reinsurance products has led
recently to increased actuarial interest in the modelling of dependent risks...”

Although the literature on dependence between risks in insurance portfo-
lios is increasing rapidly, very few authors have applied these development to
practical problems, for example reinsurance modelling.

In this paper we study the problem of dependence between risks from the rein-
surer’s point of view when he provides excess of loss cover for two dependent
risks under different dependence assumptions. When the reinsurer undertakes
excess of loss reinsurance for a portfolio, in particular for catastrophe excess of
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loss, the probability that a claim will impact the reinsurance layer is very small.
Therefore, in many cases the correlation coefficient between aggregate claim
amounts for the reinsurer becomes very small. We could then be tempted to think
that the dependence between portfolios disappears as we look at the tail of the dis-
tribution and that, therefore, we could assume independence. It has been largely
discussed in the literature that the linear correlation coefficient is not a satisfac-
tory measure of dependence in the non-normal case, see, for example, Embrechts,
McNeil and Straumann (2001).

In this paper we look at the effect of different dependence assumptions and
their effect on the joint distribution of the aggregate claim amounts compared
to the product of the marginal distributions when the retention or attachment
is large (hence, the probability of a claim to the layer tends to zero). In Section 2,
we describe a model used for insurance and reinsurance aggregate claim
amounts that are subject to the same events. In Section 2.1, we discuss how to
calculate the distribution of the sum of aggregate claim amounts under different
dependence assumptions. In Section 3, we define a measure of asymptotic
dependence. We use this concept to study the effect of large values of the reten-
tion level on the joint distribution of reinsurance aggregate losses under the
dependence assumptions described in Section 2. Numerical illustrations and dis-
cussion of the results are presented in Sections 3.2 and 3.3.

2. A DEPENDENCE MODEL FOR REINSURANCE AGGREGATE LOSSES

In this section we describe a model that has been typically used in the actuarial
literature to model insurance aggregate claim amounts that are exposed to the
same events or claims. This model has been proposed, for example, in Sundt
(1999) and Ambagaspitiya (1999) where they develop multivariate recursions
to calculate the joint distribution of the aggregate claim amounts. We will
assume that there are only two portfolios, however the results can be generalised
for any number of risks or portfolios.

The Model: Two risks or portfolios are affected by the same events, therefore
they are subject to the same frequency distribution. This model is the general
model described in Sundt (1999). One of the most common applications of this
model is, for example, catastrophe reinsurance where several portfolios are
exposed to the same events. Also in fire insurance, the same fire can cause
damage to neighbouring buildings or properties insured under different policies
by the same insurer.

Assumptions:

1. Let N be the total number of claims in a fixed period of time. It is assumed
that N belongs to the Panjer class of counting distribution, i.e. there exists
constants a and b such that N satisfies

, ,forP N n a n
b P N n n1 1 2 f= = + = - =] b ]g l g
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2. Let Xi i 1$
" , and Yi i 1$

" , be sequences of i.i.d. random variables represen-
ting the claim amounts for each risk. We assume that (Xi,Yi) are i.i.d. pairs
from a bivariate distribution.

3. N is independent of ,X Y ii i 6^ h .

Then the aggregate claim amounts for these risks are

andS X S Yi
i

N

i
i

N

1 2
1 1

= =
= =

! ! (1)

The claim amounts for each risk could have various interpretations:

1. From the primary insurer’s point of view, the losses due to the i th event
(Xi,Yi) may be dependent or independent.

2. From the reinsurer’s point of view (Xi,Yi) may represent excess of loss claims
due to the same event from different underlying risks whose individual losses
may be dependent or independent. In reinsurance, this model could also be
used for reinsurance losses for two excess of loss layers from the same under-
lying risk. In this case the aggregate losses are dependent not only through
the number of events, but also through the claim distribution for the primary
risk.

2.1. Joint distribution of dependent aggregate claim amounts

Sundt (1999) and Ambagaspitiya (1999) developed multivariate recursions that
allow us to calculate the joint distribution of the aggregate claim amounts
under the assumptions of the model described in Section 2. As we discussed
above, the individual claim amounts for each portfolio are not necessarily inde-
pendent and we assume that they are integer-valued random variables. The
joint probability function is given by p(x,y) for x = 0,1,2,…, y = 0,1,2,… in
appropriate units.

The aggregate claim amounts are as given in formula (1), and the recur-
sion for the joint distribution of (S1,S2) is as follows:

, ( , ) , ,g s s a s
bu p u v g s u s v

u

s

v

s

1 2
10

1 2
0

1 2

= + - -
= =

! !^ b ^h l h (2)

for , , , , , ,s s1 2 0 1 21 2f f= =

, , , ,g s s a s
bv p u v g s u s v

v

s

u

s

1 2
20

1 2
0

2 1

= + - -
= =

! !^ b ] ^h l g h (3)

for , , , , , ,s s0 1 2 1 21 2f f= = See Sundt (1999).
In many cases the insurer/reinsurer would only be interested in calculating

the distribution of the sum of the total losses for both risks. For example, if
we are interested in calculating how much capital we must allocate (under some
criteria) to each portfolio separately or to the combined portfolio, then we
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would be interested in the distribution of the sum of the corresponding aggre-
gate claim amounts.

To calculate the distribution of the sum of dependent aggregate claim
amounts under the assumptions of the model described above it is not neces-
sary to calculate the joint distribution. In the next section we discuss in more
detail how this is possible.

2.2. Distribution of the sum of dependent aggregate claim amounts

Under the assumptions of the dependence model described in Section 2 the sum
of the aggregate claim amounts is given by:

( )S S S X Y X Yi
i

N

i
i

N

i i
i

N

1 1
1 1 1

= + = + = +
= = =

! ! ! . (4)

Therefore if we can calculate the distribution of the sum Xi + Yi for each i ≥ 1,
then the distribution of S can be calculated using Panjer recursion for uni-
variate compound random variables. We denote Ui = Xi + Yi.

Given the joint distribution of the individual claims for the i th event, the
distribution of Ui is given by:

( ) ( ) ( , ), , , .forP U u P X Y u P X u m Y m u 0 1i i i i i
m

u

0

f= = + = = = - = =
=

!

If Xi and Yi are independent then P U ui =^ h is given by the convolution of the
marginal distributions.

When we consider two excess of loss layers from the same risk, e.g. (m1, m2)
and (m2, m3), if Zi represents the claim amount due to the ith event for the pri-
mary insurer, then the losses for the reinsurer are

, ,min max andX Z m m m0i i 1 2 1= - -^_ h i

, ,min maxY Z m m m0i i 2 3 2= - -^_ h i.

Hence, Xi + Yi represents the losses for the combined layer (m1, m3), whose
distribution can be easily calculated from the distribution of Zi. However,
Mata (2000) showed that for layers of the same risk that are subject to differ-
ent aggregate conditions such as reinstatements and aggregate deductibles,
the distribution of the sum of aggregate losses for two or more layers is not
equivalent to the distribution of total aggregate losses for the combined layer.
Therefore, the bivariate recursion given in formulae (2) and (3) must be used
in these cases.

Example 1. Assume a reinsurer is considering to provide excess of loss cover
for the following two layers: 10 xs 20 and 10xs 30 from any two risks (in appro-
priate units and currency). The reinsurer is given the following information
about the underlying risks:
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1. Both primary risks are exposed to the same possible events of claims. N,
the number of claims during the period of coverage, follows a Poisson dis-
tribution with parameter 1=m .

2. The individual claims for the i th event for each primary risk, Xi and Yi,
have the same marginal distribution. We assume that the claim size distri-
bution follows a Pareto distribution with parameters and3 10= =a b and
probability density function:

( )
( )

> .forf x
x

x 01=
+b
ab

+a

a

Therefore, for each event the reinsurer’s claim amounts are:

, , , , ,min max and min maxX X Y Y0 20 10 0 30 10i
R

i i
R

i= - = -^_ ^_h i h i

hence, the reinsurer’s aggregate claim amounts are:

andS X S YR
i
R

i

N
R

i
R

i

N

1
1

2
1

= =
= =

! !

Since we do not have any extra information about the individual claim amounts
for each risk, there are many dependence structures that can be used in order
to calculate the joint distribution of the individual claim amounts. Even if we
were given the marginal distributions and the correlation coefficient there are
several possibilities for the joint distribution of the individual claim amounts,
see, for example, Embrechts, McNeil and Straumann (2001). Let us study the
following three set ups:

(a) The individual claim amounts Xi and Yi are independent.
(b) The individual claim amounts are dependent and their joint distribution

follows a bivariate Pareto distribution with parameters (�, b1, b2) and joint
probability density function

,f x y
x y1

1
( )

1 2 1

1

2

2
2

=
+

- +
+

+
+

b b
a a

b
b

b
b - +a

^
]

dh
g

n

In this example � = 3, b1 = b2 = 10. For more details about the multivari-
ate Pareto distribution see, for example, Mardia et al (1979).

(c) The layers belong to the same underlying risk in which case notice that
they are consecutive layers.

Each of these set ups satisfies the assumptions of the model described in
Section 2. It can be seen that the covariance between the aggregate claims
amounts under the assumptions of the model presented in Section 2 is given
by:

( , ) ( ) ( , ) ( ) [ ] [ ] forCov S S E N Cov X Y Var N E X E Y i ji i i j1 2 != + (5)
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It is interesting to note that the correlations calculated according to (5) are
quite different from each other in the three cases considered in this example.
The correlations are:

(a) , .S S 0 019R R
1 2

=t_ i

(b) , .S S 0 206R R
1 2

=t_ i

(c) , .S S 0 761R R
1 2

=t_ i

Figure 1 shows the c.d.f. of S SR R
1 2+ when the layers belong to different risks, i.e.

dependence assumptions as in (a) and (b). The dashed line in Figure 1 represent
the c.d.f. of S SR R

1 2+ when we assume these risks are completely independent, i.e.
ignoring that both risks are exposed to the same claims. We observe that under
the simplest dependence model (a), where the dependence arises only through
the common number of events, the distribution of the total aggregate losses is very
close to the distribution of total losses under the assumption of independence.
However, when more complex dependence assumptions are built in, such as the
bivariate Pareto claim distribution, the distribution of total aggregate losses is very
different to the distribution under the independence assumption. In particular
we notice that under the dependence assumption in (b) the tail of the distribution
is significantly heavier than when independence is assumed.
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Figure 2 shows the c.d.f. of SR
1 + SR

2 when the layers belong to the same risk
and the distribution of SR

1 + SR
2 if independence is assumed. We notice that the

distribution of total losses for consecutive layers would be totally mis-esti-
mated if the dependence structure is ignored. This is of course due to the fact
that when layers belong to the same risk there would be a positive claim in the
second layer only when the claim for the first layers is a full loss. Hence, for
layers of the same risk the claim amount dependence has more effect than the
frequency dependence.

With this numerical example we have shown how different dependence
assumptions may impact the distribution of total losses for the reinsurer. There-
fore, by not taking into account how dependence arises one could mis-estimate
the overall risk. This is of particular importance when pricing multi-layer excess
of loss treaties, where dependence arises not only through he number of claims,
but also through the claim size distribution.

3. ASYMPTOTIC BEHAVIOUR OF DEPENDENT REINSURANCE AGGREGATE

CLAIM AMOUNTS

In the previous section we looked at the distribution of the sum of dependent
aggregate claim amounts from the reinsurer’s point of view. In Figures 1 and 2
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we observed the effect of different dependence structures that might be used
to model reinsurance aggregate claim amounts.

Clearly, given the distribution of the individual claim amounts for the
primary insurer and the distribution of the number of claims, the choice of
retention level M completely determines the distribution of the aggregate claim
amounts for the reinsurer. For large values of the retention level, the proba-
bility of a claim to the reinsurance layer is small. Hence the probability of
zero losses is very high, and therefore the correlation coefficient is small.

Based on the results showed in Figures 1 and 2, where we observed that
under some dependence assumptions the distribution of total aggregate losses
for the reinsurer is very close to the distribution of total aggregate losses if inde-
pendence is assumed, it is our objective to give some insight to the following
question:

Are the reinsurer’s aggregate claim amounts from different but dependent
risks approximately independent for large values of the retention levels?

In the next section we give some theoretical insight into the asymptotic
behaviour of the distribution of the aggregate claim amounts for large values
of the retention levels under different dependence assumptions.

3.1. On measures of asymptotic independence for reinsurance aggregate claim
amounts

In order to provide some answers to the question outlined above we start by giv-
ing the definition of asymptotic independence which will be referred to in the
remainder of the paper. For large values of the retention levels the probability
of a non-zero loss for the reinsurer tends to zero. Hence we use the following
definition of asymptotic independence.

Definition 1 Suppose two sequences of random variables Vn" , and Wn" , are depen-
dent for each n. If these random variables satisfy

( ) ( )
( , )

,lim P V A P W B
P V A W B

1
n n n

n n
! !
! !

=
" 3

(6)

for all sets A and B that have positive probability, then it is said that Vn and Wn
are asymptotically independent. We will refer to the ratio in (6) as the dependence
ratio.

We prove below that under certain dependence assumptions the reinsur-
ance aggregate losses satisfy the condition given in (6) for some sets A and B,
but not for all sets. We set out below the assumptions we require to prove this
result.

Assumptions and notation:

1. The primary insurance risks satisfy the dependence assumptions of the
model described in Section 2, but we assume that the claim amounts for
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the ith event are independent. Hence, the dependence structure arises only
through the common number of events N.

2. Individual claim amounts for the primary insurer Xi and Yi are integer-valued
independent random variables that take values x = 0,1,2,… and y = 0,1,
2,… in appropriate units. We assume that the probability functions of the
individual claim amounts do not have fin§(ite upper limit. We denote
p1(x) and p2(y) as the probability functions of the individual claim amounts
for each portfolio.

3. The common number of claims, N, belongs to Panjer’s class of counting
distributions. Thus, a and b will represent the constants of Panjer’s class.

4. We denote by PN (t) the probability generating function of N which is
defined as

( )P t E tN
N= 8 B

5. Let {M1,n}n ≥1
and {M2,n}n ≥1

be sequences of integer numbers representing
ting the retention levels of the excess of loss reinsurance for each risk.
These sequences satisfy Mi,n > Mi,n –1 for i = 1,2. For a given value of the
retention, the reinsurer’s claim amounts for the i th event are:

, , .max maxX M X M Y M Y M0 0, , , ,i
R

n i n i
R

n i n1 1 2 2= - = -` ` ` `j j j j

Therefore, the aggregate claim amounts for the reinsurer are:

( ) ( ) .andS M X M S M Y M, , , ,
R

n i
R

n
R

n
i

N

i
R

n
i

N

1 1 1 2 2
1

2
1

= =
= =

! !` `j j (7)

The distribution functions of the aggregate losses are functions of the reten-
tion levels {M2,n}n ≥1

and {M2,n}n ≥1
.

6. The retention levels are such that the reinsurer’s aggregate claim amounts
satisfy

, , .lim forP S M i0 1 1 2,n i
R

i n = = =
" 3

`` j j (8)

7. The probability functions for the individual claim amounts for the rein-
surer are ( )p x P X M x, ,n i

R
n1 1= =] _g i and p y P Y M y, ,n i

R
n2 2= =^ __h i i for x, y =

, , , ,0 1 2 f

8. We assume that the probability functions for the individual claim amounts
satisfy

( )
( )

( , ) , , ,lim forp y M
p x M

C x y x y1 2
,

,

n i i n

i i n
f

+

+
= =

" 3

for , ,y 1 2 f= where C(x,y) is a constant that only depends on x and y
and ( , ) <C x y0 3# .
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9. The probability functions for the aggregate claim amounts are g1,n(s1) =
P S M s,

R
n1 1 1=__ i i and g s P S M s, ,n

R
n2 2 2 2 2= =^ __h i i, for , , , ,s s 0 1 21 2 f= . We

assume that ( ) >g s 0,i n i for i = 1,2 and for , , , ,s s 0 1 21 2 f=

10. The joint probability function for the aggregate claim amounts is defined
as , ,g s s P S M s S M s, ,n

R
n

R
n1 2 1 1 1 2 2 2= = =^ _ _`h i i j, for , , , ,s s 0 1 21 2 f=

Proposition 1. Under the assumptions outlined above the aggregate claim amounts
for the reinsurer defined in (7) satisfy:

a) ( ) ( )
( , )

lim g g
g
0 0

0 0
1

, ,n n n

n

1 2
=

" 3

b)
,

, , , ,lim
P S M s P S M s

P S M s S M s
s s1 0 1 2for all

, ,

, ,

n R
n

R
n

R
n

R
n

1 1 1 2 2 2

1 1 1 2 2 2

1 2 f
# #

# #
= =

" 3 `` ``

` ``

j j j j

j j j

c) ( ) ( )
( , )

, ,lim forg s g
g s

s
0

0
1 1 2

, ,n n n

n

1 1 2

1
1 f= =

" 3

d) ( ) ( )
( , )

, ,lim forg g s
g s

s
0

0
1 1 2

, ,n n n

n

1 2 2

2
2 f= =

" 3

e) ( ) ( )
( , )

, , ,lim forg s g s
g s s

a b s s1
1

1 2
, ,n n n

n

1 1 2 2

1 2
1 2 f= +

+
=

" 3

Proof. The proof of this proposition is essentially an induction based proof.
In order to avoid confusion with the details of the algebraic proof we leave
the analytical proof for the Appendix and we concentrate in the interpreta-
tion of the results and the assumptions.

From the results shown in Proposition 1 we make the following remarks:

1. Note that for the Binomial, Poisson and Negative Binomial distribution it
always holds that >a b 0+ . Hence, >a b1 1 1+

+
. In other words, the depen-

dence ratio is always greater than or equal to 1.
2. The statement in b) implies that when we consider cumulative distributions

we are including the value of zero which has a high probability for large
values of the retention level. This result explains the behaviour observed in
Figures 1 and 2 where we considered the cumulative distribution function
of the sum of the reinsurer’s aggregate claim amounts. In other words, if
zero is included in the probability being evaluated the probability would tend
to 1 due to assumption 6 above.

3. In Proposition 1 we assumed one of the simplest cases of dependence in
insurance/reinsurance risks. Hence, under more complicated assumptions
of dependence between risks the dependence ratio might converge to a dif-
ferent value. In the next section we compare numerically the asymptotic
behaviour of the dependence ratio under various dependence assump-
tions.
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4. Statement e) shows cases where the ratio between the joint distribution
and the product of the marginal distribution does not tend to 1, which
proves the fact that even under the simplest dependence assumption inde-
pendence cannot be assumed. However, if a b+ takes large values, the limit
would be close to 1. For example, when N follows a Poisson distribution
with parameter , a b+ =m m which is the expected number of common events
per unit of time. If we increase m we are increasing the dependence para-
meter as the expected number of common events becomes larger. Never-
theless, by increasing m the limit in e) would be closer to 1 which implies
that the joint distribution is closer to the independent case. This shows how
counter-intuitive results can be when the independence assumption is
relaxed.

The following proposition shows another case when the result in e) also holds.

Proposition 2 Assume that two risks follow assumptions 1 and 3 of Propo-
sition 1. Let {M1,n} and {M2,n} be sequences of real numbers representing the
reinsurance retention levels for each portfolio. These sequences are such that the
reinsurer’s aggregate claim amounts satisfy the condition in (8) and that for
each n

.P S M P S M0 0, ,
R

n
R

n n1 1 2 2= = = =a`` ``j j j j

Then, the reinsurance aggregate claim amounts defined in (7) satisfy 

> >

> , >
.lim

P S M P S M

P S M S M
a b0 0

0 0
1

1

, ,

, ,

n R
n

R
n

R
n

R
n

1 1 2 2

1 1 2 2
= +

+"3 ` ``

` ``

j j j

j j j

Proof. We give detailed analytical proof of this result in the Appendix.
Note that the assumptions for Proposition 2 are more general than the

assumptions we made for Proposition 1. Since the result in Proposition 2 refers
to the joint survival function evaluated at zero, the claim size distribution could
have a continuous density function. Also the retention levels are not required
to be sequences of integer values, it is enough that {M1,n}n ≥1

and {M2,n}n ≥1
are

sequences of real numbers such that:

,lim forP S M i0 1 1 2,n i
R

i n = = =
" 3

`` j j

For Proposition 2, we assumed that both aggregate claim amounts for the rein-
surer have the same probability of being zero. Nevertheless, in Example 2 we
show that this is not a necessary assumption. It seems to be sufficient that
when n tends to infinity the probabilities of being zero tend to one. We discuss
this in more detail in Example 2.
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3.2. Numerical illustrations

It is our objective in this section to illustrate numerically the results shown in
previous section. We compare numerically the behaviour of the dependence ratio
as defined in (6) under all dependence assumptions described in Example 1
above.

Example 2. Assume that two insurance portfolios follow the distributional
assumptions as in Example 1. For each risk the reinsurer takes a layer of size 10
with deductibles M1,n = n and M2,n = 10 + n for n = 0,1,2,…. Therefore, for each
event the reinsurer receives claims for the following amounts 

, ,min max andX M X n0 10,i
R

n i1 = -` ^_j h i

, , .min maxY M Y n0 10 10,i
R

n i2 = - -` ^_j h i

We consider the three set ups as described in Example 1. In this example
N follows a Poisson distribution with parameter 1=m . Hence, it follows that

a b1
1

2+
+

= .

Figure 3 shows the dependence ratio
> >

> , >

P S M P S M

P S M S M

0 0

0 0

, ,

, ,

R
n

R
n

R
n

R
n

1 1 2 2

1 1 2 2

_` _`

_ _`

i j i j

i i j
as

.n "3 We observe that the asymptotic behaviour of the joint survival function
at zero is very different under the three dependence assumptions. In the case
of independent claim amounts, the dependence ratio converge to a b1

1
+

+
as

shown in Proposition 2. However, when the claim amounts are dependent,
as in cases (b) and (c), the dependence ratio tends to infinity. We also notice
that for layers of the same risk the dependence ratio goes to infinity faster
since 

> , > >P S M S M P S M0 0 0, , ,
R

n
R

n
R

n1 1 2 2 2 2=` `` ``j j j j j

and therefore,

> >

> , >

>
.lim lim

P S M P S M

P S M S M

S M0 0

0 0

0

1

, ,

, ,

,n R
n

R
n

R
n

R
n

n R
n1 1 2 2

1 1 2 2

1 1

3= =
" "3 3`` ``

` ``

``j j j j

j j j

j j

Figure 4 shows the behaviour of
( ) ( )

( , )

g g

g

0 1

0 1

, ,n n

n

1 2

for large values of the reten-

tion n. We note that for layers of the same risk the dependence ratio has a
constant value of zero since it is not possible that the second layer takes a
positive value if the first layer is zero. However, for layers of separate risks the
dependence ratio tends to one. We also observe that in the case of layers from
different underlying risks with dependent claim amounts the dependence ratio
converges to one, but slower than in the case of independent claims amounts.
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FIGURE 3: Behaviour of
> >
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FIGURE 4: Behaviour of ( ) ( )
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Figure 5 shows the behaviour of

> ) ( >

> , >
as

P S M P S M

P S M S M
n

2 2

2 2

, ,

, ,
R

n
R

n

R
n

R
n

1 1 2 2

1 1 2 2
"3

` ``

` ``

j j j

j j j

We notice that the asymptotic behaviour of joint survival functions for
s1, s2 > 0 (in this case s1 = s2 = 2) is very similar to the asymptotic behaviour of
the joint survival functions for s1 = s2 = 0. In the case of independent claim
amounts the dependence ratio for the joint survival function also converges to 

a b
1

1
+

+
as shown in Proposition 2 for s1 = s2 = 0.

3.3. Comments on the assumptions in Section 3.1 in practical applications

The results shown in Section 3.1 are a step towards a better understanding of
the effect of dependence between reinsurance risks that have small probabil-
ities of large losses. In order to get a better understanding of the results of
Propositions 1 and 2 one has to look closely to each of the assumptions made.
We discuss below the relevance of each assumption.
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1. Assumption 5: Note that in Example 2 we have assumed that the excess of
loss layers for the reinsurer have a finite upper limit equal to 10. Therefore,
assumption 5 does not seem to be a restriction in practical terms. However,
the assumption that the reinsurer takes excess of loss layers with infinite
limit facilitated the analytical proof.

2. Assumption 6: It is not unreasonable to assume that for non proportional
reinsurance the retention or deductible is such that the probability of claims
affecting the reinsurer is very small. This is a typical assumption in prac-
tice.

3. Assumption 8: We assumed that the probability function is such that 

( )
( )

( , ) < , ( , ) <lim for wheref y M
f x M

C x y x y C x y0 0M 3# #
+
+

=" 3 and ana-

lytically this is the key assumption for the proof of Proposition 1.
Although this property seems to be related to the theory of slowly or reg-
ularly varying functions (see, for example, Embrechts, Mikosh and Klüp-
pelberg (1997)) it is in fact a weaker condition as some density functions
satisfy assumption 8 but are not regularly varying functions. For example,
the Exponential distribution satisfies the condition in assumption 8, how-
ever its probability density function is not a regularly varying function.
On the other hand, the density function of a Pareto distribution is a regu-
larly-varying function and it also satisfies the condition in assumption 8.
The condition in assumption 8 is satisfied by most of the continuous
loss distributions used to model insurance/reinsurance losses, such as:
Exponential, Gamma, Log-normal, Pareto and Generalised Pareto. The
Normal distribution does not satisfy this property as it can be seen that 

( )
( )

lim f m y
f x m

m 3
+
+

=
" 3 . In practical cases the loss distributions for insurance 

claims are usually skewed and heavy-tailed, and therefore, the Normal dis-
tribution is not a reasonable loss distribution for practical use.

4. Proposition 2. In this proposition we assumed that both aggregate claim
amounts have the same probability of being zero. Example 2 shows that this
seems not to be a restriction. In fact in Example 2 the layers are such that
for each n we have 

< .P S M P S M0 0, ,
R

n
R

n1 1 2 2= =`` ``j j j j

However, for any > 0e there is M such that for n M$

< ,P S M P S M0 0, ,
R

n
R

n2 2 1 1 e= - =`` ``j j j j

and as n tends to infinite both probabilities tend to one.

4. CONCLUSIONS

Modelling dependencies between risks has become an area of increased
research interest in actuarial science. Although many authors have emphasized
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the importance of differentiating between correlation and dependence, in prac-
tice, when one thinks of dependencies, inevitably the correlation coefficient is
the first thing that comes to mind.

The numerical examples in this paper showed that even when the correla-
tion coefficient becomes small dependence cannot be ignored. Failure to iden-
tify dependence between risks may lead to underestimation of the overall risk.
This is particularly relevant when pricing risks or managing aggregation of
risk exposure.

Throughout this paper we have looked at dependencies from the reinsurer’s
point of view where there is a very small probability of very large losses.
Loosely speaking, the main result states that for large values of the retention
levels the dependence ratio converges to a constant defined by the frequency
distribution. This constant is always greater than or equal to one. Intuitively,
if the aggregate losses are dependent only through the number of events, one
would be inclined to think that if the expected number of events increases then
the dependence becomes stronger. However, we showed that when the number
of events follows a Poisson distribution the larger the expected number of
events the joint distribution of aggregate losses gets closer to the product of
the marginal distributions which is the distribution of independent aggregate
claim amounts.

Modelling dependencies is an area with a vast possibility for research. It is
of particular importance to extend the ideas presented in this paper of com-
paring the joint distribution with the product of the marginal distributions for
more general right tail dependence models, for example by looking at multi-
variate extreme value distributions or extreme value copulas. This comparison
is always helpful in practice when often the practical actuary is interested in
the impact of making simplified assumptions to facilitate the implementation
of new models and techniques.

ACKNOWLEDGEMENTS

This research was carried out while the author was a research student in the
Department of Actuarial Mathematics and Statistics at Heriot-Watt Univer-
sity, Edinburgh. The author would like to thank Professor Howard Waters for
his invaluable advise, helpful comments and patience throughout the numer-
ous versions of this paper. Many thanks also to the helpful comments of the
anonymous referees and my colleague Mr. Parr Schoolman that significantly
helped to improve the presentation of the results. The author is also thankful
for the financial support of The British Council and FUNDAYACUCHO from
Venezuela.

REFERENCES

AMBAGASPITIYA, R.S. (1999) On the distribution of two classes of correlated aggregate claims.
Insurance: Mathematics and Economics 24:301-308

254 ANA J. MATA



EMBRECHTS, P., MCNEIL, A.J. and STRAUMANN, D. (2001) Correlations and dependency in risk
management: properties and pitfalls In Risk Management: Value at Risk and Beyond, ed. by
M. Dempters and H.K. Moffat. Cambridge University Press.

EMBRECHTS, P., MIKOSH, T. and KLÜPPELBERG, C. (1997) Modelling Extremal Events for Insur-
ance and Finance. Springer, Berlin.

MARDIA, K.V., KENT, J.T. and BIBBY, J.M. (1979) Multivariate Analysis. Academic Press, Lon-
don.

MATA, A.J. (2000) Pricing excess of loss reinsurance with reinstatemets. ASTIN Bulletin 30(2):
349-368.

PANJER, H.H. (1981) Recursive evaluation of a family of compound distributions. ASTIN Bul-
letin 12(1): 21-26.

SUNDT, B. (1999) On multivariate Panjer recursions. ASTIN Bulletin 29(1): 29-46.

ASYMPTOTIC DEPENDENCE 255



APPENDIX: ANALYTICAL PROOF OF PROPOSITIONS 1 AND 2

This Appendix gives the analytical proof of Propositions 1 and 2 in Section 3.1.

Proposition 1: Under the assumptions outlined in Section 3.1. the aggregate claim
amounts for the reinsurer defined in (7) satisfy:

a) ( ) ( )
( , )

lim g g
g
0 0

0 0
1

, ,n n n

n

1 2
=

" 3

b)
,

, , , ,...lim for all
P S M s P S M s

P S M s S M s
s s1 0 1 2

, ,

, ,

n R
n

R
n

R
n

R
n

1 1 1 2 2 2

1 1 1 2 2 2

1 2
# #

# #
= =

" 3 `` ``

` ``

j j j j

j j j

c) ( ) ( )
( , )

, ,...lim g s g
g s

s
0

0
1 1 2for

, ,n n n

n

1 1 2

1
1= =

" 3

d) ( ) ( )
( , )

, ,...lim g g s
g s

s
0

0
1 1 2for

, ,n n n

n

1 2 2

2
2= =

" 3

e) ( ) ( )
( , )

, , ,...lim forg s g s
g s s

a b s s1
1

1 2
, ,n n n

n

1 1 2 2

1 2
1 2= +

+
=

" 3

Proof.

Reminder: in what follows n represents the indexation of the retention level
that are increasing sequences (tending to infinity) as defined in the assumptions
in Section 3.1.

a) Since the aggregate claim amounts satisfy the condition (8) in assumption 6,
we have that lim

n→∞
gi,n(0) = 1 for i = 1,2. This also implies that lim

n→∞
pi,n(0) = 1

for i = 1, 2. The joint probability of being zero is given by gn (0,0) =
PN (p1,n(0) p2,n(0)), where PN(t) is the probability generating function of N.
Therefore from assumption 6 it also holds that lim

n→∞
gn(0,0) = 1. Then we

directly obtain the result in a).
b) From a) we have that the joint probability of being zero tends to one as well

as the probability of each aggregate claim amount being zero. Hence, the
result in b) follows directly since we are considering cumulative probabilities
which include the value of zero.

c) Since we have assumed that the random variables are integer-valued we can
evaluate the joint distribution of the aggregate claim amounts using the
bivariate recursion proposed by Sundt (1999) defined in formulae (2) and
(3). We will prove the statement in c) by induction and we do the basic step
for s1 = 1.
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( ) ( )
( , )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( , )
lim limg g

g

ap a b p g g

ap p a b p p g

1 0

1 0

1 0
1

1 0 0

1 0 0
1 1 0 0 0

, ,

,
, , ,

, ,
, ,

n n n
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n

n
n n n

n n
n n n

1 2

1
1 1 2

1 2
1 2

=

-
+

-
+

" "3 3
e o

,a
a

1
1

=
-
-

where the last inequality is due to the result in a). The limit above is equal
to 1, only when a 1! . For the Poisson, Negative Binomial and Binomial dis-
tributions a takes the values: , ( )a a p0 1= = - and a p p1= - -^ h, respec-
tively. Hence a 1! for the three distributions that belong to Panjer’s class.
Therefore the limit above is equal to 1. We now state the inductive hypothe-
sis: Let us assume that the result in c) holds for all the pairs ,s 01^ h such that

, , ,s X1 21 f= , then we have to prove that it is also true for 1,0X +] g (note
that X in this context does not represent a random variable, it is an index
in the induction proof). From the recursion in (2) we have 

, ( ) ( )
( )

( ) ,g X ap p
p

a X
bu p u g X u1 0

1 0 0

0

1
1 0

, ,

,
,n

n n

n
n n

u

X

1 2

2
1

1

1

+ =
-

+
+

+ -
=

+

!] b ]g l g

Using Panjer’s univariate recursion for g X 1, n1 +] g, we have 

( ) ( )
( , )

g X g
g X

1 0

1 0

, ,n n

n

1 2+

+
=

( ) ( ) ( )

( ) ( )( ) ( )
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X
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X
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+
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f
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p

p

Since ( ) ( )lim limp p0 0 1, ,n n n n1 2= =
" "3 3 , and using the inductive hypothe-

sis, for any > 0e there exists K such that for n ≥ K

< ( ) ( )
( )[ ( )]

( ) ( )
( , )

< ,ap p
p ap

g X u g
g X u

1
1 0 0

0 1 0

1 0

1 0
1

, ,

, ,

, ,n n

n n

n n

n

1 2

2 1

1 2
e e-

-

-

+ -

+ -
+

for , , ,u X1 2 1f= + . Hence for n ≥ K

< ( ) ( )
( , )

< ,g X g
g X

1
1 0

1 0
1

, ,n n

n

1 2
e e-

+

+
+

which proves c).
d) The prove of the statement in d) follows the same argument as c) but using

the recursion in formula (3) instead of (2).
e) To prove the statement in e) we will use the results in a), c) and d). We start

by proving the result for s1 = 1 and s2 = 1. Using the recursion in formula (2)
we have 
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In the limit above we have three terms, we will analyse each term separately.
Using Panjer’s univariate recursion for g2,n(1) the limit for the first term
can be calculated as follows:

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( , ) ( )
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ap a b p g

ap p g
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a b
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since from part c) we know that ( ) ( )
( , )

lim g g
g
1 0

1 0
1

, ,
n

n n

n

1 2
="3 . For the second 

term we use the result in d) and Panjer’s univariate recursion for g1,n(1),
therefore the limit for the second term is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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g
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And finally for the third term we use the result in a) together with Panjer’s
univariate algorithms for g1,n(1) and g2,n(1), hence the limit is 

( ) ( )
( ) ( ) ( ) ( ) ( )
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( )lim g g
a b p g p g
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Putting these three results together we obtain 
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> H

We have to use a bivariate induction to prove the result in e). We state the
inductive hypothesis as follows:
Assume that 

( ) ( )
( , )

lim g s g s
g s s

a b1
1

, ,n n n

n

1 1 2 2

1 2 = +
+" 3

for all (s1,s2) such that , , ,s X1 21 f= and , , ,s Y1 22 f= , together with the
results in a), c) and d). Therefore using this hypothesis we need to prove that
the result in statement e) holds in the following three cases:
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(i) ( , )X y1+ such that , , ,y Y1 2 f=
(ii) For all ( , )x Y 1+ such that , , ,x X1 2 f=
(iii) For ( , )X Y1 1+ + .

Note that X and Y should not be confused with random variables. In each
case above the argument is similar except that in (i) we use the recursion
in (2) whereas in (ii) we use the recursion in formula (3). We will prove
the result only in case (i), the other cases follow. Let us fix y such that

, , ,y Y2 3 f= . Together with the inductive hypothesis and a), c) and d) we
also assume that the statement in e) holds for all the pairs (X + 1, s2) such
that s2 = 1,…,y – 1, then we want to prove the result for (X + 1, y). Using the
recursion in (2) to evaluate ( , )g X y1n + we have 

,
lim g X g y

g X y
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To be able to use the results in a), c) and d) we must separate those terms for
which one of the entries is zero in the evaluation of gn from the terms where
both entries are greater than zero. Doing so we obtain the following result
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Now we can use the same method of multiplying and dividing each term
that contains gn by the corresponding product of the marginal distributions.
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Then for those terms where one or both entries is zero the ratio tends to
one, and for the ratios where both entries are greater than zero the ratio 
tends to ( )a b1

1
+

+
due to the inductive hypothesis. Therefore, the limit above 

can be written as follows
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From condition (8) in assumption 6 it follows that ( )lim g x 0,n i n =" 3 for
all , , ,x 1 2 3 f= and for ,i 1 2= . The same result holds for ( )p x,i n . Using
these results we have 

( ) ( ) ,lim p v g y v 0, ,n n n
v

y

2 2
1

- =
" 3 =

!

since each term tends to zero. However, when we divide the above sum by
g2,n(y) we obtain the following result 
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We observe that in the limit above each term tends to zero, however the last
term contains g2,n(0) which tends to one as n tends to infinity. Therefore,
we divide each term by p2,n(y) and we obtain 
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The last equality is due to the result in assumption 8 where we assumed 

that ( )
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C x y
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which is a constant for i = 1,2, and ( )lim g x 0,n i n =
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for all x = 1,2,…. From the discussion above we obtain directly the following
results 
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Hence from all the above, we can evaluate the limit in formula (A.1) and
we obtain the following result 
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which is the result shown in e).

Proposition 2: Suppose that two risks follow assumptions 1 and 3 of Proposition 1.
Let {M1,n} and {M2,n} be sequences of real numbers representing the reinsurance
retention levels for each portfolio. These sequences are such that the reinsurer’s
aggregate claim amounts satisfy the condition in (8) and that for each n

.P S M P S M0 0, ,
R

n
R

n n1 1 2 2= = = =a`` ``j j j j

Then, the reinsurance aggregate claim amounts defined in (7) satisfy

> >

> , >
.lim

P S M P S M

P S M S M
a b0 0

0 0
1

1

, ,

, ,

n R
n

R
n

R
n

R
n

1 1 2 2

1 1 2 2
= +

+" 3 `` ``

` ``

j j j j

j j j

Proof. Note that in this case we do not require that the individual claim amounts
are integer-valued random variables. We also do not need that the retention
levels are integer numbers. We denote by pi,n(0) the probability that an indivi-
dual claim amount for the reinsurer is zero and by gi,n(0) the probability that
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the aggregate claim amount for the reinsurer is zero for retention level Mi,n for
,i 1 2= .

If n "3 then 1n"a -. We can write the probabilities of being zero in terms
of the probability generating function as 

( ) ( ) , ,forg P S M P p i0 0 0 1 2, , ,i n i
R

i n N i n n= = = = =a`` `j j j

where PN(t) is the probability generating function of the frequency distribution.
Hence, ( ) ( ) ,forp P i0 1 2,i n N n

1= =a- , provided that the inverse of the proba-
bility generating function exists. For the Poisson, the Negative Binomial and
the Binomial distributions the inverse of the probability generating function
can be written explicitly.

As in part a) of Proposition 1 we can write the joint probability of the aggre-
gate claim amounts being zero as follows 

( , ) ( ) ( ) .g P p p P P0 0 0 0, ,n N n n N N n1 2
1 2

= = a-
` ^`bj hj l

Therefore,
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Applying L’Hospital rule twice the limit above can be calculated as follows 

( )
( )

( ( ))
lim

d
d P P

d
d P P

P
2

n
N N n

n
N N n

N n

1
2

2
1 2

1
2

1 2

n

+
a

a

a a

a

"

-

-

-

a -
`b

`d

j l

jn

R

T

S
S
S
S
S

( )
( )

( )

( )

d
d P P d

d P P

d
d P P

P1

n
N N n n

N N n

n
N N n

N n

1 2

2
1

1
2

1

-

a a a
a

a a

a

-

-

-

-

`

`

`d

`

j

j

jn

j

V

X

W
W
W
W
W

From the properties of the probability generating function we have ( )P 1 1N =

and therefore ( )P 1 1N
1 =- . Moreover, the probability generating function satisfies

( ) [ ]dt
d P E N1N = . Therefore, the limit above is given by 
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Therefore, by evaluating the limit above with the corresponding values for each
of the distributions that belong to Panjer’s class it follows that 
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THE MARKOV CHAIN MARKET

BY

RAGNAR NORBERG

ABSTRACT

We consider a financial market driven by a continuous time homogeneous
Markov chain. Conditions for absence of arbitrage and for completeness are
spelled out, non-arbitrage pricing of derivatives is discussed, and details are
worked out for some cases. Closed form expressions are obtained for interest
rate derivatives. Computations typically amount to solving a set of first order
partial differential equations. An excursion into risk minimization in the incom-
plete case illustrates the matrix techniques that are instrumental in the model.

KEYWORDS

Continuous time Markov chains, Martingale analysis, Arbitrage pricing theory,
Risk minimization, Unit linked insurance.

INTRODUCTION

A. Prospectus

The theory of diffusion processes, with its wealth of powerful theorems and
model variations, is an indispensable toolbox in modern financial mathematics.
The seminal papers of Black and Scholes and Merton were crafted with Brownian
motion, and so was the major part of the plethora of papers on arbitrage pric-
ing theory and its ramifications that followed over the past good quarter of a
century.

A main course of current research, initiated by the martingale approach to
arbitrage pricing Harrison and Kreps (1979) and Harrison and Pliska (1981),
aims at generalization and unification. Today the core of the matter is well
understood in a general semimartingale setting, see e.g. Delbaen and Schacher-
mayer (1994). Another course of research investigates special models, in partic-
ular Levy motion alternatives to the Brownian driving process, see e.g. Eberlein
and Raible (1999). Pure jump processes have found their way into finance,
ranging from plain Poisson processes introduced in Merton (1976) to fairly general
marked point processes, see e.g. Björk et al. (1997). As a pedagogical exercise,
the market driven by a binomial process has been intensively studied since it was
proposed in Cox et al. (1979).

ASTIN BULLETIN, Vol. 33, No. 2, 2003, pp. 265-287



The present paper undertakes to study a financial market driven by a con-
tinuous time homogeneous Markov chain. The idea was launched in Norberg
(1995) and reappeared in Elliott and Kopp (1998), the context being modeling
of the spot rate of interest. These rudiments will here be developed into a model
that delineates a financial market with a locally risk-free money account, risky
assets, and all conceivable derivatives. The purpose of this exercise is two-fold:
In the first place, there is an educative point in seeing how well established theory
turns out in the framework of a general Markov chain market and, in particu-
lar, how and why it differs from the familiar Brownian motion driven market.
In the second place, it is worthwhile investigating the potential of the model from
a theoretical as well as from a practical point of view. Further motivation and
discussion of the model is given in Section 5.

B. Contents of the paper

We hit the road in Section 2 by recapitulating basic definitions and results for
the continuous time Markov chain. We proceed by presenting a market fea-
turing this process as the driving mechanism and by spelling out conditions for
absence of arbitrage and for completeness. In Section 3 we carry through the
program for arbitrage pricing of derivatives in the Markov chain market and
work out the details for some special cases. Special attention is paid to interest
rate derivatives, for which closed form expressions are obtained. Section 4
addresses the Föllmer-Sondermann-Schweizer theory of risk minimization in
the incomplete case. Its particulars for the Markov chain market are worked
out in two examples, first for a unit linked life endowment, and second for
hedging strategies involving a finite number of zero coupon bonds. The final
Section 5 discusses the versatility and potential uses of the model. It also raises
the somewhat intricate issue of existence and continuity of the derivatives involved
in the differential equations for state prices, which finds its resolution in a forth-
coming paper. Some useful pieces of matrix calculus are placed in the Appendix.

C. Notation

Vectors and matrices are denoted by boldface letters, lower and upper case,
respectively. They may be equipped with top-scripts indicating dimensions, e.g.
An×m has n rows and m columns. We may write A = e ! f( )aef f F! to emphasize the
ranges of the row index e and the column index f. The transpose of A is denoted
by A�. Vectors are taken to be of column type, hence row vectors appear as
transposed (column) vectors. The identity matrix is denoted by I, the vector
with all entries equal to 1 is denoted by 1, and the vector with all entries equal
to 0 is denoted by 0. By De=1,…,n (ae), or just D(a), is meant the diagonal matrix
with the entries of a = (a1,…,an)� down the principal diagonal. The n-dimen-
sional Euclidean space is denoted by �n, and the linear subspace spanned by
the columns of An×m is denoted by �(A).

The cardinality of a set y is denoted by |y |. For a finite set it is just its num-
ber of elements.
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2. THE MARKOV CHAIN MARKET

A. The continuous time Markov chain

At the base of everything is some probability space (W, F, �). Let {Yt}t ≥ 0 be a
continuous time Markov chain with finite state space y = {1,…,n}. We take
the paths of Y to be right-continuous and Y0 deterministic. Assume that Y is
time homogeneous so that the transition probabilities

�p Y f Y et
e

tt t= = =+
f

7 A

depend only on the length of the time period. This implies that the transition
intensities

t ,lim t
p

l
t 4 0

=ef
ef

(2.1)

e ≠ f, exist and are constant. To avoid repetitious reminders of the type “e, f ∈ y”,
we reserve the indices e and f for states in y throughout. We will frequently refer
to

e ; > ,fy l 0
ef

= $ .

the set of states that are directly accessible from state e, and denote the num-
ber of such states by

en ye = .

Put

e
l l l

;

ee e ef

f f y
= - = -$

!

!

(minus the total intensity of transition out of state e). We assume that all states
intercommunicate so that pef

t > 0 for all e, f (and t > 0). This implies that ne > 0
for all e (no absorbing states). The matrix of transition probabilities,

,pPt t= ef` j

and the infinitesimal matrix,

,lL ef= _ i

are related by (2.1), which in matrix form reads L = limt40 t
1 (Pt – I), and by the

forward and backward Kolmogorov differential equations,

t t t .dt
d P P PL L= = (2.2)
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Under the side condition P0 = I, (2.2) integrates to

.exp tP Lt = ] g (2.3)

The matrix exponential is defined in the Appendix, from where we also fetch
the representation (A.3):

.e eP DF F f c,...,t e n
t t e e

e

n
r r

1
1

1

�e
= ==

-

=

e!` j (2.4)

Here the first eigenvalue is r1 = 0, and the corresponding eigenvectors are
f1= 1 and c1� = (p1,…, pn) = limt3∞ (pe1

t ,…,pen
t ), the stationary distribution of Y.

The remaining eigenvalues, r2,…,rn, have strictly negative real parts so that,
by (2.4), the transition probabilities converge exponentially to the stationary
distribution as t increases.

Introduce

tt ,I Y e1e = =7 A (2.5)

the indicator of the event that Y is in state at time t, and

t t t-; < , , ,N t Y e Y ft t0ef #= = =" , (2.6)

the number of direct transitions of Y from state e to state f ∈ ye in the time
interval (0, t]. For f ∉ ye we define Nef

t / 0. The assumed right-continuity of Y
is inherited by the indicator processes I e and the counting processes Nef. As is
seen from (2.5), (2.6), and the obvious relationships

t t t t, ,Y eI I I N N
!;

t
e e

e

e fe ef

f f e
0= = + -! ! ` j

the state process, the indicator processes, and the counting processes carry
the same information, which at any time t is represented by the sigma-algebra
FY

t = s{Yt ; 0 ≤ t ≤ t}. The corresponding filtration, denoted by FY = {FY
t }t≥0, is

taken to satisfy the usual conditions of right-continuity and completeness, and
F0 is assumed to be trivial.

The compensated counting processes Mef, e ≠ f, defined by

t t tdM dN I dtlef ef e ef= - (2.7)

and M ef
0 = 0, are zero mean, square integrable, mutually orthogonal martin-

gales with respect to (FY, �). We feel free to use standard definitions and results
from counting process theory and refer to Andersen et al. (1993) for a background.

We now turn to the subject matter of our study and, referring to introduc-
tory texts like Björk (1998) and Pliska (1997), take basic concepts and results
from arbitrage pricing theory as prerequisites.
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B. The continuous time Markov chain market

We consider a financial market driven by the Markov chain described above.
Thus, Yt represents the state of the economy at time t, FY

t represents the infor-
mation available about the economic history by time t, and FY represents the
flow of such information over time.

In the market there are m + 1 basic assets, which can be traded freely and
frictionlessly (short sales are allowed, and there are no transaction costs).
A special role is played by asset No. 0, which is a “locally risk-free” bank account
with state-dependent interest rate

t
t ,r r I rt

Y e

e

e= = !

where the state-wise interest rates re, e =1,…,n, are constants. Thus, its price
process is

,exp expS r du r I dut u
t e

u
et

e

0

0 0
= =# #!c em o

where ∫ t
0 Ie

u du is the total time spent in economy state e during the period [0,t].
The dynamics of this price process is

t t t t .dS S r dt S r I dtt
e e

e

0 0 0= = !

The remaining m assets, henceforth referred to as stocks, are risky, with price
processes of the form

u t ,exp �S I du Nbt
i ie e ief ef

fe

t

e y0
= +

! e
# !!!

J

L

K
K

N

P

O
O (2.8)

i = 1,…,m, where the � ie and b ief are constants and, for each i, at least one of the
b ief is non-null. Thus, in addition to yielding state-dependent returns of the
same form as the bank account, stock No. i makes a price jump of relative size

expg b 1ief ief= -_ i

upon any transition of the economy from state e to state f. By the general Itô’s
formula, its dynamics is given by

ttt .�dS S I dt dNgi
t
i ie e ief ef

fee y
= +

!
-

e
!!!

