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ABSTRACT

In this paper we consider the important circumstances involved when risk man-
agers are concerned with risks that exceed a certain threshold. Such conditions
are well-known to insurance professionals, for instance in the context of policies
involving deductibles and reinsurance contracts. We propose a new premium
called tail variance premium (TVP) which answers the demands of these cir-
cumstances. In addition, we suggest a number of risk measures associated with
TVP. While the well-known tail conditional expectation risk measure provides
a risk manager with information about the average of the tail of the loss
distribution, tail variance risk measure (TV) estimates the variability along such
a tail. Furthermore, given a multivariate setup, we offer a number of allocation
techniques which preserve different desirable properties (sub-additivity and full-
additivity, for instance). We are able to derive explicit expressions for TV and
TVP, and risk capital decomposition rules based on them, in the general frame-
work of multivariate elliptical distributions. This class is very popular among
actuaries and risk managers because it contains distributions with marginals
whose tails are heavier than those of normal distributions. This distinctive fea-
ture is desirable when modeling financial datasets. Moreover, according to our
results, in some cases there exists an optimal threshold, such that by choosing
it, an insurance company minimizes its risk.
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1. INTRODUCTION

Measuring risk is a necessary precursor to managing it. Increasingly, a major
aim of financial regulators around the world is to encourage banks, insurance
companies and investment firms to realize the self-assessment of the risks that
may threaten their solvency.
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The above trend to risk-based supervision is best exemplified at the interna-
tional level by the Basel II bank capital adequacy accord that the Basel Com-
mittee on Banking Supervision, the body that in effect regulates international
banking, intends to bring into effect in the very near future. The European
Commission plans to apply Basel II to all banks and investment firms in the
European Union. The Commission’s plans for the risk-based supervision of EU
insurance companies, known as the Solvency II project, will be closely modelled
on the principles embodied in Basel II. In the light of this, the tendency toward
the so-called risk-based or risk-focused approach seems to be steadily replacing
the more traditional regime, in which regulators simply dictate the protective
capital levels to banks and insurance companies on a “one size fits all” basis.

Consider risk X to be a random variable with cumulative distribution (cdf)
and density (df) functions FX (x) and fX (x), respectively. This may refer to the
total claims for an insurance company or to the total loss in a portfolio of
investment for an individual or institution. A premium principle assigns to the
risk X a real number used as a financial compensation for the one who assumes
this risk. Consider a situation when, for some reason, we are concerned only with
risks that are bigger than a certain threshold, xq. Such a case is very familiar
to actuaries since many insurance policies include a deductible, and reinsurance
contracts always involve some level of retention from the ceding insurer.

When dealing with the situations described above, the popular tail conditional
expectation (TCE), which coincides with the expected shortfall (ES) and the
conditional value-at-risk (CVaR) under the assumption of continuous distribu-
tions (see Hürlimann (2003), McNeil, Frei, Embrechts (2005, Lemma 2.16)),

TCEq(X ) = E (X |X > xq) (1.1) 

is very useful in estimating the right-tail risk. It is interpreted as the expected
worst possible loss, given that this loss exceeds a particular value xq. The latter
is in general referred to as the q-th quantile or Value-at-Risk (VaR) such that 

VaRq(X ) = inf{xq : F (xq) ≥ q}. (1.2) 

The tail conditional expectation risk measure shares properties that are con-
sidered desirable in a variety of situations. For instance, due to the additivity
of expectations, TCE allows for a natural decomposition of risk capital among
its various constituents.

Expected shortfall has been studied thoroughly by various authors. An incom-
plete list is: Hürlimann (2001a) considered this risk measure in computing risk
capitals for the sums of independent gamma risks; Panjer (2002) examined it
in the context of the normal distribution; and Landsman and Valdez (2003,
2005) extended Panjer’s results for the broader class of elliptical family and con-
sidered TCE for the Exponential Dispersion Models (EDF).

Although (1.1) provides risk experts with some necessary information about
the riskiness of the loss distribution tail, very often it is not sufficient. This is
especially true in today’s competitive and investment-oriented marketplace,
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FIGURE 1: The decumulative distribution functions of Pareto and normal risks.

which requires that insurance directors exploit all the advantages of investing
the risk capitals of their enterprises. Consider the following example.