J

L

K
K

N

P

O
O (2.9)

(Setting Si
0 = 1 for all i is just a matter of convention; it is the relative price

changes that matter.)
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Taking the bank account as numeraire, we introduce the discounted asset
prices S i

t = Si
t /S 0

t , i = 0,…,m. The discounted price of the bank account is
S 0

t / 1, which is certainly a martingale under any measure. The discounted
stock prices are

u t ,exp � r I du NbSt
i ie e e ief ef

fe

t

e y0
= - +

! e
# !!!

J

L

K
K _

N

P

O
Oi (2.10)

with dynamics

ttt ,�d r I dt dNgS Si
t
i ie e e ief ef

fee y
= - +

!
-

e
!!!

J

L

K
K _

N

P

O
Oi (2.11)

i = 1,…,m.

C. Portfolios

A dynamic portfolio or investment strategy is an m + 1-dimensional stochastic
process

, ..., ,q qqt t t
m0= ` j

where q i
t represents the number of units of asset No i held at time t. The port-

folio q must adapted to FY and the shares of stocks, (q 1
t ,…,qm

t ), must also be
FY-predictable. For a sufficiently rigorous treatment of the concept of pre-
dictability, see Andersen et al. (1993). For our purposes it suffices to know
that any left-continuous or deterministic process is predictable, the intuition
being that the value of a predictable process at any time is determined by the
strictly past history of the driving process Y. We will comment on these assump-
tions at a later point when the prerequisites are in place.

The value of the portfolio q at time t is

t t t .V SS qq �t t
i i

i

m
q

0

= =
=

!

Henceforth we will mainly work with discounted prices and values and, in
accordance with (2.10), equip their symbols with a tilde. The discounted value
of the portfolio at time t is

t .qV S�t t
q = (2.12)

The strategy q is self-financing (SF) if dV q
t  = q�t dSt or (recall dS0

t = 0)

t t t .d d dqqV SS�t t
i i

i

m
q

1

= =
=

! (2.13)

270 RAGNAR NORBERG



D. Absence of arbitrage

Let
L̂ = (l̂ef)

be an infinitesimal matrix that is equivalent to L in the sense that l̂ef = 0 if
and only if lef = 0. By Girsanov’s theorem for counting processes (see e.g.
Andersen et al. (1993)) there exists a measure �̂, equivalent to �, under which
Y is a Markov chain with infinitesimal matrix L̂ . Consequently, the processes
Mef, e ∈ y, f ∈ ye, defined by

t t t ,d dN I dtMef ef e ef= - lu (2.14)

and Mef
0 = 0, are zero mean, mutually orthogonal martingales with respect to

(FY,�̂). Rewrite (2.11) as

ttt ,�d r I dt dg gS S Mi
t
i ie e ief ef

f

e ief ef

fee y y
= - + +

! !
- l

e e
! !!! u

J

L

K
K

N

P

O
O

R

T

S
SS

V

X

W
WW

(2.15)

i = 1,…,m. The discounted stock prices are martingales with respect to (FY,�̂)
if and only if the drift terms on the right vanish, that is,

,� r g l 0ie e ief ef

f y
- + =

! e
! u (2.16)

e = 1,…,n, i = 1,…, m. From general theory it is known that the existence of
such an equivalent martingale measure �̂ implies absence of arbitrage. The rela-
tion (2.16) can be cast in matrix form as

re1 – ae = Ge l̂e, (2.17)

e = 1,…,n, where 1 is m × 1 and

, , .� � g lG l
,...,

e ie
i m

e ief f e ef
f

y
y1 ,...,i m1

= = =
!

!= =

e

e
u u_ _ _i i i

The existence of an equivalent martingale measure is equivalent to the existence
of a solution l̂e to (2.17) with all entries strictly positive. Thus, the market is
arbitrage-free if (and we can show only if) for each e, re1 – ae is in the interior
of the convex cone of the columns of Ge.

Assume henceforth that the market is arbitrage-free so that (2.15) reduces
to

tt .d dgS S Mi
t
i ief ef

fe y
=

!
-

e
!! (2.18)
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Inserting (2.18) into (2.13), we find

tt ,d dq gV S Mt
i

t
i ief ef

i

m

fe y
q

1

=
!

-
=e
!!! (2.19)

which means that the value of an SF portfolio is a martingale with respect to
(FY,�̂) and, in particular,

Vq
t = �̂ [Vq

T | Ft ] (2.20)

for 0 ≤ t ≤ T. Here �̂ denotes expectation under �̂. (The tilde, which in the first
place was introduced to distinguish discounted values from the nominal ones,
is also attached to the equivalent martingale measure because it arises from the
discounted basic price processes.)

We remind of the standard proof of the result that the existence of an
equivalent martingale measure implies absence of arbitrage: Under (2.20) one
can not have Vq

0 = 0 and at the same time have Vq
T ≥ 0 almost surely and Vq

T > 0
with positive probability.

We can now explain the assumptions made about the components of the
portfolio qt. The adaptedness requirement is commonplace and says just that
the investment strategy must be based solely on the currently available infor-
mation. Without this assumption it is easy to construct examples of arbitrages
in the present and in any other model, and the theory would become void just
as would practical finance if investors could look into the future. The require-
ment that (q1,…,qm) be FY-predictable means that investment in stocks must
be based solely on information from the strict past. Also this assumption is
omnipresent in arbitrage pricing theory, but its motivation is less obvious.
For instance, in the Brownian world ‘predictable’ is the same as ‘adapted’ due
to the (assumed) continuity of Brownian paths. In the present model the two
concepts are perfectly distinct, and it is easy to explain why a trade in stocks
cannot be based on news reported at the very instant where the trade is made.
The intuition is that e.g. a crash in the stock market cannot be escaped by
rushing money over from stocks to bonds. Sudden jumps in stock prices, which
are allowed in the present model, must take the investor by surprise, else there
would be arbitrage. This is seen from (2.19). If the qi

t, i = 1,…,m, could be any
adapted processes, then we could choose them in such a manner that dVq

t ≥ 0
almost surely and strictly positive with positive probability. For instance, we
could take them such that

tt t tt .d DV M M M M
2
1

,

ef eft

fe

ef ef

tfey y
q

t0

2 2

0

= = +
! !!e e

#!! !!!
J

L

K
K` `

]

N

P

O
Oj j

?

Clearly, Vq
T is non-negative and attains positive values with positive probability

while Vq
0 = 0, hence q would be an arbitrage.
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E. Attainability

A T-claim is a contractual payment due at time T. More precisely, it is an FY
T -

measurable random variable H with finite expected value. The claim is attain-
able if it can be perfectly duplicated by some SF portfolio q, that is,

Vq
T = H. (2.21)

If an attainable claim should be traded in the market, then its price must at
any time be equal to the value of the duplicating portfolio in order to avoid
arbitrage. Thus, denoting the price process by pt and, recalling (2.20) and (2.21),
we have

p̂t t ,�V H Ft
q= = u 7 A (2.22)

or

r .� e Hp Ft tt

T

= - #u 9 C (2.23)

(We use the short-hand re t

T
- # for re du

t

T
- u# .)

By (2.22) and (2.19), the dynamics of the discounted price process of an
attainable claim is

dp̂t t .dq gS Mt
i

t
i ief ef

i

m

fe y 1

=
!

-
=e
!!! (2.24)

F. Completeness

Any T-claim H as defined above can be represented as

H = �̂ ,djH Mt
ef

t
ef

fe

T

y0
+

!
e

# !!7 A (2.25)

where the jef
t are FY-predictable processes (see Andersen et al. (1993)). Conversely,

any random variable of the form (2.25) is, of course, a T-claim. By virtue of (2.21)
and (2.19), attainability of H means that

t

t

0

0 .

d

dq g

H V V

V S M

T

t
i

t
i ief ef

ife

T

y

q q

q

0

0

= +

= +
!

-
e

#

# !!!
(2.26)

Comparing (2.25) and (2.26), we see that H is attainable iff there exist predic-
table processes q1

t ,…,qm
t such that
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,q g jSt
i

t
i ief

t
ef

i

m

1

=
-

=

!

for all e and f ∈ ye. This means that the ne-vector

jjt
e

t
ef

f y
=

!
e` j

is in �(Ge�).
The market is complete if every T-claim is attainable, that is, if every ne-vec-

tor is in �(Ge�). This is the case if and only if rank (Ge) = ne, which can be ful-
filled for each e only if m ≥ maxe ne, i.e. the number of risky assets is no less
than the number of sources of randomness.

3. ARBITRAGE-PRICING OF DERIVATIVES IN A COMPLETE MARKET

A. Differential equations for the arbitrage-free price

Assume that the market is arbitrage-free and complete so that the price of
any T-claim is uniquely given by (2.22) or (2.23).

Let us for the time being consider a T-claim that depends only on the state
of the economy and the price of a given stock at time T. To simplify notation,
we drop the top-script indicating this stock throughout and write just

u t .exp �S I du Nbt
e e ef ef

fe

t

e y0
= +

!
e

# !!!
J

L

K
K

N

P

O
O

Thus, the claim is of the form

.H h S I h SY
T T

e e

e
T

T= = !^ ^h h (3.1)

Examples are a European call option defined by H = (ST – K)+, a caplet defined
by H = (rT – g)+ = (rYT – g)+, and a zero coupon T-bond defined by H = 1.

For any claim of the form (3.1) the relevant state variables involved in the
conditional expectation (2.23) are (St, t, Yt). This is due to the form of the stock
price, by which

u t
ee

,exp �S S I du N NbT t
e e ef

T
ef ef

ft

T

y
= + -

!
e

# !!!
J

L

K
K `

N

P

O
Oj (3.2)

and the Markov property, by which the past and the future are conditionally
independent, given the present state Yt. It follows that the price pt is of the form

t , ,I v S tpt
e e

t
e

n

1

=
=

! ^ h (3.3)
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where the functions

ve(s, t) = �̂ r ,e H Y e S st tt
T

= =- #
9 C (3.4)

are the state-wise prices. Moreover, by (3.2) and the homogeneity of Y, we obtain
the representation

ve(s, t) = � .h s S Y eY
T t 0

T t =-
- ^ h8 B (3.5)

The discounted price (2.22) is a martingale with respect to (FY,�̂). Assume
that the functions ve(s, t) are continuously differentiable. Applying Itô to

p̂t t , ,e I v S tr e e
t

e

n

1

t
0= -

=

# ! ^ h (3.6)

we find
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(3.7)

By the martingale property, the drift term must vanish, and we arrive at the
non-stochastic partial differential equations

, , ,

, ,

�r v s t t v s t s v s t s

v s t v s tg l1 0

e e e e e

f ef e ef

f y

2
2

2
2

- + +

+ + - =
!

e
! u

] ] ]

_` ]`

g g g

i j gj
(3.8)

with side conditions

, ( ),v s T h se e=] g (3.9)

e = 1,…,n.
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In matrix form, with

R = De=1,…,n (re), A = De=1,…,n (�e)

and other symbols (hopefully) self-explaining, the differential equations and
the side conditions are

, , , , ,

, .

s t t s t s s s t s t

s T s

Rv v A v v

v h

gL 1 0
2
2

2
2

- + + + + =

=

u] ] ] ^^

] ]

g g g h h

g g

(3.11)

There are other ways of obtaining the differential equations. One is to derive
them from the integral equations obtained by conditioning on whether or not
the process Y leaves its current state in the time interval (t,T ] and, in case it
does, on the time and the direction of the transition. This approach is taken
in Norberg (2002) and is a clue in the investigation of the assumed continu-
ous differentiability of the functions ve.

Before proceeding we render a comment on the fact that the price of a
derivative depends on the drift parameters �e of the stock prices as is seen
from (3.8). This is all different from the Black-Scholes-Merton model in which
a striking fact is that the drift parameter does not appear in the derivative
prices. There is no contradiction here, however, as both facts reflect the para-
mount principle that the equivalent martingale measure arises from the path
properties of the price processes of the basic assets and depends on the orig-
inal measure only through its support. The drift term is a path property in the
jump process world but not in the Brownian world. In the Markov chain mar-
ket the pattern of direct transitions as given by the ye is a path property, but
apart from that the intensities F do not affect the derivative prices.

B. Identifying the strategy

Once we have determined the solution ve(s, t), e = 1,…,n, the price process is
known and given by (3.3).

The duplicating SF strategy can be obtained as follows. Setting the drift
term to 0 in (3.7), we find the dynamics of the discounted price;

dp̂t t, , .e v S t v S t dg M1r f
t

ef e
t
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ef

y

t
0= + -

!

-
- -

e

# !! _` ^` i j hj (3.12)

Identifying the coefficients in (3.12) with those in (2.24), we obtain, for each
time t and state e, the equations

t t- , , ,S v S t v S tq g g1i

i

m
i ief f

t
ef e

t
1

= + -
=

- -! _` ^i j h (3.13)
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f ∈ ye. The solution (q i,e
t )i=1,…,m certainly exists since rank(Ge) ≤ m, and it is

unique if rank(Ge) = m. It is a function of t and St– and is thus predictable.
Finally, q0 is determined upon combining (2.12), (2.22), and (3.6):

r
t t t, .e I v S t Sq qt
e e

t
i

i

m
i

e

n
0

11

t

0= --

==

# !! ^e h o

This function is not predictable.

C. The Asian option

As an example of a path-dependent claim, let us consider an Asian option, which

is a T-claim of the form H S d KtT t
1

0
= -

+T#a k , where K ≥ 0. The price process is

r
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The discounted price process is
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t
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t
01

t
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=

## ! c m

We are lead to partial differential equations in three variables.

D. Interest rate derivatives

A particularly simple, but important, class of claims are those of the form H =
hYT. Interest rate derivatives of the form H = h(rT) are included since rt = rYt.
For such claims the only relevant state variables are t and Yt, so that the func-
tion in (3.4) depends only on t and e. The differential equations (3.8) and the
side condition (3.9) reduce to

t t t t ,dt
d v r v v v le e e f e

f

ef

y
= - -

!
e

! u` j (3.14)

.v hT
e e= (3.15)
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In matrix form:

,

.
dt
d v v

v h

LRt t

T

= -

=

u_ i

Similar to (2.3) we arrive at the explicit solution

.exp T tv R hLt = - -u^ ]h g" , (3.16)

It depends on t and T only through T – t.
In particular, the zero coupon bond with maturity T corresponds to h = 1.

We will henceforth refer to it as the T-bond in short and denote its price pro-
cess by p(t,T) and its state-wise price functions by p(t,T) = (pe(t,T))e=1,…,n;

, .expt T T tp RL 1= - -u] ^ ]g h g" , (3.17)

For a call option on a U-bond, exercised at time T(<U) with price K, h has
entries he = (pe(T,U) – K)+.

In (3.16)-(3.17) it may be useful to employ the representation (A.3),

.exp T t eR DL F F,...,
( )

e n
T t

1
1e

- - = =
- -tu u uu

^ ] `h g j" , (3.18)

4. RISK MINIMIZATION IN INCOMPLETE MARKETS

A. Incompleteness

The notion of incompleteness pertains to situations where there exist contingent
claims that cannot be duplicated by an SF portfolio and, consequently, do not
receive unique prices from the no arbitrage postulate alone. In Paragraph 2F
we alluded to incompleteness arising from a scarcity of traded assets, that is,
the discounted basic price processes are incapable of spanning the space of all
martingales with respect to (FY,�̂) and, in particular, reproducing the value
(2.25) of every financial derivative.

B. Risk minimization

Throughout this section we will mainly be working with discounted prices
and values without any other mention than the tilde notation. The reason is
that the theory of risk minimization rests on certain martingale representation
results that apply to discounted prices under a martingale measure. We will be
content to give just a sketchy review of some main concepts and results from
the seminal paper of Föllmer and Sondermann (1986) on risk minimization.
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Let H be a T-claim that is not attainable. This means that an admissible
portfolio q satisfying

V HT
q =

cannot be SF. The cost by time t of an admissible portfolio q is denoted by
Cq

t and is defined as that part of the portfolio value that has not been gained
from trading:

t t .dqC V S�
tq q

t t
0

= - #

The risk at time t is defined as the mean squared outstanding cost,

.�R C C FT t t
q q q 2

= -t
u ` j: D (4.1)

By definition, the risk of an admissible portfolio q is

t ,� dqR H V S F�
t

T
t

q q
t t

2

= - -t #u c m= G

which is a measure of how well the current value of the portfolio plus future
trading gains approximates the claim. The theory of risk minimization takes
this entity as its objective function and proves the existence of an optimal
admissible portfolio that minimizes the risk (4.1) for all t ∈ [0,T ].

The proof is constructive and provides a recipe for determining the optimal
portfolio. One commences from the intrinsic value of H at time t defined as

t .�V H FH
t= u 7 A (4.2)

This is the martingale that at any time gives the optimal forecast of the claim
with respect to mean squared prediction error under the chosen martingale
measure. By the Galchouk-Kunita-Watanabe representation, it decomposes
uniquely as

t t ,� d LqV H SH H
t t

Ht

0

�= + +#u 7 A (4.3)

where LH is a martingale with respect to (F,�̂) which is orthogonal to the
martingale S. The portfolio qH defined by this decomposition minimizes the
risk process among all admissible strategies. The minimum risk is

.� d LR FH H
t

T
tt

=t #u ; E (4.4)
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C. Unit-linked insurance

As the name suggests, a life insurance product is said to be unit-linked if the
benefit is a certain share of an asset (or portfolio of assets). If the contract
stipulates a prefixed minimum value of the benefit, then one speaks of unit-
linked insurance with guarantee. A risk minimization approach to pricing and
hedging of unit-linked insurance claims was first taken by Møller (1998), who
worked with the Black-Scholes-Merton financial market. We will here sketch
how the analysis goes in our Markov chain market, which is a particularly
suitable partner for the life history process since both are intensity-driven.

Let Tx be the remaining life time of an x years old who purchases an
insurance at time 0, say. The conditional probability of survival to age x + u,
given survival to age x + t (0 ≤ t < u), is

x x> > ,� T u T t e dsmx st

u

= - +#
7 A (4.5)

where my is the mortality intensity at age y. Introduce the indicator of survi-
val to age x + t, It = 1[Tx > t], and the indicator of death before time t, Nt =
1[Tx ≤ t] = 1 – It. The latter is a (very simple) counting process with intensity
It mx+t, and the associated (F,�) martingale M is given by

.dM dN I dtmt t t x t= - + (4.6)

Assume that the life time Tx is independent of the economy Y. We will be
working with the martingale measure �̂ obtained by replacing the intensity
matrix L of Y with the martingalizing L̂ and leaving the rest of the model
unaltered.

Consider a unit-linked pure endowment benefit payable at a fixed time T,
contingent on survival of the insured, with sum insured equal to the price
ST of the (generic) stock, but guaranteed no less than a fixed amount g. This
benefit is a contingent T-claim,

.H S g IT T0= ^ h

The single premium payable as a lump sum at time 0 is to be determined.
Let us assume that the financial market is complete so that every purely
financial derivative has a unique price process. Then the intrinsic value of
H at time t is

VH
t = p̂t It

m ,e t
- T#

where p̂t is the discounted price process of the derivative ST 0 g, and we have
used the somewhat sloppy abbreviation mdumx u t

T

t

T
=+ ## .

Using Itô together with (4.5) and (4.6) and the fact that Mt and p̂t almost
surely have no common jumps, we find
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dVH
t = dp̂t It–

me t
-

T# + p̂t –It–
me t

-
T# mx+tdt + (0 – p̂t –

me t
-

T# )dNt

= dp̂t It
me t

-
T# – p̂t

me t
-

T# dMt.

It is seen that the optimal trading strategy is that of the price process of the
sum insured multiplied with the conditional probability that the sum will be
paid out, and that

dLH
t = me t- -

T# p̂t dMt.

Using d〈M〉t = It mx+t dt (see Andersen et al. (1993)), the minimum risk (4.4) now
assumes the form

m
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Working along the lines of the proof of (3.8), this time starting from the mar-
tingale

m

m

t

t t

t t

t , ,

� pM e I d

e e I d I e I R S t

m t

p m t

FR
x

T

t

r
x

t

t
r e e

t
e

t

t

2 2

0

2 2 2

0

2

T

T t

t

t

t

0 0

=

= +

-
+

- -
+

-

#

#

#

# # # !

u

^ h

; E

we obtain the differential equations
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__`
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i i j
(4.8)

These are to be solved in parallel with the differential equations (3.8) and are
subject to the conditions

( , ) .R s t 0e = (4.9)

D. Trading with bonds: How much can be hedged?

It is well known that in a model with only one source of randomness, like the
Black-Scholes-Merton model, the price process of one zero coupon bond will
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determine the value process of any other zero coupon bond that matures at
an earlier date. In the present model this is not the case, and the degree of
incompleteness of a given bond market is therefore an issue.

Suppose an agent faces a contingent T-claim and is allowed to invest only
in the bank account and a finite number m of zero coupon bonds with matu-
rities Ti , i = 1, …, m, all post time T. The scenario could be that regulatory
constraints are imposed on the investment strategy of an insurance company.
The question is, to what extent can the claim be hedged by self-financed trading
in these available assets?

An allowed SF portfolio q has a discounted value process Vq
t of the form

t i it t, , ,d t T t T d d Qq qV p p M Mi

i

m
f e

fe

ef
t
e

t
e

t
ey

q

1

�= - =
!= e

! !! !^ ^_ h hi

where q is predictable, Me
t = (Mef

t )f ∈ye is the ne-dimensional vector comprising
the non-null entries in the e-th row of Mt = (Mef

t ), and

Q Y Qt
e e

t= ,

where

,...,e n1=
, , , ..., , ,t T t T t TQ p p pt

e
i i m= =,...,i m1=

^_ ^ ^_hi h hi (4.10)

and Ye is the ne × n matrix which maps Qt to f y!( ( , ) ( , ))t T t Tp p ,...,f
i

e
i

i m1- =
e . If e.g.

yn = {1,…,p}, then Yn = (Ip×p, 0 p× (n–p–1), –1p×1).
The sub-market consisting of the bank account and the m zero coupon

bonds is complete in respect of T-claims iff the discounted bond prices span
the space of all martingales with respect to (FY, �̂) over the time interval [0,T].
This is the case iff, for each e, rank(Qe

t ) = ne. Now, since Ye obviously has full
rank ne, the rank of Qe

t is determined by that of Qt in (4.10). We will argue
that, typically, Qt has full rank. Thus, suppose c = (c1,…,cm)� is such that

.Q c 0t
n 1= #

Recalling (3.17), this is the same as

,expc TRL 1 0i i
i

m

1

- =
=

! u^ h" ,

or, by (3.18) and since F̂ has full rank,

.c eD F 1 0, ...,e n i
i

m
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1
1

1e
i ==

=

-t! uu
e o (4.11)
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Since F̂–1 has full rank, the entries of the vector F̂–11 cannot be all null. Typi-
cally all entries are non-null, and we assume this is the case. Then (4.11) is
equivalent to

i , ,..., .c e e n0 1i
i

m
T

1

e
= =

=

t! u (4.12)

Using the fact that the generalized Vandermonde matrix has full rank (see
Gantmacher (1959)), we know that (4.12) has a non-null solution c if and
only if the number of distinct eigenvalues r̂e is less than m. The role of the
Vandermonde matrix in finance is the topic of a parallel paper by the author,
Norberg (1999).

In the case where rank(Qe
t ) < ne for some e we would like to determine the

Galchouk-Kunita-Watanabe decomposition for a given FY
T -claim. The intrin-

sic value process (4.2) has dynamics of the form
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where je
t = (jef

t )f ∈ye is predictable. We seek its appropriate decomposition (4.3)
into

t t

t

t

,

, ,

,

d d t T d

t T t T d d

d dQ

q h

q h

q h

V p M

p p M M

M M

H i

i
i t

ef

fe
t
ef

i f
i

e
i

ife
t
ef

t
ef

fe
t
ef

e

e
t
e

t
e e

e

e

y

y y
� �

= +

= - +

= +

!

! !

t t

e

e e

! !!

!!! !!

! !

^

^ ^_

h

h hi

such that the two martingales on the right hand side are orthogonal, that is,
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where L̂e = D(l̂e). This means that, for each e, the vector je
t in (4.13) is to be

decomposed into its 〈 , 〉L̂e projections onto �(Qe
t ) and its orthocomplement.

From (A.4) and (A.5) we obtain
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THE MARKOV CHAIN MARKET 283



Furthermore,

t t ,I Ph je e
t
e= -_ i (4.15)

and the minimum risk (4.4) is
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(4.16)

The computation goes as follows: The coefficients jef involved in the intrinsic
value process (4.13) and the state-wise prices pe(t,Ti ) of the Ti -bonds are
obtained by simultaneously solving (3.8) and (3.14), starting from (3.11) and
(3.15), respectively, and at each step computing the optimal trading strategy q
by (4.14) and the h from (4.15). The risk may be computed in parallel by
solving differential equations for suitably defined state-wise risk functions.
The relevant state variables depend on the nature of the T-claim as illustrated
in the previous paragraph.

5. DISCUSSION OF THE MODEL

A. Versatility of the Markov chain

By suitable specification of y, L, and the asset parameters re, �ie, and bief, we
can make the Markov chain market reflect virtually any conceivable feature a
real world market may have. We can construct a non-negative mean reverting
interest rate. We can design stock markets with recessions and booms, bullish
and bearish trends, and crashes and frenzies and other extreme events (not in
the mathematical sense of the word, though, since the intensities and the jump
sizes are deterministic). We can create forgetful markets and markets with
long memory, markets with all sorts of dependencies between assets — hier-
archical and others. In the huge class of Markov chains we can also find an
approximation to virtually any other theoretical model since the Markov chain
models are dense in the model space, roughly speaking. In particular, one can
construct a sequence of Markov chain models such that the compensated mul-
tivariate counting process converges weakly to a given multivariate Brownian
motion. An obvious route from Markov chains to Brownian motion goes via
Poisson processes, which we will now elaborate a bit upon.

B. Poisson markets

A Poisson process is totally memoryless whereas a Markov chain recalls which
state it is in at any time. Therefore, a Poisson process can be constructed by
suitable specification of the Markov chain Y. There are many ways of doing
it, but a minimalistic one is to let Y have two states y = {1,2} and intensities
l12 = l21 = l. Then the process N defined by Nt = N12

t + N21
t (the total number
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of transitions in (0, t]) is Poisson with intensity l since the transitions counted
by N occur with constant intensity l.

Merton (1976) introduced a simple Poisson market with

t

t

,S e

S e ,�

rt

t Nb

0

1 t

=

= +

where r, �, and b are constants, and N is a Poisson process with constant
intensity l. This model is accommodated in the Markov chain market by let-
ting Y be a two-state Markov chain as prescribed above and taking r1 = r2 = r,
�1 = �2 = �, and b12 = b21 = b. The no arbitrage condition (2.17) reduces to
l̂ > 0, where l̂ = (r – �) /g and g = eb – 1. When this condition is fulfilled, l̂ is
the intensity of N under the equivalent martingale measure.

The price function (3.5) now reduces to an expected value in the Poisson
distribution with parameter l̂ (T– t) :
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A more general Poisson market would have stock prices of the form

tt ,exp �S t Nbi i ij j
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= +
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O
O

i = 1, …, m, where the Nj are independent Poisson processes. The Poisson pro-
cesses can be constructed by the recipe above from independent Markov chains
Y j, j = 1, …, n, which constitute a Markov chain, Y = (Y 1, …,Yn).

C. On differentiability and numerical methods

The assumption that the functions ve(s, t) are continuously differentiable is
not an innocent one and, in fact, it typically does not hold true. An example
is provided by the Poisson market in the previous paragraph. From the
explicit formula (5.1) it is seen that the price function inherits the smoothness
properties of the function h, which typically is not differentiable everywhere
and may even have discontinuities. For instance, for h(s) = (s –K)+ (European
call) the function v is continuous in both arguments, but continuous differen-
tiability fails to hold on the curves {(s, t); s e�(T– t) + nb = K}, n = 0,1,2,… This
warning prompts a careful exploration and mapping of the Markov chain terrain.
That task is a rather formidable one and is not undertaken here. Referring to
Norberg (2002), let it suffice to report the following: From a recursive system
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of backward integral equations it is possible to locate the positions of all points
(s, t) where the functions ve are non-smooth. Equipped with this knowledge
one can arrange a numerical procedure with controlled global error, which
amounts to solving the differential equations where they are valid and gluing
the piece-wise solutions together at the exceptional points where they are not.
For interest rate derivatives, which involve only ordinary first order differential
equations, these problems are less severe and standard methods for numerical
computation will do.
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A. Appendix: Some useful matrix results

A diagonalizable square matrix An×n can be represented as

,A D r r cF F,...,e n
e e e e

e

n

1
1

1

�= = z=
-

=

!_ i (A.2)

where the ze are the columns of Fn×n and the ce� are the rows of F–1. The re

are the eigenvalues of A, and ze and ce� are the corresponding eigenvectors,
right and left, respectively. Eigenvectors (right or left) corresponding to eigen-
values that are distinguishable and non-null are mutually orthogonal. These
results can be looked up in e.g. Karlin and Taylor (1975).

The exponential function of An×n is the n × n matrix defined by

( ) ! ,exp p e eA A D cF F1
,...,

p
e n

e e

e

n

p

r r
1

1

10

�e e
= = = z

3

=
-

==

!! _ i (A.3)

where the last two expressions follow from (A.2). This matrix has full rank.
If Ln×n is positive definite symmetric, then 〈j1, j2〉L = j�1Lj2 defines an inner

product on �n. The corresponding norm is given by ||j||L = 〈j, j〉1/2
L . If Qn×m

has full rank m (≤ n), then the 〈 ·, · 〉L-projection of j onto �(Q) is

jQ = PQj, (A.4)

where the projection matrix (or projector) PQ is

PQ = Q(Q�LQ)–1Q�L. (A.5)

The projection of j onto the orthogonal complement �(Q)⊥ is

jQ⊥ = j – jQ = (I – PQ)j.

RAGNAR NORBERG

London School of Economics and Political Science
Department of Statistics
Houghton Street, London WC2A 2AE
United Kingdom
E-mail: R.Norberg@lse.ac.uk

THE MARKOV CHAIN MARKET 287





PENSION FUNDING AND THE ACTUARIAL ASSUMPTION
CONCERNING INVESTMENT RETURNS

BY

M. IQBAL OWADALLY

ABSTRACT

An assumption concerning the long-term rate of return on assets is made by
actuaries when they value defined-benefit pension plans. There is a distinction
between this assumption and the discount rate used to value pension liabilities,
as the value placed on liabilities does not depend on asset allocation in the
pension fund. The more conservative the investment return assumption is, the
larger planned initial contributions are, and the faster benefits are funded.
A conservative investment return assumption, however, also leads to long-term
surpluses in the plan, as is shown for two practical actuarial funding methods.
Long-term deficits result from an optimistic assumption. Neither outcome is
desirable as, in the long term, pension plan assets should be accumulated to
meet the pension liabilities valued at a suitable discount rate. A third method
is devised that avoids such persistent surpluses and deficits regardless of conser-
vatism or optimism in the assumed investment return.

KEYWORDS

Actuarial valuation, funding method, intervaluation gains and losses.

1. INTRODUCTION

Actuaries periodically value defined benefit pension plans to recommend suit-
able contribution rates. A number of valuation assumptions are made for this
purpose concerning various uncertain factors affecting the value of pension
obligations and the funding for these obligations. This set of valuation assump-
tions is usually called the valuation basis. Different bases may be required for
different purposes. For example, in certain jurisdictions, technical solvency bases
may be specified by regulation. There may also be a different set of projection
assumptions, usually scenario-based or stochastic, to investigate pension benefit
amendments, asset-liability management or other issues.

Actuarial valuations for funding purposes, that is, with the objective of rec-
ommending a contribution rate are considered in this paper. A deterministic
valuation basis is typically employed. Factors of a demographic nature about
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which assumptions are made include the mortality of plan participants at
various ages, as well as their disability and withdrawal rates from the plan.
Assumptions about economic factors such as price and wage inflation are also
required when pensions are a function of final or career-average salary and
when they are indexed with price inflation. An assumption about investment
returns on the pension plan assets is also made.

If the pension liability exceeds the plan assets, then an unfunded liability
(or deficit) exists. The unfunded liability varies over time as actual experience
generally does not unfold exactly according to actuarial valuation assumptions.
Suitable methods of pension funding generate a schedule of contributions that
satisfies two objectives. First, unfunded liabilities must be paid off and there
must be enough funds to pay benefits as and when they are due. Second, the
contributions that are required from the sponsor and members of the plan must
be stable over time.

In this paper, we investigate the effect on pension funding of deviation of
actual experience from the actuarial investment return assumption. The rele-
vance of this assumption is discussed in section 2. A simple model is described
in section 3. It is used to investigate pension funding under two common fund-
ing methods, in sections 4 and 5, and under a variation described in section 6
which has the useful property of yielding full funding independently of the invest-
ment return assumption. Finally, a numerical example is given in section 7.

A list of important symbols is given here for ease of reference:

AL actuarial liability 
B benefit paid every year 
Ct pension contribution paid at start of year (t, t + 1) 
Ft market value of pension plan assets at time t
i actual rate of return on plan assets 
iA actuarial assumption for rate of return on plan assets 
iL actuarial assumption for rate to discount pension liabilities 
K parameter in spreading of gains and losses (equation (20)) 
K1, K2 parameters in modified spreading of gains and losses (equation (36)) 
Lt actuarial intervaluation loss in year (t – 1, t) 
m amortization period for gains and losses in section 4 (equation (13)) 
n amortization period for initial unfunded liability (equation (10)) 
NC normal cost or normal contribution rate 
Pt payment for initial unfunded liability at time t (equation (10)) 
St supplementary contribution paid at the start of year (t, t + 1) 
u, uA, uL 1 + i, 1 + iA, 1 + iL respectively 
Ut unamortized part of initial unfunded liability at time t (equation (11))
ULt unfunded liability = AL – Ft

v, vA, vL (1 + i) –1, (1 + iA) –1, (1 + iL) –1 respectively
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2. INVESTMENT RETURN ASSUMPTION

The actuarial investment return assumption, henceforth denoted by iA, is an
assumption concerning the long-term rate of return on pension plan assets.
Funding for pension benefits involves the substitution of contribution income
(from plan participants and sponsor) by investment income from accumulated
assets. It is well-known that the choice of iA (and indeed of other valuation
assumptions) affects the incidence of contribution payments and pace of fund-
ing: see for example Berin (1989, p. 93) and Trowbridge and Farr (1976, p. 27).
The more optimistic the investment return assumption is, the larger the invest-
ment return is assumed to be in any given year, and the smaller the contribu-
tion that is initially required. If insufficient assets are eventually accumulated
compared to the pension liability (that is, if a deficit emerges), then higher
contributions than otherwise necessary will eventually be required. Conversely,
the more conservative iA is, the larger the contribution that is initially required
and, if surpluses emerge, smaller contributions than otherwise necessary,
will eventually be required. Thus, the schedule of contribution payments is
accelerated the more iA is conservative, and it is slowed down the more iA is
optimistic. The actuarial choice of iA is therefore a means of controlling the
pace of funding in the pension plan (Daykin, 1976; Trowbridge and Farr, 1976,
p. 27).

Another key actuarial valuation assumption is the interest rate assumption
(iL) used to discount pension liabilities. As pension liabilities are not generally
traded, they must be priced by comparison with similar asset cash flows. In the-
ory, pension liabilities should be valued using market discount rates, suitably
risk-adjusted, or at the rates implied in asset portfolios that are dedicated
or matched by cash flow to these liabilities. In practice, more approximate
methods are used. Pension liabilities have a long duration and are usually dis-
counted at a single term-independent discount rate which is typically based
on corporate bond yields to reflect the risk of default from the sponsor.

In classical actuarial valuation methodology (for example, Trowbridge and
Farr, 1976), iA and iL are identical. More recent actuarial practice distinguishes
between the two assumptions: see for example Actuarial Standard of Practice
No. 27 of the Actuarial Standards Board (1996) in the United States. The U.S.
pension accounting standard FAS87 also distinguishes between the liability
discount rate and the assumption for the “expected long-term rate of return
on plan assets”. Thornton and Wilson (1992) refer to a “dual-interest” valua-
tion method, used in the United Kingdom, whereby iA is a “best-estimate
assumption” of investment return on the actual asset portfolio and iL is a “pru-
dent estimate” of investment return based on a hypothetical asset portfolio
that matches pension liabilities.

The distinction between the pension liability discount rate assumption and
the investment return assumption is often blurred in practice because it is assumed
that they are numerically equal. Actuarial Standard of Practice No. 27 of the
U.S. Actuarial Standards Board (1996) states that “generally, the appropriate
discount rate is the same as the investment return assumption”. This presumes
that the pension fund is invested in assets that closely match or hedge or
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immunize the pension liability so that approximately equal discount rates apply
to both asset and liability cash flows. In practice, asset allocation may involve
a mismatch between assets and liabilities. For example, asset managers may have
a rate-of-return objective involving a benchmark portfolio or index set with-
out reference to the liabilities (McGill et al., 1996, p. 659). It is also generally
difficult to hedge pension liabilities perfectly with normal market instruments,
because of the risk of default from the plan sponsor and because final-salary
pensions are related to economic wage inflation.

In this paper, the assumed rates on assets and liabilities (iA and iL respectively)
are taken to be conceptually distinct (although they could be numerically equal).
The aim of this paper is to investigate the effect on pension funding of actual
investment returns being different from the assumed investment return on assets.

3. MODEL

A simplified model of a defined benefit pension plan is used here. For details
of the model, refer to Dufresne (1988, 1989) and Owadally and Haberman
(1999). A stationary pension plan population is assumed, with fixed mortality
and withdrawal rates at different ages. The only benefit that is provided in the
model plan is a final-salary pension paid at normal retirement age. There is no
inflation on salaries and it is also postulated that actuarial valuation assump-
tions remain unchanged over time. This leads to a significant simplification in
that the payroll, the pension benefit B paid out every year, as well as the com-
bination of actuarial liability AL and normal cost NC generated by a given
actuarial cost method, are constant. Trowbridge (1952) shows that an equation
of equilibrium holds:

,AL i AL NC B1 L= + + -^ ]h g (1)

where iL is the interest rate used to discount pension liability cash flows. (Alter-
natively, one may assume that benefits in payment are indexed with wage infla-
tion so that, when measured net of wage inflation, the payroll as well as B, AL
and NC are all constant. All quantities must then be considered net of wage
inflation).

Assuming that contributions Ct and benefits B are paid at the start of year
(t, t + 1), the value of the pension fund Ft at time t follows a simple recurrence
relation:

t t ,F i F C B1 t1 = + + -+ ] ^g h (2)

where i is the actual rate of return earned on the pension plan assets. The
unfunded liability is defined as the excess of actuarial liability over assets:

t .UL AL F= -t (3)

It is assumed that all actuarial valuation assumptions, other than iA, are borne
out by experience. In other words, demographic and economic experience
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unfold in accordance with actuarial valuation assumptions, except that the
actual investment rate of return i may differ from the assumed investment rate
of return iA.

An intervaluation loss Lt during year (t, t + 1) is the change in unfunded
liability as a result of actual experience deviating from actuarial valuation
assumptions (Dufresne, 1989). A gain is defined as a negative loss. More specif-
ically, an asset loss is the unexpected increase in unfunded liability that is attrib-
utable to the actual investment return being less than the investment return
assumption. The contribution that is paid at the start of year (t, t + 1) is equal
to the normal cost NC plus a supplementary contribution St which is paid to
amortize past intervaluation losses and any initial unfunded liability:

.C NC St t= + (4)

Letting vL = (1 + iL) –1, it follows from equations (1)-(4) that 

.UL AL i UL S v AL1t t t L1 = + + - -+ ] ^g h (5)

Actual experience does not deviate from actuarial assumptions except possibly
in investment returns. Therefore, only asset gains or losses occur. An expression
for the asset loss is obtained by Dufresne (1989) as follows. Had a rate of return
of iA been earned on the plan assets (instead of the actual rate of return i ), the
unfunded liability at the end of year (t, t + 1) would have been t 1+ULA = AL +
(1+ iA)(ULt – St – vLAL), by comparison with equation (5). Therefore the inter-
valuation loss in year (t, t + 1) is

(6)

.

L UL UL

UL AL i UL S v AL

i i UL S v AL

1

t t t
A

t A t t L

A t t L

1 1 1

1

= -

= - - + - -

= - - -

+ + +

+ ^ ^

^ ^

h h

h h

(7)

(8)

Equation (8) shows that the asset intervaluation loss Lt+1 in year (t, t +1) arises
because the actual return on assets in that year (i) is different from the assumed
return (iA). Equation (7) may be rewritten as 

A ,UL u UL L u S v v ALt A t t A t L1 1- = - - -+ + ^_ h i (9)

where uA = 1+ iA and vA = (1+ iA) –1.

The supplementary contribution St in equation (4) pays off over time past
intervaluation losses as well as any initial unfunded liability at time 0. The ini-
tial unfunded liability may arise because of past service liabilities, or because
of a change in the valuation basis or an amendment to benefit rules.

Assume henceforth that Lt = 0 for t ≤ 0, ULt = 0 for t < 0, and that the ini-
tial unfunded liability UL0 is amortized over a finite period of n years at rate
iA by means of payments
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In equation (10), )A A( ) / (v va 1 1en
n= - - denotes the present value of an annuity-

certain of term n payable in advance and calculated at rate iA. The unamortized
part of the initial unfunded liability at time t is 
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0

e en t n0 # #
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--
* (11)

Observe that 

A t t A .u U U u Pt1- =+ (12)

4. AMORTIZING GAINS AND LOSSES

Dufresne (1989) describes a funding method whereby the supplementary con-
tribution St, in equation (4), is calculated to amortize past intervaluation gains
and losses. His analysis may be extended by allowing for a distinction between
the liability valuation rate (iL) and the investment return assumption (iA), as
well as by explicitly amortizing the initial unfunded liability:

A .S
L

v v AL Pa e
t

m

t j

j

m

L t
0

1

= + - +
-

=

-

! ^ h (13)

In equation (13), )A A( ) / (v va 1 1em
m= - - is the present value of an annuity-

certain over m years payable in advance and calculated at assumed rate iA. The
supplementary contribution consists of level amortization payments for inter-
valuation losses over the past m years, an adjustment for the difference between
assumed rates on assets and liabilities, as well as an amortization payment for
the initial unfunded liability.

Replacing St from equation (13) into equation (9) and using equation (12)
yields 

t A t .UL U u UL U L u
L
a e

t t t A
m

t j

j

m

1 1 1
0

1

- - - = -+ + +
-

=

-

!^ ^h h (14)

The unfunded liability at the end of the year is therefore the accumulation of
the unfunded liability at the start of the year plus the loss that emerges during
the year less the accumulated value of payments made in respect of past losses.

It is easily verified that the solution of equation (14) is 

t .UL U La
a

e

e
t

m

m j
t j

j

m

0

1

- =
-

-
=

-

! (15)
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For details of this solution, see Dufresne (1989). Note also equation (12) for
the initial unfunded liability and recall that the annuities are valued at rate iA.

When the funding method in equation (13) is used, a unit loss that emerged
j years ago is completely paid off if j ≥ m, but further payments of / a1 em for
the next m – j years are outstanding if 0 ≤ j ≤ m – 1. The present value of these
payments is /a ae em j m- . Equation (15) shows that the unfunded liability is the
present value of the payments that remain to be made in respect of losses that
are not yet paid off, together with the unamortized part of the initial unfunded
liability.

As in Dufresne (1989), replace St from equation (13) and ULt from equa-
tion (15) into equation (8), and use equation (12), to obtain:

A A/ .L i i L v AL Ua a1e et t j
j

m

m j m t1
0

1

1= - - - -+ -
=

-

- +!^ ` ^h j h

R

T

S
SS

V

X

W
WW

(16)

If the actual rate of return on plan assets in a given year is the same as the
assumed rate of return (that is, if i = iA), no intervaluation loss emerges in that
year (Lt = 0 ∀ t from equation (16)) and the unfunded liability consists only of
the unamortized part of the initial unfunded liability (ULt = Ut for t ≥ 0 from
equation (15)).

Dufresne (1989) obtains a sufficient condition for the convergence of {Lt},
{ULt} and {St} as t → ∞. The following result is due to Dufresne (1989).

RESULT 1. Provided that / < ,i i a a1 1e eA m j mj
m
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- --=
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(19)

The only differences between (17)-(19) and the results of Dufresne (1989) are
that the annuities are valued at rate iA here and there is an explicit term for the
difference between iA and iL in equation (19). Equations (17)-(19) follow from
equations (16), (15) and (13). (Recall that Ut = 0 for t ≥ n from equation (11)
since the initial unfunded liability is amortized over a finite period n.)

COROLLARY 1. Assume that / < .i i a a1 1e eA m j mj

m

0

1
- --=

-! ` j

If iA = i, then limULt = 0. If iA > i, then limULt > 0. If iA < i, then limULt < 0.

Corollary 1 confirms the observations made in section 2: if the actuarial
investment return assumption is optimistic (that is, iA > i), then a persistent
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deficit occurs (limULt > 0); on the other hand, if the investment return assump-
tion is conservative (that is, iA < i), then a persistent surplus occurs (limULt < 0).
Note also that, if iA ≠ i, limULt depends on the period m over which gains
and losses are amortized.

5. SPREADING GAINS AND LOSSES

Dufresne (1988) discusses another funding method that is used to determine
contributions. This method is widely used in the United Kingdom and is also
implicit in actuarial cost methods such as the Aggregate and Frozen Initial
Liability methods (Trowbridge and Farr, 1976, p. 85). The equations in
Dufresne (1988) may also be extended to allow for the distinction between the
rate at which liabilities are discounted and the investment return assumption,
as well as for the separate treatment of the initial unfunded liability.

The supplementary contribution paid in year (t, t + 1) is 

A ,S K K u L v v AL P1t
j

A
j

j
t j L t

0

= - + - +
3

=
-!] ^g h (20)

where 0 ≤ K < vA. In this alternative method, a unit loss is paid off by means
of a sequence of exponentially declining payments, {(1– K)KjuA

j, j = 0,1,…},
the unit loss being paid off in perpetuity since j 0= K K u v1 1j

A
j

A
j$- =

3! ] g . The
larger the parameter K, the slower the loss is paid off. The loss is never com-
pletely defrayed, except in the limit as t → ∞, but Trowbridge and Farr (1976)
point out that this is not a weakness as intervaluation losses occur randomly
in practice and are never completely removed. This funding method is com-
monly referred to as “spreading” gains and losses, by contrast with the method
in section 4 which involves amortizing gains and losses (McGill et al., 1996, p. 525;
Berin, 1989, p. 18; Dufresne, 1988).

Replacing St from equation (20) into equation (9) and using equation (12)
yields 

A t .UL U u UL U L u K K u L1t t t t A
j

j
A
j

t j1 1 1
0

- - - = - -
3

+ + +
=

-!^ ^ ]h h g (21)

Recall that Lt = 0 for t ≤ 0, ULt = 0 for t < 0, and UL0 = U0. It is easily verified,
from equation (21), that 

t .UL U K u Lt
j

A
j

t j
j 0

- =
3

-
=

! (22)

Compare equation (15) when losses are amortized to equation (22) when losses
are spread.

Equation (22) is sensible since, for a unit loss that emerged j years ago, the
following sequence of payments is outstanding: {(1– K)KluA

l, l = j, j +1,…}.
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The present value of these payments is  l j=
K K u v K u1 l

A
l

A
l j j

A
j$- =

3 -! ] g . Equa-
tion (22) thus shows that, at any time t, the unfunded liability is the present
value of payments yet to be made in respect of all past and present losses,
together with the unamortized part of the initial unfunded liability.

The supplementary contribution St in this method may be calculated directly
as a proportion 1 – K of the unfunded liability, together with an adjustment
for the difference between assumed rates on assets and liabilities and for the
separate amortization of the initial unfunded liability. Comparing equations
(20) and (22),

.S K UL U v v AL P1t t t A L t= - - + - +] ^ ^g h h (23)

For simplicity, Dufresne (1988) disregards the separate treatment of initial
unfunded liability and the distinction between iA and iL and considers only
St = (1 – K)ULt. Dufresne (1988) also states that the parameter K is usually
calculated as K = 1 – 1/ a eM . M is typically between 1 and 10 years in the United
Kingdom. Thus, if M = m, the first payment made in respect of a unit loss
is 1/ a em under both the amortization and spreading funding methods (equa-
tions (13) and (20) respectively).

Replace St from equation (20) and ULt from equation (22) into equation (8),
and use equation (12), to obtain:
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(24)

Compare equation (16) when losses are amortized to equation (24) when losses
are spread. If the actuarial assumption as to the rate of investment return on
plan assets equals the actual rate of return (that is, if i = iA), then no loss
emerges (Lt = 0 ∀ t from equation (24)) and the unfunded liability consists only
of the unamortized part of the initial unfunded liability (ULt = Ut for t ≥ 0
from equation (22)).

From equation (24),

A A ,L u KL i i KL v AL U K AL Ut A t t t t1 1- = - - - + -+ +^ ^ ^h h h7 A (25)

which is a first-order linear difference equation that simplifies to 

A A .L uK L v i i AL U u K AL Ut t t A t1 1- = - - - - -+ +^ ^ ^h h h7 A (26)

Recall from equation (11) that Ut = 0 for t ≥ n. Provided |uK | < 1, it follows from
equation (26) that 

A A .limL AL i i v uK
u K

1

1

t t
A= - -

-

-

"3
^ h (27)

In equation (20), K was defined to be such that 0 ≤ K < vA. Provided |uK | < 1,
the right hand side of equation (22) is also absolutely convergent and 
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A .lim limUL u K L1
t t t t

1
= -

" "3 3

-
^ h (28)

limSt may be found from equations (23) and (28). This is summarised in the
following result.

RESULT 2 Provided |uK | < 1,
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(31)

In contrast with Dufresne (1988), we have allowed for separate amortization
of the initial unfunded liability and also for the possibility that the actuarial
assumptions iA and iL are different, and we have also derived equations per-
taining to the intervaluation loss Lt. Result 2 may alternatively be obtained,
as in Dufresne (1988), by substituting St from equation (23) into equation (5)
giving a first-order difference equation 

t A tt ,UL U uK UL U uv AL U1t t1 1 1- - - = - -+ + +^ ^ ^ ^h h h h (32)

which solves to 

A tt
j .UL U uv uK AL U1t j

j

t

0

1

- = - - -
=

-

!^ ] `h g j (33)

Corollary 2 hereunder follows directly from equation (30):

COROLLARY 2 Assume that | uK | < 1. If iA = i, then limULt = 0. If iA > i, then
limULt > 0. If iA < i, then limULt < 0.

Compare Corollary 1 with Corollary 2. Under both amortization and
spreading, the choice of the actuarial investment return assumption iA affects
the long-term funding status of the pension plan. Note also from equation (30)
that, when iA ≠ i, limULt depends on the parameter K that is used to spread
gains and losses.

6. MODIFIED SPREADING OF GAINS AND LOSSES

If the actual investment return deviates from the actuarial investment return
assumption, then persistent underfunding or overfunding will occur in the long
term, as shown in Corollaries 1 and 2 in both of the preceding methods. Per-
sistent deficits jeopardize the security of pension benefits for plan members
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since, in the event of sponsor insolvency, there will not be enough funds to meet
benefit obligations. On the other hand, excessive surpluses are also undesirable
as funds are being diverted from productive activity in the company. Plan par-
ticipants may also demand that surpluses be distributed to them in the form
of improved benefits (McGill et al., 1996, p. 592-4).

In practice, the emergence of persistent surpluses or deficits causes actuaries
to revise their actuarial valuation assumptions. Nevertheless, it is of interest to
devise a funding method that avoids systematic surpluses and deficits.

Suppose that a constant stream of intervaluation losses of size  > 0 occurs
in the pension plan. If losses are being amortized as in the method of sec-
tion 4, then a positive unfunded liability (that is, a deficit) occurs since, from
equation (15) and for t ≥ n,

> .UL a
a

0
e

e
t

m

m j

j

m

0

1

,=
-

=

-

! (34)

Likewise, a deficit occurs if losses are being spread, as in section 5, since, from
equation (22) and for t ≥ n,

A/ > .UL u K1 0t ,= -^ h (35)

This suggests a variation on the spreading of losses. Consider a new funding
method, which is referred to henceforth as “modified spreading of gains
and losses”, where supplementary contributions are calculated to pay off inter-
valuation losses and the initial unfunded liability as follows:

t� �S K K u L v v AL Pt
j j

j
A
j

t j A L1 1 2 2
0

= - + - +
3

=
-! ` ^j h (36)

where

A / ,� u K K u K K1 1 A1 1 1 2 1= - - -^ ^ ^h h h (37)

A / ,� u K K u K K1 1 A2 2 2 2 1= - - -^ ^ ^h h h (38)

and where 0 ≤ K1 < vA and 0 ≤ K2 < vA and K1 ≠ K2.
In this method, a unit loss is liquidated by means of an infinite sequence of

payments ( ) , , ,...� �K K u j 0 1j j
A
j

1 1 2 2
- =$ . and is paid off in perpetuity since 

.� �
� �

K K u v K K1 1
1j j

j
A
j

A
j

1 1 2 2
0 1

1

2

2$- =
-

-
-

=
3

=

! ` j (39)

Replacing St from equation (36) into equation (9) and using equation (12) yields 

jt � �UL U u UL U L u K K u L .t A t t t A
j j

A
j

j
t1 1 1 1 1 2 2

0

- - - = - -
3

+ + +
=

-!^ ^ `h h j (40)
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Now define

A / ,u K u K Kb 1 A1 1 2 1= - -^ ^h h (41)

A / .u K u K Kb 1 A2 2 2 1= - -^ ^h h (42)

Noting that �1 = b1(1 – K1) and �2 = b2(1 – K2) and b1 – b2 = 1, the right hand
side of equation (40) may be rewritten as

A A

A A

A ,

L u K K u L u K K u L

u K K u L u K K u L

K K u L u K K u L

b b b b

b b b b

b b b b
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j

t j

j j
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j j

j
A
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t j

1 1 1

1
2 2

1
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1 1 2 2
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1
2 2

1

1
1 1 2 2
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1 1 2 2
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1 1 1 2 2
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3 3

3 3

3 3
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+ +

=
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=
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=
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=
-
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! !
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a a

k k

k k

k k

(43)

which, upon comparison with the left hand side of equation (40), yields 

jA .UL U K K u Lb bt t
j j

j

j
t1 1 2 2

0

- = -
3

=
-! ` j (44)

Compare equations (15), (22) and (44).
Under the method of equation (36), for a unit loss that emerged j years

ago, the following sequence of payments is yet to be made: {( ) ,� �K K ul l
A
l

1 1 2 2-
, ,...l j j 1= + }. The present value of these outstanding payments is therefore 

A A .� �
� �

K K u v K
K

K
K

u K K ub b
1 1

l l

l j

l l j
j j

A
j j j

A
j

1 1 2 2
1

1 1
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2 2
1 1 2 2
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-

= -
3

=

-!` `j j

R

T

S
SS

V

X

W
WW

(45)

Equation (44) thus shows that, at any time t, the unfunded liability is the pre-
sent value of payments yet to be made in respect of all past and present losses,
together with the unamortized part of the initial unfunded liability.

The following proposition is proven in the Appendix.

PROPOSITION 1 Provided that

min(i, iA) > –100%, (46)

i – iA < 100% + iA, (47)

0 ≤ min(K1, K2) < max(K1, K2) < min(v, vA), (48)

then
lim
t "3

Lt = –AL (i – iA)v, (49)
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lim
t "3

ULt = 0, (50)

lim
t "3

St = AL (v – vL). (51)

The sufficient conditions (46)-(48) in Proposition 1 are not very restrictive. (Nec-
essary and sufficient conditions are discussed in the Appendix.) Condition (46)
is easily satisfied under normal economic conditions. Condition (47) also
holds in practice. Long-run economic growth means that the actuarial assump-
tion iA as to the long-term rate of return on plan assets is positive (iA > 0).
Condition (47) then requires that the actuarial investment return assumption
iA does not underestimate the actual return on assets i by 100% or more.
Condition (48) is also easily met in practice. For example, if max(i, iA) = 15%,
then 0 ≤ K1 < 0.87 and 0 ≤ K2 < 0.87 with K1 ≠ K2 means that condition (48)
holds.

COROLLARY 3 Assume that conditions (46)-(48) hold. Then, limULt = 0, irre-
spective of whether iA = i or iA > i or iA < i.

Compare Corollaries 1, 2 and 3. Corollary 3 states that, under the modified
spreading funding method described by equation (36), the pension plan is fully
funded in the long term, irrespective of the deviation of the investment return
assumption from the actual return on the pension plan assets (provided that
the mild conditions (46)-(48) hold). Furthermore, limULt is independent of
the funding method parameters K1 and K2.

The choice of iA affects the progression of funding in the short term, but
iA does not affect the funding position asymptotically. In fact, one could arbi-
trarily set iA = iL as under the classical actuarial valuation methodology
described in section 2 and effectively dispense with an investment return
assumption iA that is distinct from the rate iL at which the pension liability is
valued.

Corollary 3 may be explained as follows. Suppose that a constant stream
of intervaluation losses of size  = 0 occurs in the pension plan. Recall that this
results in a persisting deficit when losses are being either amortized or spread:
see equations (34) and (35) respectively. By contrast, under the method of
equation (36), a constant stream of losses of size  ≠ 0 results in zero unfunded
liability because, from equation (44) and for t ≥ n,

A AK KUL K K u u ub b
b b

1 1
0t

j j

j
A
j

1 1 2 2
0 1

1

2

2, ,= - =
-

-
-

=
3

=

! ` j < F (52)

where we use equations (41) and (42).

It was shown that the spreading method of equation (20) could be
calculated more directly in terms of the unfunded liability, in equation (23).
This may also be achieved here. The following proposition is proven in the
Appendix.
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PROPOSITION 2 The funding method described in equation (36) is equivalently
achieved by calculating supplementary contributions as follows:

A ,� �S UL U UL U v v AL Pt t t t j t j
j

L t1 2
0

= - + - + - +
3

- -
=

!^ ` ^h j h (53)

where �1 = 1 – uAK1K2 and �2 = vA (1 – uAK1) (1 – uAK2).

Trowbridge and Farr (1976, p. 62) state that “easy computations” are a
desirable characteristic of a funding method. Equation (53) provides a straight-
forward way of computing contributions from year to year as only the historic
sum of unfunded liabilities need be stored and updated.

Compare equations (23) and (53). The second term on the right hand side
of equation (53) represents a historic sum (without interest) of past unfunded
liabilities. Contributions are therefore paid until surpluses and deficits cancel
each other out and the unfunded liability is zero. Modified spreading of gains
and losses, in the representation of equation (53), is similar to a method
described by Balzer (1982) in the context of a general insurance system (see
also Taylor, 1987). Balzer (1982) refers to a summation term similar to the sec-
ond term on the right hand side of equation (53) as supplying an “integral
action” which adjusts for a “persisting stream of unpredicted claims”.

7. NUMERICAL EXAMPLE

An illustration of the previous results is given here and is based on the following:

Demographic projections: Mortality: English Life Table No. 12 (males). Plan
population: stationary with single entry age of 20 and single retirement age
of 65.

Salary: Constant throughout working lifetime.
Benefit: A level pension at age 65 paying 2/3 of annual salary.
Economic projections: No inflation. Assets earn a constant rate of return of 4.5%.
Initial unfunded liability: Zero. (Alternatively, assume that UL0 is being sepa-

rately amortized as in equation (10) and that ULt – Ut, rather than ULt is
evaluated below.)

Actuarial valuations: Frequency: yearly. Actuarial cost method: unit credit.
Actuarial assumptions: Fixed with valuation assumptions iL = 4%, iA = 1%,

4.5% and 6%. Other valuation assumptions are identical to projection
assumptions.

Valuation data: Number of entrants and payroll are calculated such that the
yearly benefit outgo B is normalized to 1. Actuarial liability AL = 16.94, nor-
mal cost NC = 0.3486, both expressed as a proportion of B.

Funding method parameters: Amortization: m = 5. Spreading: K = 1 – 1/a e5 .
Modified spreading: K1 = K, K2 = 0.8.

When i = iA = 4.5%, numerical work (not shown here) shows that neither gain
nor loss arises and the funded ratio (that is, ratio of fund value to actuarial
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Figure 1: Fund value (per cent of actuarial liability) and contribution (per cent of normal cost) against
time (years) when iA = 6% and i = 4.5% for amortization, spreading and modified spreading.

liability) remains at 100%, while the contribution paid is equal to the normal
cost, for all three methods. This accords with Corollaries 1, 2 and 3 when iA = i.

When i = 4.5% and iA = 6%, the investment return assumption is optimistic.
Fund values (as a percentage of actuarial liability) and contributions (as a per-
centage of normal cost) over time are exhibited in Table 1. See also Figure 1.
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A contribution that is equal to 11.8% of normal cost is required initially under
all three methods. Under amortization, the required contribution levels off at
86.6% of normal cost and an unfunded liability of 4.3% of actuarial liability
remains. Under spreading, the contribution rises steadily to 93.3% of normal
cost and an unfunded liability of 7.5% of actuarial liability is left eventually.
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Figure 2: Fund value (per cent of actuarial liability) and contribution (per cent of normal cost) against
time (years) when iA = 1% and i = 4.5% for amortization, spreading and modified spreading.
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TABLE 1

FUND VALUE (PER CENT OF ACTUARIAL LIABILITY) AND CONTRIBUTION (PER CENT OF NORMAL COST)
WHEN iA = 6% AND i = 4.5% FOR AMORTIZATION (A), SPREADING (S) AND MODIFIED SPREADING (MS).

Time Fund value (%) Contribution (%)

A S MS A S MS

0 100.0 100.0 100.0 11.8 11.8 11.8
2 97.4 97.4 97.6 42.5 39.7 55.6 
4 96.0 95.8 96.7 72.5 58.1 78.2 
6 95.7 94.6 96.6 87.0 70.1 88.8 
8 95.7 93.9 96.8 86.6 78.1 92.9

10 95.7 93.4 97.2 86.6 83.3 93.4 
12 95.7 93.1 97.7 86.6 86.7 92.3
14 95.7 92.9 98.1 86.6 89.0 90.5
16 95.7 92.8 98.4 86.6 90.5 88.4
18 95.7 92.7 98.8 86.6 91.4 86.5
20 95.7 92.6 99.0 86.6 92.1 84.8
25 95.7 92.6 99.5 86.6 92.9 81.7
30 95.7 92.5 99.7 86.6 93.2 79.8
35 95.7 92.5 99.8 86.6 93.3 78.8
40 95.7 92.5 99.9 86.6 93.3 78.3
45 95.7 92.5 100.0 86.6 93.3 78.0
50 95.7 92.5 100.0 86.6 93.3 77.8

TABLE 2

FUND VALUE (PER CENT OF ACTUARIAL LIABILITY) AND CONTRIBUTION (PER CENT OF NORMAL COST)
WHEN iA = 1% AND i = 4.5% FOR AMORTIZATION (A), SPREADING (S) AND MODIFIED SPREADING (MS).

Time Fund value (%) Contribution (%)

A S MS A S MS

0 100.0 100.0 100.0 238.8 238.8 238.8
2 106.3 106.3 105.7 169.1 175.9 124.1
4 110.2 110.7 107.5 96.5 132.3 66.3
6 111.2 113.8 107.3 57.1 102.2 41.7
8 111.2 115.9 106.3 54.6 81.3 35.2

10 111.3 117.3 105.1 54.1 66.9 37.7
12 111.3 118.3 103.8 54.1 56.9 44.0
14 111.3 119.0 102.8 54.1 50.0 51.2
16 111.3 119.5 102.0 54.1 45.3 57.8
18 111.3 119.9 101.3 54.1 42.0 63.4
20 111.3 120.1 100.9 54.1 39.7 67.7
25 111.3 120.4 100.3 54.1 36.6 74.2
30 111.3 120.5 100.1 54.1 35.3 76.7
35 111.3 120.6 100.0 54.1 34.9 77.5
40 111.3 120.6 100.0 54.1 34.7 77.7
45 111.3 120.6 100.0 54.1 34.6 77.7
50 111.3 120.6 100.0 54.1 34.5 77.7



Under modified spreading, the required contribution stabilizes at about 78%
of normal cost with the plan being fully funded eventually. This therefore
agrees with Corollaries 1, 2 and 3 when iA > i : long-run deficits occur under
amortization and spreading, but not under modified spreading. Furthermore,
numerical experiments suggest that the long-run unfunded liabilities that occur
under amortization and spreading are larger, the larger the deviation between
actual and assumed returns.

Note that the pension fund is ultimately in balance under all three methods.
For example, under amortization, using units of yearly benefit outgo, a fund
of 95.7% ≈ 16.94 = 16.21 yields investment income of 16.21 ≈ 4.5% = 0.7295 at
the end of the year. At the start of the year, the present value of this income
is 0.7295 /1.045 = 0.698. Contribution income is 86.6% ≈ 0.3486 = 0.301. Total
income is 0.698 + 0.301 = 1 which balances the benefit of 1 that is paid out. The
balance occurs at different levels under the three methods. Under modified
spreading, the fund is eventually in equilibrium in such a way that the pension
plan is fully funded.

When i = 4.5% and iA = 1%, a conservative investment return assumption is
being made. See Table 2 and Figure 2. A large contribution (more than dou-
ble the normal cost) is required initially under all three funding methods. Inter-
valuation gains lead initially to falling contributions under all three methods
(at about the same rate). Ultimately, the lowest contribution (at only 35% of
normal cost) is generated when spreading is used, but this is at the expense of
a large surplus in the pension fund of 20% of actuarial liability. On the other
hand, the surplus is only 5% of actuarial liability within 10 years, and under
1% within 20 years, when modified spreading is used. This also agrees with
Corollaries 1, 2 and 3 when iA < i .

8. CONCLUSION

The investment return assumption made by actuaries when valuing defined
benefit pension plans and its relevance to the pace of funding for pension
benefits was discussed in section 2. It was argued that this assumption is the-
oretically distinct from the discount rate that is used to value pension liabili-
ties, although they may be equal in practice. A simplified model pension plan
was posited in Section 3, where actuarial liability, normal cost and benefit
outgo were constant. The only intervaluation gains and losses allowed in the
model resulted from actual investment return deviating from the actuarial
investment return assumption.

Two practical funding methods were described in sections 4 and 5 and it
was shown, in both cases, that a conservative investment return assumption
leads to a long-term surplus whereas an optimistic investment return assump-
tion leads to a long-term deficit. Both long-term surpluses and deficits were
deemed to be undesirable. Surpluses may entail expensive demands for benefit
enhancements from plan members during wage negotiations and also involves
the diversion of capital away from projects within the sponsoring corporation.
Deficits may endanger the security of pension benefits should the plan sponsor
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become insolvent. A funding method was devised and described in section 6
that avoids such persistent surpluses and deficits, under mild stability condi-
tions, independently of the conservatism or optimism in the actuarial invest-
ment return assumption. A simple way of implementing this funding method
was derived in terms of the historic sum of past unfunded liabilities. A numer-
ical illustration of these results was provided in section 7.

The analysis in this paper yielded closed-form mathematical solutions but
this required simplistic modelling assumptions. Future research should relax
these restrictive assumptions. First, only asset gains and losses were considered.
Mortality, withdrawal, inflation and other factors are also variable and should
be incorporated in the model. Second, these factors are uncertain and inter-
valuation gains and losses are random. A stochastic approach following
Dufresne (1988, 1989) and Owadally and Haberman (1999), who investigate
pension funding with random investment returns, should be illuminating. It will
enable a more realistic comparison of the various funding methods to be made
in terms of the variance of fund values and contributions. The efficient choice
of parameters K1 and K2 under modified spreading of gains and losses can also
then be investigated.
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Appendix

Proof of Proposition 1

It is easy to show, from equations (37), (38), (41) and (42) that

�1 – �2 = 1 + vA – K1 – K2, (54)

�1K2 – �2K1 = vA – K1K2, (55)

b1 – b2 = 1, (56)

b1K2 – b2K1 = vA. (57)

Replace St from equation (36) and ULt from equation (44) into equation (8),
and use equation (12), to obtain:

A .� �L i i K K u L v AL Ub bt A
j j
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j
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C (58)

This may be rewritten using the lag or backward shift operator B as follows:

A A
AA .

� �
B L i i u K B L u K B L B v AL U

b b
1 1t t t t

1

1

1 1

2

2 2 1= -
-

-
-

-

-
- -- -

^ ^h h< F (59)

Note from equations (54)-(57) that

(b1 – �1) – (b2 – �2) = K1 + K2 – vA, (60)

(b1 – �1)K2 – (b2 – �2)K1 = K1K2. (61)

Multiply both sides of equation (59) by (1– uAK1B) (1– uAK2B)B and use the two
equations above:

A A A A

A A A .

u K B u K B L i i K K v BL u K K B L

u K B u K B v AL U

1 1

1 1

t A t t

t

1 2 1 2 1 2
2

1 2

- - = - + - -

- - - -

^ ^ ^ ^

^ ^ ^

h h h h

h h h

8

A
(62)

Collect terms in Lt on the left hand side to obtain a second order linear differ-
ence equation for Lt :

A

A A A .

B uK uK uv B uu K K L

u K B u K B v i i AL U

1 1

1 1

A t

A t

1 2
2

1 2

1 2

- + - + +

= - - - - -^ ^ ^ ^h h h h

7 7A A$ .
(63)

Difference equation (63) has a quadratic characteristic equation,

A A( ) ,P z z z uK uK uv uu K K1 02
1 2 1 2= - + - + + =7 A (64)
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whose roots must be less than one in magnitude for {Lt} to converge as t → ∞.
Necessary and sufficient conditions for this for a general quadratic equation
are given by Marden (1966):

|P(0)| < 1 ⇒ |uuAK1K2 | < 1, (65)

P(1) > 0 ⇒ uvA(1 – uAK1) (1 – uAK2) > 0, (66)

P(–1) > 0 ⇒ uvA [2uA(v + uAK1K2) – (1 – uAK1) (1 – uAK2)] > 0. (67)

It is now shown that inequalities (65)-(67) follow from the sufficient conditions in
Proposition 1. Note first that condition (46) may be rewritten as 0 < min(u, uA) ≤
max(u, uA). Conditions (46) and (48) thus imply that 

0 ≤ min(u, uA) min(K1, K2) < max(u, uA) max(K1, K2) < 1. (68)

Hence, inequality (65) follows from sufficient conditions (46) and (48).

Next, note from the inequalities (68) that 

0 < 1 – max(u, uA) max(K1, K2) < 1 – min(u, uA) min(K1, K2) ≤ 1, (69)

and therefore that 

0 < (1 – uAK1) ≤ 1   and   0 < (1 – uAK2) ≤ 1. (70)

Hence, inequality (66) follows from sufficient conditions (46) and (48).
Finally, condition (47) may be written as u < 2uA or 2uAv > 1, by virtue of

condition (46). It follows from inequalities (70) that

(1 – uAK1) (1 – uAK2) ≤ 1 < 2uAv ≤ 2uAv + 2u2
A K1K2 (71)

⇒ 2uA(v + uAK1K2) – (1 – uAK1) (1 – uAK2) > 0. (72)

Hence, inequality (67) follows from sufficient conditions (46), (47) and (48).
Let the roots of the characteristic equation (64) be �1 and �2. If �1 ≠ �2,

Lt in equation (63) has a solution of the form Lt = A�1
t + B�2

t + L, where A,
B, L ∈ �. If sufficient conditions (46)-(48) hold, then |�1| < 1 and |�2| < 1, the
sequence {Lt} converges to L and, furthermore, the series ( )L Ljj 0

-
3

=
! is

absolutely convergent.
Assuming convergence, it is clear from equation (63) that
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(73)

which proves equation (49).
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The limit in equation (51) is obtained by resorting to equation (36):

A .
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(74)

As t → ∞, the first sum on the right hand side of equation (74) vanishes since
both ( )� �K K uj j

A
j

j 1 1 2 20
-

3

=
! and ( )L Ljj 0

-
3

=
! are absolutely convergent and

their Cauchy product is also absolutely convergent. As t → ∞, the second sum
on the right hand side of equation (74) converges to 
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1 11
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-

-
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= - - = - -d ^ ^n h h (75)

where use is made of equations (37) and (38). Pt also vanishes as t → ∞ from
equation (10). Hence, lim t→∞ St = –AL (vA – v) + AL (vA – vL) = AL (v– vL).

Finally, the limit in equation (50) is obtained by taking limits on each term
on the right hand side of equation (44) which may be rewritten as follows:

t .UL U K K u L L K K u Lb b b bt
j j

j
A
j

t j
j j

j
A
j

1 1 2 2
0

1 1 2 2
0

- = - - + -
3 3

=
-

=

! !` ` `j j j (76)

As t → ∞, the first sum on the right hand side of equation (76) vanishes since
both j 0=

( )K K ub bj j
A
j

1 1 2 2
-

3! and j 0=
( )L Lj -

3! are absolutely convergent and
their Cauchy product is also absolutely convergent. As t → ∞, the second sum
on the right hand side of equation (76) converges to zero since 

A A
,K K u u K u Kb b

b b
1 1

0j j

j
A
j

1 1 2 2
0 1

1

2

2- =
-

-
-

=
3

=

! ` j (77)

where use is made of equations (41) and (42). Hence, lim t→∞ULt = 0. ¡

Proof of Proposition 2

Rewrite equation (44) in terms of the lag or backward shift operator B:

B

t
A A

A A

A .

UL U u K B u K B L

u K B u K B
K K u

L

b b

b b b b

1 1

1 1

t t

t

1

1

2

2

1 2

1 2 1 2 2 1

- =
-

-
-

=
- -

- - -

^ ^

^ ^

h h

h h

< F

(78)

Using equations (56) and (57), the numerator on the right hand side of the
above equation simplifies and 

t
A A

.UL U
u K B u K B

B L
1 1

1
t t

1 2

- =
- -

-
^ ^h h

(79)
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Likewise, rewrite equation (36) in terms of the backward shift operator B and
use equations (54) and (55) to simplify:

A

A A
A

A A

A A
.

� �
S u K B u K B L v v AL P

u K B u K B
v K K v K K u B

L v v AL P

1 1

1 1

1

t t L t

A
t L t

1

1

2

2

1 2

1 2 1 2

=
-

-
-

+ - +

=
- -

+ - - - -
+ - +

^

^ ^

^ ^
^

h

h h

h h
h

< F

(80)

Cancel Lt from equations (79) and (80) and simplify:

(81)

A

A A

A

A

A
A A

A A A ,

S v v AL P

B
v K K v K K u B

UL U

u K K B
v u K u K

UL U

u K K UL U v u K u K UL U

1

1

1
1

1 1

1 1 1

t L t

A
t t

t t

t t t j t j
j

1 2 1 2

1 2
1 2

1 2 1 2
0

- - -

=
-

+ - - - -
-

= - +
-

- -
-

= - - + - - -
3

- -
=

!

^

^ ^
^

^ ^
^

^ ^ ^ ^ `

h

h h
h

h h
h

h h h h j

= G

which is equation (53). ¡
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CHAIN LADDER BIAS

BY

GREG TAYLOR

ABSTRACT

The chain ladder forecast of outstanding losses is known to be unbiased under
suitable assumptions. According to these assumptions, claim payments in any
cell of a payment triangle are dependent on those from preceding development
years of the same accident year. If all cells are assumed stochastically inde-
pendent, the forecast is no longer unbiased. Section 5 shows that, under rather
general assumptions, it is biased upward. This result is linked to earlier work
on some stochastic versions of the chain ladder.

KEYWORDS

Chain ladder, IBNR.

1. INTRODUCTION

The chain ladder (CL) approach to estimation of a loss reserve is well known.
It is described, for example, by Taylor (2000).

Its origins are not altogether clear, but it seems likely that it originated as
a heuristic device. As such, it may be viewed as a non-parametric estimator.
The precise definition is given in Sections 2 and 3.

Kremer (1982) recognised that the CL involved a log-linear cross-classification
structure. A number of parametric stochastic versions of the CL developed from
this, eg Hertig (1985), Renshaw (1989), Verrall (1989, 1990, 1991).

Mack (1994) pointed out that these stochastic models gave mean estimates
of liability that differed from the “classical” CL estimate. While the form
of stochastic model underlying the classical CL was speculative, due to the
latter’s heuristic nature, Mack suggested one. It is distribution free. Details are
given in Section 2. Mack also identified the differences between this and the
other stochastic models.

Whereas the cross-classified models typically assume stochastic independence
of all cells in the data set, the CL (in Mack’s formulation) does not. It was shown
by Mack (1993) that the algorithm of the classical CL produced unbiased fore-
casts of liability under its own assumptions.

However, it does not necessarily do so under the alternative assumption of
independence between all cells. Some papers have studied the bias in estimates
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of liability in the parametric cross-classified models mentioned above, but little
is known of the bias in the classical CL forecast when all cells are independent.

The purpose of the present paper is to investigate the direction of bias in
this case.

2. FRAMEWORK AND NOTATION

Consider a square array X of stochastic quantities X(i, j) ≥ 0, i = 0,1, …, I;
j = 0,1,…,I.

Denote row sums and column sums as follows:

, ,R i j X i h
h

j

0

=
=

!^ ]h g (2.1)

, , .C i j X g j
g

i

0

=
=

!^ ^h h (2.2)

In addition introduce the following notation for the total sum over a rectan-
gular subset of X:

, ,

,

,

T i j X g h

R g j

C i h

h

j

g

i

g

i

h

j

00

0

0

=

=

=

==

=

=

!!

!

!

^ ^

^

]

h h

h

g

(2.3)

Generally, in the following, any summation of the form
a

b
! with b < a will be

taken to be zero.
In a typical loss reserving framework, i denotes accident period, j develop-

ment period, and available data will consist of observations on the triangular
subset D of X:

, , , ,..., ; , ,...,X i j i I j I iD 0 1 0 1= = = -^ h" , (2.4)

Figure 2.1 illustrates the situation.

Still in a loss reserving context, D would represent some form of claims
experience, eg claim counts or claim amounts. The loss reserving problem
consists of forecasting the lower triangle in Figure 2.1, conditional on D. There
is particular interest in forecasting R(i,I) | D, i = 1,...,I. In standard loss reser-
ving parlance, the X(i, j) are usually referred to as incremental quantities, or just
increments, and the R(i, j) as their cumulative equivalents.
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Matrix notation

Analysis of CL bias will proceed by examination of certain derivatives of the
CLF defined in Section 3. These depend ultimately on derivatives of the n̂(k).
Quantities such as ∂2n̂(k)/∂2X(i, j) require evaluation, and a matrix notation will
be useful for keeping organization among the indexes.

In the following, all vectors will be of dimension (I +1), and all matrices
of dimension (I +1) ≈ (I +1).

Let X denote the matrix [X(i, j)],i, j = 0,1,…,I. Also let ek denote the nat-
ural basis vector:

,..., , , ,..., , , ,...,e k I0 0 1 0 0 0 1
( )k

T

k
= =d n (2.5)

and define

,..., , ,...,f e 1 1 0 0
( )k

T
k
T

r

k

k0

= =
=

! d n (2.6)

where the upper T denotes transposition.
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Figure 2.1: Data array
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Under this notation, X(i, j) is selected from X as follows:

, .X i j e Xei
T

j=^ h (2.7)

Similarly,

j,R i j e Xfi
T=^ h (2.8)

j,C i j f Xei
T=^ h (2.9)

, .T i j f Xi
T

j= f^ h (2.10)

3. CHAIN LADDER FORECAST

Define the age-to-age factor

n̂( j) = T(I – j – 1, j +1) /T(I – j – 1, j)
= 1 +C (I – j – 1, j +1) /T(I – j – 1, j)

(3.1)

and 

, , .i I R i I i kR n
k I i

I 1

= -
= -

-

% t] ] ]g g g (3.2)

The value of R(i,I) calculated in this way will be referred to as the chain ladder
forecast (CLF) of R(i,I).

4. CHAIN LADDER MODELS

4.1. Independent accident periods

The CLF has been formulated in Section 3 just as an algorithm. No model for
the data X has yet been stated.

It is evident that the properties of the CLF will depend on the model. This
and the next sub-section consider two alternative models. The first is represented
by the following two assumptions.

Assumption 1. The increments of different accident periods are stochastically
independent in the sense that

Prob [X(i, j) | D] = Prob [X(i, j) | X(i,0),…,X(i,I – i)].

Assumption 2. E [R(i, j +1) | X(i,0),X(i,1), ...,X(i, j)] = n ( j)R(i, j). (4.1)
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Remark 1. It follows from Assumptions 1 and 2 that

E [R (i, j +1) | D] = n ( j)R (i, j) (4.2)

for any j ≥ I – i (ie future j ).

Since R (i, j +1) = R (i, j) +X (i, j +1), one may re-write (4.2) in the form:

E [X (i, j +1) | D] = [n ( j) – 1]R (i, j) (4.3)

Remark 2. It is clear from (4.3) that R (i, j) and X (i, j +1) may fail to be inde-
pendent. Generally, under Assumptions 1 and 2, the X (i, j) for fixed i may fail
to be independent.

Theorem 1 (Mack). Under Assumptions 1 and 2,

(1) n̂( j) is an unbiased estimator of n( j) for j = 0,1,…,I – 1; and
(2) the CLF R(i,I) is an unbiased estimator of E [R(i,I ) | D] for i = 1,2,…,I ;

provided that both estimators exist.

Proof. See Mack (1993). ¡

It is also convenient to re-write (4.2) in the form:

E [R(i, j +1) /R (i, j) | D] = n ( j). (4.4)

4.2. Independent increments

Replace Assumptions 1 and 2 by 1a, 2a and 3 as follows.

Assumption 1a. All increments X (i, j) are stochastically independent.

Assumption 2a. E [R(i, j +1)] /E [R(i, j)] = j( j). (4.5)

The assumption is written in this form in order to relate it to Assumption 2.
It is useful to note that an equivalent, and more natural, assumption is that

E [X(i, j)] = �(i)�( j) (4.5a)

for parameters �(i),�( j), i, j = 0,1,…,I.

Define the set

, : , , ,...,D g h g I k h k k I i I1 1 1i # #= - - + = - -^ h" , (4.6)

and

, : , , ,..., .E g h g I k h k k I i I1 1i # #= - - = - -^ h" ,
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Assumption 3. T(g,h) > 0 for each (g,h) ∈ Ei.

Remark 3. It is implicit in Assumption 2a that E [R (i, j)] ≠ 0. By the assumed
non-negativity of the X (i, j), E [R (i, j)] > 0 for each i, j.

Remark 4. A comparison of (4.4) and (4.5) indicates that n( j) and j( j) are dif-
ferent quantities (for fixed j) since

, / ,E R i j R i j1+^ ^h h6 @ # , / , .E R i j E R i j1+^ ^h h6 6@ @ (4.7)

This fact was pointed out by Mack (1994).

By Assumption 3, applied to (3.1), all n̂(k) appearing in (3.2) are defined and
strictly positive. Given the assumed non-negativity of the X(i, j), Assumption 3
is both necessary and sufficient for the chain ladder forecast to make sense.
Comment on the non-negativity requirement will be made in Section 6.

The conditions of Theorem 1 no longer hold, and so the CLF is not nec-
essarily unbiased.

5. CHAIN LADDER BIAS

The following is a somewhat technical result, but has been included here rather
than in the appendix because the symmetric appearance of rows and columns
of X in the second derivative of Y(i) is interesting.

Theorem 2. Define

.Y i k
k I i

I 1

= o
= -

-

% t] ]g g (5.1)

Then

( , )
( )

X g h
Y i
2

2

2

2
= 0 for (g,h) ∉ Di ; (5.2)

for (g,h) ∈ Di and h ≤ I – i,

( ) ( , )
( )

, ,
,

, , ,
,

Y i X g h
Y i

T I k k T I k k
C I k k

T i I i T I l l T I l l
R I l l

x1
2

1 1 1
1 1

1
1

1

k I i

I g

l I i

k

2

2 1

1

2

2
=

- - + - -
- - +

- -
+

- - -
-

= -

- -

= - +

!

!

] ]

]

] ] ]

]

g g

g

g g g

g
> H

(5.3)
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for (g,h) ∈ Di and h > I – i,

( ) ( , )
( )

, ,
,

, ,
,

.

Y i X g h
Y i

T I k k T I k k
C I k k

T I l l T I l l
R I l l

1
2

1 1 1
1 1

1

k h

I g

l h

k

2

2 1

#
2

2
=

- - + - -
- - +

- - -
-

=

- -

=

!

!

] ]

]

] ]

]

g g

g

g g

g
(5.4)

These results depend on Assumption 3 for the existence of (5.3) and (5.4), but
do not depend on the Assumptions 1a and 2a.

Proof. See appendix. ¡

Theorem 3. Under Assumptions 1a, 2a and 3, and if X (g,h) is not degenerate
for at least one (g,h) ∈ Di , the CLF R(i,I ) is biased upward as an estimate of
E [R (i,I )] in the sense that

, , > , ,
,

.E i I R i I i R i I i E R i I i
E R i IR - -

-
] ] ]

]

]
g g g

g

g
7

6

6
A

@

@
(5.5)

Also,

, > , .E i I E R i IR] ]g g7 6A @ (5.6)

Proof. See appendix. ¡

Remark 5. An alternative form of (5.6) is:

, , > , .E E i I R i I i E R i IR,R i I i --] ] ] ]g g g g7 6A @ (5.7)

Note that, in general, (5.5) does not imply that

, , > , .E i I R i I i E R i IR -] ] ]g g g7 6A @

A few words in interpretation of Theorem 3. First define

, , ,

,

L i j R i I R i j

X i h
h j

I

1

= -

=
= +

!

^ ] ^

]

h g h

g
(5.8)

which is the required loss reserve in respect of accident period i at the end of
development period j.

The forecast of L(i, j) associated with the CLF of R (i,I) is

, , , .i j i I R i jL R= -^ ] ^h g h (5.9)
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Now consider the CLF L(i, I – i), taken on the last diagonal of D, and how it
is conditioned by D. By (3.2),

, , ( )i I i R i I i kL 1
k I i

I 1

- = - -o
= -

-

% t] ]g g> H (5.10)

ie is proportional to R (i,I – i).

By Theorem 1,

.E I i E L I iL D D- = -] ]g g7 6A @ (5.11)

in the dependent case, when Assumptions 1 and 2 hold. The CLF of loss reserve
is conditionally unbiased.

On the other hand, in the independent case, when Assumption 1a holds,
L (i, j) and R (i, j) are stochastically independent since they involve disjoint sets
of the X (i, h) (see (2.1) and (5.8)). Hence

, , .E L i I i E L i I iD- = -] ]g g6 6@ @ (5.12)

If Assumptions 2a and 3 also hold, then Theorem 3 may be applied to (5.12)
to yield

, > , ,E i I i E L i I i E L i I iL D- - = -] ] ]g g g7 6 6A @ @ (5.13)

In this case, the CLF of loss reserve, taken unconditionally, is biased upward.
Note that it makes no sense to discuss whether the CLF is conditionally biased
in this case. For (5.10) shows that

,E i I iL D-] g7 A is proportional to ,R i I i-] g (5.14)

whereas (5.12) shows that

,E L i I i D-] g6 @ is independent of ,R i I i-] g. (5.15)

Then, whether ,i I iL -] g is conditionally biased upward or downward depends
on ,R i I i-] g.

6. NEGATIVE INCREMENTS

It has been assumed throughout that all X(i, j) ≥ 0. It is evident that some pos-
itivity assumption is required for Theorem 3 to hold. If, for example, one were
to apply the theorem to data that were subject to Assumption 3, and then
reverse the signs of all X (i, j), one would obtain a downward bias for the CLF
applied to the modified data.
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It is evident that Theorem 3 would continue to hold under weaker assump-
tions. For example, if the requirement on X(i, j) were weakened to require only
that Prob[X (i, j) > d > 0] > 1 – e for some e ≥ 0. Then Prob[�2f / �X 2(g,h) > 0]
could be made arbitrarily close to 1 for (g,h) ∈ Di, so that (A.25) held with strict
inequality, and Theorem 3 followed, also with strict inequality.

However, finding necessary conditions on the X (i, j) to ensure that Theo-
rem 3 holds does not appear easy. In considering such conditions, one may write
(A.40) in the form:

( , ) , ,

, ,

Y X g h
Y

T I k k T I k k

T I l l T I l l

x1
2

1
1

1 1
1

1
1 1

k h

I g

l h

k

2

2 1

2
2

=
- -

-
- - +

- -
-

-

=

- -

=

!

!

] ]

] ]

g g

g g

;

;

E

E

so that, when the X(i, j) need not be non-negative, a sufficient condition for the
left side to be positive is that 

1/T (g+1, h) < 1/T (g,h) (6.1)

and

1/T (g, h +1) < 1/T (g,h) (6.2)

for all (g, h).

It is tempting then to contemplate stochastic versions of the inequalities, such as

E [1/T (g+1, h)] < E [1/T (g,h)] (6.3)

E [1/T (g, h +1)] < E [1/T (g,h)] (6.4)

or such.

However, the choice of such conditions to lead from Theorem 2 to the proof
of (A.25), the key to Theorem 3, is not clear.

7. CONCLUSION

Theorem 3 shows that, under certain distribution free conditions, the CLF is
biased upward. A simulation test of prediction bias in the chain ladder and
other models was carried out by Stanard (1985). One of his experiments dealt
with the case in which the total number of claims in an accident year is a Poisson
variate and is multinomially distributed over development years. It may be shown
that distinct cells in a row of the claim count triangle are then stochastically
independent, and so Theorem 3 applies.

Stanard’s simulations did in fact find upward bias in the CLF.
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Appendix

PROOF OF THEOREMS

Lemma 1. Suppose that

( )y f xi
i

n

1

=
=

% (A.1)

with x = (x1,…,xm)T and fi (x) > 0 for each i. Then

j

j

i

i

i

i .y x
y

f x
f

f f x
f

x
f1 1 1

!
,k i

n

k
i j
i j

n

k k
2

2

1
2

2

12

2

2

2
2
2

2

2
= +

= =

! !

Lemma 2 (derivatives of age-to-age factors).

( ) ,
( )

, , ,
< ,

k X g h
k

T I k k
h k

T I k k T I k k
g I k h k C I k kd d d1

1 1
1

1 1 1
1 1

2
2 #

=
- - +

= +
-

- - - - +
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(A.2)

where d(.) is defined as follows:

d(C) = 1 for condition C true; (A.3)= 0 for condition C false;

and it is understood that (A.2) applies to past observations (g + h ≤ I).

Further,
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(A.4)

where this result is again understood to apply only to past observations.

Proof. By (2.10),

j, / , .T i j X g h f e e fi
T

g h
T2 2 =^ ^h h (A.5)

Write the quantity of interest n̂(k) in the abbreviated form n = N /D where N
and D denote numerator and denominator respectively. If N and D depend on
variable X, then

.

log log log
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(A.6)
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Now for n = n̂(k),

,N T I k k f X f1 1 I k
T

k1 1= - - + = - - +] g (A.7)

,D T I k k f X f1 I k
T

k1= - - = - -] g (A.8)

where the matrix notation of Section 2 has been used.

First derivatives of N and D are given by (A.5). Substitution of these into (A.6)
yields
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Note that

.
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(A.10)

Substitute (A.10) into (A.9) and recall (2.9) and (2.10) to obtain
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Note that 

.f e h kdk
T

h #= ] g (A.12)

By means of this and similar relations, (A.11) reduces to:
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Note that

g I k h k
g I h h k g h I h k h k

d d

d d d d d

1 1

1 1 1

#

# #
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h g

h g h g g
(A.14)

under the conditions of the lemma.

Substituting (A.14) into (A.13) yields (A.2) as required.
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To prove (A.4), return to (A.6). In this abbreviated notation there, take a second
derivative:

X X X Xn
n

n
n

n
n1 1 1

2

2 2

2
2

2
2

2
2

2
2

= -b bl l (A.15)

Now (A.6) yields

X X N X
N

N X
N

D X
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D X
D

n
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2 2

2
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2
2

2
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2
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2
2

= - - +b b bl l l (A.16)

By (A.5), (A.7) and (A.8), �2N /�X 2 = �2D /�X 2 = 0, so that (A.16) reduces to

X X D X
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(A.17)

by (A.6).

Substitution of (A.17) in (A.15), and use of (A.6) again yields

X X D X
D

n
n

n
n1

2
1 1

2

2

2
2

2
2

2
2

= - b bl l (A.18)

By (A.8),

/ , <D X g h f e e f g I k h kd dI k
T

g h
T

k12 2 #= = -- -^ ^ ]h h g (A.19)

Substitute (A.2) and (A.19) into (A.18) and note that the term involving
d (h = k + 1) vanishes because d (h = k + 1) d (h ≤ k) = 0.

The result is (A.4), as required. ¡

Lemma 3 (multivariate Jensen inequality). Let X = (X1, …, Xm)T where the
Xk are stochastically independent random variables. Let f : Rm → R be twice
differentiable in all its arguments, and suppose that

/f X X 0k
2 22 2 $] g for all X and for k = 1, 2, …, m. (A.20)

Then

.E f X f E X$] ^g h6 6@ @ (A.21)

If strict inequality holds in (A.20) for at least one k, and Xk is not degenerate,
then strict inequality holds in (A.21).
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Proof. An elegant proof of (A.21) appears in Kallenberg (1997, p. 49). It is re-
proved below in order to obtain the strict inequality.

Let m = (m1,…,mm)T = E [X]. Expand f (X) as the Taylor series:

m

m m

m m m,..., , ,..., , /
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(A.22)

where zm = mm + qm (Xm – mm) for some 0 < qm < 1.

Now expand f (X1,…,Xm –1, mm) similarly, then f (X1,…,Xm –2, mm –1, mm), and so
on to obtain
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Take expectations on both sides of (A.23). Note that

k k
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where the middle step follows from the stochastic independence of Xk from
(X1,…,Xk–1).

By (A.20),

k kk,..., , , ,..., /E X f X X Xm z m m 0k k k m
2 2

1 1 1
22 2 $- - +^ ^h h9 C (A.25)

with strict inequality if strict inequality holds in (A.20) and Xk is not degen-
erate.

The lemma then follows. ¡

Proof of Theorem 2. Consider Y(i) defined by (5.1), with n̂(k) defined by (3.1)
and (2.3). The observations X (g,h) involved in the n̂(k) constituting Y(i) are
just those in Di. This justifies (5.2).

Now consider (g,h) ∈ Di. Note that Lemma 1 is applicable to Y(i) because of
(5.1). Hence
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(A.26)

In this equation I – i ≤ k ≤ I – 1. Since (g,h) ∈ Di it is also the case that h – 1 ≤
k ≤ I – 1 – g. This yields max{I – i, h – 1} ≤ k ≤ I – 1 – g.

Therefore, there are two cases to be considered:

• In the case h ≤ I – i one has I – i ≤ k ≤ I – 1 – g

• In the case h ≥ I – i + 1 one has h – 1 ≤ k ≤ I – 1 – g.

Case I: h ≤ I – i.

In this case

g < I – k, h ≤ k. (A.27)

Under these conditions, combination of (3.1) with (A.2) gives 

2n̂(k) / 2X (g,h) = –C (I – k –1, k +1) / T 2(I – k –1, k). (A.28)

Similarly, combination of (3.1) with (A.4) gives

22n̂(k) / 2X 2(g,h) = 2C (I – k –1, k +1) / T 3(I – k –1, k). (A.29)

Substitution of (3.1), (A.28) and (A.29) into (A.26) yields
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(A.30)

Note that Assumption 3 implies that T (g,h) > 0 for (g,h) ∈ Di, and so guar-
antees the existence of all ratios in (A.30).

Note also that, by (2.2), the second member within the square bracket may
be expanded as follows:
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Substitute (A.31) into the square bracket in (A.30) to obtain
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by (2.1).

Substitute (A.32) for the square bracket in (A.30) to obtain
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This proves (5.3).

Case II: h > I – i.

It follows from the argument immediately preceding the proof of Case I that

g < I – k, k ≥ h – 1 (A.34)

(A.34) may be written as the two sub-cases:

k = h – 1
and 
g < I – k, h ≤ k.

Then Lemma 2 gives
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Substitute (A.35) – (A.38) into (A.26) to obtain

(A.39)
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As in Case I, Assumption 3 guarantees the existence of all the ratios in (A.39).
Now apply (A.31) and use the same mode of calculation as led from (A.30)

to (A.33). Then (A.39) becomes:
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(A.40)

This proves (5.4). ¡

Proof of Theorem 3. Consider Y(i) defined by (5.1). By Theorem 2,

22Y(i) / 2X 2(g,h) ≥ 0 for all (g,h)

with strict inequality for some (g,h), namely those in Di. It follows from a mul-
tivariate form of Jensen’s inequality (see Lemma 3) that

( ) >E Y i i kY
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% r] ]g g6 @ (A.41)
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where Y(i) is the value obtained by replacing each X (g,h) in Y(i) by its expec-
tation, and n (k) is similarly defined.

By (3.1),
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Substitute (A.42) in (A.41):
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by (4.5). This proves (5.5).

Now take expectations on both sides of (3.2):

, , > , , ..E i I E R i I i E Y E R i I by AR 34= -] ] ] ]g g g g7 6 6 6A @ @ @ (A.44)

The first step leading to (A.44) is justified as follows. Y(i) is defined by (5.1)
and n̂(k) by (3.1), which shows that the rows of X involved in Y(i) are 0,1,…,
i – 1. Thus, R (i,I – i) and Y(i) are stochastically independent.

¡
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CLAIMS RESERVING USING TWEEDIE’S
COMPOUND POISSON MODEL

BY

MARIO V. WÜTHRICH

ABSTRACT

We consider the problem of claims reserving and estimating run-off triangles.
We generalize the gamma cell distributions model which leads to Tweedie’s
compound Poisson model. Choosing a suitable parametrization, we estimate
the parameters of our model within the framework of generalized linear mod-
els (see Jørgensen-de Souza [2] and Smyth-Jørgensen [8]). We show that these
methods lead to reasonable estimates of the outstanding loss liabilities.

KEYWORDS

Claims Reserving, Run-off Triangles, IBNR, Compound Poisson Model, Expo-
nential Family, GLM, MSEP.

INTRODUCTION

Claims reserving and IBNR estimates are classical problems in insurance math-
ematics. Recently Jørgensen-de Souza [2] and Smyth-Jørgensen [8] have fitted
Tweedie’s compound Poisson model to insurance claims data for tarification.
Using the connection between tarification and claims reserving analysis (see
Mack [3]), we translate the fitting procedure to our run-off problem. Our model
should be viewed within the context of stochastic methods for claims reserv-
ing. For excellent overviews on this topic we refer to England-Verrall [1] and
Taylor [9].