Example 1. Let X and Y be Pareto and normal risks respectively possessing
expectations E(X) = 490.5763 and E(Y) = 200 and variances Var(X) = 215.1232

and Var(Y) = 5002. Regardless of the shape of the cdf of X and of Y, the well-known
variance premium calculation principle (VP) finds Y to be more dangerous than X
for all a > 0.0014264, i.e., in such a case

VP(Y ) = E (Y ) + aVar (Y ) > E (X ) + aVar (X ) = VP(X ).

The above ordering appears to be counter-intuitive, because the Pareto distribution
has a heavier tail than the normal distribution (see Figure 1). Unlike the variance
premium, the popular Value-at-Risk risk measure takes into consideration the
shape of the cdf of the underlying risks. Let q = 0.97 in (1.2), then

VaRq(Y ) = 1140.4 > 955.9505 = VaRq(X ).

In other words, according to VaR, Y bears more risk than X, which is again somehow
not reasonable. Finally, the tail conditional expectation risk measure, which often serves
as an alternate to VaR, also fails to produce a useful ordering of X and Y. Indeed,

TCE0.97 (X ) = 1334 = TCE0.97 (Y ).

Therefore a need for a different risk measure is apparent.
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In order to resolve the inconvenience described in Example 1 and many other
problems, including classical risk ordering process and conditional Chebyshev’s
inequality, we propose a measure of variability on the right tail {X > xq}. We refer
to this measure as tail variance (TV), and it is merely the conditional variance of
the risk X, i.e.,

TVq(X ) = Var (X |X > xq) = E ((X – tq(X ))2 |X > xq), (1.3) 

where tq(X ) = TCEq(X ). As (1.3) possesses the following property

TVq(X ) = inf
c

E ((X – c)2 | X > xq),

it presents a natural measure of dispersion of X along the right tail. Moreover,
in order to calculate the tail variance for X, only the information about its
decumulative distribution function (ddf) F” X (x) = 1 – FX (x), x ≥ xq is required.

We note that Valdez (2004) suggested the tail conditional variance (TCV) risk
measure for measuring the variability of risk X along the right tail of its dis-
tribution. However, TCV, which is given by 

TCVq(X ) = E ((X – E (X ))2 | X > xq), (1.4) 

does not indeed imply the right-tail deviation of X. In effect, (1.4) simply pro-
jects the squared deviance of X from E(X) to the right tail. In the light of this,
equation (1.4) is unable to serve as a measure of the tail variability. We also
note that it is always positive, i.e.,

TCVq(X ) = TVq(X ) + (TCEq(X ) – E (X ))2 > 0,

and this is notwithstanding the very definition of a measure.
Further, in the context of Example 1, one has that

TCV0.97 (Y ) = 1286100 > 847700 = TCV0.97 (X ),

which again leads to a counter intuitive ordering of X and Y. At the same time,
the risk measure in equation (1.3) provides a proper ordering of these risks,
i.e., the tail variance of X is much greater than the tail variance of Y :

TV0.97 (X ) = 126400 > 60.8216 = TV0.97 (Y ),

as one would actually expect.
Although searching for original ways to quantify insurance and financial

risks is a very important issue, the subsequent application of these theoretical
approaches to real world problems is not less essential. In this paper, we show
that for the univariate normal distributions tail variance is proportional to the
variance of X, and is of the following form
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TVq(X ) = Var (X ) [1 + h (zq) (zq – h (zq))], (1.5) 

where h(z) = z
zf

F1- ]

]

g

g is the hazard function corresponding to a standard normal
N(0,1) random variable (f (z) and F (z) are the df and the cdf of N (0,1)).