The starting point of this work was the gamma cell distributions model
presented in Section 7.5 of Taylor [9]. The gamma cell distributions model
assumes that every cell of the run-off triangle consists of rij independent pay-
ments which are gamma distributed with mean tij and shape parameter g. These
assumptions enable the calculation of convoluted distributions of incremen-
tal payments. Unfortunately, this model does not allow one to estimate e.g.
the mean square error of prediction (MSEP), since one has not enough infor-
mation. We assume that the number of payments rij are realisations of random
variables Rij, i.e. the number of payments Rij and the size of the individual pay-
ments X (k)

ij are both modelled stochastically. This can be done assuming that
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Rij is Poisson distributed. These assumptions lead to Tweedie’s compound Pois-
son model (see e.g. Jørgensen-de Souza [2]). Choosing a clever parametrization
for Tweedie’s compound Poisson model, we see that the model belongs to the
exponential dispersion familiy with variance function V(m) = mp, p ∈ (1,2), and
dispersion ƒ. It is then straightforward to use generalized linear model (GLM)
methods for parameter estimations. A significant first step into that direction
has been done by Wright [11].

In this work we study a version of Tweedie’s compound Poisson model
with constant dispersion ƒ (see Subsection 4.1). This model should be viewed
within the context of the over-dispersed Poisson model (see Renshaw-Verrall
[6] or England-Verrall [1], Section 2.3) and the Gamma model (see Mack [3]
and England-Verrall [1], Section 3.3): The over-dispersed Poisson model and
the Gamma model correspond to the two extreme cases p = 1 and p = 2, resp.
Our extension closes continuously the gap between these two models, since
p ∈ (1,2). To estimate p we additionally use the information rij which is not
used in the parameter estimations for p = 1 and p = 2. Though we have one
additional parameter, we obtain in general better estimates since we also use
more information and have more degrees of freedom.

Moreover, our parametrization is such that the variance parameters p and
ƒ are orthogonal to the mean parameter. This leads to a) efficient parameter
estimations (fast convergence), b) good estimates of MSEP.

At the end of this article we demonstrate the method using motor insurance
datas. Our results are compared to several different classical methods. Of course,
in practice it would not be wise to trust in just these methods. It should be
pointed out that the methods presented here are all payment based. Usually
it is also interesting to compare payment based results to results which rely on
total claims incurred datas (for an overview we refer to Taylor [9] and the ref-
erences therein).

In the next section we define the model. In Section 3 we recall the defini-
tion of Tweedie’s compound Poisson model. In Section 4 we apply Tweedie’s
compound Poisson model to our run-off problem. In Section 5 we give an esti-
mation procedure for the mean square error of prediction (MSEP). Finally, in
Section 6 we give the examples.

2. DEFINITION OF THE MODEL

We use the following (well-known) structure for the run-off patterns: the acci-
dent years are denoted by i ≤ I and the development periods are denoted by
j ≤ J. We are interested in the random variables Cij. Cij denote the incremental
payments for claims with origin in accident year i during development period
j. Usually one has observations cij of Cij for i + j ≤ I and one tries to complete
(estimate) the triangle for i + j > I. The following illustration may be helpful.

Definition of the model:

1. The number of payments Rij are independent and Poisson distributed with
parameter lijwi > 0. The weight wi > 0 is an appropriate measure for the volume.
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2. The individual payments X (k)
ij are independent and gamma distributed with

mean tij > 0 and shape parameter g > 0.

3. Rij and X (k)
mn are independent for all indices. We define the incremental pay-

ments paid in cell (i, j) as follows

iij ij

ij

/ .C X Y C Wand1 >
( )

ij R
k

k

R

ij0
1

ij
$= =

=

!
" ,

(2.1)

Remarks:

• There are several different possibilities to choose appropriate weights wi, e.g.
the number of policies or the total number of claims incurred, etc. If one
chooses the total number of claims incurred one needs first to estimate the
number of IBNyR cases (cases incurred but not yet reported).

• Sometimes it is also convenient to define Rij as the number of claims with
origin in i which have at least one payment in period j.

• Yij denotes the normalized incremental payments in cell (i, j).

• One easily sees that conditionally, given Rij, the random variable Cij is gamma
distributed with mean Rijtij and shape parameter Rijg (for Rij > 0).

3. TWEEDIE’S COMPOUND POISSON MODEL

In this section we formulate our model in a reparametrized version, this has
already been done in the tarification problems of [2] and [8]. Therefore we
try to keep this section as short as possible and give the main calculations in
Appendix A.
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For the moment we skip the indices i and j. The distribution Y (for given
weight w) is parametrized by the three parameters l, t and g. We now choose
new parameters m, ƒ and p such that the density of Y can be written as, y ≥ 0,
(see (A.2) below and formula (12) in [2])

; , / , ; / , ,expz z
z

f y w p c y w p w y p pm
m m
1 2Y

p p1 2

=
-

-
-

- -

^ ^ fh h p* 4 (3.1)

where c(y; ƒ /w, p) is given in Appendix A and

p = (g + 2) / (g + 1) ∈ (1, 2), (3.2)

m = l · t, (3.3)

ƒ = l1– pt 2– p / (2 – p). (3.4)

If we set q = m1– p / (1 – p) we see that the density of Y can be written as (see also
[2], formula (12))
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(3.5)

Hence, the distribution of Y belongs to the exponential dispersion family with
parameters m, ƒ and p ∈ (1,2) (see e.g. McCullagh-Nelder [5], Section 2.2.2).
We write for p ∈ (1,2)

, / .zY wED m( )p` ^ h (3.6)

For ( , / )zY wED m( )p` we have (see [2] Section 2.2)

E [Y ] = k�p(q) = m, (3.7)

Var(Y) = ( ) .
z z
w V wm mp$ = (3.8)

ƒ is the so-called dispersion parameter and V(·) the variance function with
p ∈ (1,2). For our claims reserving problem we consider the following situa-
tion:

Constant dispersion ƒ (see Subsection 4.1): p ∈ (1,2) and Yij are independent
with

ij i ij j, / .z
z

Y w E Y Y wED Varandm m m( )p
ij i i i

p
&` = = ijj` `j j8 B (3.9)

334 MARIO V. WUTHRICH



Interpretation and Remarks:

• Tweedie [10] seems to be the first one to study the compound Poisson model
with gamma severeties from the point of view of exponential dispersion
models. For this reason this model is known as Tweedie’s compound Pois-
son model in the literature, see e.g. [8].

• p = (g + 2) / (g + 1) is a function of g (shape parameter of the single payments
distributions X (k)

ij ). Hence the shape parameter g determines the behaviour
of the variance function V(m) = mp. Furthermore we have chosen a parame-
trization (m, ƒ, p) such that m is orthogonal to (ƒ, p) in the sense that the Fisher
information matrix is zero in the off-diagonal (see e.g. [2], page 76, or [8]).
I.e. our parametrization focuses attention to variance parameters (ƒ, p) and
a mean parameter m which are orthogonal to each other. This orthogonality
has many advantages to alternative parametrizations. E.g. we have efficient
algorithms for parameter estimations which typically rapidly converge (see
Smyth [7]). Moreover the estimated standard errors of m, which are of most
interest, do not require adjustments by the standard errors of the variance
parameters, since these are orthogonal.

• Our model closes continuously the gap between the over-dispersed Poisson
Model (see Renshaw-Verrall [6] or England-Verrall [1], Section 2.3) where we
have a linear variance function (p = 1):

i j / ,zY wVar mi i$= j` j (3.10)

and the Gamma model (see Mack [3] and England-Verrall [1], Section 3.3)
where

i j / .zY wVar mi i
2$= j` j (3.11)

In our case p is estimated from the data using additionally the information
rij (see (4.6)). The information rij is not used in the boundary cases p = 1 and
p = 2.

• Naturally in our model we have p ∈ (1,2), since g > 0. We estimate p from
the data, so theoretically the estimated p could lie outside the interval [1,2]
which would mean that none of our models fits to the problem (e.g. p = 0
implies normality, p = 3 implies the inverse Gaussian model). In all our
claims reserving examples we have observed that the estimated p was lying
strictly within (1,2).

4. APPLICATION OF TWEEDIE’S MODEL TO CLAIMS RESERVING

4.1. Constant dispersion parameter model

We assume that all the Yij are independent with Yij ∼ED(p) (mij,ƒ/wi), i.e. Yij belongs
to the exponential dispersion family with p ∈ (1,2), and
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i ij j .
z

E Y Y wVarandm mi i i
p= =j j` j8 B (4.1)

We use the notation m = (m00,…, mIJ)�. Given the observations {(rij, yij), i + j ≤ I,

i rj ij! > 0}, the log-likelihood function for the parameters (m, ƒ, p) is given by
(see Appendix A and [2], Section 3)
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Formula (4.2) immediately shows that given p the observations yij = cij /wi are
sufficient for MLE estimation of mij (one does not need rij). Moreover, for con-
stant ƒ, the dispersion parameter has no influence on the estimation of m.

Next we assume a multiplicative model (often called chain-ladder type struc-
ture): i.e. there exist parameters �(i) and f ( j) such that for all i ≤ I and j ≤ J

( ) ( ).� i f jmi $=j (4.3)

After suitable normalization, � can be interpreted as the expected ultimate
claim in accident year i and f is the proportion paid in period j. It is now
straightforward to choose the logarithmic link function

( ) ,log xj m bi i i= =j j j (4.4)

where b = (log �(0),…, log�(I), log f(0),…,log f(j))� and X = (x00,…,xIJ) is the
appropriate design matrix.

Parameter estimation:

a) For p known. We deal with a generalized linear model (GLM) of the form (4.1)-
(4.4). Hence we can use standard software packages for the estimation of m.

b) For p unknown. Usually p and g, resp., are unknown. Henceforth we study
the profile likelihood for g (here we closely follow [2] Section 3.2): For m and
p given, the MLE of ƒ is given by (see (4.2))
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From this we obtain the profile likelihood for p and g, resp., i >r 0j ij!a k as

Lm(p) = L(m, p, ƒ̂p) = ( ) logr
w

g1 1
,
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i j
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Given m, the parameter p is estimated maximizing (4.6).

c) Finally we combine a) and b). The main advantage of our parametrization
is (as already mentioned above) the orthogonality of m and (ƒ, p). m can be
estimated as if (ƒ, p) were known and vice versa. Alternating the updating
procedures for m and (ƒ, p) leads to an efficent algorithm: Set initial value
p(0) and estimate m (1) via a). Then estimate p(1) from m (1) via (4.6), and iterate this
procedure. We have seen that typically one obtains very fast convergence of
(m (k), p(k)) to some limit (for our examples below we needed only 4 iterations).

4.2. Dispersion modelling

So far we have always assumed that ƒ is constant over all cells (i, j). If we con-
sider the definitions (3.3) and (3.4) we see that every factor which increases l
increases the mean m and decreases the dispersion ƒ because p ∈ (1,2). Increas-
ing the average payment size t increases both the mean and the dispersion.
Changing l and t such that l1–p t2–p remains constant has only an effect on the
mean m. Hence it is necessary to model both the mean and the dispersion in
order to get a fine structure, i.e. model mij and ƒij for each cell (i,j) individually
and estimate p. Such a model has been studied in the context of tarification
by Smyth-Jørgensen [8].

We do not further follow these ideas here since we have seen that in our sit-
uation such models are over-parametrized. Modelling the dispersion parame-
ters while also trying to optimize the power of the variance function allows
too many degrees of freedom: e.g. if we apply the dispersion modelling model
to the data given in Example 6.1 one sees that p is blown up when allowing
the dispersion parameters to be modelled too. It is even possible that there is no
unique solution when modelling ƒij and p at the same time (in all our examples
we have observed rather slow convergence even when choosing “meaningful’’
initial values which indicates this problematic).

5. MEAN SQUARE ERROR OF PREDICTION

To estimate the mean square error of prediction (MSEP) we proceed as in
England-Verrall [1]. Assume that the incremental payments Cij are independent,
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and Cij
% are unbiased estimators depending only on the past (and hence are

independent from Cij). Assume jij is the GLM estimate for jij = log mij, then (see
e.g. [1], (7.6)-(7.7))
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The last term is usually available from standard statistical software packages,
all the other parameters have been estimated before. The first term in (5.1) denotes
the process error, the last term the estimation error.

The estimation of the MSEP for several cells (i, j) is more complicated since
we obtain correlations from the estimates. We define D to be the unknown tri-
angle in our run-off pattern. Define the total outstanding payments
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The evaluation of the last term needs some care: Usually one obtains a covari-
ance matrix for the estimated GLM parameters log �(i) and log f ( j). This
covariance matrix needs to be transformed into a covariance matrix for j with
the help of the design matrices.

6. EXAMPLE

Example 6.1.

We consider Swiss Motor Insurance datas. We consider 9 accident years over
a time horizon of 11 years. Since we want to analyze the different methods
rather mechanically, this small part of the truth is already sufficient for drawing
conclusions.
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Remark: As weights wi we take the number of reported claims (the number of
IBNyR claims with reporting delay of more than two years is almost zero for
this kind of business).

a) Tweedie’s compound Poisson model with constant dispersion.

We assume that Yij are independent with Yij ∼ ED(p) (mi j, ƒ/wi) (see (4.1)). Define
the total outstanding payments C as in (5.2). If we start with initial value
p(0) = 1.5 ∈ (1,2) and then proceed the estimation iteration as in Subsection 4.1,
we observe that already after 4 iterations we have sufficiently converged to
equilibrium (for the choice of p one should also have a look at Figure 1):
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TABLE 6.2

OBSERVATIONS FOR THE NORMALIZED INCREMENTAL PAYMENTS Yij = Cij /wi.

yij Development period j

AY i 0 1 2 3 4 5 6 7 8 9 10

0 157.95 65.89 7.93 3.61 1.83 0.55 0.14 0.22 0.01 0.14 0.00
1 176.86 60.31 8.53 1.41 0.63 0.34 0.49 1.01 0.38 0.23
2 189.67 60.03 10.44 2.65 1.54 0.66 0.54 0.09 0.19
3 189.15 57.71 7.77 3.03 1.43 0.95 0.27 0.61
4 184.53 58.44 6.96 2.91 3.46 1.12 1.17
5 185.62 56.59 5.73 2.45 1.05 0.93
6 181.03 62.35 5.54 2.43 3.66
7 179.96 55.36 5.99 2.74
8 188.01 55.86 5.46

TABLE 6.3

NUMBER OF PAYMENTS Rij AND VOLUME wi.

rij Development period j

AY i 0 1 2 3 4 5 6 7 8 9 10 wi

0 6’229 3’500 425 134 51 24 13 12 6 4 1 112’953
1 6’395 3’342 402 108 31 14 12 5 6 5 110’364
2 6’406 2’940 401 98 42 18 5 3 3 105’400
3 6’148 2’898 301 92 41 23 12 10 102’067
4 5’952 2’699 304 94 49 22 7 99’124
5 5’924 2’692 300 91 32 23 101’460
6 5’545 2’754 292 77 35 94’753
7 5’520 2’459 267 81 92’326
8 5’390 2’224 223 89’545



Figure 1: Profile likelihood function Lm(p) (see (4.6)).

For p = 1.1741 the GLM output is as follows: Dispersion ƒ̂ = 29’281 and para-
meter estimates:
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TABLE 6.4

ESTIMATION OF p.

Iteration k 0 1 2 3 4

p(k) 1.5000 1.1743 1.1741 1.1741 1.1741
Outstanding payments C (k) 1’431’266 1’451’288 1’451’300 1’451’299

TABLE 6.5

PARAMETERS � AND f FOR p = 1.1741.

j 0 1 2 3 4 5 6 7 8 9 10

( )log� j% –5.862 –5.825 –5.762 –5.782 –5.777 –5.819 –5.792 –5.837 –5.809

( )log f j% 11.01 9.90 7.79 6.78 6.45 5.51 5.13 5.08 4.17 4.16 0.00

Altogether this leads to the following result:



The results in Table 6.6 show that there is considerable uncertainty in the
reserve estimates, especially in the old years where the outstanding payments
are small. This comes from the fact that we have only little information to esti-
mate f (j) for large j and it turns out that the parameter estimation error lives
on the same scale as the process error. For young accident years we have on
the one hand a lot of information to estimate f (j) for small j and on the other
hand f(j) for j large has a rather small influence on the overall outstanding pay-
ments estimate for young accident years in our example. Therefore the relative
prediction error is smaller for young accident years

b) Over-dispersed Poisson and Gamma Model.

We first compare our result to the two boundary cases p = 1 and p = 2. These
models are described in Renshaw-Verrall [6] or England-Verrall [1], Section 2.3
(over-dispersed Poisson model) and Mack [3] or England-Verrall [1], Section 3.3
(Gamma model). We also refer to (3.10)-(3.11). We obtain the following results:
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TABLE 6.6

ESTIMATED OUTSTANDING PAYMENTS FROM TWEEDIE’S COMPOUND POISSON MODEL.

Tweedie constant z = 29’281 and p = 1.1741

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 326 2’636 808.9% 1’867 1’860
2 21’565 26’773 124.2% 15’584 21’770
3 40’716 35’515 87.2% 19’122 29’927
4 89’278 53’227 59.6% 25’940 46’479
5 138’338 65’977 47.7% 30’529 58’489
6 204’269 80’815 39.6% 35’191 72’751
7 360’117 111’797 31.0% 45’584 102’082
8 596’690 149’775 25.1% 61’212 136’695

Total 1’451’299 271’503 18.7% 179’890 203’355

TABLE 6.7

ESTIMATED OUTSTANDING PAYMENTS FROM THE OVER-DISPERSED POISSON MODEL.

Over-dispersed Poisson model with z = 36’642 and p = 1

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 330 4’947 1500.7% 3’520 3’475
2 21’663 34’776 160.5% 20’386 28’174
3 41’007 46’070 112.3% 24’896 38’763
4 88’546 65’229 73.7% 31’786 56’961
5 140’150 80’795 57.6% 37’316 71’662
6 204’157 95’755 46.9% 41’089 86’491
7 362’724 125’433 34.6% 49’421 115’286
8 602’784 161’023 26.7% 61’978 148’618

Total 1’461’360 371’208 21.7% 216’965 231’403



Conclusions: It is not very surprising that the over-dispersed Poisson model
gives a better fit than the Gamma model (especially for young accident years
we have a huge estimation error term in the Gamma model, see Table 6.8).
Tweedie’s compound Poisson model converges to the over-dispersed Poisson
model for p → 1 and to the Gamma model for p → 2. For our data set p = 1.1741
is close to 1, hence we expect that Tweedie’s compound Poisson results are close
to the over-dispersed Poisson results. Indeed, this is the case (see Tables 6.6 and
6.7). Moreover we observe that the estimation error term is essentially smaller
in Tweedie’s model than in the over-dispersed Poisson model. Two main reasons
for this fact are 1) For the parameter estimations in Table 6.6 we additionally
use the information coming from the number of payments rij (which is used for
the estimation of p). 2) In our model, the variance parameters (ƒ, p) are orthog-
onal to m, hence their uncertainties have no influence on the parameter error
term coming from Var(m ).

c) Mack’s model and log-normal model.

A classical non-parametric model is the so-called chain-ladder method where
we apply Mack’s formulas (see Mack [4]) for the MSEP estimation. We apply
the chain-ladder method to the cumulative payments

i .D C w Yi i i k
k

j

k

j

00

= =
==

j k !! (6.1)

We choose the chain-ladder factors and the estimated standard errors as fol-
lows (for the definition of f (j) and s2

j = �2
j we refer to Mack [4], formulas (3)

and (5)). Of course there is unsufficient information for the estimation of s10.
Since it is not our intention to give good strategies for estimating ultimates
(this would go beyond the scope of this paper) we have just chosen a value
which looks meaningful.
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TABLE 6.8

ESTIMATED OUTSTANDING PAYMENTS FROM THE GAMMA MODEL.

Gamma model with z = 29’956 and p = 2

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 447 346 77.3% 255 233
2 20’248 13’602 67.2% 8’527 10’597
3 40’073 20’127 50.2% 13’178 15’213
4 122’899 56’984 46.4% 37’465 42’936
5 121’740 50’091 41.1% 35’106 35’730
6 221’524 91’174 41.2% 66’731 62’126
7 331’115 147’730 44.6% 107’386 101’451
8 527’988 250’816 47.5% 194’155 158’784

Total 1’386’034 336’842 24.3% 265’771 206’950



This leads to the following result:
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TABLE 6.10

ESTIMATED OUTSTANDING PAYMENTS FROM MACK’S MODEL.

Chain-ladder estimates

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 330 3’740 1134.6% 2’661 2’627
2 21’663 19’903 91.9% 11’704 16’099
3 41’007 30’090 73.4% 15’954 25’512
4 88’546 57’012 64.4% 26’295 50’585
5 140’150 71’511 51.0% 31’476 64’212
6 204’157 75’522 37.0% 31’746 68’526
7 362’724 138’915 38.3% 49’300 129’872
8 602’784 156’413 25.9% 54’293 146’688

Total 1’461’360 286’752 19.6% 177’616 225’120

TABLE 6.9

CHAIN-LADDER PARAMETERS IN MACK’S MODEL.

j 1 2 3 4 5 6 7 8 9 10

f (j) 1.3277 1.0301 1.0107 1.0076 1.0030 1.0020 1.0019 1.0008 1.0008 1.0000
sj 157.28 34.16 14.17 23.31 5.70 7.78 8.67 3.89 3.00 0.50

A look at the results shows that Tweedie’s compound Poisson model is close to
the chain-ladder estimates. For the outstanding payments this is not surpris-
ing since for p = 1.1741, we expect that Tweedie’s estimate for the outstanding
payments is close to the Poisson estimate (which is identical with the chain-ladder
estimate). For the error terms it is more surprising that they are so similar.
The reason for this similarity is not so clear because we have estimated a dif-
ferent number of parameters with a different number of observations. Further-
more, MSEP is obtained in completely different ways (see also discussion in [1],
Section 7.6).

An other well-known model is the so-called parametric chain-ladder method,
which is based on the log-normal distribution (see Taylor [9], Section 7.3). We
assume that

j j/ ,log D D z sN, ,i j i j1
2++` `j j and are independent. (6.2)

This model is different from the one usually used in claims reserving, which
would apply to incremental data (see e.g. [1], Section 3.2). We have chosen the
model from Taylor [9] because it is very easy to handle.



Living in a “normal’’ world we estimate the parameters as in Taylor [9], for-
mulas (7.11)-(7.13): i.e. since we assume that the parameters only depend on
the development period, we take the unweighted averages to estimate zj and
the canonical variance estimate for s2

j . This implies:
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TABLE 6.11

PARAMETER ESTIMATES IN THE LOG-NORMAL MODEL.

j 1 2 3 4 5 6 7 8 9 10

z(j) 0.2832 0.0293 0.0106 0.0077 0.0030 0.0020 0.0019 0.0008 0.0008 0.0000
sj 0.0274 0.0067 0.0027 0.0046 0.0011 0.0015 0.0016 0.0007 0.0004 0.0001

The prediction errors are estimated according to Taylor [9], formulas (7.29)-
(7-35). This leads to the following result:

TABLE 6.12

ESTIMATED OUTSTANDING PAYMENTS FROM THE LOG-NORMAL MODEL.

Log-normal model

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 330 3’905 1183.7% 2’761 2’761
2 21’603 14’297 66.2% 8’412 11’561
3 40’814 26’680 65.4% 13’991 22’717
4 88’535 53’940 60.9% 25’130 47’728
5 140’739 69’027 49.0% 30’676 61’836
6 205’396 71’506 34.8% 31’043 64’416
7 367’545 131’216 35.7% 49’386 121’568
8 608’277 147’156 24.2% 54’163 136’826

Total 1’473’238 271’252 18.4% 170’789 210’733

The log-normal model gives estimates for the outstanding payments which are
close to the chain-ladder estimates, and hence are close to Tweedie’s estimates.
We have very often observed this similarity. One remarkable difference between
Tweedie’s MSEP estimates and log-normal MSEP estimates is, that the Tweedie
model gives more weight to the uncertainties for high development periods
where one has only a few observations. This may come from the fact that for
the chain-ladder model we consider cumulative data. This cumulation has
already some smoothing effect.

CONCLUSIONS

Of course, we start the actuarial analysis of our claims reserving problem by
the chain-ladder method. The chain-ladder reserve can very easily be calculated.



But we believe that it is also worth to perform Tweedie’s compound Pois-
son method. Using the additional information rij one obtains an estimate for
the variance function V(m) = m p. If p is close to 1, Tweedie’s compound Pois-
son method supports that the chain-ladder estimate. Whereas for p different
from 1 it is questionable to believe in the chain-ladder reserve, since Tweedie’s
model tells us that we should rather consider a different model (e.g. the Gamma
model for p close to 2).

A. REPARAMETRIZATION

We closely follow [2]. We skip the indices i, j. The joint density of (Y, R) is
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Hence the density of Y can be obtained summing over all possible values of R:
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This proves that Y belongs to the exponential dispersion family ED(p)(m, ƒ /w).
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INTEREST-RATE CHANGES AND THE VALUE 
OF A NON-LIFE INSURANCE COMPANY

BY

THOMAS ALBRECHT, ALLIANZ AG

ABSTRACT

How does a change in the risk-free interest-rate affect the value of a non-life
insurance company or portfolio? Risk managers typically argue that there
should be little impact as long as assets and liabilities are properly matched.
However, the risk-management perspective focuses on existing assets and
liabilities, while neglecting the value of future business potential. This paper
argues that interest-rate changes can have a significant impact on the appraisal
value of a non-life insurance company, even if assets and liabilities are matched.
This impact can be positive as well as negative, depending on the under-
lying parameters. Relevant parameters include reserving intensity, combined
ratio, business growth-rate, asset allocation, risk-capital relative to pre-
mium income and the correlation between interest-rate and technical insur-
ance results.

KEYWORDS

Valuation, Interest-Rates, Asset-Liability-Management

INTEREST-RATE CHANGES AND THE VALUE OF

A NON-LIFE INSURANCE COMPANY

What impact does a change in the risk-free interest-rate have on the present
value of a non-life insurance company or portfolio?

The topic of interest-rate changes has received substantial attention in the
case of life-insurance companies (see, among others, BABBEL (1995), HOLSBOER

(2000), DICKINSON (2000) and SIGLIENTI (2000)), as in several countries the
industry has had to cope with very low market interest-rates, while long-term
contracts with guaranteed minimum returns had to be honored.

For non-life companies, the issue has been discussed less extensively.
Several authors have analyzed proper asset-liability-management in the face
of interest-rate risks. However, their work tends to focus on existing assets
and liabilities (e.g. D’ARCY / GORVETT (2000) and CAMPBELL (1997)), while
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neglecting the impact of interest-rate changes on the value of future business
potential. Such an approach is appropriate for short-term risk-management
purposes (i.e. safeguarding the required solvency-capital at any given point in
time) as well as for evaluating a pure run-off portfolio. To assess the interest
sensitivity of a going-concern appraisal value (or market value), an extended
framework is needed. So far, attempts in this direction have been made in the
context of dynamic financial analysis1, and in a paper by PANNING (1995).
However, PANNING – among other simplifications – only analyses the case of
a break-even combined ratio and uses discount-rates without risk-adjust-
ment2. This paper tries to provide a more extended treatment of the issues
involved.

1. BASIC DCF-VALUATION OF A NON-LIFE INSURANCE COMPANY

The available literature on non-life insurance DCF-valuation is comparatively
small. A discussion of methodology and relevant problems can be found in
ALBRECHT (2001), COPELAND / KOLLER / MURRIN (2000) and HARTUNG (2000).

The profit and loss account of a non-life insurer can – for example - be
summarized in the following way:

Earned net premiums 
– losses incurred 
– administration and acquisition expenses

= technical result 
+ investment income on insurance reserves
+ investment income on equity
+/– other íncome / expense

= profit before tax 
+/– taxes

= profit after tax
– retained profit

= dividend
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1 Dynamic financial analysis subjects financial models to scenario testing or stochastic simulation to
assess the impact of future events on the financial position of a company. For an overview, see
D’ARCY / GORVETT / HERBERS / HETTINGER (1997) or CASUALTY ACTUARIAL SOCIETY (1999).

2 Another paper dealing with market values, STAKING / BABBEL (1995), empirically examines the effect
of asset duration (a proxy for interest-risk exposure) on the market-value of non-life insurers (more
specifically, on Tobin’s q). However, no attempt is made to discuss the effect of interest-rate changes
on company value. Instead, the paper only deals with the connection between interest exposure and
valuation premiums.



To calculate the company value using a flow-to-equity approach, the future
(potential) dividends are discounted at an adequate discount-rate.

If we use the simplifying assumption that dividends grow at a constant
annual rate g (this will typically not hold in real-life situations, but does not
restrict the general analysis conducted in this article), yearly dividends can be
written as follows:

year 1 2 3 4

dividend a a (1 + g) a (1 + g)2 a (1 + g)3

present value a / (1 + d) a (1 + g) / (1 + d)2 a (1 + g)2 / (1 + d))3 a (1 + g)3 / (1 + d)4

As a perpetuity, the present value of this dividend stream can be written as:
a / (d – g)

notation: a expected amount of next dividend payment
g growth-rate
d discount-rate

Assuming that profit retention is determined by the company’s growth (the
required risk-capital will typically increase roughly proportional to pre-
mium income), company value V can be written as (in % of mark-to-market
equity):

V = ((r + ix + tr np) (1 – t) – g) / (i + pr – g)

with: a = (r + i x + tr np) (1 – t) – g
= profit after tax and after growth-related profit-retention

d = i + pr
= risk-free interest-rate + adequate risk-premium

notation: i risk-free interest-rate
r expected investment return on shareholders’ funds3,

with r = i + z > = i
z risk-premium earned on investments

(i.e. expected return in excess of risk-free rate)
x insurance reserves in % of equity
tr technical result in % of net premiums 

(tr = 1 – combined ratio; combined ratio = cr)
np net premiums in % of equity
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through the company’s equity. All returns should be ‘normalized’, i.e. reflect expected average future
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t tax-rate
pr risk-premium as part of discount-rate

Some comments on plausible real-life parameters:

• i is defined as constant for all maturities. This is obviously not compatible
with reality and is only assumed to simplify the model. DRUKARCZYK (1998),
p. 330ff., describes how to model interest-rates in more detail.

• pr should be equal to the market risk-premium, if the company’s invest-
ment and insurance risks imply a beta of roughly one. However, depend-
ing on the specific company – and especially on the investment policies
followed –, beta may be considerably higher or lower than one4. Annual
equity market risk-premiums are typically assumed in the range of
4 – 6 percentage points, though views on adequate risk-premiums differ
widely5.

• The assumed long-term growth-rate should be lower than the long-term
interest-rate, if the empirical patterns of the past do not fundamentally
change in the future (the nominal growth-rate of developed economies is
typically lower than the nominal interest-rate). This obviously does not rule
out higher growth-rates for the short- and mid-term in specific cases (or
even the insurance industry as a whole).

• The risk-premium z earned on investments financed by shareholders’
funds should not exceed the risk-premium pr used in the cost-of-capital: The
risk-level of the company assumed by choosing pr would already be fully
made up of investment risk, if value = equity and z = pr (Implicitly, it is
assumed that the company earns risk-equivalent returns on investments
and does not have the ability to earn excess-return through superior invest-
ment skills. If this were not the case, z might not be purely a risk-premium,
but could also include excess returns earned). If value >> equity, then
z > pr is in principle possible. However, since the technical insurance busi-
ness should also be risky, and therefore required to earn a risk-premium,
the assumption z < pr seems sensible. For more details on the decomposi-
tion of systematic risk in investment and insurance-risk, see ALBRECHT

(2001).
• A long-tail line of business with high insurance reserves x will likely imply

comparatively high combined ratios, as there will be more financial invest-
ments and therefore a better financial result to subsidise the technical insur-
ance losses (e.g. SWISS RE (2001)).

• A higher proportion of equity relative to net premiums will typically be
necessary for long-tail businesses with high amounts of reserving. Alterna-
tively, for a given line-of-business, a high proportion of equity should imply
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4 The risk of the company to be valued may depend on the choice of parameters: This paper assumes
that an interest-rate change does not affect the risk-premium. However, this may be incorrect, as an
interest-rate increase leads to higher risk-free payments on investments, thus potentially affecting the
riskiness of the total cash-flow stream.

5 ALBRECHT (1999b), chapter 2, discusses the existing evidence on equity market risk-premiums.



a low risk-premium pr, as the risk per unit of capital will be lowered, if the
amount of capital is increased.

All other things being equal, an increase in the technical result (a decrease in
the combined ratio) obviously increases company value V. Higher claims
reserves (a longer duration of the run-off) also imply an increase in V, as they
positively impact investment earnings. A higher risk-premium, on the other
hand, negatively impacts V.

Not immediately clear is the effect of a higher growth-rate (lower dis-
counting, but also higher profit retention), the net-effect hinges on the prof-
itability of growth (i.e. if profit retention leads to sufficient future profits to
earn cost-of-capital for the retained capital)6.

Also not immediately clear is the effect of a higher interest-rate. This effect
is the main topic of this paper.

2. EFFECTS OF INTEREST-RATE CHANGES ON COMPANY VALUE

The asset-liability-management literature – e.g. D’ARCY / GORVETT (2000) and
CAMPBELL (1997) – typically compares the interest-sensitivity of existing assets
and liabilities: If both sides of the balance-sheet react to interest-rate changes
in exactly the same way, the residual value of balance-sheet equity is not
affected.

This approach is different from looking at the present value of future cash-
flows: Conceptually, the present value can be disaggregated into three com-
ponents:

(1) The present value of future investment income and maturity refunds on
existing assets.

(2) The present value of future claims payments on existing business.
(3) The present value of net payments from future insurance business.

Asset-liability management typically looks at (1) and (2), while neglecting (3).
In contrast, the DCF-valuation formula for the appraisal value incorporates
(1), (2) and (3).

In the context of this paper, the effect of interest-rate changes on the full
appraisal value (fundamental market-value) of an insurance company is exam-
ined. Conceptually, this is similar to the work of PANNING (1995) and the field
of dynamic financial analysis.

We can calculate the partial derivative of DCF-company value with respect
to i to derive the value impact of a change in i. In doing so, we can either
assume that only i alone changes, or that there are correlations with other vari-
ables (e.g. inflation, insurance-rates, share prices).
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6 dV/dg = (– (i + pr – g) + (r + i * x + tr * np) (1 – t) – g) / (i + pr – g)2

> 0 for (r + i * x + tr * np) (1 – t) > i + pr
i.e. for return on equity > discount-rate



At first it is assumed that all investments are short-term (or at variable
interest-rates). Subsequently, adjustments are made for the case of asset-lia-
bility-matching or other longer-term investment strategies.

2.1. Pure Changes in the Real Interest-Rate with All Other Parameters
Unchanged

Let us assume that an interest-rate change does not affect any other parameter.
Then, the partial derivative of company value V with respect to i is:

dV/di = (((1 + x) (i + pr – g) – ((i + z) + i * x + tr * np)) (1 – t) + g) / (i + pr – g)2

> 0 for ((1 + x) (pr – g) – tr np – z) (1 – t) + g) > 0

(Note that r = i + z. The derivation assumes that the technical result is unaf-
fected by interest-rate changes, d tr / d i = 0. Empirical evidence on this assump-
tion is given in section 2.3. Also, it is assumed that accounting is based on
undiscounted reserves. In the case of reserve-discounting, an increase in i
decreases today’s reserves, improving today’s technical result. However, the
discount unwinds in the future, leaving no overall net effect, apart from poten-
tial taxation issues.)

All other things being equal, it therefore follows that:

• The higher the cost-of-capital risk-premium pr and/or the combined ratio cr
and/or the tax-rate t, the more likely will a higher interest-rate increase
company value V.

• The higher the insurance reserves x, the more likely will a higher interest-
rate increase V for pr > g, and decrease V for pr < g.

• The higher the growth-rate g and/or the investment risk-premium z, the
more likely will a higher interest-rate decrease V7.

• The higher premium income relative to equity, the more likely will a higher
interest-rate increase V for cr > 100%, and decrease V for cr < 100%.

How can these effects be explained economically?

• The combined ratio (cr) is (by assumption) unrelated to interest-rates.
According to the derivation above, an increase in the interest-rate implies
a change in company value of – tr np (1 – t) = (cr – 1) np (1 – t). For com-
bined ratios above 100%, the change in V is positive (the technical result
taken on its own contributes a negative present value, which is reduced by
higher interest-rates), for lower combined ratios it is negative (the present
value of positive technical results is also reduced by higher interest-rates).
In general, the higher the combined ratio, the higher the increase in V (or
the lower the decline in V) in case of an interest-rate increase.
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• A higher cost-of-capital risk-premium (pr) makes value increases in case of
higher interest-rates more likely, as it softens the relative increase of the dis-
count rate (with increasing pr, a given absolute change in i implies a smaller
percentage change in d = i + pr – g).

• A higher investment risk-premium (z) has the opposite effect: It lowers the
relative increase in investment yield on shareholders’ funds when interest-rates
go up, as a given change in i implies a smaller percentage change in 
r = i + z. However, as long as d > r, the present value of the future return
on shareholders’ funds still goes up with increases in i (as the relative increase
in the discount rate is still smaller than the relative increase in the investment
yield).

• Future investment income is leveraged by the amount of insurance reserves
(x). If the growth-adjusted discount-rate (d = i + pr – g) is higher than the
interest earned on investments (i.e. pr > g), higher interest-rates increase the
present value of future investment income. This happens because an increase
in i has a smaller absolute effect on the discount-rate than on investment
yield.

• The effects of the growth-rate (g) are hardest to discuss. On one hand,
growth-related profit retention reduces distributable profits. An increase in
i lowers the (negative) present value impact of not being able to distribute
those profits. On the other hand, higher growth increases future profits. Inso-
far as those future profits are not interest-sensitive, an increase in i lowers
their present value. If the company is profitable (i.e. return on equity > cost
of capital), the value of future profits will be higher than the value of required
profit retention, thus implying a negative overall effect of higher growth in
case of an interest increase. If a company is unprofitable (i.e. technical result
and investment returns are insufficient to finance the profit-retention required
for long-term growth), the effect can go into reverse. However, as future
investment returns are interest-sensitive, their present value does not decrease
with an interest-rate increase. Thus, higher growth-rates negatively impact
value sensitivity when interest rates go up, even if a company is unprofitable,
except if insurance reserves are very small.

Table 1 shows some parameter constellations that can typically be observed in
real-life situations (the table assumes a tax-rate of 35%).

As can be seen, for combined ratios above 100% an interest-rate increase
only implies a drop in value in the case of high growth rates. For combined
ratios considerably below 100%, however, an interest-rate increase is value-
reducing under many realistic sets of parameters: If a company e.g. operates
with a combined ratio of 95%, an interest-rate increase would always be value-
reducing, except if the company exhibits high insurance reserves as well as low
growth-rates.

The extent of the change in value is especially high, if interest-rates and
growth-rates are low: If growth is around zero and the interest-rate is 3%,
an interest-rate change of only one percentage point changes the value by 
10-20%. At g = 0 and i = 2%, di = 0.01 even implies value changes of up to
30%.
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TABLE 1

VALUE-IMPACT OF INTEREST-RATE CHANGES USING DIFFERENT SETS OF PARAMETERS

assumed parameters increase in interest-rate value-change at 
pr g 1/np x z implies value-increase if di = 1%, cr=100%8

4% / 6% 0% 25% 1 0% cr > 98.0% / 97.5% 16.7% / 20.0%
4% / 6% 0% 25% 1 3% cr > 98.8% / 98.3% 6.9% / 10.0%
4% / 6% 0% 25% 2 3% cr > 97.8% / 96.3% 9.4% / 12.5%
4% / 6% 0% 25% 4 0% cr > 95.0% / 92.5% 16.7% / 20.0%
4% / 6% 0% 25% 4 3% cr > 95.8% / 93.3% 11.8% / 15.0%

4% / 6% 5% 25% 1 3% cr > 99.4% / 98.4% 3.0% / 5.9%
4% / 6% 5% 25% 2 3% cr > 99.6% / 98.1% 1.1% / 4.0%
4% / 6% 5% 25% 4 3% cr > 100.1%/ 97.5% – 0.1% / 2.8%

4% / 6% 10% 25% 1 0% cr > 99.2% / 98.2% 4.0% / 7.0%
4% / 6% 10% 25% 1 3% cr > 100.0%/ 99.0% 0.4% / 3.2%
4% / 6% 10% 25% 2 3% cr > 101.5%/100.0% – 2.6% / 0.1%
4% / 6% 10% 25% 4 0% cr > 103.7%/101.2% – 3.7% / 0.9%
4% / 6% 10% 25% 4 3% cr > 104.5%/102.0% – 4.2% / – 1.5%

4% / 6% 0% 50% 1 0% cr > 96.0% / 94.0% 16.7% / 20.0%
4% / 6% 0% 50% 1 3% cr > 97.5% / 95.5% 6.9% / 10.0%
4% / 6% 0% 50% 4 0% cr > 90.0% / 85.0% 16.7% / 20.0%
4% / 6% 0% 50% 4 3% cr > 91.5% / 86.5% 11.8% / 15.0%

4% / 6% 5% 50% 1 3% cr > 98.7% / 95.2% 3.0% / 5.9%
4% / 6% 5% 50% 4 3% cr > 100.2%/ 95.2% – 0.1% / 2.8%

4% / 6% 10% 50% 1 0% cr > 98.3% / 96.3% 4.0% / 7.0%
4% / 6% 10% 50% 1 3% cr > 99.8% / 97.8% 0.4% / 3.2%
4% / 6% 10% 50% 4 0% cr > 107.3%/102.3% – 3.7% / 0.9%
4% / 6% 10% 50% 4 3% cr > 108.8%/103.8% – 4.2% / – 1.5%

2.2. Inflation-Induced Interest-Rate Changes

D’ARCY / GORVETT (2000) examine the impact of inflation on asset-liability
management strategies for a run-off portfolio. They conclude that the “effec-
tive duration” of liabilities is lower, if interest-rate changes are correlated with
changes in inflation. Put differently: If you have liabilities with a duration of
x years, locking-in an equivalent asset-duration of x years only leads to proper
asset-liability-matching, if the liability payments are not subject to changing
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8 Interest-rates assumed: 3% (g = 0), 8% (g = 5%), 13% (g = 10%). The higher the assumed interest-
rate, the lower the effect of an interest-rate change on company value.



inflation-rates. If the liabilities are subject to changing inflation, the asset dura-
tion has to be shortened, so that the investment income received will also be
subject to changes in inflation through the link between inflation and interest-
rates.

The same logic will now be applied to the DCF-valuation formula.
In case of purely inflation-induced interest-rate changes, dg/di = 1 follows,

if premiums and profit also grow at the rate of inflation. In this case we can
write:

dV/d = ((1 + x)(1 – t) – 1) (i + pr – g)/(i + pr – g)2 = (x(1 – t)– t) / (i + pr – g)
> 0 for x (1 – t) > t and i + pr > g

for (e.g.) x >= 1 and t < 0,5 and i + pr > g

An increase in inflation with other parameters unchanged seems to have a
positive effect on company value, if the – not very restrictive – assumptions 
x >= 1, t < 0.5 hold.

However, this derivation is incomplete and therefore incorrect: The deduced
value increase results from higher nominal interest income on the investments
that are funded by insurance reserves. But a higher rate of inflation also implies
a nominal increase in future claims payments, leading to a worsening techni-
cal run-off result. In other words, the implicit assumption of d (tr np) /d i = 0
is no longer adequate. If claims inflation equals the general inflation rate, an
inflation-induced interest-rate increase will not affect company value, as the
technical result of subsequent calendar years will worsen when inflated claims
are settled, exactly offsetting the higher nominal interest income. This becomes
immediately apparent in a balance-sheet with discounted claims reserves:
If the real interest-rate goes up, insurance reserves are discounted at a higher
rate, implying a lower present value. If nominal interest-rate and inflation go
up by the same amount, discount-rate and future nominal claims payments
increase at the same rate, leaving the discounted reserves unchanged. In sub-
sequent years, even though the higher nominal rate implies higher investment
yields, reserves are also being inflated more quickly, with both effects offset-
ting each other.

For valuation purposes this implies that an increase in inflation has to be
reflected not only in nominal interest-rate and growth, but also in the run-off
result. In countries with high rates of inflation it may therefore be easier to use
real instead of nominal figures.

However, a real approach neglects the potential negative tax effect of an
inflation increase: For t = 0, the higher interest earned on shareholders’ funds
is exactly sufficient to finance the necessary growth in nominal equity, as 
dg = di. For t > 0, interest on shareholders’ funds goes up only by (1 – t) di,
insufficient to fund growth of dg = di. In this case, company value goes down
if inflation goes up. However, the effect depends on the exact tax regime in place
(this paper assumes a corporate tax rate and an additional income tax-rate
which is applied to dividends as well as fixed income investments. While this
is a reasonable assumption in many countries, it clearly does not apply in all
cases. Under new German tax-rules, for example, income tax on dividends is
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lower than on fixed income, with potential implications for the after-tax cost-
of-capital calculation).

2.3. Correlation Between Interest-Rate Changes and Insurance Profit

So far it was assumed that interest-rate changes do not affect other parameters:
Neither did we assume a correlation with equity returns on the investment
side, nor a correlation with the technical insurance result.

It is frequently argued that an increase in interest-rates has a negative effect
on share prices, as future cash-flows are discounted more steeply9. Strictly
speaking this only holds for changes in the real interest-rate (not for purely
inflation-induced interest-rate changes), and only if an increase in the real
interest-rate is not correlated with an increase in the future real profit potential.
As argued in ALBRECHT (1999a, p. 127ff.), there is (ambiguous) evidence for
such a correlation, so the relationship is less clear than it may seem at first
glance.

However, a rough look at empirical data seems to validate the negative
correlation between (nominal) interest-rates and share-prices: For the years
1981-99, the correlation between yearly returns of the German DAX and the
German money market yield was – 0.31. The change in the money market
yield was also negatively correlated with the DAX-return, at – 0.2110.

The technical result may also be correlated with the interest-rate: If indus-
try participants think that higher interest-rates imply an improvement in the
financial result, they might be tempted to increase the competitive pressure
on rates (PANNING (1995), DICKINSON (2000)). In this case, an interest-rate
increase should be correlated with a worsening technical result (a higher loss
ratio).

The yearly loss ratios of German non-life insurers for the years 1966-9911

are positively correlated with the money-market yield (+0.30). Using first
differences (i.e. changes in the interest-rate correlated with changes in the loss
ratios), the positive correlation persists (not lagged: +0.18; lagged one year:
+0.24).

The correlation differs considerably between lines of business, however:
While (e.g.) fire and transport had high positive correlations (+0.54 and
+0.38), liability and accident showed negative correlations (– 0.49 and – .45).

Within the scope of this article, a detailed quantification of correlation
effects shall not be attempted. For example, some of the correlations listed
above might simply be spurious. However, it should be clear from the rough
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9 See e.g. D’ARCY / GORVETT (2000), p. 396.
10 DAX-return taken from GDV, table 100. Money-market yield from ALBRECHT (1999a), app. A 2.1.

Similarly, ALBRECHT (1998), p. 263, reports a positive correlation between DAX and REX in the
period 1988-96. As REX is a fixed-income performance-index, higher interest-rates imply lower
index-values. Consequently, a positive correlation between DAX and REX indicates a negative cor-
relation between DAX and the general level of interest-rates.

11 Source: GDV (several tables). Money-market yield from ALBRECHT (1999a), app. A 2.1.



calculations performed above that correlations may have a major impact and
merit further study.

2.4. Effect of Asset Liability Matching and Other Investment Strategies

If fixed-income investments are chosen to mature according to the expected tim-
ing of claims payments, the average term to maturity of the portfolio will
depend on the ratio of reserves to premium income. If the payment structure
is constant over time and the portfolio does not grow, claims reserves equaling
yearly claims imply a medium payment period of 6 months. In the case of
unearned premiums, the average payment period is also 6 months, if contracts
are spread evenly over time with yearly renewal12.

The value-effect of such an investment strategy in the case of an interest-
rate change can be approximated via the change in present value of a fixed
interest payment over the average payment period. The present value of fixed-
income investments (excluding reinvestment risk, i.e. assuming zero-bond invest-
ments) can be approximated as13:

Present Value (in % of company equity) = x (1 + if (1 – t))m / (1 + i + pr)m

with: if fixed interest-rate
m average duration of insurance reserves

Table 2 shows some examples for value changes (in % of equity)14:

TABLE 2

CHANGE IN INTEREST-SENSITIVITY WHEN INVESTMENTS ARE MATCHED WITH LIABILITIES

claims reserves claims unearned pr. equity – > equals value effect of
% of claims ratio % of net pr. % of net pr. x m di = 0,01

40% 50% 50% 25% 2.8 0.41 – 1.0%
100% 50% 50% 25% 4.0 0.50 – 1.8%
100% 50% 50% 50% 2.0 0.50 – 0.9%
200% 50% 50% 50% 3.0 0.83 – 2.2%
300% 50% 50% 50% 4.0 1.25 – 4.2% 
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12 Assuming a stagnant portfolio, 1/12 of unearned premiums will be earned in 12 months’ time, 1/12
in 11 months, etc. On average, the unearned premiums on the balance-sheet at any point in time will
therefore remain for 6 months. If the portfolio is growing, a larger part of unearned premiums will
be earned in later months, implying a longer average duration than 6 months.

13 Calculation excludes investments backed by shareholders’ funds. It may be argued that the discount-
rate should not include the full risk-premium pr, as the fixed-income portfolio in itself is not subject
to the full company risk. However, omitting pr hardly affects the interest-sensitivities.

14 For if = i = 0.05, pr = 0.04 und t = 0.35. Changes in pr and t have no major effect on the result.



As can be seen, asset-liability-matching results in rather short terms to matu-
rities for broadly diversified p/c-insurers: Even if parts of a large insurance
portfolio have a very long run-off period, an average period until maturity of
more than a year (m > 1) should be the exception rather than the rule, as
it would imply a ratio of claims reserves to claims considerably in excess of
200%. As a consequence, an interest-rate increase has rather small effects on
the present value of liability-matched asset portfolios for all but insurers with
long tails (high values for x and m).

To give an example, the non-life operations of German insurer Allianz AG
show total (net) claims provisions of 45.3 b Euro in 2001 and net earned pre-
miums of 34.4 b Euro. The ratio of claims reserves to premiums is 132 %
(ALLIANZ (2002), p. 4 and p. 48), the average duration equals roughly 0.6 years
(using the simplified assumptions of stable business volume and constant pay-
ment pattern).

For specialized long-tail insurers, the ratio can be much higher, though.
One example for longer-tail business is MAT (Marine Aviation Transport).
In its 2000 financial statements, AGF MAT (a subsidiary of Allianz AG)
shows (net) claims provisions of 384 m Euro and net earned premiums of
132 m Euro. This equals a ratio of 291%. As there are no unearned premi-
ums at year-end (MAT-contracts typically start at the beginning of the
calendar-year), the ratio implies an average duration of roughly 1.5 years
(17.5 months).

Other business lines, e.g. workers’ compensation or bonding, may exhibit
much longer average durations, though they are rarely run as stand-alone com-
panies.

Insurers frequently hold portfolios with durations far in excess of asset-
liability-matching. Table 3 shows the present value effects of an average of several
years until maturity:

TABLE 3

CHANGE IN INTEREST-SENSITIVITY WHEN INVESTMENT MATURITIES ARE LENGHTENED

value effect of di = 0,01 for time until maturity of
x 2 3 4 5 years

1 – 1.6% – 2.3% – 2.9% – 3.4%
2 – 3.2% – 4.6% – 5.8% – 6.8%
4 – 6.5% – 9.2% – 11.6% – 13.6%

If reserves are high compared to equity (high values of x), a portfolio duration
of several years quickly leads to a double-digit impact on the company’s mark-
to-market equity, even when interest-rates increase by only one percentage
point.
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3. CASE-STUDIES ON THE TOTAL EFFECT OF INTEREST-RATE CHANGES

As discussed, different sets of parameters will imply very different reactions of
company value to interest-rate changes. This chapter intends to give examples
of companies that are quite susceptible or less susceptible to interest-rate
risk15.

Non-company-specific parameters used throughout are i = 0.05, pr = 0.04
and t = 0.35.

Company A is a retail insurer with a high franchise value (low combined ratio,
high growth rate). Parameters are as follows: cr = 0.95, g = 0.05 x = 4,
np = 4, z = 0.

According to the DCF-valuation formula, A’s appraisal value is 6.06 times equity.
Assuming short-term investments, an interest-rate increase of di = 0.01 implies
a new value of 5.50 times equity, i.e. a drop in value of 9%.

If A had opted for a long-term investment strategy (m = 5 years), value
would have dropped by a further 0.14 times equity, i.e. the total interest-related
drop would have been 12%. Compared to total company value, the effect of
the investment strategy is small, as A’s franchise value is far in excess of equity.
Nevertheless, long-term investments increase A’s sensitivity to interest-rate
changes.

The effect occurs irrespective of tail: If A is assumed to have a much longer
tail, interest-rate increases still imply a drop in value with short-term invest-
ment strategies, and a bigger drop with longer-term investments.

Company B is considerably less profitable, but also boasts a high growth-
rate. Parameters are: cr = 1.02, g = 0.05, x = 4, np = 4, z = 0.

B’s appraisal value is 1.51 times equity. Assuming short-term investments,
di = 0.01 implies a new value of 1.86 times equity, i.e. an increase in value of
23%.

If B had opted for a long-term investment strategy (m = 5 years), the neg-
ative value-impact would again have been 0.14 times equity. Total value after
the interest-change would then be 1.72 times equity, an increase of 14% com-
pared to the initial value.

For B, a long-term investment portfolio actually decreases the interest-
sensitivity of the company’s appraisal value, even though B is not a long-tail
insurer. This happens because the future profits of the company are earned
through investment income, while the technical result is negative. The higher
investment income overcompensates the higher discount-rate for the parame-
ters chosen.

B has a second option to lower its interest-sensitivity: It can increase the
portion of equity that is invested in risky assets (e.g. stocks): Assuming 
e.g. z = 0.03, di = 0.01 only increases company value by 13% (short term
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investments) / 6% (long-term investments). This happens because the addi-
tional expected return (z) is assumed to accrue irrespective of interest-rate
increases. A higher interest-rate lowers the present value of the risk-premium
earned, another counter-cyclical effect on B’s value.

Company C is a long-tail industrial insurer with low profitability (high com-
bined ratio) and low growth perspectives. Parameters are: cr = 1.1, g = 0,
x = 8, np = 3, z = 0.

C’s appraisal value is 1.08 times equity. Assuming short-term investments,
di = 0.01 implies a new value of 1.56 times equity, i.e. an increase in value of
44%.

For C, the higher investment earnings on the long tail more than over-
compensate the lower present value of future profits (which is assumed to be
low anyway). However, for such an insurer, the higher profitability caused by
higher interest-earnings is likely to spark more aggressive competition on rates,
thus increasing long-term combined ratios – an effect not covered by applying
the formula on a ceteris paribus basis.

If C had opted for a long-term investment strategy (m = 5 years), the neg-
ative value-impact would have been 0.27 times equity. Total value after the
interest-change would then be 1.29 times equity, still a 19% increase compared
to the initial value. Again, as with B, long-term investments decrease the inter-
est-sensitivity of C’s value.

The examples discussed above illustrate the limitations of PANNING’s (1995)
analysis: PANNING argues that the duration of investments should generally
be lengthened to counter-balance the interest-sensitivity of future busi-
ness value16. In his analysis, future business value has a negative duration
(i.e. the value increases when interest-rates go up), because the duration
of future losses is higher than the duration of future premiums. However,
this only holds under his non-general assumption of break-even premiums.
For sufficiently profitable companies (like company A), the effect goes into
reverse.

What would have happened to A, B and C in the case of inflation-induced
interest-rate changes? Assuming that a change in inflation does not affect the
underlying profitability of the insurance business17, and also neglecting potential
tax-effects, the only effect of such an interest-rate change would be on the pre-
sent value of longer-term fixed-income investments. The higher the inflation-
risk, the higher the value sensitivity of longer-term investments. This serves to
make longer-term investments less attractive, irrespective of company charac-
teristics. Companies A, B and C should all lower their investment durations if
inflation-uncertainty increases.

360 THOMAS ALBRECHT

16 Assuming – as is done here – that future premiums are fixed, i.e. not interest-sensitive.
17 The extensive literature on the effect of inflation on business profitability cannot be discussed here

due to space constraints. However, it can be argued that the results are quite inconclusive.



4. EMPIRICAL RESULTS FOR GERMANY

It can be empirically verified if the market capitalisation of companies is cor-
related with interest-rate changes. However, changes in market capitalisation
can only correctly reflect the fundamental effects of interest-rate changes, if
market participants under-stand and correctly price those underlying funda-
mental effects. As this cannot be taken for granted – given the complexities of
those effects – any empirical results should be interpreted with caution.

To capture the effect of interest-rate changes, unexpected changes should
be used, as expected changes will already be anticipated in the share price.
Consequently, the variable used to explain share-price effects cannot be the
change in money-market rates, but only a performance-index for fixed-income
securities.

To examine, if and to what extent the monthly stock-returns of major Ger-
man companies between January 1990 and May 2001 can be explained by the
REX-return (REX is a performance-index based on German fixed-income
government securities of different maturities; regression is performed on the
basis of Bloomberg-data), the following regression was performed (results
shown in table 4):

rcompany, i = a + b * rrex, i + εi

with: rcompany, i return of the company’s stock in month i
rrex, i return of the REX-index in month i

TABLE 4

EMPIRICAL INTEREST-SENSITIVITY OF GERMAN COMPANIES’ MARKET CAPITALISATION

company coefficient standard error R2

insurance
Allianz 2,47 0,64** 0,10
Munich Re 2,17 0,78** 0,05

banking 
Commerzbank 1,16 0,64 0,02
Deutsche Bank 0,69 0,74 0,01
Dresdner Bank 0,99 0,76 0,01

non-financial sector 
BASF 0,82 0,63 0,01
Bayer 1,29 0,61* 0,03
SAP – 2,10 1,12 0,03
Siemens 0,67 0,78 0,01
Volkswagen 1,12 0,82 0,01

* = The two-sided hypothesis “coefficient = 0” can be rejected at 95% level.
** = The two-sided hypothesis “coefficient = 0“can be rejected at 99% level.
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With the exception of SAP, the coefficient of the REX-return is positive in all
cases, i.e. an increase of REX (a decrease in the return of fixed-income secu-
rities) tends to imply an increase in share prices. However, for banks as well as
non-financial companies, the standard error is nearly as high as the coefficient,
and R2 is practically zero. The only exception are the two insurers Allianz and
Munich Re: The standard error is low relative to the coefficient, and R2 implies
an explanatory content of 5% and 10% of total share-price variance. This may
sound low at first glance, but given the multitude of effects that influence share-
prices, a higher explanatory content of interest-rate changes alone cannot plau-
sibly be expected.

The result of this – rather rough and superficial – empirical analysis is that
interest-rate changes do not in general have a strong effect on the market
capitalisation of German companies. However, interest-rate increases do have
a discernible (negative) impact on the market capitalisation of German insur-
ance companies.

So is this in line with the theoretical analysis?

The financial statements of Allianz AG for the financial year 2000 show lend-
ings and fixed-income securities of 189 b Euro, of which 91 b Euro with a
remaining term to maturity of more than 5 years. Roughly 2/3 of investments
are linked to life/health-business, where the bulk of investment income is passed
on to policyholders. Assuming proportional allocation, roughly 60 b Euro of
total investments – of which 30 b Euro with a remaining term to maturity of
more than 5 years – should directly affect company value. It therefore sounds
plausible to assume an average term to maturity of 5 years for the 60 b Euro
in total investments. If we compare this to the company’s equity of 35 b Euro,
the result is roughly x = 2, implying a negative value effect of –3.8% if inter-
est-rates go up by one percentage point. At the same time, the base-effect of
an interest-rate increase (as discussed in 2.1) should be close to zero in the case
of Allianz AG, if we assume pr = 0.04, x = 2, cr around 1.00, and g = 0.05 or
less. Finally, the market may expect a negative correlation between interest-
rates and technical insurance-results. In total, the theoretical effect of an interest-
rate increase on the value of Allianz AG may therefore truly be negative, just
like the empirical results indicate.

However, the empirical results can only be interpreted with great caution, as
multi-national companies like Allianz and Munich Re will not only be affected
by changes in German interest-rates, but by other countries’ interest-rates as
well. Furthermore, as those companies also write life and health-business, they
might be subject to other effects which are not covered by this analysis.

5. CONCLUSIONS

Without a doubt the analytical model developed in this paper is simplified in
several respects. To give just one example, it could be explicitly modelled that
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interest-rate changes are not identical over the whole yield-curve, but instead
tend to be less pronounced for long maturities18.

Nevertheless, the analysis leads to some general conclusions. Specifically, it
was shown that a change in the interest-rate can affect the value of a non-life
insurance company positively as well as negatively, depending on the underly-
ing parameters:

If the investments are predominantly long-term (more than would be the
case for mere asset-liability-matching) and average combined ratios compara-
tively low, a value reduction in case of increasing interest-rates is likely. This
effect seems to dominate for the German insurers Allianz and Munich Re.

However, there is no reason to generalize this result: Companies / portfolios
with low expected growth-rates, combined ratios around or above 100% and/or
a comparatively short-term investment portfolio will on the contrary experience
an increase in fundamental DCF-value if the market interest-rate goes up.

The effects of an interest-rate change on company value can be summarized
as follows:

• An increase in the real interest-rate can affect company value positively or
negatively, depending on the underlying parameters. The different effects
on company value are:
1. A lower present value of run-off claims (→ increases value).
2. A lower present value of existing fixed-income securities (→ lowers value).
3. A lower present value of technical profits earned from future insurance

business (combined ratio < 100%) or of deficits incurred (combined ratio
> 100%) (→ increases or lowers value, depending on the combined ratio).
In addition, if the combined ratio worsens because rising interest-rates
increase the competitive pressure, this will negatively affect the present value.

4. A lower or higher present value of investment income in connection
with future business (the lower the growth-rate of future business, and
the higher the risk- premium in the discount-rate, the more likely will a
higher interest-rate imply a higher present value of future investment
income from future reserves).

• On the other hand, an increasing rate of inflation (with a corresponding
rise in the nominal interest-rate) does not influence company value in a world
without taxes – provided investments are short-term/variable rate – because
higher interest-income will be compensated by higher nominal claims pay-
ments and a higher discount-rate for future profits (although it is possible
that an increase in inflation may have consequences on real parameters and
therefore company value). Longer-term fixed-income investments, however,
imply a decrease in company value in case of an interest-rate increase, as
claims inflation will not be compensated by higher investment returns until
investments are reinvested after maturity. A further decrease in value results
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ANKER (1993) or ALBRECHT (1999a). The simple assumption of a parallel shift in the yield-curve, as used
in this paper, implies an over-estimation of long-term effects in section 2.1 relative to section 2.4.



from taxation effects under the tax regime assumed in this paper (though
other tax regimes may have different effects).
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FAVORABLE ESTIMATORS FOR FITTING PARETO MODELS:
A STUDY USING GOODNESS-OF-FIT MEASURES WITH ACTUAL DATA

BY

VYTARAS BRAZAUSKAS1, ROBERT SERFLING2

ABSTRACT

Several recent papers treated robust and efficient estimation of tail index para-
meters for (equivalent) Pareto and truncated exponential models, for large and
small samples. New robust estimators of “generalized median” (GM) and
“trimmed mean” (T) type were introduced and shown to provide more favor-
able trade-offs between efficiency and robustness than several well-established
estimators, including those corresponding to methods of maximum likelihood,
quantiles, and percentile matching. Here we investigate performance of the
above mentioned estimators on real data and establish — via the use of good-
ness-of-fit measures — that favorable theoretical properties of the GM and T
type estimators translate into an excellent practical performance. Further, we
arrive at guidelines for Pareto model diagnostics, testing, and selection of par-
ticular robust estimators in practice. Model fits provided by the estimators are
ranked and compared on the basis of Kolmogorov-Smirnov, Cramér-von Mises,
and Anderson-Darling statistics.

1. INTRODUCTION AND PRELIMINARIES

A single-parameter Pareto distribution plays a very significant role in actuarial
modeling because of its conceptual simplicity and ease of applicability in prac-
tice. The cdf of the Pareto P(s,�) model is given by

F(x) = 1 – (s/x)�, x > s, (1)

where � > 0 is the shape parameter that characterizes the tail of the distribution
and s > 0 is the scale parameter. When s is assumed known, the P(s,�) model
is called a single-parameter Pareto model. The assumption of s known is quite
typical in the actuarial literature because, as for example Philbrick (1985) states,
“although there may be situations where this value must be estimated, in vir-
tually all insurance applications this value will be selected in advance.” (See also
discussion by Rytgaard (1990).)

1 Supported by a grant from the Actuarial Education and Research Fund.
2 Supported by grants from the Casualty Actuarial Society and Society of Actuaries, with administra-

tive support from the Actuarial Education and Research Fund, and by NSF Grant DMS-0103698.
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In several recent papers Brazauskas and Serfling (2000a,b; 2001) treated
robust and efficient estimation of the tail index � for various setups: for large-
and small-samples and for one- and two-parameter models (corresponding to
s known or unknown). Developments presented there utilized a well-known
equivalence relation between model (1) and the truncated exponential distribu-
tion E(m,q) having cdf

G(z) = 1 – e –(z–m) /q, z > m, (2)

for q > 0 and –∞ < m < ∞. Specifically, if random variable X has cdf F given by
(1) then variable Z = logX has cdf G given by (2), with m = log s and q = �–1.

In large-sample studies, for example, new robust estimators of “generalized
median” (GM) type were introduced and “trimmed mean” (T) type estimators
were adapted from the E(m,q) model literature. These estimators were then
compared with the maximum likelihood, quantile type, percentile matching, and
other estimators. Using as efficiency criterion the asymptotic relative efficiency
(ARE) with respect to the maximum likelihood estimator (MLE) and as robust-
ness criterion the breakdown point (BP) (this is defined in Section 1.2), the GM
type was seen to dominate all competitors, with the T type second best. From
a practical point of view, the ARE is equivalent to the accuracy of the estimator
and can be interpreted in terms of the length of the confidence interval (see
Section 1.3 for precise discussion).

In the present paper we investigate performance of the above mentioned esti-
mators on real data and establish — via the use of goodness-of-fit measures —
that favorable theoretical properties of the GM and T type estimators trans-
late into an excellent practical performance. The goodness-of-fit measures,
defined in Section 1.1, are used here for two purposes: (i) to (formally) test the
appropriateness of the estimated Pareto model for a particular data set when
� is estimated by the MLE (this is defined in Section 1.3), and (ii) to evaluate
and compare Pareto fits when various estimators (not only the MLE) of � are
employed.

In the actuarial literature the issue of goodness-of-fit is addressed through
a combination of informal methods and formal statistical tests. Most informal
techniques are based on the difference (absolute or relative) between the fitted
and empirical values of relevant quantities, such as the number of claims or
expected value of claims for different claim layers. Additionally, for the Pareto
model in particular, comparisons of �̂ with a typical value of � for the same
insurance line of the entire industry are also used in the literature. (See Patrick
(1980), Philbrick (1985), and Reichle and Yonkunas (1985).) Regarding formal
approaches, tests based on Kolmogorov-Smirnov (KS) and x2 statistics seem to
have a leading role (see, e.g., Philbrick and Jurschak (1981)). More extensive
discussion on model validation principles is available in Klugman, Panjer, and
Willmot (1998), Section 2.9.

As is well-known in the statistical literature (e.g., D’Agostino and Stephens
(1986), p. 110), the x2 test is less powerful than tests based on the empirical cdf.
Therefore, here we use three widely popular goodness-of-fit measures which are
based on the empirical cdf — the above-mentioned KS statistic, the Cramér-
von Mises (CvM) statistic, and the Anderson-Darling (AD) statistic. All these
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statistics (though emphasizing different aspects of discrepancy) measure the dis-
tance in some sense between the fitted model cdf F and the empirical cdf Fn.
Thus estimators that lead to smaller values of these statistics are preferable.

The paper is organized as follows. First, in Section 2, we define precisely
several estimators for the parameter � in (1). Next, in Section 3, the data sets
are introduced, a method for data de-grouping is described, and preliminary
data visualization and diagnostic tools are applied to the sets. Finally, compar-
isons and conclusions are presented in Section 4. Also, in Section 4.2, we arrive
at guidelines for Pareto model diagnostics, testing, and selection of particular
robust estimators in practice.

In the remainder of this introduction, we formulate precisely our perfor-
mance criteria.

1.1. Goodness-of-Fit Measures

Let us consider a sample X1,…,Xn and denote the ordered sample values by
X(1) ≤ X(2) ≤ … ≤ X(n) and the empirical cdf by

in ( ) , < < .F x n X x x1
1

i

n

1

3 3#= -
=

! " ,

Also, for an estimator �̂ , let F(X( j)) denote the probability assigned to X( j) by
the model P (s, �̂ ), for j = 1,…,n. Note that Fn(X( j)) = j /n, for j = 1,…,n. The
goodness of fit statistics are then defined as follows.

The KS statistic Dn:
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The CvM statistic W 2
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The AD statistic A2
n :
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When the parameter � is estimated by �̂ML, critical values and formulas for
significance levels for the statistics Dn, W 2

n , and A2
n are available in D’Agostino
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and Stephens (1986), Tables 4.11 and 4.12, pp. 135-136. Actually, the results
developed there are for the model E(m,q) but, due to the equivalence relation
between (1) and (2), they can also be directly applied to the model P(s,�).

1.2. Robustness Criterion: Breakdown Point

A popular and effective criterion for robustness of an estimator is its break-
down point (BP), loosely characterized as the largest proportion of corrupted
sample observations that the estimator can cope with. In other words, the
BP of an estimator measures the degree of resistance of the estimator to the
influence of outlying observations which possibly (but not necessarily) represent
contamination of a data set rather than merely unusually extreme observations
generated by the target parametric model.

Brazauskas and Serfling (2000a,b) considered two types of contamination
— upper and lower contamination — and, consequently, defined separate ver-
sions of BP:

Lower (Upper) Breakdown Point (LBP/UBP): the largest proportion of lower
(upper) sample observations which may be taken to a lower (an upper) limit
without taking the estimator to a limit not depending on the parameter being
estimated.

For modeling insurance loss data, however, contamination of the lower type
is of lesser concern because the lower limit of losses is usually pre-defined by
a contract. (For example, the lower limit can be represented as a deductible.)
Thus, in the present treatment we favor estimators which have nonzero UBP.

1.3. Efficiency Criterion: Variance

If sample observations follow the postulated parametric model, then it is well-
known that, for large data sets, the MLE attains (in its approximating normal
distribution) the minimum possible variance among a large class of compet-
ing estimators. Therefore, it can be regarded as a quantitative benchmark for
efficiency considerations. In particular, for the model P(s,�) with s known, the
MLE of � is readily derived in Arnold (1983), and given by

ii 1= /
.

log X
n

snML =a
!

t
^ h

Its exact distribution theory is described by the statement that

n2

MLa
a

t has cdf x 2
2n ,

where x2
n denotes the chi-square distribution with n degrees of freedom. This

implies that �̂ML is a biased estimator of �, but multiplication by the factor
(n – 1)/n yields an unbiased version,
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For further details on exact distribution theory of �̂ML see Rytgaard (1990).
Following techniques in Brazauskas and Serfling (2000a,b), it can be shown

that for large sample size n, �̂MLU is approximately normal with mean � and vari-
ance �2/n. Moreover, other competing estimators �̂ for � considered here are
approximately normal with mean � and variance c�2/n for some constant c > 1
and large n. This means that confidence intervals for the parameter � based on
the competing estimators will be c times wider than those based on the MLU.
Such optimal precision of the MLU, however, is achieved at the price of robust-
ness, which becomes crucial when the actual data departs from the assumed para-
metric model. Hence, the MLU is most efficient but is nonrobust with UBP = 0.

2. THE ESTIMATORS

The MLE and MLU were given in Section 1.3. Here we introduce the other
methods considered in this study for estimation of the parameter �. In particu-
lar, we present quantile, trimmed mean, and generalized median type estima-
tors. For further details and discussion see Brazauskas and Serfling (2000a,b).

2.1. Quantile Type Estimators

Quantile type estimators of � are completely unaffected by additional informa-
tion about s. For this reason and for compatibility with the existing literature,
we describe this approach here for the case when s is treated as an unknown
nuisance parameter.

Quantile estimators based on k ≥ 2 (selected) quantile levels 0 < p1 < …<
pk < 1 are defined as follows:
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where ui = – log(1 – pi), 1 ≤ i ≤ k, and x denotes the least integer ≥ x. Such
estimators were introduced and studied for the Pareto problem by Quandt
(1966) for k = 2 and by Koutrouvelis (1981) for general k ≥ 2.

Choosing the minimum of the determinant of the asymptotic covariance
matrix of the estimators of s and � as an optimality criterion, Koutrouvelis
(1981) found that the optimal choice of p1 is always

p°1 = . ,n 0 5
1

+

and the remaining optimal quantile levels p°2, …, p°k are:

• For k = 2, take p°2 = 1 – (1 – p°1)e –1.5936 ≈ .80.

• For k = 5, take p°2 = 1 – (1 – p°1 )e – 0.6003 ≈ .45, p°3 = 1 – (1 – p°1 )e –1.3544 ≈ .74,
p°4 = 1 – (1 – p°1)e –2.3721 ≈ .91, and p°5 = 1 – (1 – p°1)e – 3.9657 ≈ .98.

We denote the optimal estimators of � by �̂Q
opt,k. We also consider a nonoptimal

case (denoted by �̂Q
* ):

• For k = 5, take p1 = .13, p2 = .315, p3 = .50, p4 = .685, and p5 = .87.

Remark. When the number k of quantiles is chosen to equal the number of
unknown parameters of the model, this method corresponds to what is called
percentile matching by Klugman, Panjer, and Willmot (1998).

2.2. Trimmed Mean Estimators

For specified b1 and b2 satisfying 0 ≤ b1, b2 < 1/2, a trimmed mean is formed
by discarding the proportion b1 lowermost observations and the proportion b2
uppermost observations and averaging the remaining ones in some sense. In
particular, for � we introduce the trimmed mean estimator

/ ,logc X s( )ni i
i
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T
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=a
=
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with cni = 0 for 1 ≤ i ≤ [nb1], cni = 0 for n – [nb2] + 1 ≤ i ≤ n, and cni = 1/d (b1, b2,n)
for [nb1] + 1 ≤ i ≤ n – [nb2], where [ · ] denotes “greatest integer part’’, and
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These estimators correspond to the trimmed mean estimators introduced and
studied by Kimber (1983a,b) for the equivalent problem of estimation of q = �–1

in the model E(m,q) with m known. The above cni’s are a choice making q̂T =
�̂T

–1 mean-unbiased for q = �–1.

2.3. Generalized Median Estimators

Generalized median (GM) statistics are defined by taking the median of the n
kd n

evaluations of a given kernel h (x1,…,xk) over all k-sets of the data. See Ser-
fling (1984, 2000) for general discussion. In Brazauskas and Serfling (2000a),
such estimators were considered for the parameter � in the case of s known:

�̂GM = Median{h(Xi1
,…,Xik

)},

with a particular kernel h (x1,…,xk):

j
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where Ck is a multiplicative median-unbiasing factor, i.e., chosen so that
the distribution of h(Xi1

,…,Xik
; s) has median �. Values of Ck, for k = 2:10, are

provided in the following table. (For k > 10, Ck is given by a very accurate
approximation, Ck ≈ k/(k – 1/3).

k 2 3 4 5 6 7 8 9 10
Ck 1.1916 1.1219 1.0893 1.0705 1.0582 1.0495 1.0431 1.0382 1.0343

3. DATA SETS AND PRELIMINARY DIAGNOSTICS

We choose three data sets for analysis in this study: Wind Catastrophes (1977),
OLT Bodily Injury Liability Claims (1976), and Norwegian Fire Claims (1975).
These data sets are of interest because they have been analyzed extensively in
the actuarial literature. In this section we first present the data and briefly
mention methods of analysis proposed in the literature. Then we describe a
data de-grouping technique which we apply for the wind data, the liability
data, and the Norwegian data. Finally, for an initial assessment of the validity
of distributional assumptions, we provide histograms and quantile-quantile
plots (QQ-plots) for each data set.

3.1. Wind Catastrophes (1977)

The Wind Catastrophes (1977) data set is taken from Hogg and Klugman
(1984), p. 64. It represents 40 losses that occurred in 1977 due to wind-related
catastrophes. The data were recorded to the nearest $1,000,000 and include
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only those losses of $2,000,000 or more. The following display provides the losses
(in millions of dollars):

2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5
5 5 5 6 6 6 6 8 8 9 15 17 22 23 24 24 25 27 32 43

In Hogg and Klugman (1984) two parametric models were used to fit the wind
data: truncated exponential (with the truncation point 1.5) and two-parameter
Pareto. Derrig, Ostaszewski, and Rempala (2000) also studied this data set and,
in addition to the above parametric models, used the empirical nonparametric
and the bootstrap approaches to estimate the probability that a wind loss will
exceed 29.5 (that is, $29,500,000). Further, Philbrick (1985), among several
applications of the single-parameter Pareto distribution to real data, investi-
gated a P(s,�) fit to the wind data with the truncation point s = 2. He advo-
cated the use of the MLE for estimation of � but apparently was unaware that
this estimator is biased.

3.2. OLT Bodily Injury Liability Claims (1976)

The complete OLT Bodily Injury Liability (1976) data set is available in Patrik
(1980), p. 99. It is prepared by the Insurance Services Office and represents
Owners, Landlords and Tenants (OLT) bodily injury liability losses for the
policy limit $500,000 for policy year 1976 evaluated as of March 31, 1978. Patrik
(1980) described general principles of selection, estimation, and testing of loss
models for casualty insurance claims. For illustrative purposes he used the two-
parameter Pareto distribution to fit the entire range of claims, including the
OLT Bodily Injury Liability (1976) claims.

Here we follow Philbrick’s (1985) approach and fit the single-parameter
Pareto distribution only to the claims that are greater than $25,000. The grouped
losses (recorded in thousands of dollars) in exceedance of this threshold are
presented in Appendix, Table A.1.

3.3. Norwegian Fire Claims (1975)

This data set is one among 20 sets of Norwegian Fire Claims, for years 1972-1984
and 1986-1992, presented in Appendix I of Beirlant, Teugels, and Vynckier
(1996). It represents the total damage done by 142 fires in Norway for the year
1975. (For this year a single-parameter Pareto distribution seems to provide a
reasonably good fit to these data. Fits of similar quality are observed for sev-
eral other years as well.) A priority of 500,000 Norwegian krones was in force,
thus no claims below this limit were recorded. Actual losses (in thousands of
Norwegian krones) are provided in Appendix, Table A.2.

The Norwegian fire claims for various years have been extensively analyzed
by Beirlant, Teugels, and Vynckier (1996). Their approach is based on extreme
value theory, which concentrates exclusively on the upper tail of the data. We will
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not pursue that approach here. However, we will follow techniques developed
there for data diagnostics, namely, methods of Section 1.5 which describe how
to construct specific QQ-plots.

3.4. A Method for Data De-grouping

We start with a motivational example based on the wind data. Losses recorded
there are rounded to the nearest million which suggests that actual losses cor-
responding to 2, for example, were not exactly 2 but rather somewhere between
1.5 and 2.5. (This seems to be one of the reasons why Hogg and Klugman
(1984) considered the left-hand endpoint 1.5 for the truncated exponential
model.) To avoid ties and inappropriate clustering of claims due to such rounding,
we apply a simple data de-grouping method as follows.

Let us continue with the wind data and, in particular, losses of size 2. It is
reasonable to assume that actual observations that correspond to 2 are equally
spaced (or, equivalently, uniformly distributed) on the interval (1.5, 2.5). Thus,
for the wind data, instead of the 12 observations “2’’ we shall use 1.58, 1.65,
1.73, 1.81, 1.88, 1.96, 2.04, 2.12, 2.19, 2.27, 2.35, 2.42, as the actual data. More
formally,

if (A,B) is an interval of losses and m is the number of losses within (A,B),
then m uniformly distributed losses x1,…,xm in that interval are found accord-
ing to the formula:

, ,..., .x m
k A m

k B k m1
1 1

1k = -
+

+
+

=b l

We emphasize that such an approach neither distorts the original grouping
nor changes the total loss amount within a group. It is easy to implement in
practice and, most importantly, it makes the data continuous, thus allowing
methods of estimation and goodness-of-fit to be applied directly. We apply this
technique to all three data sets. Finally, one may also consider more sophisticated
data de-grouping schemes by employing, for example, the beta family of distri-
butions instead of uniform. In that case, however, additional information, such
as mean and variance of losses within the interval, is required.

3.5. Preliminary Diagnostics

In Figure 1, we illustrate the results of preliminary diagnostics for the three data
sets at hand. Three plots in the first column correspond to the Wind Cata-
strophes (1977), in the second column — OLT Bodily Injury Liability Claims
(1976), and in the third column — Norwegian Fire Claims (1975) data. The fol-
lowing conclusions are quite evident:

• Histograms for all the data sets exhibit a similar shape for the underlying dis-
tribution. Two one-parameter models seem to be appropriate candidates: the
truncated exponential, and the Pareto.
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• The exponential QQ-plots clearly reveal that a truncated exponential model
does not fit any of the three data sets (a good fit corresponds to a 45° line).

• In comparison with the exponential case, the Pareto QQ-plot shows mild
improvement for the wind data, significant improvement for the liability data,
and nearly perfect fit for the Norwegian fire data.

Remark. Plotting of lognormal or Weibull QQ-plots, for example, reveals sig-
nificant improvements over the one-parameter Pareto model for the wind and
the liability data. These distributions, however, are two-parameter models (thus,
less parsimonious) and are not considered as competitors to the one-parame-
ter Pareto model. ¡

4. COMPARISONS AND CONCLUSIONS

In Section 4.1 we present summarizing tables for each data set, showing values
of the estimates of �, values of the KS, CvM, and AD statistics, and ranks of the
estimators based on these goodness-of-fit measures. In Section 4.2, conclusions
are drawn and recommendations are provided. Performances of all estimators
under consideration are compared by simultaneously examining their ranks
(for all three data sets), their UBP’s, and their variances.

Remarks. (i) Ranks to estimators are assigned as follows. The estimator with
the lowest value for a selected goodness-of-fit measure receives rank 1, the esti-
mator with the second lowest value (for the same measure) — receives rank 2,
etc. The idea of ranking estimators or models based on a certain criterion is
not new. It has been suggested and quite extensively dicussed by Klugman,
Panjer, and Willmot (1998), Section 2.9.2.

(ii) For situations when the number n
kd n of kernel evaluations needed for

computation of �̂GM becomes extremely large, we reduce the computational
burden by randomly choosing 107 kernel evaluations if n

kd n exceeds 107. Such
an approach maintains a high degree of numerical accuracy (up to 3 decimal
places) and renders the computational burden negligible. For instance, for the
Norwegian data (n = 142), it requires only 150 seconds to compute (simulta-
neously) all estimators used in this study on a Pentium II 400MHz laptop com-
puter. Further discussion on computational aspects of the GM estimators is
available in Brazauskas and Serfling (2000a). ¡

4.1. Summary of Pareto Fits

DISCUSSION OF TABLE 4.1

The fitted model is P(s = 1.5, �̂) with values of �̂ ranging from 0.605 (for �̂Q
opt,2)

to 0.791 (for �̂Q
opt,5). This range differs somewhat from the findings of Philbrick

(1985), where the MLE value of 0.976 (for grouped data) is reported and
compared to a typical parameter value of 1.0 for the property insurance line.
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Figure 1: Preliminary diagnostics for all three data sets.

The main reason for such a difference is the choice of the truncation point. In
Philbrick (1985), s = 2 is used. However, in view of our discussion in Section 3.4
and Example 1 in Hogg and Klugman (1984), p. 64, we believe that the choice
of 1.5 is more natural. Moreover, all three goodness-of-fit tests very strongly
support the appropriateness of the P(s = 1.5, �̂ML = 0.764) model with the
goodness-of-fit values .1071 (KS), .1106 (CvM), .7329 (AD), and corresponding
p-values: .51 (KS), .27 (CvM), .24 (AD). While the corresponding p-values for
the P(s = 2.0, �̂ML= 0.945) model (for the de-grouped data) are comparable for
the CvM and AD statistics, the p-value for the KS statistic is substantially
lower: .33 (KS), .30 (CvM), .23 (AD). Thus, based on this discussion, we choose
the model P(s = 1.5, �̂).

Table 4.1 suggests that, although the P(s = 1.5, �̂ML) model is accepted by all
three tests, additional improvements of the fit are possible if we use the unbiased
version MLU, which in turn can be even further improved by robust estima-
tors. For example, the estimators �̂T (with b1 = 0, b2 = .05), �̂GM (with k = 4,
k = 5, and k = 10), and �̂Q

* , all have uniformly smaller ranks than �̂MLU. ¡
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DISCUSSION OF TABLE 4.2

The fitted model is P(s = 25,000, �̂) with values of �̂ ranging from 1.082 (for
�̂GM with k = 3) to 1.172 (for �̂Q

opt,2). Philbrick (1985) reports the MLE value
of 1.108. This is slightly below the industry values of 1.245 (all classes lia-
bility; truncation point 25,000) and 1.159 (high severity liability; truncation
point 30,000), which are available in Reichle and Yonkunas (1985), Appendix E.
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TABLE 4.1

VALUES OF �̂, GOODNESS-OF-FIT STATISTICS, AND RANKS FOR THE WIND DATA.

Estimator �̂ KS rank CvM rank AD rank

MLU .745 .0980 6 .0911 12 .6484 12

Qopt,2 .605 .1320 14 .0956 13 .7939 13
Q*, k = 5 .731 .0911 2† .0792 10 .5999 10
Qopt,5 .791 .1198 13 .1445 14 .8881 14

T, b1 = 0, b2 = .05 .707 .0932 4 .0642 7 .5457 5
T, b1 = 0, b2 = .10 .677 .1031 8 .0562 2 .5335 2
T, b1 = 0, b2 = .15 .664 .1077 11 .0568 4 .5487 6
T, b1 = 0, b2 = .20 .667 .1066 10 .0564 3 .5441 4
T, b1 = 0, b2 = .25 .673 .1045 9 .0561 1 .5368 3

GM, k = 2 .653 .1118 12 .0594 6 .5720 8
GM, k = 3 .692 .0981 7 .0587 5 .5316 1
GM, k = 4 .714 .0911 2† .0679 8 .5576 7
GM, k = 5 .723 .0884 1 .0734 9 .5777 9
GM, k = 10 .744 .0975 5 .0901 11 .6445 11

TABLE 4.2

VALUES OF �̂, GOODNESS-OF-FIT STATISTICS, AND RANKS FOR THE LIABILITY DATA.

Estimator �̂ KS rank CvM rank AD rank

MLU 1.140 .0735 12 .0794 11 .6795 12

Qopt,2 1.172 .0784 14 .0944 14 .7843 14
Q*, k = 5 1.111 .0690 6 .0748 2 .6343 5
Qopt,5 1.161 .0767 13 .0881 13 .7420 13

T, b1 = 0, b2 = .05 1.098 .0670 4 .0757 4 .6302 1
T, b1 = 0, b2 = .10 1.093 .0662 2 .0766 8 .6314 3
T, b1 = 0, b2 = .15 1.110 .0689 5 .0748 2 .6336 4
T, b1 = 0, b2 = .20 1.125 .0712 8 .0759 5 .6500 8
T, b1 = 0, b2 = .25 1.127 .0715 9 .0762 6 .6532 9

GM, k = 2 1.133 .0724 10† .0775 9† .6641 10†

GM, k = 3 1.082 .0656 1 .0795 12 .6395 7
GM, k = 4 1.094 .0664 3 .0764 7 .6310 2
GM, k = 5 1.113 .0693 7 .0748 2 .6359 6
GM, k = 10 1.133 .0724 10† .0775 9† .6641 10†
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TABLE 4.3

VALUES OF �̂, GOODNESS-OF-FIT STATISTICS, AND RANKS FOR THE NORWEGIAN DATA.

Estimator �̂ KS rank CvM rank AD rank

MLU 1.209 .0517 13 .0353 11† .3693 8

Qopt,2 1.234 .0470 3† .0351 9† .3717 10†

Q*, k = 5 1.232 .0473 5 .0348 8 .3698 9
Qopt,5 1.203 .0529 14 .0367 13 .3759 13

T, b1 = 0, b2 = .05 1.221 .0494 8 .0341 1 .3645 1†

T, b1 = 0, b2 = .10 1.229 .0479 6 .0345 5† .3674 7
T, b1 = 0, b2 = .15 1.234 .0470 3† .0351 9† .3717 10†

T, b1 = 0, b2 = .20 1.235 .0468 2 .0353 11† .3728 12
T, b1 = 0, b2 = .25 1.226 .0485 7 .0343 3† .3658 5

GM, k = 2 1.242 .0454 1 .0369 14 .3825 14
GM, k = 3 1.220 .0496 9 .0342 2 .3645 1†

GM, k = 4 1.217 .0502 10 .0343 3† .3649 3
GM, k = 5 1.215 .0506 11 .0345 5† .3655 4
GM, k = 10 1.214 .0508 12 .0346 7 .3659 6

In our case, the range of �̂ is in closer agreement with the industry values.
A minor discrepancy between Philbrick and our MLE’s is due to different data
de-grouping approaches.

The goodness-of-fit tests show strong evidence that the P(s = 25,000, �̂ML=
1.153) model is appropriate with the goodness-of-fit values (p-values): .0755 (.35)
for KS, .0843 (.42) for CvM, .7153 (.26) for AD. Nonetheless, the fit based on
the MLE is again uniformly improved by MLU, which is further improved by
all T and GM estimators and by �̂Q

* . ¡

DISCUSSION OF TABLE 4.3

The fitted model is P(s = 500,000, �̂) with values of �̂ ranging from 1.203 (for
�̂Q

opt,5) to 1.242 (for �̂GM with k = 2). The narrowness of the range points to a
very good fit between the data and Pareto model, which was initially suggested
above by the QQ-plot. Further, the three tests show extremely strong evidence
in support of the P(s = 500,000, �̂ML= 1.218) model with the goodness-of-fit
values (p-values): .0500 (.70) for KS, .0343 (.89) for CvM, .3647 (.71) for AD. There-
fore, it is not surprising that in this case the MLE fit is among the best, improved
upon by only the �̂GM (with k = 3) and �̂T (with b1 = 0, b2 = .05) fits. ¡

4.2. Comparisons, Conclusions, and Recommendations

DISCUSSION OF TABLE 4.4

“Robustness versus efficiency’’ comparisons show that GM-type estimators
dominate the competition. In particular, for a fixed variance (or UBP), any Q
or T-type estimator can be improved upon by a GM estimator with as good



variance (UBP) and larger UBP (smaller variance). For example, �̂Q
opt,5 with

UBP = .019 and variance = 1.079 is improved upon by �̂GM(k = 5), with UBP
= .129 and variance = 1.061 and �̂GM(k = 10), with UBP = .067 and variance =
1.019. Similarly �̂T (b1 = 0, b2 = .15) with UBP = .150 and variance = 1.277 is
improved upon by �̂GM (k = 3), with UBP = .206 and variance = 1.141, and
�̂GM (k = 4), with UBP = .159 and variance = 1.088.

For the goodness-of-fit comparisons, if an estimator has at least 2 out of
3 ranks of corresponding statistics smaller than another estimator, then its
performance is considered better. For the wind data, for example, �̂T (b1 = 0,
b2 = .10) with ranks (8, 2, 2) is better than �̂T (b1 = 0, b2 = .05) with ranks (4,
7, 5) but worse than �̂GM (k = 3) with ranks (7, 5, 1). This approach suggests
that, for all data sets, �̂Q

* demonstrates the strongest performance among
Q-type estimators but is outperformed by the best T-type (�̂T with b1 = 0, b2 =
.05 and b1 = 0, b2 = .10) and by the best GM-type (�̂GM with k = 3 and k = 4)
estimators. ¡

Conclusions

Based on the comparisons in Table 4.4, the following conclusions emerge:

• The GM-type estimators offer the best trade-offs between robustness and effi-
ciency, which translates into an excellent performance in terms of goodness-
of-fit. The best fits are provided by the �̂GM (k = 3 and k = 4) estimators,
which offer moderate to high protection against contamination (UBP) and
low to moderate sacrifice in accuracy (variance).
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TABLE 4.4

COMPARISONS BASED ON RANKS, UBP, AND VARIANCE OF ESTIMATORS.

Wind Catastrophes OLT Liability Norwegian Claims UBP Variance
Estimator KS, CvM, AD KS, CvM, AD KS, CvM, AD (×a2/n)

MLU 6 12 12 12 11 12 13 11†† 8 0 1

Qopt,2 14 13 13 14 14 14 3† 9† 10† .203 1.541
Q*, k = 5 2† 10 10 6 2 5 5 8 9 .130 1.383
Qopt,5 13 14 14 13 13 13 14 13 13 .019 1.079

T, b1 = 0, b2 = .05 4 7 5 4 4 1 8 1 1† .050 1.089
T, b1 = 0, b2 = .10 8 2 2 2 8 3 6 5† 7 .100 1.180
T, b1 = 0, b2 = .15 11 4 6 5 2 4 3† 9† 10† .150 1.277
T, b1 = 0, b2 = .20 10 3 4 8 5 8 2 11† 12 .200 1.383
T, b1 = 0, b2 = .25 9 1 3 9 6 9 7 3† 5 .250 1.501

GM, k = 2 12 6 8 10† 9† 10† 1 14 14 .293 1.280
GM, k = 3 7 5 1 1 12 7 9 2 1† .206 1.141
GM, k = 4 2† 8 7 3 7 2 10 3† 3 .159 1.088
GM, k = 5 1 9 9 7 2 6 11 5† 4 .129 1.061
GM, k = 10 5 11 11 10† 9† 10† 12 7 6 .067 1.019



• The T-type estimators are slightly less competitive in terms of “robustness
versus efficiency’’ comparisons. However, their goodness-of-fit performance
is as good as that of the GM-type estimators. The best fits are provided by
the �̂T (b1 = 0, b2 = .05 and b1 = 0, b2 = .10) estimators, which offer low to
moderate protection against contamination (UBP) and low to moderate sac-
rifice in accuracy (variance).

• The Q-type estimators are outperformed with respect to both criteria, “robust-
ness versus efficiency’’ and goodness-of-fit, by the T and GM-type estima-
tors and, thus, are less competitive.

• The nonrobust but most efficient MLU neither can improve nor be improved
by any other estimator with respect to the “robustness versus efficiency’’
criterion, because it has the best variance and the worst UBP. However, its
performance with respect to goodness-of-fit is consistently among the worst,
implying that for “robustness versus efficiency’’ comparisons the robustness
should be given a higher priority.

Practical Recommendations

When fitting Pareto models to loss data, the following steps are necessary:

1. If data are grouped or ties are present, de-group it using methods of Sec-
tion 3.4; otherwise, go to the next step.

2. Use diagnostic tools — histogram and QQ-plots — to visually determine
whether a Pareto model is appropriate.

3. Compute �̂ML and apply the KS, CvM, and AD statistics to formally test
if the Pareto model provides an adequate fit to the data. Note that tables
with the critical values of these statistics are only available when � is esti-
mated by MLE. (Tables are presented in D’Agostino and Stephens (1986),
pp. 135-136, and Durbin (1975), Table 3.)

4. Compute �̂ using the MLU and Q, T, and GM-type estimators. If the range
of �̂’s is narrow (as in the case of the Norwegian fire data), then the fit
is very good and even the MLE can be relied on. However, if the range is
relatively wide (as in the case of the wind data), then ranking of robust esti-
mators has to be used to refine the fit.

5. In situations when all three goodness-of-fit tests support the Pareto model,
the T-type estimators with 5%-10% trimming and the GM-type estimators
with k = 3 and k = 4 perform the best. Estimators with high UBP should be
applied if one of the tests rejects the Pareto model or if the QQ-plots are
not satisfactory, or if the range of �̂’s is very wide.
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APPENDIX

TABLE A.1

OLT BODILY INJURY LIABILITY CLAIMS (1976) DATA (× 1000 DOLLARS).

Loss Number Loss Number Loss Number
Amount of Losses Amount of Losses Amount of Losses

25-30 11 70-75 9 220-230 1
30-35 18 75-80 1 240-250 2
35-40 9 95-100 4 260-270 1
40-45 4 120-130 2 280-290 1
45-50 11 140-150 3 290-300 2
50-55 3 190-200 1 340-350 1
55-60 2 200-210 2 410-420 2

Source: Patrik (1980), Appendix F, Part 1.

TABLE A.2.

NORWEGIAN FIRE CLAIMS (1975) DATA (× 1000 NORWEGIAN KRONES).

500 552 600 650 798 948 1180 1479 2497 7371
500 557 605 672 800 957 1243 1485 2690 7772
500 558 610 674 800 1000 1248 1491 2760 7834
502 570 610 680 800 1002 1252 1515 2794 13000
515 572 613 700 826 1009 1280 1519 2886 13484
515 574 615 725 835 1013 1285 1587 2924 17237
528 579 620 728 862 1020 1291 1700 2953 52600
530 583 622 736 885 1024 1293 1708 3289
530 584 632 737 900 1033 1298 1820 3860
530 586 635 740 900 1038 1300 1822 4016
540 593 635 748 910 1041 1305 1848 4300
544 596 640 752 912 1104 1327 1906 4397
550 596 650 756 927 1108 1387 2110 4585
550 600 650 756 940 1137 1455 2251 4810
551 600 650 777 940 1143 1475 2362 6855

Source: Beirlant, Teugels, and Vynckier (1996), Appendix I.
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THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS
ACCOUNTS

BY

FRANK DE JONG1 AND JACCO WIELHOUWER2

ABSTRACT

Variable rate savings accounts have two main features. The interest rate paid
on the account is variable and deposits can be invested and withdrawn at any
time. However, customer behaviour is not fully rational and withdrawals of bal-
ances are often performed with a delay. This paper focuses on measuring the
interest rate risk of variable rate savings accounts on a value basis (duration)
and analyzes the problem how to hedge these accounts. In order to model the
embedded options and the customer behaviour we implement a partial adjust-
ment specification. The interest rate policy of the bank is described in an error-
correction model.

KEYWORDS

Term structure, duration, uncertain cash flow, variable rates of return JEL
codes: C33, E43

1. INTRODUCTION

A major part of private savings is deposited in variable rate saving accounts,
in the US also known as demand deposits. Typically, deposits can be invested
and withdrawn at any time at no cost, which makes a savings account look sim-
ilar to a money market account. However, the interest rate paid on savings
accounts is often different from the money market rate. In Europe, the inter-
est rate paid on the savings account can actually be higher or lower than the
money market rate. Even when these interest rates differ, depositors do not
immediately withdraw their money from savings accounts when rates on 

* We thank Dennis Bams, Joost Driessen, D. Wilkie, participants at the AFIR 2000 colloquium, and
two anonymous referees for comments on previous versions of the paper. The usual disclaimer
applies.

1 University of Amsterdam
2 ING Group and CentER, Tilburg University
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alternative investments are higher. Whatever the causes of this behaviour (mar-
ket imperfections, transaction costs or other), these characteristics imply that
the value of the savings accounts from the point of view of the issuing bank
may be different from the nominal value of the deposits.