In the more complicated elliptical frameworks, the expression for TVq(X )
can still be formulated. However, the hazard function of the standardized
(spherical) random variable Z = (X – mX) /sX should be distorted. Such a distor-
tion is supplied by using the spherical random variable Z* associated with the
underlying elliptical family, i.e.,

Z
*

* .h z
F z

z
,Z Z

Z=
f

]
]

]
g

g

g
(1.6) 

The associated random variable Z* was introduced in Landsman and Valdez
(2003) and further developed in Landsman (2006). The intuitive interpretation
of Z* lies in the distortion it provides when extending many well-known results,
obtained for normal distributions, to the non-normal elliptical context. We stress
that in the case of normal distributions the distortion disappears, Z* equals Z
in distribution, and therefore hZ,Z*(z) = h(z). A more precise definition of Z* will
be given in Section 4.

In the light of the above, (1.5) extends to 

TVq(X ) = Var (X ) [r (zq) + hZ,Z*(zq) (zq – hZ,Z*(zq) · s2
Z )], (1.7) 

where 

Z

Z *r z
F z
F z

=]
]

]
g

g

g
(1.8) 

is the distorted ratio. For the normal case r(z) = 1, since Z* =
D

Z (no distortion),
and therefore (1.5) follows from (1.7).

In a more complicated situation pertaining to an insurance company with
n business lines, which results in considering an n-variate random vector X =
(X1, X2, ..., Xn)T with some dependence structure, we are concerned with the
contribution of the variability of each marginal risk Xk, k = 1, 2, ..., n to the tail
variance of the total sum S = X1 + X2 + ··· + Xn. The expression 

TVq(Xk |S ) = Var (Xk |S > sq) = E ((Xk – tq(Xk |S ))2 | S > sq), (1.9) 

quantifies this phenomenon, where 

tq(Xk |S ) = TCEq(Xk |S ) = E (Xk |S > sq). (1.10) 

We investigate (1.9) in the general context of the multivariate elliptical distri-
butions. The latter has a long history of numerous applications in the analy-
sis of both non-life insurance and financial data: Panjer (2002) considers the
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multivariate normal distribution, one of the most important members of the
elliptical class, as an appropriate model for the losses of the real insurance
company; Wang (2002) considers intra-company allocation of the cost of capi-
tal in the framework of the multivariate normal distributions; Waldez and
Chernih (2003) extend Wang’s risk capital allocation to the elliptical family; and
Hürlimann (2001b, Section 5) explores some elliptical distributions for fitting
non-life insurance data. In general, the great importance of elliptical distribu-
tions in non-life insurance is explained by the fact that the distributions of the
underlying risks generally possess tails, which are more leptocurtic than those
of normal distributions. Owen and Rabinovitch (1982) seem to have been the
first to point out that the class of elliptical distributions extends the Tobin (1958)
separation theorem, Bawa’s (1975) rule of ordering uncertain projects, and Ross’s
(1978) mutual fund separation theorems, and they applied the elliptical setup
to the capital asset pricing modeling (CAPM). Landsman and Sherris (2005)
suggested a model for pricing asset and insurance risks in incomplete markets
using prices for traded assets and based on elliptical, in particular, multivariate
Student-t, distributions.

In this paper we demonstrate that when X = (X1, X2, ..., Xn)T has an ellipti-
cal dependence structure, the tail variance risk measure equals 

TVq(Xk |S ) = Var (Xk) [r (zS,q) + g (zS,q) · r2
k,S ] , (1.11) 

where rk,S = s s
s ,

k s

k S is the correlation coefficient and zS,q = (xS,q – mS) /sS. We would
like to draw the reader’s attention to the fact that the contribution of the vari-
ability of the marginal risk Xk is stipulated by its own variance and the squared
correlation between Xk and the aggregate risk S.

We also show that if X ` Nn( m,S ), then (1.9) reduces to

TVq(Xk |S ) = Var (Xk) .
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While (1.3) enables one to compute capital requirements in terms of variation
for some financial institution, (1.9) is useful when the uncertainty has differ-
ent sources and the decomposition of the total level of such uncertainty to these
sources is important. Although the decomposition form of tail variance (1.9)
is indeed a natural measure of the contribution of the variability of risk Xk to
the total risk measure of an enterprise, one may encounter some difficulty apply-
ing it as a basis for risk capital allocation. This is because such an allocation,
when derived from the expression in (1.9), is in general not additive (although
the squared root of TVq(Xk |S ) preserves sub-additivity, see Section 2), i.e.,