In the literature, the valuation of savings accounts is well studied. For exam-
ple, Hutchison and Pennacchi (1996), Jarrow and Van Deventer (1998) and
Selvaggio (1996) provide models for the valuation of such products. The first
two papers build on the (extended) Vasicek (1977) model, whereas the latter
paper uses a more traditional Net Present Value approach. In all these papers
there is little explicit modeling of the dynamic evolution of the interest rate
paid on the account and the balance, and how this evolution depends on
changes in the term structure of market interest rates. For example, Jarrow
and van Deventer’s (1998) model is completely static in the sense that the inter-
est rate paid on the account and the balance are linear functions of the cur-
rent spot rate. In practice, it is well known that interest rates and balances are
rather sluggish and often do not respond immediately to changes in the return
on alternative investments, such as the money market rate. Typically, the inter-
est rate paid on the account is set by the bank and the balance is determined
by client behaviour. The balance depends, among other things, on the interest
rate but also on the return on alternative investments. Because the paths of
future interest rates and the adjustment of the balance determine the value of
the savings accounts, an analysis of dynamic adjustment patterns is impor-
tant.

In this paper, we analyze the valuation and hedging of savings deposits
with an explicit model for the adjustment of interest rates and balances to
changes in the money market rate. A recent paper by Janosi, Jarrow and
Zullo (JJZ, 1999) presents an empirical analysis of the Jarrow and
van Deventer (1998) model. They extend the static theoretical model to a
dynamic empirical model, that takes the gradual adjustment of interest rates
and balance into account. Our approach differs from the JJZ paper in several
respects.

Firstly, we treat the term structure of discount rates as exogenous and cal-
culate the value of the savings account by a simple Net Present Value equa-
tion. This approach, suggested by Selvaggio (1996) leads to simple valuation
and duration formulas, and is applicable without assuming a particular term
structure model. The drawback of the NPV approach is that we have to assume
that the risk premium implicit in the discount factor is constant, but this may
be a good first approximation because we want to concentrate on the effects
of the dynamic adjustment of the interest rate paid on the account and bal-
ance and not on term structure effects.

Secondly, a difference between the JJZ model and ours is the modeling of
the long run effects of discount rate shocks. In our model, there is a long
run equilibrium, in which the difference between the interest rate paid on the
account and the money market rate is constant, and the balance of the sav-
ings account is also constant (possibly around a trend). Short term deviations
from these long run relations are corrected at a constant rate. This model
structure is known in the empirical time series literature as an error correction
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model3. This model has some attractive properties, such as convergence of the
effects of shocks to a long-run mean.

The interest rate sensitivity is quantified in a duration measure. We demon-
strate that the duration depends on the adjustment patterns of interest rate paid
on the account and balance. We pay particular attention to the implications of
the model for the hedging of interest rate risk on savings deposits. We illustrate
how to fund the savings deposits by a mix of long and short instruments that
matches the duration of the savings account’s liabilities.

The paper is organized as follows. First the valuation of the savings accounts
is dealt with in 2. In 3 the models on the pricing policy and the customer
behaviour are presented, and a discrete time version of the model is estimated
for the Dutch savings accounts market. 4 deals with the duration of this prod-
uct and 5 with hedging decisions. The paper is concluded in 6.

2. VALUATION OF VARIABLE RATE SAVINGS ACCOUNTS

The valuation problem of savings accounts and similar products was analyzed
by Selvaggio (1996) and Jarrow and Van Deventer (1998). Their approach is to
acknowledge that the liability of the bank equals the present value of future cash
outflows (interest payments and changes in the balance). The present value of
these flows does not necessarily equal the market value of the money deposited,
and therefore the deposits may have some net asset value. Jarrow and Van
Deventer (1998) treat the valuation of savings accounts in a no-arbitrage frame-
work and derive the net asset value under a risk-neutral probability measure.
However, in our paper we want to implement an empirical model for the sav-
ings rate and the balance, and therefore we need a valuation formula based on
the empirical probability measure. We therefore adopt the approach proposed
by Selvaggio (1996), who calculates the value of the liabilities as the expected
present value of future cash flows, discounted at a discount rate which is equal
to the risk free rate plus a risk premium4. Hence, the discount rate R(t) can be
written as

,R t r t= + c] ]g g (1)

where r (t) is the money market rate and g is the risk premium. We can inter-
pret this discount rate as the hurdle rate of the investment, that incorporates
the riskiness of the liabilities, as in a traditional Net Present Value calcula-
tion.

The main assumption in this paper is that this risk premium is constant over
time and does not depend on the level of the money market rate. This assump-
tion is obviously a simplification. Any underlying formal term structure model,
such as the Ho and Lee (1984) model, implies that risk premia depend on the
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money market rate. However, the risk premia are typically small and since the
focus of the paper is on modeling the dynamic adjustment of interest rates
and balances, we ignore the variation in the risk premium and focus on the
effect of shocks to the money market rate.

With this structure, the market value of liabilities is the expected discounted
value of future cash outflows, i.e. interest payments on the account i (t) and
changes in the balance D(t) 5

( ) .EL e i s D s D s ds0D
Rs

0
= -

3
-# l] ] ]g g g6; @ E (2)

Notice that in this setup reinvestments of interest payments are counted as a
part of deposit inflow D�(t). Working out the integral over D�(s) by partial
integration we find that the value of the liabilities equals

( ) ( ).EL e i s R s D s ds D0 0D
Rs

0
= - +

3
-# ] ] ]g g g6; @ E (3)

Since the market value of the assets is equal to the initial balance, D(0), the
net asset value (i.e., the market value of the savings product from the point of
view of the bank) is

( ) ( ) ( ) .EV D L e R s i s D s ds0 0 0D D
Rs

0
= - = -

3
-# ] ] ]g g g6; @ E (4)

For an interpretation of this equation, notice that R (t) – i(t) is the difference
between the bank’s discount rate and the interest paid on the account. Addi-
tional savings generate value with return R (t). The costs of these additional
savings are i(t), however. The difference R(t) – i(t) therefore can be interpreted
as a profit margin.

The net asset value is simply the present value of future profits (balance
times profit margin). Therefore, the net asset value is positive if the interest rate
paid on the account is on average below the discount rate. Obviously, the net
asset value is zero if the interest rate paid on the account always equals the dis-
count rate.

As an example, consider the situation where the interest rate paid on the
account is always equal to the discount rate minus a fixed margin, i(t) = R(t) – m,
and the discount rate is constant over time.6 Moreover, assume that the bal-
ance is constant at the level D*. In that case, the net asset value of the savings
accounts is

D .V R D=
n) ) (5)
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FIGURE 1: Net asset value
This figure shows the net asset value of a deposit of 100, as a function of the discount rate R and 

the profit margin m

Intuitively, this is the value of a perpetuity with coupon rate m and face
value D). Figure 1 graphs the net asset value for different values of R and m.
For large profit margins and low discount rates, the net asset value can be
a substantial fraction of the market value of the savings deposits.
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Obviously, this example describes the value in a static setting. For the inter-
est rate sensitivity of the net asset value, we have to take into account that after
a shock in interest rates, the interest rate paid on the account and the balance
only gradually adjust to their new equilibrium values. In the next section we
therefore present a model for the adjustment patterns of interest rate and
balance after shocks to the discount rate. In the subsequent section we present
discount rate sensitivity measures based on these adjustment patterns.

3. CLIENT AND BANK BEHAVIOUR

The analysis in the previous section shows that the net asset value of savings
accounts depends on the specific pattern of the expected future interest rates
and balances. The main difference between money market accounts and sav-
ings accounts is the sluggish adjustment of interest rates and balance to changes
in the discount rate. In this section we model these adjustment processes. The



models highlight the partial adjustment toward the long run equilibrium
values of interest rates and balances. In the analysis, we take as given the path
of the money market rate r t] g and hence the path of the discount rate
R t r t= + c] ]g g . We describe the stochastic evolution of the interest rate paid on
savings deposits, i (t), and the balance, D(t), conditional on the path of the
discount rate.

For the interest rate paid on savings accounts, we propose the following
stochastic error correction specification

di t R t i t dt dW t1 1= - - +l n v] ] ] ]g g g g6 @ (6)

where W1(t) is a standard Brownian motion. This equation states that the
interest rate adjusts to deviations between the long run value R(t) – m and the
current rate. We see this as the target policy rule of the bank that sets the
interest rate. Deviations are corrected at speed k > 0, and in the long run,
expected interest rates are a margin m below the discount rate R (t). The sto-
chastic term W1(t) models the deviations from the target policy rule. Such
deviations could be due to sudden demand shocks, competition from other
banks and the like.

For the balance we propose a partial adjustment specification

dD t D t D dt R t i t dt dW t2 2= - - - - - +m h n v)
] ] ] ] ]g g g g g8 6B @ (7)

This specification has three components. Firstly, there is an autonomous con-
vergence to a long run mean D*, which is determined by a tradeoff by the
clients between savings deposits and money market accounts. Secondly, there
is an outflow of funds proportional to the excess of the discount rate over the
savings rate. Thirdly, there is an unpredictable stochastic component.

This description with an autonomous convergence is especially suitable for
a detrended time series. An autonomous convergence to a long run mean is
expected in a detrended series for the balance. We detrend by defining the
variable D (t) as the fraction of total short term savings that is invested in
variable rate savings accounts. In this case D* is the long run fraction of total
short term savings that is invested in variable rate savings accounts. In this
way, the trend growth of the total savings market doesn’t affect the empirical
estimation and the duration analysis.

Working out the stochastic differential equations (6) and (7) gives:

,i t e i e R s ds e dW s0t s tt s tt

0
2

0
1= + - +l n v- - -l l l# #] ] ] ] ] ]g g g g g g6 @ (8a)

D t D e D D e R s i s ds0t s tt

0
= + - - - -h n) )- -m m#] ]_ ] ] ]g g i g g g6 @

.e dW ss tt
2

0
+v -m# ] ]g g (8b)

To interpret these equations, let’s consider the situation where the discount
rate R is constant over time. It is fairly easy to show that the effect of a
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change in the discount rate in this situation is given by the following partial
derivatives

,R
i t

e ds e1s t tt

02
2

= = -l - -l l#] ]g g (9a)
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m l

m l
# ] dg n (9b)

The long run derivative of the interest rate paid on the account is one, but in
the short run the effect is less than one. If j > 0 and k > l (which we show later
is clearly the case empirically), the partial derivative of the balance is negative,
and converges to zero in the long run.

These partial derivatives can be used to study the effects of a once-and-
for-all shock to the discount rate, a kind of impulse response analysis. Start-
ing from the equilibrium situation D D0 = )

] g and ( )i R0 = - n, the expected
adjustment patterns are illustrated in Figure 2 for an increase in the discount
rate by 1%. The parameter values are picked from the empirical estimates to
be discussed shortly, and are equal to k = 0.79, l = 0.048 and j = 0.43 for
the base case. We see that the interest rate doesn’t follow the jump in the
discount rate immediately but gradually adjusts to its new equilibrium value.
The adjustment of the balance is more complex. Initially, the balance
decreases because of withdrawals caused by the relatively low interest rate
paid on the account. But as the interest rate increases, this effect becomes
smaller and eventually the autonomous convergence of the balance to its long
run level dominates. One interpretation of this is that clients who initially pre-
ferred the variable rate savings account to the money market account will
return to variable rate savings accounts when the difference between the inter-
est rate paid on the savings account and the money market rate reverts to the
initial level.

Equations (9a) and (9b) also highlight the effects of the model parame-
ters on the adjustment of interest rates and balance to a shock in the dis-
count rate. The effect of j is obvious, it increases the impact of an interest
rate shock. This effect may be important in the current market, as the
increase in the use of internet for banking services and the resulting lower
transaction and search costs will probably increase the interest rate sensitiv-
ity of the customers. The effect of the mean-reversion parameters k and l is
more complicated. A higher value of l speeds up the adjustment of the bal-
ance itself, but doesn’t affect the interest rates. With a lower value of k, both
the adjustment of the interest rate and the balance are slower. The effect of
the balance is a result of the dependence of the balance on the interest rate.
These effects are illustrated in Figure 2, where the dashed line gives the
adjustment pattern for a lower value of k, and the dotted line the pattern
with a higher value of l.
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We now present some indicative estimates of the model parameters.
This exercise is not meant to be a thorough empirical investigation of the
adjustment pattern but merely serves as an illustration of the model. In order
to translate the continuous time parameters to a discrete time setting, we use
the following approximate7 discretization of the continuous time model

,i R i tD Dt t t t1 1 1e= - - +l n- -7 A (10a)

.D D D t R i tD D Dt t t t t1 2e= - - - - - +m h n)
-_ i 7 A (10b)

The discount rate is not directly observed in the data. Since a savings account
shares characteristics of both a money market account and a long term
deposit, its required rate of return (or discount rate) is proxied by a weighted
average of the money market rate (rt) and the long term bond yield (yt).8

390 FRANK DE JONG AND JACCO WIELHOUWER

7 This approximation is quite accurate. For example, the exact mean reversion parameter for the inter-
est rate equation is ( )t1 exp D- - l , which for small values of l or tD is close to tDl .

8 An alternative but equivalent way to justify this proxy is to assume that the risk premium of the savings
deposit is a fraction of the risk premium on long term bonds.

FIGURE 2: Adjustment of interest rate and balance of savings accounts
This figure shows the adjustment of interest rate (top panel) end balance (bottom panes) to a 1% shock in
the discount rate. The solid line is the base case. The dashed line is for a smaller value of k, the dotted line

for a larger value of l. The scale of the horizontal axis is years.



We treat the weight d as an unknown parameter which is estimated from the
data. This leads to the following empirical model

,D Di r i r y e1 ,t t t t t t0 1 2 1 1 1 1= + + - + - +a a a d d- - -^ h7 A" , (11a)

.D D i r y e1 ,t t t t t t0 1 1 2 1 1 1 2= + + - - - +b b b d d- - - -^ h7 A" , (11b)

This model is slightly more general than the theoretical model because it con-
tains an immediate, discrete adjustment of the interest rate to the money mar-
ket rate. After this initial jump, the adjustment to the new equilibrium is grad-
ual. This effect turned out to be so important empirically that we included it
in the empirical model.9 The parameters of the continuous time model can be
solved from the following equations (with /Dt 1 12= for monthly data)

/ ,Dt2= -l a

/ ,Dt1 1= -m b^ h

/ .Dt2=h b

In fact, the long run deposit level and the average spread of the interest rates
over the estimated discount rate could be unraveled from the constant terms
of the model. These are not very accurately estimated however and we refrain
from drawing inferences about these parameters from the estimates.

We use monthly data on interest rates and deposits from the Dutch savings
account market. The interest rate paid on the account is taken from one of the
price setters in the Dutch market. The sample period is 1982:12 to 1999:12,
spanning 17 years which is slightly longer than the samples of Hutchison
and Pennacchi (1996) or JJZ. To remove trends in the total savings volume,
we define the balance Dt as the fraction of variable rate savings accounts to
total savings. The following empirical estimates are obtained using least squares:

. . . ,D Di r i r y e0 084 0 072 0 066 1 ,t t t t t t1 1 1 1= - + - - + - +d d- - -^ h7 A" , (12a)

. . . .D D i r y e0 21 0 996 0 039 1 ,t t t t t t1 1 1 1 2= + + - + - +d d- - - -^ h7 A" , (12b)

The estimate of d is around 0.2. These estimates imply the following annualized
values for the continuous time parameters: k = 0.79, l = 0.048, and j = 0.43.
Using these parameters we can solve the second equation for the steady
state value of the fraction of variable rate savings deposits to total savings,

.D 0 58=) .10
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9 Notice that including this term does not invalidate the duration analysis of the model, which is
based on the gradual adjustment patterns only.

10 The empirical average of Dt is 0.51



4. DURATION

The previous section showed that the interest rate paid on the account and
the balance of savings accounts are related to the discount rate. Therefore, the
discount rate sensitivity of savings deposits will be different from the discount
rate sensitivity of a money market account (which has a duration of zero). In
this section, we study the sensitivity of the net asset value of a savings account
to a parallel shift in the path of the discount rates. We study a shift from the
original path R (t) to ( ) DR t R+ , and evaluate the derivative in DR 0= . With
some abuse of notation, we will write the resulting expressions as /V R2 2 but
it should be kept in mind that this refers to a parallel shift in the path of dis-
count rates. This approach is close to a traditional duration analysis, see e.g.
Bierwag (1987), but we take into account the dependence of future cash flows
on discount rates.

In the initial situation, the deposits are at their equilibrium value D). Dif-
ferentiation of the net asset value with respect the discount rate gives
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The three components of this expression can be interpreted as follows:

1. the interest rate sensitivity of the expected discounted profits;
2. the change in the margin on the expected future balances;
3. the expected margin times increases or decreases in the balance of the deposit.

Notice that if the future balances do not change as a result of the interest rate
change, and if the margin is constant, only the first term (the sensitivity of
the present value of the profits) remains. The second and third term are spe-
cific for savings accounts with their slow adjustment of the interest rate and
balance, and are therefore the most interesting for our analysis. We shall now
discuss the duration of the accounts given the specific model for the evolution
of interest rates and balances.

Assume again that R s R=] g is constant, and that the initial situation is in
equilibrium, D D0 = )

] g and ( )i R0 = - n. Under these initial conditions, the
development of the interest rates and the balance can be derived from equa-
tions (8a) and (8b):
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Assuming that the stochastic parts of the interest rate and the balance are
uncorrelated, i.e. Cov(dW1(t), dW2(t)) = 0, and noticing that the partial deriva-
tives (9a) and (9b) are non-stochastic, we can work out the partial derivative of
the value:
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With an increase in the discount rate, the first term reflects the loss of value
of the (perpetual) profit margin, the second term the discounted value of the
interest payments not made on the original balance during the time the inter-
est rate paid on the account i t]^ gh is below the discount rate minus the profit
margin R - n^ h, and the third term the discounted value of the profit foregone
on the balance outflows.

We can transform this change of value to a duration measure if we assume
that initially, the net asset value equals D ( ) ( )V D R0 0= n
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l m m lb l (16)

The first term reflects the duration of a perpetuity, and is determined by the
present value of the profits in the steady state. The second term reflects the
value of the lower interest rates paid on the existing balance, and is always neg-
ative. The third term is the duration of the profits on the additional balance
outflows, and is positive under the assumption >l m. Especially when the
margin m is thin and the net asset value is low, the second term may dominate
the other terms, leading to a negative duration for the net asset value of a sav-
ings account. In that case, an increase in the discount rate will increase the net
asset value because for some time the interest rate paid on the savings account
is lower than return on the assets deposited.

As an illustration Figure 3 shows the durations as a function of the discount
rate R and the margin m (the other parameters are put equal to the estimates
of the previous section). We see that the duration is typically positive, except
for low values of m, and declines with the discount rate. Most of this effect is
due to the duration of the discounted profit margin, 1/R. Leaving out this
term, we find the ‘extra’ duration of the net asset value induced by the slug-
gish adjustment pattern. Figure 4 shows these measures. Interestingly, the
‘extra’ duration is always negative, but converges to zero for relatively big profit
margins m.
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FIGURE 3: Duration of savings deposits
This figure shows the duration (in years) of savings deposits as a function of the discount rate (R) and the

profit margin m.

Figure 4: Duration of savings deposits (excluding profit margin)
This figure shows the extra duration (in years) of savings deposits, in excess of the duration of a perpetuity

(1/R), as a function of the discount rate (R) and the profit margin m.



5. HEDGING

In this section we consider the problem of hedging the net asset value. Given
the liability value LD of the variable rate savings accounts, one can hedge the
net asset value by immunization. For simplicity we assume the money deposited
can be invested in two instruments, Long Investments (LI) and Short Invest-
ments (SI). The balance sheet of the bank then becomes
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VLI LD

VSI VD

where VD denotes the Net Asset Value. We now consider the construction of
an investment portfolio where the interest rate risk on the net asset value is fully
hedged, i.e. the net asset value VD is not sensitive to the parallel shifts in the
discount rate. From the balance sheet we see that this requires

.R
V

R
V

R
LSI LI D

2
2

2
2

2
2

+ = (17)

Of course, the solution to this equation, and hence the composition of the invest-
ment portfolio, depends on the durations of the short and long investments. As a
simple example, consider the case where the short instrument has zero duration.
In that case the investment in the long instrument is determined by

.R
V

R
LLI D

2
2

2
2

= (18)

We can find R
LD
2
2

from equations (4) and (13).

As an illustration, Figure 5 graphs the required position in long (10 year
maturity) bonds in the hedge portfolio for different value of R and m. As seen
before, the duration of variable rate savings accounts may be negative, in par-
ticular when the profit margin m is fairly small. In that case the bank can hedge
the accounts by taking a long position in long investments. But if Dur is posi-
tive, which happens for example when the profit margin m is fairly high, one
should take a short position in the long asset. Alternatively, if one does not
like to take short positions in bonds, one could use derivative instruments such
as caps, which typically have a negative duration, or forward contracts.

6. CONCLUSION

This paper focuses on the valuation and interest rate sensitivity of variable
rate savings accounts. The duration can be split in three different effects:

• the duration of the expected discounted profits;
• the change in margin on expected future balances due to a change in interest

rate;
• the expected margin times increases or decreases in the balance of the

account.



The first element is the standard duration for products without embedded
options. The second and third term are non-standard (for example, they are
zero for a money market account) and arise due to the variable interest rate
paid on the account and the option of the clients to withdraw and invest in
the account at any time. The duration therefore crucially depends on the rapid-
ness of the adjustment of the interest rate paid on the account to discount
rate changes and on the reactions of the clients. These reactions will principally
be determined by the clients interest rate sensitivity and by the market efficiency.
The models are estimated for the Dutch savings account market. Duration
curves are given for different margins.

When hedging the savings deposits, one can construct a portfolio with
the same duration as the variable rate savings accounts. However, when one
does not want to go short into a certain asset class, one might need to include
derivatives (for example caps) to hedge these products, since it is possible to
have negative durations. The intuition is that an interest rate increase might
lead to a flight of clients to money market accounts. So buy ‘insurance’ when
money market accounts are less attractive, which result in profits when inter-
est rates spike up (the insurance pays out). The gain due to the caps in an
increasing interest rate environment then offsets the loss in the savings
accounts. Hedging in this way certainly smoothens the results on these products.
Of course this can be achieved by going short in long assets as well.
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Figure 5: Hedge portfolio
This figure shows the position in long bonds (duration 10 years) in the hedge portfolio of a 100 deposit,

as a function of the discount rate R and the profit margin m.



For future research it might be interesting to analyze the second order
effects. Then multiple immunization can be achieved with a portfolio with three
asset classes. Finally, it is possible to make the discount rate a function of a
number of interest rates with different maturities. This will of course increase
the complexity of the model but allows for the calculation of key-rate dura-
tions.
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PREDICTION OF STOCK RETURNS:
A NEW WAY TO LOOK AT IT

BY

JENS PERCH NIELSEN1 AND STEFAN SPERLICH2

ABSTRACT

While the traditional R2 value is useful to evaluate the quality of a fit, it does
not work when it comes to evaluating the predictive power of estimated finan-
cial models in finite samples. In this paper we introduce a validated R 2

V value
useful for prediction. Based on data from the Danish stock market, using this
measure we find that the dividend-price ratio has predictive power. The best
horizon for prediction seems to be four years. On a one year horizon, we find
that while inflation and interest rate do not add to the predictive power of the
dividend-price ratio then last years excess stock return does.

KEYWORDS

Prediction, Stock returns, Dividend price ratio, Cross Validation.

1. INTRODUCTION

Long term investors have the contradicting aims of minimizing risk and max-
imizing return over the long run. Much financial literature investigates trad-
ing patterns and strategy among long term investors, for example, Barber and
Terrance (2000) argue for a buy-and-hold type of strategy that does not eat
up returns by trading costs and many professional advisers argue that stocks
are better over the long run, see Siegel (1998) and Jagannathan and Kocher-
lakota (1996) for particular easily read accounts on this. Other professional
financial advisers say that expected returns in financial markets vary over
time and contain a significant predictable component. Consequently time
periods exist where the long term investor might choose to sell stocks and buy
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bonds, because the return on stocks in these time periods do not match the
risk involved. The dividend-price ratio and the earning-price ratio, in particu-
lar, has proven to have some predictive power for future stock returns, see
Campbell, Lo, and MacKinlay (1997, Chapter 7) for an up-to-date account
regarding of the dividend yield based predictability of stock returns, and see
Shiller (2000, p.8) for a warning of an overvalued American stock exchange
based on the earning-price ratio. Campbell, Lo, and MacKinlay (1997)
argued that the predictable component of stock returns is increasing with the
time horizon, since the measure of fit, the R2, increases rapidly with the time
horizon. In the actuarial literature Wilkie (1993) gets to a similar conclusion
replicating the linear modeling approach of Fama and French (1988). The fol-
lowing quote is from Wilkie (1993, p.341), who found that predictive power
seems to be strongest for a six and a half year time horizon for British data:
“A 1% difference in the dividend yield at the time of purchase of the stock
makes a difference… equivalent to about 4.1% a year compound for about six
and a half years”. So, there is a considerable financial and actuarial literature
on the predictive power of the dividend yield, see also Richardson and Stock
(1989) and Wilkie (1995). However, most literature uses traditional in-sample
methodology like goodness of fit, the traditional R2 value or parametric esti-
mation procedures combined perhaps with some testing. In this paper we
consider an adjusted measure of predictive power, the RV

2 value, that is an
out-of-sample measure in the sense that it measures how the model actually
predicts into the future, see Eun and Resnick (1988,1994) for financial papers
using a similar type of out-of-sample approach to evaluate their times series
of stocks, bonds and exchange rates as we use in this paper to analyze our
financial time series.

The paper follows its historical development. First we go through an analy-
sis of Danish data from 1922 to 1996 and then we add the analysis of the
updated data set from 1922 to 2001.

Regarding the data set 1922-1996

Based on our out-of-sample measure, it seems that the models have
strongest predictive power for a time horizon of four years for Danish stock
returns, at least with respect to our criterion. Dividend-price does seem to
have predictive power whereas knowledge of inflation and short interest
rates do not seem to add to this predictive power. However, our study shows
that the one year lagged returns do. The best predictive filter on a one year
basis turns out to be a two-dimensional fully nonparametric estimator based
on the dividend-price ratio and last years lagged excess return. Last years
excess return enters with a tendency towards reversal, such that good years
tend to follow bad years and vice versa. The dividend-price ratio is, however,
still the most indicative parameter while estimating the excess returns of the
coming years.

Moreover, based on the current level on the dividend-price ratio in Den-
mark, around 1%, we concluded (in december 2000) that expected excess returns
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on stocks are indeed below zero, for all the considered time horizons with good
prediction power, namely one, two, three, four and five years time horizons.
Based on this finding we then concluded further that the current market and
political situation in Denmark was out of balance, since all institutional
investors heavily increased their percentages of stocks in their portfolios right
then. On average, an increase from around 20% invested in stocks to around
40% invested in stocks have been seen for long term institutional investors in
Denmark over the last seven years. The model of this paper argue that this strat-
egy increases the risk without increasing the average return.3 We believe that
the considerations of this paper can be helpful while developing a modern
information system for the long term investor.

Regarding the updated data set 1922-2001

It turns out that while there still is predictive power in the updated data set,
it is much lower than in the original data set. This remarkable finding can have
two explanations. Either the Danish main index, the KFX index, has had an
exceptional behavior in some of the last five years or the entire world market
has followed exceptional rules during this period. In either case, our findings
show that some care has to be taken regarding predictive power of dividend
yields and that further studies based on international data sets should be added
to the current to get a fuller understanding of the problem. It could for exam-
ple be relevant to consider a regime shift model such as the one of Harris
(1999) to understand this question further. However, while a regime shift model
does add to the understanding of historical facts, it does not help much when
it comes to predictive power. For a deep insight into the nature of uncertainty
in prediction, see Cairns (2000, p 314). In this paper we only consider the first
of the three steps considered by Cairns, namely Method 1 that finds the best
fit to a model according to a certain criterion. However, since our criterion is
a validated measure of error, we implicitly take care of the errors dealt with
in Cairns Method 2 and Method 3, that consider uncertainty due to parame-
ter estimation and model estimation. Another relevant extension would be to
combine the world wide data of Dimson, March and Staunton (2002) with
the predictive methodology of this paper.

We first motivate our choice of regression variables by noting the basic rela-
tionship between stock returns and economic factors in Section 2. In Section 3
we describe our data. Our framework for prediction is given in Section 4
followed by the prediction results based on the data set 1922-1996 in Section 5
when dividend yield alone is used for prediction. In Section 6 we consider the
use of more regression variables for the data set 1922-1996 and in Section 7 we
shortly comment on the updated results for the data set 1922-2001.
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2. THE BASIC RELATIONSHIP BETWEEN STOCK RETURNS AND

ECONOMIC FACTORS

One traditional equation for the value of a stock is

( ) ( ) ,P g D1 1t
j
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1= + +c
3

-

=

-!

where most of the entering quantities on the right hand side are unknown, g,
discount rate, g, constant growth of dividend yields, i inflation and Dt is the
dividend paid out during the period t. This model was introduced to the finan-
cial theory by Williams (1938) and Gordon and Shapiro (1956). Campbell and
Shiller (1988) referred to the model as the “dividend-ratio” in absence of uncer-
tainty, see also Goetzman and Jorion (1993), Hodrick (1992), and Fama and
French (1988). For simplicity the discount rate and the growth rate do
not depend on time in this model although this is well known to be incorrect.
The point of the above identity is however, that it shows that the price of
stocks depend on quantities such that dividend yield, interest rate and infla-
tion. The two latter being highly correlated with almost any relevant discount
rate. It is also clear from the above identity that a decrease in discount rate,
which is highly correlated with an increase in bond yield, are related to an
increase in the stock return and vice versa.

3. THE DATA AND OUR DEFINITION OF PREDICTION

In this paper we use the annual Danish stock market data from Lund and
Engsted (1996), respectively the extended sample period 1922-1996 from 
Engsted and Tanggård (2000). We have ourselves extended the period to 1922-
2001. We consider the time series

, , , ,W S d I rt t t t t= ^ h

where St is stock return, It is inflation and rt is the short-term interest rate.
The stock index is based on a value weighted portfolio of individual stocks cho-
sen to obtain maximum coverage of the marked index of the Copenhagen Stock
Exchange (CBS). Notice that CBS was open during the second world war. In
constructing the data corrections were made for stock splits and new equity
issues below market prices. Further, dt = Dt /Pt denotes (nominal) dividends
Dt paid during year t divided by the (nominal) stock price Pt at the end of year t.
The appendix in Lund and Engsted (1996) contains a detailed description of the
data from where we have taken the following quote: “A nominal stock index and
accompanying dividend series was constructed from the original price quotation
sheets from the Copenhagen Stock Exchange. In order to avoid a possible tax-
induced distortion due to the well known January effect, the stock index at the
end of the year t is defined as the value in (mid) February of year t + 1. Similarly,
dividends for year t are defined as dividends paid out between February of year
t and February of year t + 1. However, no Danish companies pay dividends in
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January, so the dividend series is effectively the dividends paid during the year t.
Corrections are made for stock splits and new equity issues below the market
price using techniques similar to those described in Shiller (1981). The stock
index is a value-weighted portfolio consisting of approximately 16 individual
stocks (companies), which are generally chosen in order to obtain the maximum
coverage of the ‘market’ index of the Copenhagen Stock Exchange. The com-
position of the stock index is changed about every 10 years, and the weights for
the individual stocks are only adjusted in connection with changes in the com-
position of the stock index.”

We have updated the data set of Lund and Engsted (1996) following their
original approach. The leading Danish stock index, the KFX, index has been
used for this purpose. As a measure of the short-term interest rate, Rt, the dis-
count rate of the Danish Central Bank’s is used up to 1975, spliced together
with a short-term zero-coupon yield for the period thereafter. In computing
real values, we deflate nominal values by the consumption deflator4. The real
excess stock return is defined as

logS P D P rt t t t t1 1= + -- -^ h$ . ,

where

logr R1 100t t= +` j.

The resulting average of these excess stock returns are 2.5% for the period
1922-2001 (2.1% for 1922-1996) and 3.4% for the after war period 1948-2001
(3.2% for 1948-1996).

4. OUR FRAMEWORK FOR PREDICTION

The problem of prediction is considered as follows: Let Y St t ii

T

0

1
= +=

-! be the
excess stock return at time t over the next T years. We base our prediction on
the assumption that Yt can be approximated by a model of the form:

, , , ,Y g W t K Kt t t1 1 2fe != +-^ h " , (1)

where the error variable te are mean zero stochastic variables given the past,
W1, …, Wt – 1 and S1, …, St – 1

5. Ideally we would like to be able to predict Yt.
We do, however, only have information of Wt–1 and no information with
respect to the error term te . Therefore, estimating g :] g and using it for our 
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Central Statistical Bureau. The consumption series covers private consumption of durable and non-
durable goods. Unfortunately, there is no price deflator for private consumption, so nominal prices,
dividends and consumption are deflated using the consumption deflator for total consumption.

5 Note that in our implementation Wt–1 does not contain time lagged information as is the case e.g in
the Wilkie model (1995). An investigation of time lagged variables would be an obvious extension
of our approach to prediction.



prediction is the best we can do. Due to the definition of Yt the time period
,K K1 2^ h depends on T and is first ,T T T 1last - +_ i with Tfirst = 1923 or 1949 and

Tlast = 1996 or 2001.
Let

, , , , .X W S W SK K K K1 11 1 2 2
f= - -` `j j% /

For t’s where K1 ≤ (t –T) ≤ K2 we wish to be able to consider data points which
exclude direct information about St. We therefore introduce

, , , , , , , , , .X W S W S W S W S( )t
K K t T t T t T t T K K1 1 11 1 2 1 2

f f= - - - - + - + -
` ^ ^ `j h h j$ .

Now let the set H represent different estimation principles and let for gh, h ∈ H,
be some estimator based on X and let g(t)

h be the (equivalent) estimator based
on X(t).

For a given time horizon T, we define the loss of the estimator gh as

( )Q g W Wg gh t h t
t K

K

1 1
2

1

2

= -- -
=

! ^ ^h h# - (2)

which can be estimated by

( ) ,Y WQ g g( )
h t h

t
t

t K

K

1

2

1

2

= - -
=

! ^ h$ . (3)

i.e. we predict g(Wt–1) without the information contained in Yt, compare also
with Appendix 3. Notice that Q(gh) is not estimated well by the goodness of fit
measure

,Q Y Wg gh t h t
t K

K

1
2

1

2

= - -
=

!^ ^h h# -

since this measure always will be in favor of the most complex model. Such
complicated models are often in contradiction to the aim of predicting well.

While predicting, we find our optimal prediction scheme by minimizing
Q(gh) over all principles h. This gives us the best predictor within H.

Now let h0 correspond to the trivial prediction strategy based on the para-
metric model

,Yt te= +n (4)

where m is estimated by K K Y1 tt K

K

2 1
1

1

2
= - +n -

=
!t ^ h . For a given modeling and

estimation principle h, we define our new R2 value, that we call R 2
V, h , where V

stands for validated, as

( )
( )

.R
Q g
Q g

1,V h
h

h2

0

= - (5)
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Notice that R 2
V, h measures how well a given model and estimation principle h

predicts compared to the simple estimation principle h0. If R 2
V, h is positive then

we say that the modeling and estimation principle h predicts otherwise we say
that the principle h does not predict. In the following we suppress h in the
notation and rewrite R 2

V, h as R 2
V. No confusion can occur since it will always

be clear what h is under consideration. Note that R 2
V ∈ (–∞,1] and R 2

V > 0. The
interpretation of R 2

V is similar to the one of the classical R2 that can be defined
in a similar way as

( )
( )

,R
Q
Q

g
g

1
h

h2

0

= -

for a strategy h.
We illustrate the difference between our prediction procedure and tra-

ditional goodness of fit by considering two different estimators of stock
returns. In particular, we consider nonparametric estimators based on the full
data

, , ,W S d I rt t t t t= ^ h (6)

and on the simple subset

W d D Pt t t t= = . (7)

See Appendix 1 for the mathematical definition of the local linear kernel
estimators used. The quality of fit of these two models are given in Figure 1,
where the estimators of the regression function g :] g are used to fit next years
stock return. We talk about fitting rather than predicting, because the graphs
are based on an in-sample approach, where g :] g is estimated from the same
stock returns as we fit. From the graphs it is quite clear that one can fit our
data set pretty well from the full four dimensional time series, whereas the
one dimensional time series consisting of the dividend yield alone fits the data
much less. Based on a traditional goodness of fit measures as the R2 value,
see for example Kvålseth (1985), one would clearly prefer the four dimensional
covariate to predict stock returns to the simpler one dimensional time series
based on dividend yield alone. As a matter of fact, a goodness of fit type of
procedure will always have a tendency to chose the most complicated model.
Kvålseth (1985) is aware that goodness of fit has this problem and suggests
a correction using degrees of freedom. In nonparametric regression, it is,
however, unclear what degrees of freedom is. Hastie and Tibshirani (1990)
give ad hoc suggestions that seemed to work in their simulations for testing
using splines but did not work well in other contexts, see e.g. Sperlich, Lin-
ton and Härdle (1999) or Müller (1998). There are certainly other selection
criteria for (usually particular) nonparametric models as e.g. the improved
Akaike criterion of Hurvich, Simonoff and Tsai (1998). Inside their formu-
lae appear also expressions we might interpret as approximations of the
degrees of freedom but it is neither clear whether this criterion can be applied
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to all the smoothers we use here nor how to interpret the value the criterion
takes. We therefore prefer our more straightforward prediction criterion. We
will see later that, if we base our conclusions on R 2

V values, then sometimes
we end up with the opposite conclusion of that one we arrived at using the
traditional goodness of fit R2. Namely, we will see that the dividend yield can
indeed help a bit to predict stock returns, while the nonparametric estima-
tor of the full data set is too noisy to be useful for prediction and giving a
strongly negative R 2

V value.
We conclude by pointing out, that even when allowing for any kind of

flexible model, it takes a selective choice of the most important explanatory
variables to beat even the simple cross validated mean Q(gh0

) in practical
prediction. Indeed, complexity is one of the worst enemies of a good predic-
tion.

5. ESTIMATING AND EVALUATING THE POWER OF PREDICTION

In this section we enter the methodological question of finding a good estimator
of prediction power, first we follow Campbell, Lo and Mackinlay (1997,
p. 269) and calculate R2 for different prediction horizons. As mentioned above
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FIGURE 1: Fit of St using nonparametric regression (local linear) estimators. Upper curve: based on lagged
stock excess, dividend, inflation and short term interest rate, i.e. Wt from (6).

Lower curve: based on dividend by price ration, i.e.Wt from (7).



we will first concentrate on the period up to 1996. In the first table, Table 1,
we consider two versions of the regression 

... ,Y S St t t T t t T1 e= + + = + +a bd+ + + (8)

where dt t=d (left-hand columns) or ( )ln dt t=d (right-hand columns).

TABLE 1

CLASSICAL R2 VALUES FOR T-YEAR EXCESS STOCK RETURNS ON dt, MODEL (8)

horizon dt t=d ln dt t=d ^ h

T 1923-1996 1949-1996 1923-1996 1949-1996 

1 3.8% 7.3% 3.2% 5.9% 
2 8.8% 14.9% 6.6% 11.5% 
3 13.0% 21.1% 10.5% 17.1% 
4 17.5% 25.8% 14.2% 21.0% 
5 18.7% 24.2% 15.7% 20.6% 

We see that for the linear model the R2 values are increasing with the time
horizon, the same conclusion as Campbell, Lo and Mackinlay (1997, p. 269)
arrived at for their American data set. This might imply that prediction over
longer horizons is more easy than prediction over short horizons. In the next
table, Table 2, we investigate this using our validated criterion for the linear
model based on the dividend yield.

TABLE 2

R2
V VALUES FOR T-YEAR EXCESS STOCK RETURNS ON dt, MODEL (8)

horizon dt t=d ln dt t=d ^ h

T 1923-1996 1949-1996 1923-1996 1949-1996 

1 –0.2% 1.4% –1.1% –0.3%
2 4.9% 8.2% 2.2% 3.0%
3 7.8% 14.2% 4.6% 7.7%
4 10.3% 16.0% 7.4% 9.4%
5 10.3% 9.5% 6.5% 0.5%
6 6.9% –4.6% 5.2% –19.5%

We see that, while the quality of prediction is smaller than the R2 values con-
sidered above might suggest, the validated R 2

V does indeed indicate predictive
power of the dividend yield. The period with strongest predictive power seems
to be a four year time period with an improved quality of prediction of around
10%. This corresponds to a 10% decrease of the variance of the error term
involved in the prediction.
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In Table 1 and 2 we see, that a linear regression based on the dividend yield
itself instead of the logarithm to the dividend yield gives a better power of pre-
diction. Notice that negative values do not occur in Table 1, but they are pre-
sent in Table 2. Negative values can not occur with the classical R2 measure.
The classical R2 measure always favors a more complicated model than the
trivial one with a constant mean. The R 2

V gives negative values in those cases
where the prediction model is estimated to perform worse than the trivial
model. Since it is indeed very difficult to predict stock markets, the R 2

V mea-
sure will be negative for most attempted prediction models. The surprise here
is perhaps that it actually does seem that the dividend yield has predictive
power for most of the considered horizons.

Before we get to the nonparametric estimation, we first consider the
period 1948-1996 once again, but this time estimation is performed using all
the data from 1922 to 1996. However, only the time interval 1948-1996 is used
while evaluating the predictive power of the filter. The results are presented in
Table 3.

TABLE 3

PREDICTABILITY FOR 1948-1996 OF T-YEAR EXCESS STOCK RETURNS ON dt,
RESPECTIVELY ON ln(dt), SIMPLE MODEL (8), EVALUATED WITH

THE R2
V WHEN USING ALL DATA FROM 1922-1996 FOR PREDICTION

T dt ln dt^ h

1 3.3% 1.8%
2 10.8% 7.3%
3 16.7% 12.4%
4 19.8% 15.6%
5 18.0% 13.2%
6 17.8% 14.9%

The conclusion is that using the entire data set is better while predicting the
post war period than just using the post war data itself. It seems that the
increased estimation accuracy obtained by using more data outweigh the advan-
tage of only using post war data while estimating the post war period. The argu-
ment for the latter methodology is off course that the post war period might
be different in nature from the pre war period.

Finally we consider the power of prediction by choosing the functional
relationship between the dividend-price ratio and the return by a nonpara-
metric kernel estimator. Specifically, we use local linear kernel estimation what
means that in the limit (with bandwidth h "3) the function is linear, and thus,
in the limit, coincides with the linear regression, see Appendix 1 and Appen-
dix 2 for details. The bandwidth or smoothing parameter has been chosen such
that it maximizes the R 2

V. Since this functional relationship can be arbitrary,
the above discussion on using the raw dividend price ratio or taking the loga-
rithm is irrelevant. We get the results drawn in Table 4.

408 JENS PERCH NIELSEN AND STEFAN SPERLICH



TABLE 4

PREDICTABILITY OF T-YEAR EXCESS STOCK RETURNS

ON USING NONPARAMETRIC MODELS AND MEASURED IN R2
V.

EXPLANATORY VARIABLE WAS DIVIDEND YIELD, dt

T 1923-1996 1949-1996

1 –0.2% 3.3%
2 6.1% 11.5%
3 9.0% 20.7%
4 12.9% 24.5%
5 11.6% 21.7%
6 6.9% 17.8%

Again, when considering the post war period, then data from the entire period
is used to fit the nonparametric functional relationship, and the evaluation of
the quality of the fit is, however, based on the data in the post war period.
While the nonparametric power of prediction for the period 1922-1996 is
already slightly better than the strictly linear power of prediction, we see a
clear improvement of prediction power for the nonparametric method when
considering the period 1948-1996.

For a graphical visualization of the impact of the dividend-price ratio at
excess stock returns, see Figure 2 and Figure 3 for respectively the one-year
horizon and the four year horizon versions of the prediction of excess stock
returns based on the dividend-price ratio. Both the parametric and non-
parametric versions are shown. The graphs clearly indicate the impact of the
dividend yield on future returns and we also see, that the Danish level of the
dividend-price ratio around 1.5% (in 2000) was so low, that according our pre-
dictive filter it was a dangerous time to invest in stocks and we did not expect
the average excess return on stocks to match this danger. As a matter of fact
our model predicted excess returns in the year 2001 to have an average value
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below zero. So, at that time the extra risk inherent in investments in stocks
was not followed by a corresponding extra return on stocks. As a consequence
our advice to Danish long term investors was (and is) not to increase their
percentage of stocks in their portfolio right now.6

6. LOOKING FOR THE BEST PREDICTION MODEL

In this section we investigate the potential advantages that we can obtain by
including other variables than just dividend divided by price in our prediction.
Due to the complexity of the study of the section, we have chosen to restrict
our investigation to a time horizon of one year. Based on the considerations
given in Section 2, we have chosen to consider a time series regression problem
of the following form:

( , , , )S g S d I rt t t t t t1 1 1 1 e= +- - - - (9)

using the data described in Section 3. The full four-dimensional model corre-
sponds to estimate the function g :] g without any parametric assumptions
nor assumptions of structure such as additivity or multiplicativity. This model
is most often too complex for both to visualize and/or to predict well. The
lack of prediction is due to the error of estimation rather than that the model
is insufficient. Therefore we suggest some structure on g :] g to predict well.
We have chosen to consider additive models such as 

, , , ,g S d I r c g S g d g I g r1 2 3 4= + + + +] ] ] ] ]g g g g g (10)
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FIGURE 3: Optimal parametric (dashed) and nonparametric (solid) regression fit of stock excess on D/P
and real data points.



compare also Appendix 2, especially for estimation.
Furthermore we consider both the situation where the entering gi’s are

nonparametric and the situation where all the entering gi’s are parametric and
follow a linear model. In our study we consider three types of models with all
combinations of subsets of (St–1, dt–1, It–1, rt–1), namely

• Linear models
• Nonparametric additive models
• Fully nonparametric models

Note that we always applied local linear kernel smoothers applying the band-
width h that maximizes the R 2

V, see Appendix 3. The more complex the model
is, the bigger the estimation error will be but the smaller the modeling error
will be. To be able to choose among the entering models, we use the validated
R 2

V defined in Section 5. All in all, we have 26 models to consider, namely
15 full models (that include automatically the 15 linear models) and 11 non-
parametric additive models (leaving out the one-dimensional models that we
counted among the full ones). As mentioned and explained in the appendices
we always looked for the optimal bandwidths in the nonparametric procedures
using Cross Validation, i.e. maximizing our R 2

V.
Some findings of the estimation respective model structure are the follow-

ing.
Though the multidimensional nonparametric additive model reaches a

positive R 2
V for some of the considered models, the corresponding full

model always did better. This is a clear indicator for having here a more com-
plex structure than additivity. This is not surprising when we consider the
complicated relationship between these variables as described in Section 2.
From our calculated R 2

V values we also concluded that the only linear model
that does better than the simple constant is the linear model based on the
dividend divided by price for the period 1948-2001 as described in the sections
before. However, best among all estimators is the fully nonparametric two-
dimensional model based on dividend divided by price and lagged excess stock
return. This two-dimensional model has a R 2

V value of 5.5% for the period
1923-1996 and 9.1% for the period 1948-1996. This is much better than the
(negative) values of the R 2

V obtained in Section 5.
Once again have a look on the relation excess returns to dividend by price.

In Figure 5 we see the 3-D plot of the two-dimensional predictive filter based
on the dividend-price ratio and the lagged excess return of stocks. Further,
in Figure 4 we see three slices from this filter plotting the dependency on the
dividend yield for three fixed values of excess returns: –25%, 0.7% and 29.5%
corresponding to the lower 5% quantile, the median and the upper 95% quan-
tile. We see a clear tendency of the excess stock return to be increasing with
the dividend-price ratio. For small dividend yields (below the historical mean
of about 4%) the stock return is decreasing with last years excess return.
For higher dividend yields (above the historical mean of about 4%) the stock
return is increasing with last years excess return. While the intuition of the
dependency on the dividend yield is straightforward, it is less straightforward
to understand the relationship between last years stock return and current
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stock return. However, this graph does show that Danish investors should have
kept away for new investments in stocks in 2001, since they were just about to
finish a magnificent year with a general Danish excess return on stocks above
30% resulting in a historical low dividend-price ratio of around 1.5%. A more
detailed picture leading to the same type of conclusions can be found in the
three dimensional plot in Figure 5.

7. EMPIRICAL RESULTS FOR 1922-2001

The statistical evidence based on the updated data set does not change the
estimated curves and variables very much. However, the estimated predictive
power of the updated data set leaves a much less optimistic impression of the
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FIGURE 4: Nonparametric regression fits of stock excess on D/P and stock excess lagged fixed at
–25% (dotted, starting above zero), at 1% (solid), and at 30% (dashed) for the period 1923-1996.

FIGURE 5: Two different views on the nonparametric regression fit of stock excess on D/P and
stock excess lagged for the period 1923-1996.



possibility of predicting stock returns than the corresponding results based
on the original data set. It is perhaps not surprising for followers of the stock
market that the last five years, 1997-2001, have been unusual. Based on the
updated data all considered linear models break down – they simply do not
predict. This is in contradiction to classical studies like Fama and French
(1988), Wilkie (1993) and others and need serious consideration in further
work.

However, our main statements still hold when we extend the data set up
to 2001. The relationship between the classical R2 and the validated version,
R 2

V, still play the same role and the full, not additive, nonparametric models
still have predictive power.

The optimal R 2
V is reached for T = 4 (time horizon) when only including

d = D /P. Looking at T = 1, the best model for the period 1922-2001 now only
uses last year stock return. The model based on both last years stock return
and the dividend yield does, however, predicts almost as well. Their predictive
powers are respectively, 1.0% and 0.9%. For the time period 1948-2001, we get
a relatively impressive R 2

V of 3.1% while including dividend yield and last
years stock return. Optimal bandwidths are between 4sW and 4.8sW, so the
models are by far not linear. Here, sW is the vector of the standard deviations
of the different regressors.

Let us first consider Table 5, the corresponding one to Table 1 in Section
5 where we looked at the classical R2 values for T-year excess stock returns on

td , model (8). As one can see clearly, the model fits terribly bad compared to
the results obtained for the time period 1922-1996. All R 2

V values are negative
for the linear and log-linear models. We therefore skip here the analogs for
Tables 2 and 3 from Section 5.

TABLE 5

CLASSICAL R2 VALUES FOR T-YEAR EXCESS STOCK RETURNS ON dt, MODEL (8)

horizon dt t=d ln dt t=d ^ h

T 1923-2001 1949-2001 1923-2001 1949-2001

1 1.6% 3.3% 0.8% 1.8% 
2 1.8% 3.3% 0.3% 0.9% 
3 1.8% 2.9% 0.2% 0.6% 
4 2.6% 3.0% 0.2% 0.2% 
5 1.8% 1.2% 0.1% 0.0% 
5 1.2% 1.1% 0.0% 0.0% 

Table 6 is the corresponding one to Table 4 in Section 5, i.e. we have drawn
for the different time horizons T the R 2

V obtained for the nonparametric model
with dt being the only regressor. The highest R 2

V is given for T = 4 years,
but now only with 6.7% for the whole, respectively 12.5% for the post war
period.
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TABLE 6

PREDICTABILITY OF T-YEAR EXCESS STOCK RETURNS

USING NONPARAMETRIC MODELS AND MEASURED IN R2
V.

EXPLANATORY VARIABLE WAS DIVIDEND YIELD, dt

T 1923-2001 1949-2001

1 –1.9% –0.3%
2 0.0% 2.1%
3 –1.6% 3.5%
4 6.7% 12.5%
5 –10.7% –5.9%
6 –20.4% –11.9%

Finally, the Figures 2 to 4 showing the impact of dividend by price ratio dt =
Dt /Pt on the real excess stock returns, stay quite the same when we include the
years 1997-2001 into the estimation.

8. CONCLUSIONS

There are mainly three points we make. We first look for a reasonable measure
for prediction power (the R 2

V). Second, we use this measure to evaluate the
power of prediction of classical as well as more flexible methods. It turns out
that the use of nonparametrics methodology and the inclusion of last years
stock return significantly improve the level of prediction. Third, fixing the time
horizon (T = 1) and using flexible methods, we ask for the best prediction model.
Finally we illustrate how this can help us for a better understanding of the
considered process (discussion of the Figures).

9. APPENDIX

Appendix 1. Local linear kernel regression

In this appendix we give a brief insight into the algorithms of nonparametric flex-
ible function regression. In particular we explain the local linear smoothing. The
basic idea is to construct an estimator that lays a smooth surface (or hyperplane),
e.g. in the one dimensional case a smooth line, into the point cloud that presents
its functional form. The smoothness of that surface can be (pre-) determined by
choosing a respectively large smoothing parameter h, called bandwidth. Actually,
often this parameter can also be data driven, see Appendix 3.

First, it is important to understand that this estimator works locally,
e.g. we estimate the wanted function, the hyperplane, at each point we
are interested in separately. This is, using the notation ( )E Y W g w=6 @ ,

, , :R R R RY W w gwithd d ":! ! ] g , an unknown smooth function we estimate
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g(w0) for some point w0 ∈ �d. Having (Wi ,Yi )
n
i=1 observed, this is done by local

least squares:

, ,
argminx

g x a a Y a a W w K W w
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0 1! ! and g :d ] g being the gradient of g :] g. Further, K vh =] g
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% e o is a R Rd " weight function. In our calculations we chose K(v) = 

u u
16
15

1 1ll2 2
#-_ i " ,. So we used a weighted least squares estimator for linear 

regression that becomes a local estimator due to the weights Kh giving a lot of
weight to points (Wi, Yi) where Wi is close to w0 but zero weights to points far
from w0.

Here, in the weighting function comes the smoothing parameter h in:
the larger h and consequently the environment with positive weighting,
the smoother gets the resulting hyperplane, i.e. h " 3 gives a linear function
whereas h = 0 yields interpolation of the Yi’s. Consistency, asymptotic 
theory and properties are well known and studied for the multivariate case in
Ruppert and Wand (1994), for a general introduction see Fan and Gijbels
(1996).

An often discussed question is how to choose bandwidth h in practice.
As we are concerned about prediction, we take that bandwidth that is minimi-
zing the “out of sample” prediction error using the Cross Validation measure,
see Appendix 3.

Appendix 2. Local linear additive regression

We speak of a nonparametric additive model if g(w), Rw d! is of the form

( ) ( ) ( ) ( ), ,withg w c g w g w g w c E Yd d1 1 2 2 g= + + + + = 6 @ (12)

and : R Rg ":] g unknown smooth functions with E [gj(Wj)] = 0 for identifi-
cation. This is the natural extension of the classical linear regression model
relaxing the restriction of linear impacts to arbitrary (but smooth) ones. Sev-
eral procedures are known in the literature, see Sperlich (1998). In this article
we focus only on the backfitting by Hastie, Tibshirani (1990). If g(w) is really
of additive form, then, under some regularity conditions, this gives us consis-
tent estimators; if not, it tries to estimate the additive model that fits our data 

best. This is done by iteration: start with some initials g
j
0

:] g and n Yc 1
ii

n

1
=

=
! .

Then regress Y Wc g r
jj k

d 1- -
!

-! ` j5 ? on Wk to get g
k
r5 ? until convergence.

For the regression we applied the local linear kernel estimator. Again, band-
widths can be chosen using Cross Validation, presented in Appendix 3.
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Appendix 3. Cross Validation

A typical question of interest, not only in prediction problems, is how to eval-
uate the different models. This concerns the model or variable selection as well
as the bandwidth choice. In general, a natural way to evaluate an estimator is
to look on the mean squared error or the expected squared difference between
estimate and observation Y: E [{Y – g(W)}2]. This certainly has to be estimated.
Additionally, as we speak about prediction, we would like to know how well the
estimator works outside the considered sample. Both aspects are taken into
account in the so called Cross Validation (CV) values, defined as

,value n y wg1
CV ( )

l
l

l
l

n
2

1

- = -
=

! ^ h# - (13)

where wg( )l
l^ h is the considered estimator evaluated at point wl but determined

without observation ( , )w yl l . This CV-value is an approximation for the mean
squared error (also for prediction) and a quite common used validation mea-
sure in nonparametric regression. For time series context and more references
see e.g. Gyöfri, Härdle, Sarda, and Vieu (1990).

Remark: It is important to eliminate always all information that is aimed to
predict from the estimation of g :] g. So, if we predict the increase of assets over
a period of 4 years, the estimator g( )l is calculated not only without the l th obser-
vation but also without the three years before and after year l.

How can it be used for bandwidth or model selection?
We give an example for bandwidth selection: write g as a function of the

bandwidth (gh) and look for that h that minimizes 

( ) ( ) .h n y wg1
CV ( )

l h
l

l
l

n 2

1

= -
=

! $ .

This has been shown to give the optimal bandwidth in nonparametric regres-
sion, we again refer to Gyöfri et al. (1990).

Note finally, that minimizing the CV-value is equivalent to maximizing the
R 2

V. So CV is directly used to find both: the optimal h for prediction and the
optimal model for prediction.
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SETTING A BONUS-MALUS SCALE IN THE PRESENCE OF OTHER
RATING FACTORS: TAYLOR’S WORK REVISITED

BY

SANDRA PITREBOIS, MICHEL DENUIT AND JEAN-FRANÇOIS WALHIN

ABSTRACT

In this paper, we propose an analytic analogue to the simulation procedure
described in Taylor (1997). We apply the formulas to a Belgian data set and
discuss the interaction between a priori and a posteriori ratemakings.

KEYWORDS AND PHRASES

Bonus-Malus system, Markov chains, a priori ratemaking, experience rating

1. INTRODUCTION AND MOTIVATION

One of the main tasks of the actuary is to design a tariff structure that will
fairly distribute the burden of claims among policyholders. To this end, he
often has to partition all policies into homogeneous classes with all policy-
holders belonging to the same class paying the same premium. The classifica-
tion variables introduced to partition risks into cells are called a priori variables
(as their values can be determined before the policyholder starts to drive).
In motor third-party liability (MTPL, in short) insurance, they include age,
gender and occupation of the policyholders, type and use of their car, place
where they live and sometimes even number of cars in the household or mar-
ital status. It is convenient to achieve a priori classification by resorting to gen-
eralized linear models (e.g. Poisson regression).

However, many important factors cannot be taken into account at this
stage; think for instance of swiftness of reflexes, aggressiveness behind the
wheel or knowledge of the highway code. Consequently, risk classes are still
quite heterogeneous despite the use of many a priori variables. But it is rea-
sonable to believe that these hidden factors are revealed by the number of
claims reported by the policyholders over the successive insurance periods.
Hence the amount of premium is adjusted each year on the basis of the indi-
vidual claims experience in order to restore fairness among policyholders.

Rating systems penalizing insureds responsible for one or more accidents
by premium surcharges (or maluses), and rewarding claim-free policyholders
by awarding them discounts (or bonuses) are now in force in many developed
countries. This a posteriori ratemaking is a very efficient way of classifying
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policyholders according to their risk. Besides encouraging policyholders to
drive carefully (i.e. counteracting moral hazard), they aim to better assess indi-
vidual risks. Such systems are called no-claim discounts, experience rating,
merit rating, or Bonus-Malus systems (BMS, in short). We will adopt here the
latter terminology. For a thorough presentation of the techniques relating to
BMS, see Lemaire (1995).

When a BMS is in force, the amount of premium paid by the policyholder
depends on the rating factors of the current period but also on claim history. In
practice, a BMS consists of a finite number of levels, each with its own relative
premium. New policyholders have access to a specified class. After each year, the
policy moves up or down according to transition rules and to the number of
claims at fault. The premium charged to a policyholder is obtained by applying
the relative premium associated to his current level in the BMS to a base pre-
mium depending on his observable characteristics incorporated into the price list.

The problem addressed in this paper is the determination of the relative
premiums attached to each of the levels of the BM scale when a priori classi-
fication is used by the company. The severity of the a posteriori corrections must
depend on the extent to which amounts of premiums vary according to observ-
able characteristics of policyholders. The key idea is that both a priori classi-
fication and a posteriori corrections aim to create tariff cells as homogeneous
as possible. The residual heterogeneity inside each of these cells being smaller
for insurers incorporating more variables in their a priori ratemaking, the a pos-
teriori corrections must be softer for those insurers.

This paper is not conceptually innovating. All the ideas are contained in the
seminal work by Taylor (1997). Our only contribution is to show how it is pos-
sible to avoid simulations by providing analytical formulas for the relative pre-
miums attached to each level of the BM scale.

Our work is organized as follows. In Section 2, we briefly present the mod-
elling used to compute pure premiums. Section 3 describes BM scales and their
representation as Markov chains. Section 4 explains how to determine the rel-
ative premiums when a priori classification is in force or not. Section 5 describes
several numerical illustrations. In Section 6, we show that it is possible to apply
different a posteriori corrections according to a priori characteristics. The final
Section 7 discusses some possible improvements and concludes.

2. CREDIBILITY UPDATING FORMULAS

Let , , , ,N t 1 2it f= represent the number of claims incurred by policyholder i
in period t. The annual expected claim frequency for policy i in year t is

[ ]� Nit it=m . It is expressed as the exponential transform of some predictor
involving the characteristics of policyholder i in period t. Of course, all the risk
factors cannot be taken into account at this stage.

Risk classes remain heterogeneous despite the use of many a priori risk
characteristics. This residual heterogeneity can be represented by a random
effect Qi superposed to the annual expected claim frequency. Specifically, given
Qi = q the annual numbers of claims Nit are assumed to be independent and
to conform to a Poisson distribution with mean itm i, i.e.
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Moreover, all the Qi’s are assumed to be independent and to follow a standard
Gamma distribution with probability density function

( ) ( ) ( ), .exp �u a a aG
1 a a 1 != -i i i i- + (2.1)

The latter is often referred to as the structure function of the portfolio. Since
[ ]� 1Qi = we have that [ ] ;� Nit it it= m m is the expected claim number for a poli-

cyholder for which no information about past claims is available.
The premium is then adjusted over time with the help of credibility techni-

ques. We assume that each policyholder has an unknown expected claim fre-
quency ‡i, constant over time. Following the seminal work of Dionne and
Vanasse (1989), the company approaches this unknown value with annual pre-
dictions of the form ‡̂i1 = li1 and for t ≥ 2,
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The latter Bayesian credibility estimator cannot be enforced in practice for
MTPL, essentially due to commercial reasons and legal constraints. Instead,
companies resort to BM scales, that may be considered as simplified versions
of credibility theory formulas. Those are presented in the next section.

3. MARKOV MODELS FOR PRACTICAL BMS

3.1. BMS as Markov chains

In practice, insurance companies often resort to BM scales similar to those in
Tables 5.4-5.6-5.8 and not on credibility coefficients like those of (2.2). Such
scales possess a number of levels, s + 1 say, numbered from 0 to s. A specified
level is assigned to a new driver (often according to the use of the vehicle). Each
claim free year is rewarded by a bonus point (i.e. the driver goes one level
down). Claims are penalized by malus points (i.e. the driver goes up a certain
number of levels each time he files a claim). We assume that the penalty is a
given number of classes per claim. This facilitates the mathematical treatment
of the problem but more general systems could also be considered. After suf-
ficiently many claim-free years, the driver enters level 0 where he enjoys the
maximal bonus.

In commercial BMS, the knowledge of the present level and of the num-
ber of claims of the present year suffice to determine the next level. This
ensures that the BMS may be represented by a Markov chain: the future (the
class for year t + 1) depends on the present (the class for year t and the num-
ber of accidents reported during year t) and not on the past (the complete
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claim history and the levels occupied during years , , , )t1 2 1f - . Sometimes,
fictitious classes have to be introduced in order to meet this memoryless prop-
erty. Indeed, in some BMS, policyholders occupying high levels are sent to the
starting class after a few claimless years.

The relativity associated to level , is denoted as ,r ; the meaning is that an
insured occupying that level pays an amount of premium equals to ,r % of the
a priori premium determined on the basis of his observable characteristics.

3.2. Transient distributions

Let p,1,2
(‡) be the probability of moving from level ,1 to level ,2 for a policy-

holder with mean frequency ‡. Further, M(‡) is the one-step transition
matrix, i.e. M(‡) = {p,1,2

(‡)}, ,1, ,2 = 0,1,…,s. Taking the nth power of M(‡)
yields the n-step transition matrix whose element (,1,2), denoted as p(n)

,1,2
(‡), is

the probability of moving from level ,1 to level ,2 in n transitions.

3.3. Stationary distribution

All BMS in practical use have a “best” level, with the property that a policy
in that level remains in the same level after a claim-free period. In the follow-
ing, we restrict attention to such non-periodic bonus rules. The transition
matrix ( )M j associated to such a BMS is regular, i.e. there exists some inte-
ger 10$p such that all entries of ( )M 0j p

! + are strictly positive. Consequently,
the Markov chain describing the trajectory of a policyholder with expected
claim frequency j accross the levels is ergodic and thus possesses a stationary
distribution ( ) ( ( ), ( ), , ( )) ; ( )s

t
0 1 f=j r j r j r j r jr , is the stationary probabil-

ity for a policyholder with mean frequency j to be in level , i.e.

( ) ( ).lim p( )
2 1 2

=r j j
"

,
3 , ,+o

o

Note that ( )jr does not depend on the starting class.
Let us now recall how to compute the ( )r j, ’s. The vector ( )jr is the solu-

tion of the system 

( ) ( ) ( ),
( )

M
e 1

t t

t
=

=

j j j
j

r r
r
)

where e is a column vector of 1’s. Let E be the ( ) ( )s s1 1#+ + matrix all of
whose entries are 1, i.e. consisting of s 1+ column vectors e. Then, it can be
shown that 

( ) ( ) ,Ie M Et t 1= - +j jr -
^ h

which provides a direct method to get ( )jr . For a derivation of the latter result,
see e.g. Rolski et al. (1999).
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4. DETERMINATION OF THE RELATIVITIES

4.1. Interaction between the BM scale and a priori ratemaking

Since the relativities attached to the different levels are the same whatever the
risk class to which the policyholders belong, those scales overpenalize a priori
bad risks. Let us explain this phenomenon, put in evidence by Taylor (1997).
Over time, policyholders will be distributed over the levels of the bonus-malus
scale. Since their trajectory is a function of past claims history, policyholders
with low a priori expected claim frequencies will tend to gravitate in the low-
est levels of the scale. Conversely for individuals with high a priori expected
claim frequencies. Consider for instance a policyholder with a high a priori
expected claim frequency, a young male driver living in a urban area, say. This
driver is expected to report many claims (this is precisely why he has been
penalized a priori) and so to be transferred to the highest levels of the BM scale.
On the contrary, a policyholder with a low a priori expected claim frequency,
a middle-aged lady living in a rural area, say, is expected to report few claims
and so to gravitate in the lowest levels of the scale. The level occupied by the
policyholders in the BM scale can thus be partly explained by their observable
characteristics included in the price list. It is thus fair to isolate that part of
the information contained in the level occupied by the policyholder that does
not reflect observables characteristics. A posteriori corrections should be only
driven by this part of the BM information.

Let us try to quantify these findings. To this end, we introduce the random
variable Lj valued in { , , , }s0 1 f such that Lj conforms to the distribution

( )jr i.e.

[ ] ( ), , , , .Pr L s0 1, , f= = =r j,j

The variable Lj thus represents the level occupied by a policyholder with annual
expected claim frequency j once the steady state has been reached.

Let us now pick at random a policyholder from the portfolio. Let us denote
as L his (unknown) a priori expected claim frequency and as Q the residual
effect of the risk factors not included in the ratemaking. The actual (unknown)
annual expected claim frequency of this policyholder is then LQ. Since the
random effect Q represents residual effects of hidden covariates, the random
variables L and Q may reasonably be assumed to be mutually independent. Let
wk be the weight of the kth risk class whose annual expected claim frequency
is km . Clearly, [ ]Pr wk k= =mK .

Now, let L be the BM level occupied by this randomly selected policyholder
once the steady state has been reached. The distribution of L can be written
as 

[ ] ( ) ( ) ;Pr L w u d
>k k

k 0
,= = r m i i i,i

#! (4.1)

[ ]Pr L ,= represents the proportion of the policyholders in level ,.
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4.2. Norberg’s predictive accuracy in segmented tariffs

Predictive accuracy is a useful measure of the efficiency of a BMS. The idea
behind this notion is as follows. A BMS is good at discriminating among
the good and the bad risks if the premium they pay is close to their “true”
premium. According to Norberg (1976), once the number of classes and the
transition rules have been fixed, the optimal relativity r, associated to level , is
determined by maximizing the asymptotic predictive accuracy.

As above, let LQ be the true (unknown) expected claim frequency of a
policyholder picked at random from the portfolio, where Q admits the pdf
(2.1) and [ ]Pr wL k k= =m , with � L = m6 @ . Our aim is to minimize the expected
squared difference between the “true” relative premium Q and the relative
premium rL applicable to this policyholder (after the stationary state has been
reached), i.e. the goal is to minimize
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It is easily seen that [ ] ,� r 1L = resulting in financial equilibrium once steady
state is reached.

To end with, let us mention that if the insurance company does not enforce any
a priori ratemaking system, all the lk’s are equal to l and reduces to the formula 

( ) ( )

( ) ( )
r

u d

u d

>

>

0

0=
r mi i i

ir mi i i
,

,

,

i

i

#

#

that has been derived in Norberg (1976).
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5. NUMERICAL ILLUSTRATIONS

5.1. A priori ratemaking

The data used to illustrate this paper relate to a Belgian MTPL portfolio
observed during the year 1997. The data set comprises 158,061 policies.
The claim number distribution in the portfolio is described in Table 5.1. The
overall mean claim frequency is 11.25%.

TABLE 5.1

OBSERVED CLAIMS DISTRIBUTION IN THE BELGIAN MTPL PORTFOLIO.

Number k Observed number of policies
of claims reported having reported k claims

0 140 276
1 16 085
2 1 522
3 159
4 17
5 2

6$ 0

The following information is available on an individual basis: in addition to the
number of claims filed by each policyholder and the exposure-to-risk from
which these claims originate (i.e. the number of days the policy has been in force
during 1997), we know the age of the policyholder in 1997 (18-21 years, 22-
30, 31-55 or above 56), his/her gender (male-female), the kind of district where
he/she lives (rural or urban), the fuel oils of the vehicle (gasoline or diesel), the
power of the vehicle in kilowatts (less than 40 Kw, between 40 and 70 Kw or
more than 70Kw), the use of the vehicle (leisure and commuting only, or also
professionnal use), whether the vehicle has been classified as a sportscar by the
company, whether the policyholder splits the payment of the premium (premium
paid once a year versus premium splitted up), whether the policyholder sub-
scribed other guarantees than MTPL (for instance material damage, theft, or
comprehensive coverage in addition to MTPL).

A segmented tariff has been built on the basis of a Poisson regression
model. Afterwards, geographical ratemaking has been performed following the
method proposed by Boskov and Verrall (1994); see also Brouhns, Denuit,
Masuy and Verrall (2002). This resulted in the definition of four zones. The
final model was fitted by Poisson regression with the four zones that can be
seen in Figure 5.1. A backward-type selection procedure eliminated some risk
factors: use and sport were considered as non significant and were excluded
from the Poisson model. This resulted in 1536 risk classes, each with its own
a priori annual expected claim frequency. Table 5.2 displays the point estimates
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Figure 5.1: The four zones obtained with the Boskov-Verrall method.

of the regression coefficients b0, b1, … together with confidence intervals and
p-values of test for the null hypothesis bj = 0. Table 5.2 has been obtained with
the SAS/STAT procedure GENMOD. Table 5.3 gives a part of the resulting
price list. A “1” indicates the presence of the characteristic corresponding to
the column. For a thorough description of the tariff construction, we refer
the interested reader to Brouhns and Denuit (2003).

TABLE 5.2

SUMMARY OF THE POISSON FIT TO THE BELGIAN MTPL PORTFOLIO

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 
0

b 1 –1.7326 0.0197 –1.7713 –01.6939 7701.76 <.0001
AGE 18-21 1 0.8219 0.0578 0.7086 0.9352 202.26 <.0001
AGE 22-30 1 0.3996 0.0184 0.3636 0.4357 472.45 <.0001
AGE >56 1 –0.2254 0.0185 – 0.2618 –0.1891 147.92 <.0001
AGE 31-55 0 0 0 0 0 . .
GENDER woman 1 0.066 0.0165 0.0338 0.0983 16.1 <.0001
GENDER man 0 0 0 0 0 . .
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Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

DISTRICT urban 1 0.2439 0.0153 0.214 0.2738 255.06 <.0001
DISTRICT rural 0 0 0 0 0 . .
FUEL diesel 1 0.2074 0.0158 0.1764 0.2383 172.21 <.0001
FUEL gasoline 0 0 0 0 0 . .
PAYMENT yearly 1 –0.2487 0.0147 – 0.2776 –0.2198 284.53 <.0001
PAYMENT splitted 0 0 0 0 0 . .
GARACCESS 
MTPL+ 1 –0.1701 0.015 – 0.1994 –0.1407 128.97 <.0001

GARACCESS 
MTPL only 0 0 0 0 0 . .

POWER $>$70 1 0.1243 0.0198 0.0855 0.1631 39.38 <.0001
POWER $<$40 1 –0.0925 0.0185 – 0.1288 –0.0562 24.95 <.0001
POWER 40-70 0 0 0 0 0 . .
ZONE 1 1 –0.5492 0.0225 – 0.5933 –0.5051 594.8 <.0001
ZONE 2 1 –0.3525 0.0199 – 0.3916 –0.3135 313.2 <.0001
ZONE 3 1 –0.2301 0.0178 – 0.2649 –0.1952 167.63 <.0001
ZONE 4 0 0 0 0 0 . .

5.2. Scale –1/top

In this BM scale, the policyholders are classified according to the number of
claim-free years since their last claim (0, 1, 2, 3, 4 or at least 5). After a claim
all premiums reductions are lost. The transition rules are described in Table 5.4.
Specifically, the starting class is the highest level 5. Each claim-free year is
rewarded by one bonus class. In case an accident is reported, all the discounts
are lost and the policyholder is transferred to level 5.

TABLE 5.4

TRANSITION RULES FOR THE BMS –1/TOP.

Starting Level occupied if
level 0 1$

claim is reported

0 0 5
1 0 5
2 1 5
3 2 5
4 3 5
5 4 5
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Note that the philosophy behind such a BMS is different from credibility
theory. Indeed, this BMS only aims to counteract moral hazard: it is in fact
more or less equivalent to a deductible which is not paid at once but smoothed
over the time needed to go back to the lowest class. Note however that this
smoothed deductible only applies to the first claim.

The transition matrix M(‡) associated to this BMS is given by 
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It is easily checked that p(5)
5, (‡) = p,(‡) for ,= 0,1,…,5, so that the system needs

5 years to reach stationarity (i.e. the time needed by the best policyholders
starting from level 5 to arrive in level 0).

TABLE 5.5

NUMERICAL CHARACTERISTICS FOR THE SYSTEM –1/TOP

Level , [ ]Pr L ,= Relativity Relativity Average a priori
[ | ]�r LQ ,= =, [ | ]�r LQ ,= =, expected claim frequency in level ,,

without a priori with a priori [ | ]� LL ,=

ratemaking ratemaking with a priori ratemaking

5 10.2% 166.6% 142.7% 12.8%
4 8.6% 154.4% 135.3% 12.5%
3 7.2% 143.8% 128.9% 12.2%
2 6.2% 134.6% 123.3% 12.0%
1 5.3% 126.5% 118.3% 11.8%
0 62.4% 70.8% 80.5% 10.6%

The results for the BM scale –1/top are displayed in Table 5.5. Specifically, the
values in the third column are computed with the help of (4.3) with .a 1 3671=
and .0 1125=m

t Those values were obtained by fitting a Negative Binomial
distribution to the portfolio observed claim frequencies given in Table 5.1.
Integrations have been performed numerically with the QUAD procedure of
SAS/IML. The fourth column is based on (4.2) with .a 2 1368= and the km

t ’s
obtained from a priori risk classification (i.e. from the bj’s displayed in Table 5.2).
Once the steady state has been reached, the majority of the policies (62.4%)
occupy level 0 and enjoy the maximum discount. The remaining 47.6% of
the portfolio are distributed over levels 1-5, with about 10% in level 5 (those
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policyholders who just claimed). Concerning the relativities, the minimum
percentage of 70.8% when the a priori ratemaking is not recognized becomes
80.5% where the relativities are adapted to the a priori risk classification.
Similarly, the relativity attached to the highest level of 166.6% gets reduced
to 142.7%. The severity of the a posteriori corrections is thus weaker once
the a priori ratemaking is taken into account in the determination of the
r,’s. The last column of Table 5.5 indicates the extent to which a priori and
a posteriori ratemakings interact. The numbers in this column are computed
as
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(5.1)

If [ | ]� LL ,= is indeed increasing in the level ,, those policyholders who have
been granted premium discounts at policy issuance (on the basis of their
observable characteristics) will be also rewarded a posteriori (because they
occupy the lowest levels of the BM scale). Conversely, the policyholders who
have been penalized at policy issuance (because of their observable character-
istics) will cluster in the highest BM levels and will consequently be penalized
again. The average a priori expected claim frequency clearly increases with the
level , occupied by the policyholder.

5.3. Soft Taylor’s scale (–1/+2)

Let us now consider the soft experience rating system defined in Taylor (1997).
There are 9 BM levels. Level 6 is the starting level. A higher level number indi-
cates a higher premium. If no claims have been reported by the policyholder
then he moves one level down. If a number of claims, nt > 0, has been reported
during year t then the policyholder moves 2nt levels up. The transition rules
are described in Table 5.6.

Results are displayed in Table 5.7 which is the analogue of Table 5.5 for the
BMS –1/+2. The BMS is perhaps too soft since the vast majority of the port-
folio (about 75%) clusters in the super bonus level 0. The higher levels are
occupied by a very small minority of drivers. Such a system does not really dis-
criminate between good and bad drivers. Consequently, only those policy-
holders in level 0 get some discount whereas occupancy of any level 1-8 implies
some penalty. Again, the a posteriori corrections are softened when a priori risk
classification is taken into account in the determination of the r,’s. The comments
made for the scale –1/top still apply to this BMS.
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TABLE 5.6

TRANSITION RULES FOR THE BMS –1/+2

Starting Level occupied if
level 0 1 2 3 4$

claim(s) is/are reported

8 7 8 8 8 8
7 6 8 8 8 8
6 5 8 8 8 8
5 4 7 8 8 8
4 3 6 8 8 8
3 2 5 7 8 8
2 1 4 6 8 8
1 0 3 5 7 8
0 0 2 4 6 8

TABLE 5.7

NUMERICAL CHARACTERISTICS FOR THE SYSTEM –1/+2

Level , [ ]Pr L ,= Relativity Relativity Average a priori
[ | ]�r LQ ,= =, [ | ]�r LQ ,= =, expected claim frequency in level ,

without a priori with a priori [ | ]� LL ,=

ratemaking ratemaking with a priori ratemaking

8 1.1% 325.3% 238.1% 17.2%
7 1.1% 294.0% 220.9% 16.2%
6 1.4% 258.0% 200.6% 15.2%
5 1.6% 234.0% 187.0% 14.5%
4 2.6% 194.5% 163.0% 13.5%
3 2.9% 179.2% 153.9% 13.1%
2 7.9% 133.9% 124.1% 12.0%
1 6.8% 127.2% 119.9% 11.8%
0 74.7% 75.6% 84.4% 10.7%

5.4. Severe Taylor’s scale (-1/+4)

Let us finally consider the severe experience rating system defined in Taylor
(1997). Again, there are 9 BM levels. Level 6 is the starting level. A higher
level number indicates a higher premium. If no claims have been reported by
the policyholder then he moves down one level. Each claim is now penalized
by 4 levels (instead of 2 in the soft Taylor’s scale). The transition rules are
described in Table 5.8.
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TABLE 5.8

TRANSITION RULES FOR THE BMS –1/+4.

Starting Level occupied if
level 0 1 ≥ 2

claim is reported

8 7 8 8
7 6 8 8
6 5 8 8
5 4 8 8
4 3 8 8
3 2 7 8
2 1 6 8
1 0 5 8
0 0 4 8

Results are displayed in Table 5.9, the analogue of Tables 5.5 and 5.7. The inter-
esting point is to compare results for the scale –1/+2 to those obtained for the
scale –1/+4. The higher severity of the –1/+4 system results in more important
premium discounts in the lowest part of the scale, and in reduced penalties
for those occupying the highest levels. Similarly, the average a priori expected
claim frequency for each level diminishes when the claims are more heavily
penalized.

TABLE 5.9

NUMERICAL CHARACTERISTICS FOR THE SYSTEM –1/+4

Level , [ ]Pr L ,= Relativity Relativity Average a priori
[ | ]�r LQ ,= =, [ | ]�r LQ ,= =, expected claim frequency in level ,

without a priori with a priori [ | ]� LL ,=

ratemaking ratemaking with a priori ratemaking

8 4.6% 225.1% 180.7% 14.3%
7 4.3% 203.0% 167.3% 13.7%
6 4.0% 185.7% 156.9% 13.2%
5 3.8% 171.7% 148.6% 12.9%
4 7.0% 130.0% 121.1% 11.9%
3 6.1% 123.0% 116.8% 11.7%
2 5.3% 116.7% 112.8% 11.6%
1 4.7% 111.1% 109.2% 11.5%
0 60.3% 64.9% 76.5% 10.5%
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6. A POSTERIORI CORRECTIONS DEPENDING ON A PRIORI CHARACTERISTICS

We know from credibility theory that the a posteriori corrections are functions
of the a priori characteristics; see (2.2). On the contrary, when a BMS is in force,
the same a posteriori corrections apply to all policyholders, whatever their a
priori expected claim frequency. This of course induces unfairness in the port-
folio.

In order to reduce the unfairness of the tariff, we could propose several BM
scales, according to the a priori characteristics. Table 6.1 describes such a sys-
tem where the company differentiates policyholders according to the type of
district where they live (urban or rural). People living in urban areas have
higher a priori expected claim frequencies. Thus, they should be more rewarded
in case they do not file any claim and less penalized when they report accidents
compared to people living in rural zones. This is indeed what we observe
when we compare the relative premiums obtained for the system –1/+4: the
maximal discount is 73.1% for urban policyholders, compared to 77.7% for
rural ones. Similarly, the highest penalty is 176.6% for urbans against 183.0%
for rurals.

TABLE 6.1

NUMERICAL CHARACTERISTICS FOR THE SYSTEM –1/+4 WITH THE DICHOTOMY URBAN/RURAL.

Urban Rural

Level , Relativity Average a priori Relativity Average a priori
[ | ]�r LQ ,= =, expected claim frequency [ | ]�r LQ ,= =, expected claim frequency in

with a priori level , with a priori in level ,
ratemaking [ | ]� LL ,= ratemaking [ | ]� LL ,=

with a priori ratemaking with a priori ratemaking

8 176.6% 16.5% 183.0% 13.0%
7 162.5% 15.8% 169.8% 12.5%
6 151.6% 15.3% 159.6% 12.2%
5 142.9% 14.9% 151.4% 11.9%
4 116.8% 13.8% 122.9% 11.1%
3 112.2% 13.6% 118.7% 10.9%
2 108.1% 13.4% 114.8% 10.8%
1 104.3% 13.3% 111.2% 10.7%
0 73.1% 12.2% 77.7% 9.8%

7. DISCUSSION

All the techniques used in this paper resort to the stationary distribution of the
scale. Therefore they can only be recommended if the steady state is reached
after a relatively short period, as it is the case for the BM scale –1/top. It is
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worth mentioning that for the scale –1/top, the use of the stationary distribu-
tion for the computation yields higher premiums than those obtained using
transient distributions, with the method of Børgan, Hoem and Norberg (1981).

The method described in the present paper can be extended to transient dis-
tributions, in the spirit of Børgan, Hoem and Norberg (1981). This may be
interesting when a new scale is introduced or for BMS needing many years to
reach their stationay regime.

If on a given market companies start to compete on the basis of BMS
many policyholders could leave the portfolio after the occurrence of an acci-
dent, in order to avoid the resulting penalties. Those attritions can be incor-
porated in the model by adding an additional level to the Markov chain (in the
spirit of Centeno and Silva (2001)). Transitions from a level of the BMS to
this state represents a policyholder leaving the portfolio whereas transitions
from this state to any level of the BMS means that a new policy enters the port-
folio.

It has been assumed throughout this paper that the unknown expected
claim frequencies were constant and that the random effects representing hid-
den characteristics were time-invariant. Dropping these assumptions makes
the determination of the relativities much harder. We refer the interested reader
to Brouhns, Guillén, Denuit and Pinquet (2003) for a thorough study of this
general situation.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to the anonymous referees who
have corrected a mistake in the original manuscript and whose numerous
remarks and suggestions have considerably improved the text.

REFERENCES

BORGAN, Ø, HOEM, J.M. and NORBERG, R. (1981) A nonasymptotic criterion for the evaluation
of automobile bonus systems. Scandinavian Actuarial Journal, 265-178.

BOSKOV, M. and VERRALL, R.J. (1994) Premium rating by geographical area using spatial 
models. ASTIN Bulletin 24, 131-143.

BROUHNS, N. and DENUIT, M. (2003) Applications des modèles généralisés additifs à l’assurance
automobile. Manuscript.

BROUHNS, N., DENUIT, M., MASUY, B. and VERRALL, R. (2002) Ratemaking by geographical
area in the Boskov and Verrall model: a case study using Belgian car insurance data. actu-
L 2, 3-28.

BROUHNS, N., GUILLÉN, M., DENUIT, M. and PINQUET, J. (2003) Optimal bonus-malus scales in
segmented tariffs. Journal of Risk and Insurance, in press.

CENTENO, M. and SILVA, J.M.A. (2001) Bonus systems in an open portfolio. Insurance: Mathe-
matics & Economics 28, 341-350.

DIONNE, G., and VANASSE, C. (1989) A generalization of actuarial automobile insurance rating
models: the Negative Binomial distribution with a regression component. ASTIN Bulletin 19,
199-212.

LEMAIRE, J. (1995) Bonus-Malus Systems in Automobile Insurance. Kluwer Academic Publisher,
Boston.

SETTING A BONUS-MALUS SCALE 435



NORBERG, R. (1976) A credibility theory for automobile bonus system. Scandinavian Actuarial
Journal, 92-107.

ROLSKI, T., SCHMIDLI, H., SCHMIDT, V. and TEUGELS, J. (1999) Stochastic Processes for Insurance
and Finance. John Wiley & Sons, New York.

TAYLOR, G. (1997) Setting a Bonus-Malus scale in the presence of other rating factors. ASTIN
Bulletin 27, 319-327.

SANDRA PITREBOIS & JEAN-FRANÇOIS WALHIN

Secura Belgian Re
Avenue des Nerviens, 9-13 boîte 6
B-1040 Bruxelles, Belgium

MICHEL DENUIT

Institut de Statistique
Université Catholique de Louvain
Voie du Roman Pays, 20
B-1348 Louvain-la-Neuve, Belgium

JEAN-FRANÇOIS WALHIN & MICHEL DENUIT

Institut des Sciences Actuarielles
Université Catholique de Louvain
Grand-Rue, 54
B-1348 Louvain-la-Neuve, Belgium

436 SANDRA PITREBOIS, MICHEL DENUIT, JEAN-FRANÇOIS WALHIN



BOOK REVIEWS

Modern Actuarial Risk Theory by Rob Kaas, Marc Goovaerts, Jan Dhaene and
Michel Denuit [Kluwer Academic Publishers, Boston, 2001] 

The publication of a book on Risk Theory is a sufficiently rare occurrence for
it to be greeted enthusiastically. My enthusiasm for this book increased when
I read in the authors’ Preface that its intended readership is students in the final
year of a bachelors program in quantitative economics or mathematical sta-
tistics or a masters program in actuarial science or in quantitative financial
economics. Too few of the texts on risk theory are suitable for university stu-
dents at this level. Gerber’s (1979) book is a classic, but more suited to
researchers, and, at the other end of the spectrum, Daykin et al.’s (1994) book
covers many of the practical aspects of its subject well, but at the expense of
a clear technical development. An exception to this is the excellent, albeit
almost encyclopaedic, book by Klugman et al. (1998).

Modern Actuarial Risk Theory is a translation into English of a book
which has been used in universities in The Netherlands and Belgium for more
than ten years. The chapters in this book are:

1. Utility theory and insurance
2. The individual risk model
3. Collective risk models
4. Ruin theory
5. Premium principles
6. Bonus-malus systems
7. Credibility theory
8. Generalized linear models
9. IBNR techniques

10. Ordering of risks

There are a large number of, mostly short, exercises at the end of each chapter
and a section at the end of the book containing answers or hints on how to
complete the exercises.

The chapter titles are broadly in line with what I would expect to see in an
undergraduate text on Risk Theory. However, the four authors have collec-
tively made an enormous contribution to the development of actuarial science
in recent years and some chapters of the book, notably Chapters 5 and 10,
clearly reflect their interests.

A novel, and welcome, feature of such a book is the inclusion of generalized
linear models (GLMs, Chapter 8). Such models are extremely useful in many
branches of actuarial science and the authors demonstrate this in Chapter 9
where they model claims run-off data using a GLM and then show that
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several standard numerical methods, notably the chain ladder method, can be
derived as special cases of this GLM. Surely this is a more satisfactory way to
treat this subject than is usually found in textbooks.

A less welcome feature of the book is that it treats most topics in a mathe-
matical way and provides little insurance context to motivate these topics. A good
example of this is reinsurance. This is mentioned frequently throughout the
book but there is no real discussion of how and why it operates. Presumably,
lecturers teaching a course based on this book would be expected to provide
this background material from other sources. Chapter 6 on Bonus-malus sys-
tems is an exception – it does have a good motivational introduction based on
the Dutch system.

Another less welcome feature is that nowhere in the book, apart from one
table in Chapter 7, do the authors use real insurance data to illustrate their tech-
nical development. This is a pity. The use of such data would inevitably require
a brief description of the origin of the data, thereby giving the reader greater
understanding of why the mathematical development is useful and an appre-
ciation that Risk Theory is useful in practice. This is in marked contrast to the
book by Klugman et al. (1998), where real data are used extensively.

Amazon’s website gives the price of Modern Actuarial Risk Theory as
US$144. This is on the high side, even by today’s standards, for a “must buy”
text for an undergraduate course. The same website gives the price of Loss
Models as (no more than) US$110.
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MARY HARDY: Investment Guarantees: Modelling and risk management for equity-
linked life insurance. John Wiley & Sons. ISBN 0-471-39290-1, 2003.

It is always a pleasure to read something written by Professor Hardy. It is
doubly so when it is a book on a subject that I have been long concerned with,
and triply so when I and two colleagues, Dr Sheauwen Yang and Professor
Howard Waters, have recently presented a long paper (2003) to the actuarial
bodies in the United Kingdom on a rather similar subject, that of contracts
with guaranteed annuity options (GAOs). (I shall refer to this paper and its
authors as “WWY”). So I am very pleased to write this review, and to be able
to recommend Professor Hardy’s book most warmly.

Although I might have wished that I had written a book on this subject
myself, this is not exactly the book that I would or could have written. Profes-
sor Hardy’s approach is very similar to that of myself and my colleagues in rela-
tion to GAOs, but it also differs in a number of places, and she describes some
things she has done that I have never attempted. I shall draw attention to our
differences as we go along.

The book, according to her Introduction “is designed for all practitioners
working in equity-linked insurance … It is written with actuaries in mind, but
it should also be interesting to other investment professionals. [It] forms
the basis for a one-semester graduate course for students of actuarial science,
insurance and finance.” In my view it succeeds well in these objectives. The actu-
arial material relating to mortality tables is tidied away into short Appendices.
I am not sure that a practitioner who had no statistical or mathematical training
at all could easily follow it, but it should present no difficulties to any actuary.

Equity-linked life assurance (as it is called in the U.S.A.) goes under sev-
eral names: unit-linked in the United Kingdom, segregated funds in Canada.
Many of the policies provide, or used to provide, guarantees of a minimum
sum assured on maturity, and perhaps also on earlier death. The existence of
these policies in the U.K. in the 1970s led to the seminal work done by the
Maturity Guarantees Working Party (MGWP), whose report published in
1980, suggested setting up contingency reserves calculated as what are now
called quantile reserves or value-at-risk reserves.

Equity-linked assurances with investment guarantees are the archetypal
examples of a life insurance policy that contains benefits defined as the better
of A and B, where A and B are amounts that are both defined in the policy.
One can relate these to standard financial options by defining a new type of
option, a Maxi, whose payoff at the expiry date is Max(A,B). A Maxi is easily
related to the more usual Call and Put options. An equity-linked policy can
be treated as an investment in ordinary shares (“equities” or “common stock”)
plus a put option, or as an investment in cash plus a call option, or as a maxi.

However, Professor Hardy’s initial approach, like that of the MGWP and
of WWY, is to ignore the financial option concepts, and to estimate quantile
reserves (or better “conditional tail expectation” or CTE reserves) by the use
of simulation. She describes this as “the actuarial approach”, as opposed
to the “dynamic hedging approach” of financial economists. However, many
actuaries understand financial options, and many financial economists understand



the necessity for contingency reserves, so the names are no more than conve-
nient labels.

Chapter 1 of the book describes the types of policy considered, and the his-
tory and background. To do simulations one needs a stochastic simulation
model, to replicate the “real world” and this is considered in Chapter 2. In this
chapter the author describes several possible models and modifications thereof.
Each of the models is fitted to two data sets, monthly values from about 1956
to 2000 of the TSE 300 index and the of the S&P 500 index. The models
described include the independent lognormal, autoregressive AR(1) lognormal,
and regime-switching lognormal (RSLN) models for the structure, ARCH and
GARCH models for the residuals, also the empirical distribution, the Wilkie
model, and vector autoregressive (VAR) models. It is clear that the author prefers
the RSLN model.

One must emphasise that at this point we are seeking a model to represent
the real world movement of economic variables, in this case the total returns
on shares. We are not concerned with option pricing models. We would like a
model of the real world that is as realistic as we can make it, and we can jus-
tify from the data, without its becoming intractable for simulation. If we wish
to restrict ourselves to total returns on shares then the RSLN seems
to have many advantages. But in general it seems to me to be a pity to look
only at total returns. Share dividends, and share earnings are additional infor-
mation, to which participants in the market do pay attention. The rate of infla-
tion and interest rates, and for a country like Canada exchange rates and what
is happening in the United States, may also be relevant, as Hardy later observes
(on page 87). Therefore I would prefer to use an integrated model, on the lines
of the Wilkie model, rather than model restricted to one series. However, I see
no reason why we should put ourselves in the straightjacket of a VAR model.
The relationships between variables may not be all strictly linear.

Harris (1999) has applied RSLN models to multivariate data. Whitten &
Thomas (1999) apply a threshold model to multivariate data. In both cases
there are multiple regimes (but restricted in their examples to two). All vari-
ables are in the same regime at once (but one could imagine a model where this
did not apply). In the RSLN model the regime switches at random between
models with specified probabilities. In the threshold model the regime is in
one model or another depending on the value of an indicator variable in the
previous period (whether or not inflation was higher or lower than 10%). An
elaboration of Hardy’s RSLN model would be to include the US index and
the Canadian index in one model, and define four states where neither, one
or other, or both are in the higher variance regime. This could take account
of the connection between the states that is observed on page 87.

To use a model we must estimate parameters for it, and the next three chap-
ters discuss this. In Chapter 3 Professor Hardy discusses the classical maximum
likelihood estimation (MLE) method, how one derives the MLE parameter
values, uses the information matrix to derive confidence intervals for and cor-
relations between the parameter estimates, and then uses criteria such as the
likelihood ratio test and Akaike criterion to choose between models. This is
standard material, clearly presented.
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In Chapter 4 the “left tail calibration method” is described. For the par-
ticular application low share returns are critical, so it is desirable that the
left (negative) tail of the distribution is adequately modelled. It is clear that
the monthly returns are “fat-tailed”, which is why an ARCH or GARCH or
RSLN model is much better than a simple lognormal model for representing
the whole distribution. But it is possible to adjust the parameters of any of the
models (usually just the standard deviation) so that the left tail is adequately
“fattened”. This usually means that the right tail is not fitted so well. The
motivation for this process is also to meet the requirements of the Canadian
Institute of Actuaries’ report on segregated funds, which would allow a life
office to use any model it wished provided that certain statistics in relation to
the left tail are adhered to.

One method that Professor Hardy does not discuss is to use a fat-tailed
distribution (other than a stable distribution) for the residuals. If Z represents
the standardised (0,1) residuals, one can generate Z as X1 – X2 where X1 and
X2 are distributed with any distributions defined on (0, ∞), such as lognormal,
gamma, Weibull, Pareto or many others. Since X1 dominates the right tail and
X2 the left tail, one can fit the tails separately if one wishes. The MLE method
would be difficult, but one can match higher moments or quantiles. The method
is mentioned by WWY and seems worth considering.

In Chapter 5 we move on to Bayesian Markov Chain Monte Carlo (MCMC)
methods. I have previously found these difficult to follow, I suppose because
I have not in fact implemented them myself (I do not feel that I really under-
stand a numerical mathematical method unless I have written a computer
programme to implement it), but I find Hardy’s explanation as clear as any I
have seen so far. The advantage of the MCMC method, which indeed looks
complicated as compared with the MLE method, is that it gives empirical,
simulated, distributions for the parameters. The MLE method gives the covari-
ance matrix of the parameter estimates, but one then assumes normality, and
the results are only asymptotically normal. The MCMC method shows that the
distribution of the parameter estimates is not as normal as one might have
hoped.

This is important when we come later to discuss the effect of parameter
uncertainty on the simulation results for the investment guarantees. One can
allow for this by using a different set of parameters for each simulation, picked
from a multivariate distribution of the parameters, using what WWY call a
“hypermodel”. MLE gives a multivariate normal distribution from which one
can pick. MCMC gives an empirical multivariate distribution, with as many
values to pick from as one has chosen to simulate in the MCMC procedure.
There are both theoretical and practical considerations that might influence
which method one chooses to use. Normal distributions can be awkward if
the parameters are essentially positive (such as a variance) or restricted to a
range such as (0,1) or (–1,1) (such as an autoregressive parameter), but one
can transform the parameter (assume that log variance is normal), or just
restrict it to the desired range (set any value greater than 1 to 1).

Using an empirical distribution requires large computer storage, which may
or may not be a problem, and restricts the drawn parameter values to the range
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in the empirical distribution. If one simulates enough values by MCMC that
may not be a problem; but it may put up the storage requirements. It seems
that there would be more work to be done before one could say that MCMC
methods should always be used, but I am sure that they should be tried out.

In Chapter 6 Professor Hardy shows how to model the guarantee liability using
“the actuarial method”, that is by setting up a contingency reserve at the start of
the contract, which is invested in a specific, but unchanging, way, and which has
a given chance (e.g. 99%) of being sufficient to meet the emerging liability.

The contracts that she describes in Canada have some features that may not
be customary elsewhere, and this complicates things. Thus the policies usually
have a guaranteed minimum benefit on death and also on maturity, though
these may be defined differently; but also there may be multiple maturity dates,
at each of which the policy may be “rolled over” for a further period; at that
time if the guarantee is in the money, the insurer may pay out the difference;
if it is out of the money, the guarantee may be reset at the higher current fund
value; the policyholder may also have the option to reset at any time or at
specified times for some minimum future period.

The methodology described allows for both deaths and withdrawals, and
also for management charges and special charges for the guarantee. I sometimes
feel that these practical complications, which of course must be allowed for by
a real life office, serve to confuse the issue in a more theoretical exposition
where one wishes to get over the fundamental principles. Fewer complications
could have been included, but I do not feel that what is there is excessive.

However, although Professor Hardy shows how to obtain distributions of
the costs, both on an emerging cash flow and on a present value basis, one thing
that is missing here is how to calculated the charges, which is covered later in
Chapter11.

At this stage it is also assumed, without discussion, that the guarantee reserve
is invested in risk-free instruments. This is probably the best strategy for this
type of contract. But an alternative would have been to invest the reserves in
the same fund as the policy. For other types of contract this might prove to be
the better. It should be investigated too, as is done to some extent in WWY.

Chapter 7 is entitled “A review of option pricing theory” and it performs
that function quite satisfactorily. As the author remarks, those who are familiar
with the Black-Scholes principles can pass it by.

In Chapter 8 Professor Hardy explains how the option pricing methodology,
with dynamic hedging, can be applied to the specific problem of investment
guarantees. Although what is presented is quite clear, I would have taken it more
slowly and more fully. Thus I would have started by demonstrating (for the
benefit of the sceptics) that, if the real world behaves in accordance with the
P-measure probabilities in the option pricing model, then dynamic hedging
according to the Q-measure calculations does indeed provide investment pro-
ceeds that are close to what is required, and the more frequent the hedging the
smaller the variance of the hedging error. Then one can go on, as the author
does, to show that, even if the real world behaves according to some other
model, in this case the RSLN model, then the proceeds may not be too far out,
provided some of the parameters, in particular the variances, are comparable.
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The very important point is made, which can hardly be over-emphasised,
that one needs two models for these calculations, one an option pricing model
which is used for calculating the option price and hedging quantities at each
time step, and the other a model that simulates the real world in whatever way
one wishes. I believe that lack of clarity about this may cause much confusion.

Professor Hardy sensibly shows a numerical example of dynamic hedging
for a 2-year contract with no mortality and withdrawals, before going on to
the complications of dealing with these decrements. I am a great believer in
showing the simple case first. If it is confused with too may irrelevant features,
the important points may be lost.

One aspect where I was not entirely happy with the explanation is in rela-
tion to calculating the present value of the “margin offset” charge. In Canada
the guarantees are explicitly charged for by making a charge on the fund units
every month of � times the amount of the fund at that time. This is in addi-
tion to, or part of, a management charge per month, and the total of them is
m times the amount of the fund each month. Thus the invested fund increases
at a rate less than the total return on shares (even if were to be invested in the
share index). This in fact makes the guarantee more likely to be in the money
at maturity. But to calculate the value of the margin offset, Professor Hardy
sums the monthly charges, discounted at the risk free rate, and then takes the
expected value under the Q measure. If we ignore the charges and other details
one can get the present value, A, discounted at the risk free monthly rate r as:

A = EQ[St=0,n–1 �.St e–rt]

Where n is the number of months and St is the share index value at time t.
A is then equated to the initial value of the option, B, to get a value for �.

It does not seem immediately clear why the Q measure is used, but I think
it can be explained: we (the life office) wish to set up the hedging portfolio
for the whole option initially. We require therefore to borrow an amount B.
We can repay the loan from the future margin offset charges that we shall
receive. The amounts of these will depend on the fund performance. But if we
borrow shares of value B (or denominate the loan as if it were in shares), then,
using shares as the numeraire, we do know what we shall receive, and we can
repay the loan exactly as we receive the charges. This would justify discount-
ing at the rate of return on the shares, and the result is certain, so we do not
need to take expectations. We therefore put:

A = St=0,n–1 �.StS0 /St = �.S0 [St=0,n–11]

And the answer, after allowing for the complications we have missed out, is the
same as Professor Hardy gets. However, the process of financing the initial
option value by borrowing shares is not explained. Effectively, the future mar-
gin offsets are hedged, which justifies using the Q measure, but the hedging is
static, not dynamic, except that some of the loan is repaid every month.

An aspect where Professor Hardy treats things differently from the way
WWY do is in the dynamic hedging process. Just before each rebalancing date
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(at time t –), the hedge portfolio has value H(t –); the desired value is H(t), and
the hedging error is the difference between these. Professor Hardy assumes
that the difference is made up at once (or taken away if it is a surplus), so that
the investments at time t+ are always what is required by the hedging process.
She then discounts the hedging errors at the risk free rate to get a present value
for them. This implicitly assumes that the hedging errors are financed by, or
invested in, the risk free asset. WWY treat the affair differently. They assume
that all that is available is H(t –), and they make alternative assumptions about
how it is invested: (i) the right amount could be put into shares, with the
balance invested in the risk-free asset; or (ii) the right amount could be put into
the risk-free asset with the balance in shares; or (iii) the amount available could
be invested in the right proportions. Option (i) is equivalent to what Professor
Hardy has done, and it seems not unreasonable in this case that it turns out
that the hedging error turns out to have lower variance under this option. But
for other options the same result is not found. In my view one always needs
to consider exactly how funds are invested or capital is financed, and not just
assume that one should discount at any given rate.

In Chapter 9 risk measures are discussed, in particular quantile reserves
(QR or VaR), and conditional tail expectations (CTE or Tail VaR). The latter
have many desirable properties, and Professor Hardy, the Canadian Institute
of Actuaries Taskforce and WWY all agree in preferring them to the former.
Hardy shows how QR and CTE are related, how in some simple cases they can
be calculated analytically, and how confidence intervals can be derived when
they are simulated, all with practical examples. One nice feature is that graphs
of distribution functions are drawn with the axes transposed (0 to 1 on the x
axis, amounts on the y axis) so that a “more risky” distribution appears higher
than a less risky one.

Hardy compares the QRs and CTEs found from the static (actuarial)
and the dynamic (hedging) approaches, and shows that the latter gives (in her
examples) lower extreme quantiles than the former, though the average
cost/claim is often higher. This agrees with most of the results in WWY for
GAOs, but they found that in some cases hedging gave even higher quantiles
than the static approach.

A point not mentioned by Hardy is that CTEs allow an easy method of assess-
ing the costs for individual policyholders as opposed to the costs for the whole
portfolio; this is discussed in WWY. But a further point is that, although the CTE
is analogous to a stop-loss calculation, being enough to provide a quantile reserves
and also pay a “premium” for the average claim in excess of the QR, such insur-
ance could not possibly be obtained at that price, so in effect the CTE, without
reinsurance, is just a QR with a higher security level, a higher value of �.

In Chapter 10 the contracts are investigated using emerging cash flow analy-
sis and profit testing, taking capital requirements into account. The distribu-
tion of profit using some desired rate of return on the capital required is the
focus of interest. This is quite similar to what WWY have done, though the way
that it is expressed by the different authors does not make this immediately
clear. Hardy assumes the charge as given and calculates the expected profit and
distribution of profit at different desired rates of return (risk discount rates).
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WWY choose specimen rates of return, and calculate the break-even charge
that results. But in both cases it is recognised that prudential reserves, whether
these are part of the policy reserves or treated as solvency capital, are required,
and the policyholders need to pay the average cost of their benefits, plus a
“rent” for the use of this capital. So the premium they pay for the guarantee
needs to be enough to cover both parts.

Hardy discusses the development of the prudential reserves (on a 95% QR
basis) for specimen simulations, but does not bring out the additional aspect
that the “fair value” of the contract, the price at which it could be transferred
to another provider, which is what modern accounting principles are working
towards, should be calculated on the same principles as the initial premium,
as the expected value of the benefits (the “best estimate” perhaps) together
with a sum that allows an adequate profit on the required contingency reserves.
The fair value does not include the contingency reserves, but prudent reserves
do include it. This is discussed by WWY, but whether the prudent reserves are
part of the policy reserves or are part of the solvency capital, which in some
countries may be of considerable practical significance, e.g. in relation to tax,
is not considered, though Hardy mentions this point.

Chapter 11 discusses the important topic of forecast uncertainty (I should
not say “important”; all the chapters in this book cover important topics).
Professor Hardy attacks this in four steps: first, the errors from the random
sampling inherent in Monte Carlo simulation; then variance reduction techni-
ques; then parameter uncertainty; and finally model uncertainty.

Increasing the number of simulations reduces the random sampling errors,
and it is useful to try out the convergence when the asymptotic result can be
calculated analytically. The number of simulations required depends on the
quantity we are estimating; tail values require more simulations than do means.
A number of instructive examples are given.

Variance reduction techniques are also discussed, but Professor Hardy con-
cludes that the only one that helps in this context is the control variate method.
I had found, long ago, that some variance reduction techniques, such as impor-
tance sampling, were more trouble than they were worth, and indeed were
sometimes so much slower than the simple method of just increasing the num-
ber of simulations was the best technique. The speed of computers has made
it easier to do many more simulations. But one small feature that I discovered
recently was that to calculate QRs or CTEs one needs to sort the results into
order; many sorting routines increase in speed with the square of the number
of cases sorted, and I found that the sorting took longer than the simulations
had done; further investigation showed that a modern sorting technique (in fact
Quiksort) improved my sorting speed over 100-fold, and that to take account
of the fact that very many simulations gave guarantee costs of zero improved
my sorting speed another 50-fold. Good computer algorithms, and also the
source language one uses (complied or interpretive), can still make an enormous
difference to computer run times. Looking carefully at your programmes may
be a lot better than any variance reduction techniques.

Parameter uncertainty can be dealt with in three ways, of which Professor
Hardy discusses only two, the Bayesian MCMC approach, and “stress testing”
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by using alternative, but perhaps arbitrary, sets of parameters. With a com-
plicated model it is not always easy to see which way one should move the
parameters to test for stress, so I favour the “hypermodel” approach, by which
I mean choosing, for each simulation, a random set of parameter values from
some multivariate distribution for the parameters. Hardy uses the results from
the MCMC approach; the alternative is to use the information matrix from the
MLE method and to assume that the parameters are multivariate normally
distributed. As I have noted above, this may require a careful choice of which
parameter one chooses; log s2 may be better than just s. The multivariate
normal method requires much less storage than MCMC, and it has the advan-
tage that one can more easily tinker with the hyperparameters (the parameters
of the distribution of the simulation parameters), and even splice together esti-
mates from different investigations, which I suppose cannot be done with MCMC.

Model uncertainty is the last topic in this Chapter. Hardy’s method is to
try out alternative models. I would do just the same.

This ends the book’s discussion of performance guarantees. Chapters 12 and
13 discuss, rather briefly, two extra topics: guaranteed annuity options (GAOs),
and equity-indexed annuities. It is useful that these are mentioned, but a pity
that they could not be fully developed. The paper on GAOs by WWY has
129 pages, and Yang’s (2001) thesis is a great deal longer. Hardy gives 16 pages
to the topic.

Some aspects of GAOs are similar to equity linked life insurance, in that,
like them, the benefit can be defined as Max(A,B). Large contingency reserves
may be required, and the actuarial and the hedging approaches are both pos-
sible. But GAOs have many different features. The type discussed by Hardy and
by WWY is an equity-linked policy with a GAO at a fixed maturity (retirement)
date, but in practice many of the policies issued in the U.K. have been with prof-
its policies, with a range of possible maturity dates. Sometimes the guarantee
is simply that a minimum amount of annual annuity will be available, rather
than that the fund proceeds can be converted at a guaranteed rate; this is of
course much cheaper.

To value GAOs one needs a stochastic model for interest rates, as well as
for shares. A full yield curve model would be desirable, but one can do a lot
with a model that allows for a level yield curve. Hardy has investigated U.K.
data, and suggests two regime switching models, one for the FTSE All-Share
index, one (with two autoregressive models) for the (long-term) yields on 2†%
Consolidated Stock (“Consols”), which is in effect a perpetual (and very old)
British Government stock. This section is new material. But it is then shown
how the actuarial approach can be applied, assuming that future mortality rates
are known.

In practice future mortality rates cannot be forecast with certainty, and
Yang (2001) investigates the effect of assuming a stochastic model (or “hyper-
model”) for forecast mortality rates. This is not just a matter of allowing for
the random deaths in a small population of annuitants, but of allowing for
the uncertainty of the underlying rates. Yang’s method resembles that of Lee
& Carter (1992), with some simplifications and some additional features. WWY
show that the improvements in mortality in the U. K. since 1985 have been just
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as important in increasing the cost of GAOs as the falls in interest rates that
have occurred. Hardy does not discuss these points.

A further feature of GAOs is that, with a fixed guaranteed rate (Hardy, as
Yang and WWY, uses £111 per annum per £1,000, though the actual rates
offered by different offices vary considerably) the cost of the guarantee, how-
ever measured, varies very much with current interest rates, i.e. how much into
or out of the money the guarantee is, whereas (at least under the lognormal
model) the value of the equity linked investment guarantee is the same at all
starting dates. This means that the uniform monthly charge, useable for equity
linked guarantees, is unsuitable here, and an up-front charge, or at least a periodic
charge that is fixed in advance and depends on the conditions at commence-
ment is desirable.

GAOs lend themselves to option pricing models. It is convenient, though
less realistic, to model the market annuity rate (at age 65) as a lognormal
model, as do Yang and WWY. Full yield curve models after retirement have
also been proposed, by e.g. Boyle and Hardy (2002). GOAs can be treated like
a portfolio of bond “swaptions”, as shown by Pelsser (2002). But an extra
feature of the equity-linked GAO is that the amount to be converted depends
on share price performance, so the option is analogous to a “quanto” option.
This makes the option pricing mathematics harder to develop, but the results
are not too difficult to understand. However, to hedge one needs to hold the
full value of the policy including the option in shares, and then have offsetting
long and short amounts, long in a portfolio that would replicate the deferred
annuity and short in a zero-coupon bond maturing at the maturity date. The
required amounts are the larger the more the option is “in the money”. But
whether long enough bonds to match the deferred annuity, and whether it is
practicable to have large short holdings in zero-coupon bonds (unless they can
be “borrowed” from the rest of the life office) are both doubtful.

Thus the dynamic hedging approach for GAOs may be impractical. It is
therefore necessary for life office to consider the required contingency reserves,
with both the static and the dynamic approaches. Hardy covers the main aspects
well, but necessarily leaves much unsaid.

Equity-indexed annuities, covered in Chapter 13, are much simpler, appear-
ing very similar to the equity-linked guarantee, but typically funded as an
investment in bonds plus a call option, rather than as an investment in shares
plus a put option. The term is typically much shorter, the option risk is often
reassured with a third party, and the guarantee depends usually on the share
price index, not a total return index. However, there are many interesting
features of these contracts, including annual minima and maxima, and the
possibility that the share return guaranteed is taken as only a fraction of the
actual return. However as Hardy says, these policies are usually tackled as
(possibly complicated) option pricing problems, and the actuarial method is
normally absent.

This review is rather longer than is usual in ASTIN Bulletin, but I have
had a lot to say on the subject. But modern reviews do not begin to compete
with those of the 19th Century. Macaulay’s review in The Edinburgh Review
of Gleig’s Memoirs of the life of Warren Hastings (1841) takes 140 pages in my
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reprinted (1898) copy. Macaulay’s review is perhaps more worth reading nowa-
days than the book he was reviewing. This is not the case for this article. Read
Mary Hardy’s excellent book.

DAVID WILKIE
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Report on the
XXXIV International ASTIN Colloquium,

August 24-27, 2003, Berlin

The 34th International ASTIN Colloquium 2003 was held in Berlin from August
24 to 27. More than 300 participants from 34 countries all over the world
made it an extremely successful event. Opening addresses were given by Edward
Levay and W. James MacGinnitie for the ASTIN Committee, and Elmar Helten,
Dieter Köhnlein and Christian Hipp for the local Organizing and Scientific
Committee. In contrast to its predecessors, no parallel sessions for presenta-
tions were planned this time. Instead, Poster Sessions were organized which
offered ample opportunity to the participants for scientific exchange with the
authors during extended coffee breaks. This new concept was very much wel-
comed by the attendants and will most probably be maintained also in future
ASTIN conferences.

Social events were a visit to “TIPI – the tent”, a varieté show on the evening
of the first conference day, a boat trip on the Wannsee on the second day and
a closing gala dinner at the post museum in the evening of the final day.

The topics of the invited speakers for this year’s Colloquium focused on two
major theme groups, one of which was the ongoing and deepening interplay
between financial and insurance markets (key words: Financial Risk Manage-
ment, Securitization, Loss Reserving, Solvency Standards). The second one
was devoted to the possible consequences of modern medical genetic research
for life and health insurance.

The opening plenary lecture was given by Paul Embrechts (ETH Zürich)
on the topic “Insurance analytics: actuarial tools for financial risk manage-
ment”. A key message within this very comprehensive and refreshing survey
over recent developments in this area was “actuarial thinking”, in particular
in connection with financial risk management. As new challenges for actuaries
due to regulatory measures in the spirit of Basel I and II were mentioned: pre-
mium principles and risk measures – pricing in incomplete markets – stress- and
solvency-testing – dynamic financial analysis (DFA) – stochastic dependence
structures “beyond the normal distribution” (key word: copulas).

The following presentation of David Mocklow (Chicago) was devoted to
the topic “Risk Linked Securities: what’s shaking?”. Seen from the perspective
of a reinsurer, a thorough survey over different products and markets related
to ART was given, with a particular emphasis on natural catastrophes and the
“value of securitization”.

The lecture of Greg Taylor (Sydney and University of Melbourne) closed
the plenary lecture of the first day. It was dealing with “Loss reserving techni-
ques: past, present and future”. In his lecture, he presented a hierarchical
approach to classifying the various known loss reserving techniques, differenti-
ating between macroscopic vs. microscopic models, stochastic vs. deterministic



models and models with and without dependence structures. An in-depth-
analysis was made for adaptive approaches including Kalman filtering, a tech-
nique which is well-known in the area of generalized linear models (GLM).

The second day of the colloquium started with a survey lecture of Søren
Asmussen (Aarhus University) on “Some applications of phase-type distribu-
tions to insurance and finance”. After some introductory remarks on historic
developments and fundamental properties of phase-type distributions empha-
sis was put on the advantages of a rigorous application of matrix calculus in
this field. This simplifies not only a lot the classical proofs, but allows also for
new results in an elegant way, in particular in ruin theory with a finite time hori-
zon, or for pricing of Russian options.

The subsequent two lectures were devoted to the medical topics outlined
above. Jean Lemaire (Wharton School, Philadelphia) and Angus MacDonald
(Heriot-Watt University, Edinburgh) shared their presentation on “Genetics, fam-
ily history, and insurance underwriting: an expensive combination?”. A major
problem in this context is the question whether life or health insurance com-
panies have the right to use or obtain information on the genetic code of a client
in order to fix a risk-adjusted premium. From a legal point of view, this problem
is dealt with in very different ways even within Europe, not to speak of the rest
of the world. Besides this aspect, it was pointed out that also from the medical
perspective, statistically significant prognoses on a possible outbreak of diseases
related to gene defects are dubious, in particular if multi-factorial gene disor-
ders have to be considered. Family history is another source of information that
can lead to different conclusions here.

These statements were strongly supported by Jens Reich (Humboldt-Uni-
versität Berlin) with his lecture on “Living is a risky endeavour – less so through
genetic medicine?”. The audience was informed in detail about the biological
foundations of the human genome and various aspects of “cloning”. Special
emphasis was given to the legal problems with stem cell research in particular
in Germany, where such topics are still discussed in a quite controversial way.

The closing plenary lecture of the last day was presented by Harry Panjer
(University of Waterloo, Canada) with the title “Development of international
insurance company solvency standards”, finding thus a way back to the topic
of the opening lecture of the first day. Perspectives for future actuarial activi-
ties especially for the development and unification of tools for regulatory
authorities were outlined, such as risk measures and their properties (VaR,
coherent risk measures, TailVaR), stochastic modeling of dependencies by
copulas and an improvement of the “covariance formula” for the valuation of
risk based capital (RBC).

Besides the plenary lectures, various other contributions were organized in
working sessions. In the order of presentations, these were:

– Techniques for valuation a general insurance company within the framework
of IAS standards: some proposals (by Aurélie Despeyroux, Charles Levi,
Christian Partrat and Jerôme Vignancour)

– Asbestos: The current situation in Europe (by Laura Salvatori, Alessandro
Santoni and Darren Michaels)



– Munich Chain Ladder – Closing the gap between paid and incurred IBNR-
estimates (by Gerhard Quarg, with an additional comment by Thomas
Mack)

– Capital and Asset Allocation (by René Schnieper)  
– Stochastic orders in dynamic reinsurance markets (by Thomas Møller)
– Risk Exchange with distorted probabilities (by Andreas Tsanakas)
– Multidimensional Credibility applied to estimating the frequency of big

claims (by Hans Bühlmann, Alois Gisler and Denise Kollöffel)
– Credibility weighted hazard estimation (by Jens Perch Nielsen and Bjørn

Lunding Sandqvist)
– Marketing and Bonus-Malus Systems (by Sandra Pitrebois, Michel Denuit

and Jean-Francois Walhin)
– Insurance applications of near-extremes (by Enkelejd Hashorva and Jürg

Hüsler)
– Windstorm claims dependence and copulas (by Olivier Belguise and Charles

Levi)
– Tail distribution and dependence measures (by Arthur Charpentier)
– Robust inference in rating models (by Gilles Dupin, Alain Monfort and Jean-

Pierre Verle)
– Basis risk and cat risk management (by Frank Krieter)
– Copula: A new vision for economic capital and application to a four line of

business company (by Fabien Faivre)
– Effets de la dépendance entre différentes branches sur le calcul des provisions

(by Antonin Gillet and Benjamin Serra)
– Modeling and generating dependent risk processes for IRM and DFA (by

Dietmar Pfeifer and Johana Neslehová)
– Capital allocation survey with commentary (by Gary G. Venter).

Poster contributions were (in alphabetical order of the authors):

– Fair Value of Life Liabilities with Embedded Options: An Application to a
Portfolio of Italian Insurance Policies (by Giulia Andreatta and Stefano
Corradin)

– A Comparison of Strategic Reinsurance Programs (SRP) with Banking
Activities and Other Insurance and Reinsurance Activities (by Baruch
Berliner)

– Dynamic Asset Liability Management: A Profit Testing Model for Swiss
Pension Funds (by Ljudmila Bertschi, Sven Ebeling and Andreas Reichlin)

– Economic Risk Capital and Reinsurance: An Extreme Value Theory’s Appli-
cation to Fire Claims of an Insurance Company (by Stefano Corradin)

– On the Distribution of the Deficit at Ruin and the Surplus Prior to Ruin in
the Compound Binomial Model (by Esther Frostig)

– The Impact of Statistical Dependence on Multiple Life Insurance Programs
(by Esther Frostig and Benny Levikson)

– Optimal Dividend Payment under a Ruin Constraint: Discrete Time and
State Space (by Christian Hipp)

– The Impact of Reinsurance on the Cost of Capital (by Werner Hürlimann)
– Optimality of a Stop-Loss Reinsurance in Layers by Werner Hürlimann)



– The Czeledin Distribution Function (by Markus Knecht and Stefan Küttel)
– On the Loading of Largest Claims Reinsurance Covers (by Erhard Kremer)
– Exposure Rating in Liability Reinsurance (by Thomas Mack and Michael

Fackler)
– Credibility Evaluation for Heterogeneous Populations (by Udi E. Makov)
– On a Non-Linear Dynamic Solvency Control Model (by Vsevolod Malinovskii)
– Capital Consumption: An Alternative Methodology for Pricing Reinsurance

(by Donald Mango)
– A Stochastic Control Model for Individual Asset-Liability Management (by

Sachi Purcal)
– On Error Bounds for the Approximation of Random Sums (by Bero Roos

and Dietmar Pfeifer)
– A Risk Charge Calculation Based on Conditional Probability (by David Ruhm

and Donald Mango)
– Conditional Risk Charge Demo using DFAIC (by David Ruhm and Donald

Mango)
– A Risk Theoretical Model for Assessing the Solvency Profile of a General

Insurer (by Nino Savelli)
– On Unknown Accumulations in Accident Insurance: An Upper Bound of

the Expected Excess Claim (by Hans Schmitter)
– Actuarial Principles of the Cotton Insurance in Uzbekistan (by Bakhodir

Shamsuddinov)
– The Estimation of Market VaR using Garch Models and Heavy Tail Dis-

tributions (by Ricardo A. Tagliafichi)
– Fit to a t – Estimation, Application and Limitations of the t-Copula (by

Gary G. Venter)
– Une Nouvelle Caractérisation de la Distribution de Pareto, avec Application

à la Cadence de Paiement du Réassureur en Excédent de Sinistre (by Jean-
Francois Walhin).

The closing ceremony of the Colloquium was performed by Edward Levay and
Dieter Köhnlein.

All presentations (invited lectures, working papers and posters) can be down-
loaded from the Colloquium website at www.astin2003.de.

Dietmar Pfeifer



Report on the International AFIR Colloquium 2003,
Maastricht, The Netherlands

From 17 to 19 September, 2003, Maastricht was the venue for the annual AFIR
Colloquium. In this report you will find impressions of both the content and
the surrounding social activities.

PARTICIPATION

The number of participants was 154 with 23 accompanying persons. There
was a good spread over 22 countries. Apart from The Netherlands, which as
a host country not surpisingly had the highest number (52), the Nordic coun-
tries stood out with 43 participants. Worthwhile mentioning also is Slovenia
with 14 participants and the fact that seven countries were each represented
by 1 participant.

INVITED LECTURERS

Two invited lecturers had been invited. Firstly, Mr Luc Henrard, Chief Risk
Officer of FORTIS, Belgium, gave a lecture under the title “The management
of a financial conglomerate: a challenge for the actuaries?”. He made an almost
passionate plea for actuaries to broaden their horizon to include more expertise
outside their traditional role. Secondly, Mr Roderick Munsters, Chief Investment
Officer of PGGM, The Netherlands, made a presentation on “The actuary
and the investor on a rollercoaster ride” in which he, referring to PGGM’s
investment policies, equally challenged the actuaries to intensify their coopera-
tion with the “asset specialists”. Both presentations tied in very well with the
subjects of of the regular papers and the special paper, mentioned below.

PAPERS

The number of accepted papers was 35. Most of them were presented by the
author (or one of the authors) during 30-minute sessions. The variety of subjects
was quite interesting and all papers were classified in one of the three prede-
fined categories, i.e. “Asset Classification”, “Market valuation of Liabilities”
and “Risk Measurement and Management”. They are all accessible and down-
loadable through the website www.afir2003.nl, which will remain open for some
time. We hope that a number of them will be published in the ASTIN Bulletin.

SPECIAL PAPER

One non-scientific paper was presented about “the future of AFIR” and the
dual role of dealing with both traditional and new areas. The authors made a
plea for a reorientation of AFIR’s “mission”. In their view, AFIR should
become more active in stimulating actuaries to become “risk officers” in a far
more general sense. Of course this would include adjustments to the educational



syllabuses. The paper also described — on the basis of a survey in 10 coun-
tries — the extremely diverse way in which presently AFIR activities are organ-
ised around the world.

GENERAL MEETING AND BOB ALTING VON GEUSAU MEMORIAL PRIZE

On Friday afternoon the General Meeting for AFIR members was held to
discuss accounts, Committee membership nominations and some other topics
of a more formal nature. The Chairman also announced that the discussion
on the future of AFIR would have a follow-up during the next Colloquium and
that several sub-committees had been appointed to prepare for this. Following
the General Meeting, a ceremony took place to present a Prize for the best arti-
cle, published in the ASTIN Bulletin during the years 2001 and 2002. It was
the first time this new annual Prize, named after one of the “founding fathers”
of AFIR in the seventies, was awarded. The winner was Shaun Wang for his
paper “A framework for pricing financial and insurance risks” in the ASTIN
Bulletin 32.2 of November 2002.

SOCIAL PROGRAM

A number of social activities had been arranged for participants and companions
to liaise with others “outside the world of formulae”. On the opening day
(Wednesday) a tour of the surrounding area of Maastricht was made, ending
with a reception at Maastricht’s Town Hall. There was a companion’s program
on Thursday and in the evening all guests were invited to an informal dinner
in the city. Finally, there was a formal farewell dinner on Friday night in one
of the castles in Maastricht’s province of Limburg.

NEXT COLLOQUIUM

During the General Meeting the venue for the next Colloquium was disclosed:
USA, (probably New York) in November 2004. On behalf of the Organising
and Scientific Committees I take pleasure in wishing our successors the very
best in preparing for that event!

HUGO BERKOUWER

chairman of the Organising Committee, Maastricht 2003



International Conference on “Dependence Modelling: Statistical Theory and
Applications to Finance and Insurance” (DEMOSTAFI)

20-22 May 2004 in Quebec City, Canada

This conference is a sequel to the series of conferences on copulas, dependence
models and their applications that were held in Rome (1990), Seattle (1993),
Prague (1996) and Barcelona (2000).

The purpose of this conference is to bring together researchers interested in
modelling stochastic dependence and measuring its effects in statistics, actu-
arial science and finance. The meeting aims to attract copula specialists and
statistical researchers interested in their development and use in characterizing
and modelling of dependence (stochastic orderings, distributions with fixed
marginals, etc.). We would also like to put emphasis on applications of the
relevant concepts and inferential techniques in the fields of actuarial science
and finance, which are thriving at present. The “technological transfer” aspect
of the conference will be especially important; for example, several survey
talks by world specialists have been planned.

For additional information about this meeting, registration material and so on,
please visit the conference website at http://www.fsa.ulaval.ca/demostafi/

Etienne Marceau, Ph. D., A.S.A.
Member of the organizing committee
Associate Professor
Ecole d’Actuariat
Laval University
Quebec (Que)
Canada, G1K 7P4
Phone: (418) 656-2013
Fax: (418) 656-7790
email: emarceau@act.ulaval.ca
website: http://hyperion.act.ulaval.ca/~emarceau/ 



XXXV INTERNATIONAL ASTIN COLLOQUIUM
Sunday June 6 to Wednesday June 9, 2004

The 35th International ASTIN Colloquium will be held in Bergen, Norway.
The Norwegian Actuarial Society extends its most sincere welcome to all partic-
ipants and partners to join us in what will surely become days full of meaning
both professionally and socially.

Call for papers
We invite authors to submit papers on any subject covered by ASTIN; see the
“Call for papers” entry on the website. Deadline for submitting scientific papers
in their final form: February 1, 2004.

Scientific Program committee
Erik Bølviken (chairman), Paul Embrechts, Simen Gaarder, Angus MacDonald,
Ragnar Nordberg, Mette Rytgaard.

Key notes lectures
Opening by prominent actuary in the insurance industry.
Closing by prominent academic on actuarial science in 21th century.

Organized sessions
Thematic sessions have been organized on

Insurance fraud
Genetics and insurance
Climatic change and its impact on insurance

Coordinated lectures will be given by actuaries and by relevant people from the
outside. Details: See conference website

Conference venue
The colloquium will take place in Bergen (Norway’s second largest city), located
on the west coast at the entry of magnificent fjords and waterfalls. The town,
still marked by its hanseatic origin, was for centuries the commercial capital
of the country. Today Bergen is the bustling home of two universities, and
became a European city of culture three years ago. Karl Borch, co-founder of
modern risk theory, resided here.

www.astin2004.no
The website gives you up-to-date information.
Here you will find the preregistration schedule.



The Department of Statistics & Actuarial Science
of the University of the Aegean is pleased to host

the 3rd Conference in Actuarial Science and Finance,
to be held on Samos, on September 2-5, 2004.

This event is jointly organized with the Katholieke Universiteit Leuven
(Department of Applied Economics and Department of Mathematics), the Uni-
versité Catholique de Louvain (Institute of Statistics and Actuarial research group)
and the University of Copenhagen (Laboratory of Actuarial Mathematics).

The Conference allows the presentation of the latest works in the area of
actuarial science and finance. It is open to all persons interested in actuarial
science and finance, be they from universities, insurance companies, banks,
consulting firms or regulatory authorities. The conference aims to facilitate
the contact and the communication between the practicians and the researchers.

The topics of the sections include:
– Extremes and Large Deviations in Actuarial Science – Chair J. Teugels 

– Non-life Insurance – Chair R. Verrall

– Advances in Incomplete Markets – Chair Th. Zariphopoulou 

– Modelling Dependence in Actuarial Science – Chair Th. Mikosch 

– Risk and Control – Chair S. Asmussen

– Life, Pension and Health Insurance – Chair H. Gerber 

There will be four short courses. Two before the conference: 30th of August -
1st of September
– Stochastic Claims Reserving, by R.J. Verrall 

– Stochastic Control Applied to Actuarial Problems, by H. Schmidli 

and the other two after the conference: 6th September - 8th September 
– Risk Measures and Optimal Portfolio Selection (with applications to ellip-

tical distributions), by J. Dhaene and E. Valdez 

– Advanced Statistical Methods for Insurance, by M. Denuit 

Postgraduate students and young reseachers are specially welcome.

Scientific Committee:

Asmussen Soeren
Denuit Michel
Foss Serguei



Frangos Nicos
Gerber Hans
Goovaerts Marc
Guillen Montserrat
Konstantinides Dimitrios
Makov Udi
Marceau Etienne
Mikosch Thomas
Ng Kai
Papaioanou Takis (Chair)
Tessaromatis Nicos
Teugels Jef
Verrall Richard
Willder Mark
Zariphopoulou Thaleia

Organizing Committee:

Dhaene Jan
Frangos Nicos (Chair)
Konstantinides Dimitrios
Mikosch Thomas
Purcaru Oana
Schmidli Hanspeter
Teugels Jef
Walhin Jean-Francois

Local Committee:

Chatzispyros Spyridon
Giannakopoylos Athanasios
Katsis Athanasios
Konstantinides Dimitrios (Chair)
Milionis Alexandros
Nakas Christos
Poufinas Thomas

For further information, please refer to 

http://www.stat.ucl.ac.be/Samos2004/



GEORGIA STATE UNIVERSITY
J. Mack Robinson College of Business

Two Faculty Positions in Risk Management

The Robinson College of Business at Georgia State University invites applica-
tions for two tenure-track positions at the assistant professor level to begin in
fall 2004. These two hires are the first of six positions for which we anticipate
hiring during the next three years for the purpose of forming a cross-disciplinary
group charged to conduct fundamental research on the economics of uncertainty
and on the management and pricing of risk.

JOB QUALIFICATIONS:

Qualified candidates will be expected to possess a PhD by the time of their
appointment. All areas of specialization will be considered provided the can-
didate has a strong interest in and academic background in some area of risk,
broadly defined. We are particularly interested in individuals whose studies
involve dynamic asset pricing, computational methods including financial
econometrics, statistics or actuarial science, equilibrium theory or the micro-
economics of uncertainty, optimal contracting, and the estimation theory for
dynamic games and dynamic contracting. The ideal candidate will be expected
to publish in the major journals of economics and finance as well as important
journals of their specific discipline.

ABOUT THE ENVIRONMENT:

The Department of Risk Management and Insurance houses one of the old-
est and most influential risk management programs in the U.S. Beginning in
academic year 2003, and continuing in 2004 and 2005, the department intends
to recruit six new faculty members trained in the most advanced methods of
their disciplines for a coordinated study of risk management problems at their
most fundamental levels. Salaries will be competitive and strong research sup-
port will be provided. Teaching loads will be low to ensure the group has the
opportunity to produce high quality research. A statement outlining the vision
the department has for the group is available upon request from the co-chairs
of the recruiting committee.

FURTHER INFORMATION AND APPLICATION PROCEDURE:

Applicants should send a current curriculum vita, three letters of recommen-
dation, and recent publications or working papers for review. Applications
should be submitted electronically via e-mail as pdf files to rphillips@gsu.edu.
Applicants wishing to send their materials via regular mail should forward
them to:



Richard D. Phillips, Co-chair
Department of Risk Management and Insurance
Robinson College of Business
Georgia State University
P.O. Box 4036
Atlanta, GA 30302-4036

For further information, contact either co-chair of the search committee: Martin
Grace - mgrace@gsu.edu or 404-651-2789; Richard Phillips - rphillips@gsu.edu
or 404-651-3397.

Interviews can be scheduled for the 2003 Financial Management Association
Annual Meeting or the 2004 Allied Social Sciences Association Annual Meeting.
Preference will be given to applications received by December 1, 2003.

GEORGIA STATE UNIVERSITY IS AN EQUAL OPPORTUNITY EDUCATIONAL INSTI-
TUTION/AFFIRMATIVE ACTION EMPLOYER AND ENCOURAGES APPLICATIONS FROM

QUALIFIED MINORITIES. ALL POSITIONS ARE SUBJECT TO FINAL APPROVAL FOR

FUNDING.



DIRECTOR, Actuarial Science program
Department of Risk Management and Insurance

Georgia State University

JOB QUALIFICATIONS:

The Department of Risk Management and Insurance invites applications
for the position of Director of the Actuarial Science Program. The successful
candidate will have an established record of high-quality research in the field
of actuarial science, statistics, or related field such as financial mathematics and
a demonstrated ability to lead one of the outstanding actuarial science programs.
A doctorate in actuarial science, finance, mathematics, statistics, or related field
is required. This tenure track position, to be filled effective fall 2004 at the
rank of associate or full professor, requires maintenance of a successful research
agenda and demonstrated teaching excellence.

Membership in a professional actuarial organization is required. These may
include the Casualty Actuarial Society, the Society of Actuaries, the Institute
of Actuaries, the Faculty of Actuaries, or the Australian Institute of Actuaries.
Associates of these societies or members of other actuarial societies may also
meet this requirement if they have exceptional strength in scholarship, teaching,
and leadership.

ABOUT THE ENVIRONMENT:

From its founding in 1958, the GSU Actuarial Science Program has been one
of the leading programs in North America. It has a distinguished history of
serving students, alumni, and the actuarial profession. Hundreds of our gradu-
ates have become Fellows or Associates of the Society of Actuaries and/or the
Casualty Actuarial Society and many have become leaders in the professional
and business communities. The program is housed in the Department of Risk
Management and Insurance, regarded as one of the best departments of its type
internationally.

The department recently expanded its research and educational mission to
include mathematical risk management, offering masters and doctoral degrees
oriented at the intersection of actuarial science and mathematical finance. The
Mathematical Risk Management and Actuarial Science Programs work closely
in student recruitment and placement. Some courses are cross-listed and many
actuarial students take mathematical risk management courses, such as financial
engineering, as electives.

FURTHER INFORMATION AND APPLICATION PROCEDURE:

Preference will be given to applications received by December 1, 2003. Applicants
should send a current curriculum vita, three letters of recommendation, and
recent publications or working papers to:



Richard D. Phillips, Chair
Search Committee
Department of Risk Management and Insurance
J. Mack Robinson College of Business
Georgia State University
P.O. Box 4036
Atlanta, GA 30302-4036
Tel: 404-651-3397

Applications may be submitted electronically via e-mail at: rphillips@gsu.edu.
For further information, contact the chair of the search committee.

GEORGIA STATE UNIVERSITY IS AN EQUAL OPPORTUNITY EDUCATIONAL INSTI-
TUTION/AFFIRMATIVE ACTION EMPLOYER AND ENCOURAGES APPLICATIONS FROM

QUALIFIED MINORITIES. POSITION IS SUBJECT TO FINAL APPROVAL FOR FUNDING.



Assistant Professor in Actuarial Science
University of Iowa

Applications are invited for a tenure-track assistant professor in actuarial science
starting August 2004. Applicants must show promise for excellence in both
teaching and creative research. They must have completed a Ph.D. in a rele-
vant field and at least the first four Society of Actuaries’ exams, or equivalent
exams in a major actuarial organization. Fellowship or Associateship in a pro-
fessional actuarial society is preferred. The appointee is expected to conduct
research in actuarial science/financial mathematics, to assist in building a Ph.D.
program in this area, and to supervise Ph.D. students.

The selection process begins December 1, 2003 and continues until the position
is filled.

Please send a curriculum vitae, a transcript for new Ph.D.s, and have three
confidential letters of reference sent to:

Actuarial Search Committee
Dept. of Statistics & Actuarial Science
University of Iowa
Iowa City, IA 52242.
Email: actuarial-search@stat.uiowa.edu

The Department currently has seventeen tenure-track faculty who are engaged
in various areas of research in statistics, actuarial science, and financial
mathematics. The current actuarial faculty members are Jim Broffitt, A.S.A.,
Gordon Klein, F.S.A., and Elias Shiu, A.S.A. The B.S. and M.S. degrees are
offered in both actuarial science and statistics, the Ph.D. in statistics. Actuarial
students may earn a Ph.D. in statistics with emphasis in actuarial science/financial
mathematics. The number of actuarial science majors is about 45 graduate
and 20 undergraduate students. For additional information about the Depart-
ment, please refer to the website: http://www.stat.uiowa.edu/.

The University of Iowa is nestled in the rolling hills of eastern Iowa along the
banks of the Iowa River. Approximately 30,000 students are enrolled in eleven
colleges: Liberal Arts, Graduate, Business, Law, Medicine, Public Health, Den-
tistry, Nursing, Pharmacy, Education, and Engineering. The University is
known for its fine arts, and a variety of touring dance, musical, and theatrical
groups perform on campus each year. As a member of the Big Ten Conference,
Iowa hosts many outstanding athletic events.

Iowa City is a clean, attractive community of approximately 62,000 people.
It is noted for its public schools, medical and athletic facilities, attractive business
district, parks, and mass transit system. In 1999, editor & Market guide rated
Iowa City as the best metropolitan area to live in the USA. Among smaller
metropolitan areas, the 2003 Milken Institute Best Performing Cities Institute
ranked Iowa City number 1. Iowa City is within 300 miles of Chicago, St. Louis,
Kansas City, and Minneapolis.

Women and minorities are encouraged to apply. The University of Iowa is an
Affirmative Action Equal Opportunity Employer.



Drake University
College of Business and Public Administration

Des Moines, IA 50311, USA

POSITION:
A tenure track position in actuarial science in the College of Business and
Public Administration, to begin August, 2004, pending final budgetary approval.
Rank and salary based on qualifications.

DUTIES:
Teach six courses per year; recruit, advise, and place students; conduct schol-
arly research; and serve the University and the profession.

QUALIFICATIONS:
Ph.D. in actuarial science or a related area along with Associateship or Fellow-
ship in the CAS or SOA is preferred. Candidates with lesser qualifications will
be considered if there are compensating factors.

APPLICATIONS:
Submit a curriculum vitae and arrange for three letters of reference to be sent
to Professor Stuart Klugman, F.S.A.; CBPA; Drake University; Des Moines,
IA 50311. Applications will be accepted until the position is filled. Drake Uni-
versity is an equal opportunity/affirmative action employer and actively seeks
applications from women and minority group members who are qualified for
this position.

Stuart Klugman, F.S.A., Ph.D.
Principal Financial Group Professor of Actuarial Science Drake University
Des Moines, IA 50311
515-271-4097
E-mail: stuart.klugman@drake.edu



CIBC Chair in Financial Risk Management
UNIVERSITY OF WATERLOO

The University of Waterloo (UW) has one of the most eminent actuarial
science programs in the world. The faculty members in this unit have attained
a high level of distinction in their research, teaching and professional contri-
butions. The graduates of the Waterloo program are internationally recog-
nized. In recent years, UW has also developed a strong research presence in
the field of modern finance, with a special emphasis on computational finance.
More than 75 new bachelor’s and 20 master’s and doctoral graduates enter
the insurance and finance industries each year from the undergraduate and
graduate actuarial science programs, and the master’s program in quantitative
finance co-ordinated by the Centre for Advanced Studies in Finance.

The University has recently created the Institute for Quantitative Finance
and Insurance (IQFI) to combine the strengths of these two disciplines and pro-
vide the vehicle for a major research and teaching thrust in the area of finan-
cial risk management broadly defined. This initiative was made possible through
support from companies in the insurance and financial services industries, and
matching contributions from the Province of Ontario through the Ontario
Research and Development Challenge Fund. The Institute will advance research
in the financial risk management area and disseminate new knowledge. A gen-
erous contribution by the Canadian Imperial Bank of Commerce to UW’s
capital campaign, “Building a Talent Trust”, has enabled the University to
inaugurate two CIBC Chairs in Financial Risk Management under the auspices
of the IQFI. One of these Chairs will be located in the Department of Statistics
and Actuarial Science.

The purpose of this Chair is

– to help the University of Waterloo enhance its leadership role in finance
and insurance education and research, and to expand its expertise by building
on its present strengths

– to attract students of the highest calibre, and to support and supplement
faculty influence on professional education and current practice

– to give prominence and recognition to the interaction between the university
and the insurance and financial services industries, particularly the support
provided by CIBC

– to support applied research, and the transfer of basic research into current
practice in the financial services and insurance industries

The Canadian Imperial Bank of Commerce is a leading North American finan-
cial institution. Through its comprehensive electronic banking network, branches
and offices across Canada and around the world, CIBC offers a full range of



products and services to more than nine million personal banking and business
customers.

The appointment is for a period of up to five years, with expectation of
renewal. The anticipated start date is July 1, 2004.

The duties of the Chair holder include:

– conducting and overseeing a program of research relevant to financial risk
management, actuarial science or insurance

– undergraduate and graduate teaching; leading seminars and colloquia that
involve both undergraduate and graduate students

– disseminating applied research through seminars and professional meetings

The Chair holder will be a member of the Department of Statistics and Actu-
arial Science in the Faculty of Mathematics at the University of Waterloo and
play a leadership role in the Institute for Quantitative Finance and Insurance.
The ideal candidate will have earned a PhD in an appropriate field of research
within the last few years, and will already have a strong record as a researcher,
with exceptional promise for distinction in some aspect of actuarial science,
finance or closely related discipline. The successful candidate must possess
strong communication skills and be an excellent teacher.

Please send applications and nominations, including a recent curriculum
vitae, to Professor Alan George, Dean, Faculty of Mathematics, University of
Waterloo, Waterloo, ON Canada N2L 3G1 by April 30, 2004.

In accordance with Canadian immigration requirements, citizens and per-
manent residents of Canada will be considered first for this position. The Uni-
versity of Waterloo encourages applications from all qualified individuals
including women, members of visible minorities, native peoples, and persons
with disabilities.



GUIDELINES TO AUTHORS

1. Papers for publication should be sent in quadruplicate to one of the Editors:

Andrew Cairns Paul Embrechts
Department of Actuarial Mathematics Department of Mathematics
and Statistics ETHZ
Heriot-Watt University CH-8092 Zurich, Switzerland.
Edinburgh EH14 4AS, United Kingdom embrechts@math.ethz.ch
A.Cairns@ma.hw.ac.uk

Submission of a paper is held to imply that it contains original unpublished work and is not
being submitted for publication elsewhere.
Receipt of the paper will be confirmed and followed by a refereeing process, which will take
about three months.

2. The basic elements of the journal’s style have been agreed by the Editors and Publishers and
should be clear from checking a recent issue of ASTIN BULLETIN. If variations are felt necessary
they should be clearly indicated on the manuscript.

3. Papers should be written in English or in French. Authors intending to submit longer papers 
(e.g. exceeding 30 pages) are advised to consider splitting their contribution into two or more
shorter contributions.

4. The first page of each paper should start with the title, the name(s) of the author(s), and an
abstract of the paper as well as some major keywords. An institutional affiliation can be placed
between the name(s) of the author(s) and the abstract.

5. Footnotes should be avoided as far as possible.

6. References should be arranged alphabetically, and for the same author chronologically. Use a, b,
c, etc. to separate publications of the same author in the same year. For journal references
give author(s), year, title, journal (in italics, cf. point 9), volume (in boldface, cf. point 9), and
pages. For book references give author(s), year, title (in italics), publisher, and city.
Examples

BARLOW, R.E. and PROSCHAN, F. (1975) Mathematical Theory of Reliability and Life Testing.
Holt, Rinehart, and Winston, New York.
JEWELL, W.S. (1975a) Model variations in credibility theory. In Credibility: Theory and Appli-
cations (ed. P.M. KAHN), pp. 193-244, Academic Press, New York.
JEWELL, W.S. (1975b) Regularity conditions for exact credibility. ASTIN Bulletin 8, 336-341.

References in the text are given by the author’s name followed by the year of publication (and
possibly a letter) in parentheses.

7. The address of at least one of the authors should be typed following the references.

8. Italics (boldface) should be indicated by single (wavy) underlining. Mathematical symbols will
automatically be set in italics, and need not be underlined unless there is a possibility of misin-
terpretation. Information helping to avoid misinterpretation may be listed on a separate sheet
entitled ‘special instructions to the printer’. (Example of such an instruction: Greek letters are
indicated with green and script letters with brown underlining, using double underlining for capi-
tals and single underlining for lower case).



9. Contributions must be typewritten on one side of good quality paper, with double spacings and
ample margins all round.
Illustrations should be submitted as clear black and white prints. Photocopies are not acceptable.
Line thickness and lettering size should be adopted to suit any likely degree of reduction.
Each contribution should obtain the author(s) full address(es), including e-mail and fax numbers
when available. Authors should notify the publisher whenever their contact details change.
A copy of text should also be submitted on disk, when available. Please state clearly the type of
software used, and note the filename. Contributors should also retain a copy of their article.
Two sets of proofs will be shipped to authors who should ensure that one set plus the manuscript
is returned to PEETERS within one week of receipt. Authors may be charged for alterations to
the original manuscript. If authors proofs are not returned by the required date, the publisher’s
own corrected set will be forwarded to the printer.

10. Authors will receive 30 offprints free of charge. Additional offprints may be ordered when return-
ing corrected proofs. A scale of charges will be enclosed when the proofs are sent out.