TVq(S) ! qTV
k

n

1=

! (Xk |S )

but
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In order to resolve this sometimes undesirable property (balance sheet compu-
tations must sum up) and thus provide a solution for those who are concerned
with the full-additivity of the allocation rule, we offer the so-called tail covari-
ance allocation. The latter is defined as follows

TCovq(Xk |S) = Cov(Xk,S |S > sq) = E((Xk – tq(Xk |S)) (S – tq(S)) |S > sq), (1.12)

where tq(Xk |S) is given in (1.10) and tq(S) = E(S |S > sq). Moreover, notice that
(1.12) is indeed additive

k k
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Careful investigation of the above risk measures and the desire to combine the
information given by the tail conditional expectation, whose importance is well
known, and the tail variance introduced in this paper, stimulated us to propose
the following premium principle. Tail variance premium (TVP), defined as 

TVPq(X ) = TCEq(X ) + a · TVq(X ), (1.13) 

where a is some non-negative constant, considers the important case when
insurance directors are concerned only with significant “right-tail” risks, i.e.,
risks that are bigger than xq. Similarly to variance premium, which is based on
the net premium principle, TVP builds on TCE, but at the same time takes into
account the risk load, which is proportional to the conditional variance of X.
In other words (1.13) extends the classical variance premium to the so-called con-
ditional context, and it provides a kind of stochastic ordering for relatively large
losses. It is also able to order different risks with equal first and second moments,
although the variance premium fails to perform this task. We note that TVP
builds on the information of the right tail of the loss distribution only, and there-
fore it seems to provide a fair response to the situations, when the decision mak-
ers are concerned with risks that exceed a certain threshold. The latter has received
extensive consideration both in the theoretical and practical actuarial sciences.

In the same manner, we introduce the tail variance premium for the cases
when the decomposition of the total risk to its constituents is needed:

TVPq(Xk |S ) = TCEq(Xk |S ) + a · TVq(Xk |S ). (1.14) 

Certainly, both (1.13) and (1.14) are particularly useful when the variability
along the right tail is crucial for decision makers.
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The rest of the paper is organized as follows. We investigate in detail the
proposed premium principle in Section 2. Section 3 provides a preliminary dis-
cussion of elliptical distributions. In Section 4, we derive the expressions for
tail variance risk measure in the univariate context, and we advance these
expressions to the multivariate framework in Section 5. Section 6 concludes the
paper and we provide the proofs of our results in the Appendix.

2. TAIL VARIANCE PREMIUM

In order to determine a premium for a risk, it is necessary to convert the ran-
dom loss into financial terms. Both the probability distribution of the losses
and a pricing principle are required. In this section we introduce the tail vari-
ance premium principle and we underline its most important properties.

Definition 1. Tail variance premium is 

TVPq(X ) = TCEq(X ) + a · TVq(X ), (2.1) 

where a ≥ 0, xq is defined in (1.2), TCEq(X), and TVq(X) are given in (1.1) and
(1.3), respectively.

The above premium satisfies some important properties. While the first two
properties are traditional and well explained in Kaas et al. (2001), the third has
not been much studied, and would seem to be very useful in the case of rein-
surance contracts and policies with deductibles.

1. Non-negative loading.

TVPq(X ) ≥ E (X ).

Tail variance premium is not smaller than the well-known net premium.

2. Translation invariance. If c is some constant risk, then

TVPq(X + c) = TVPq(X ) + c.

Raising the risk by some constant amount c increases the premium by the
same amount. Kaas et al. (2001) refer to this property as consistency.

3. Tail parity. We call X and Y tail equivalent if some q exists such that F” X (xt) =
F” Y (xt) for every level t ≥ q, and then

TVPt(X ) = TVPt(Y ).

Tail variance premium is dependent only on the tail of the loss distribution.
Parity of these tails implies equality of tail variance premiums.
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Remark 1. For the special loss function L(x,P) = x(x – P)2, the tail variance pre-
mium (2.1) with a = 1/TCEX (xq) minimizes the expected loss along the right tail
{X > xq}, i.e.,

TVPq(X ) = TCEq(X ) + TCE X
TV X

q

q

]

]

g

g
= arg inf

P
E (L (X,P ) | X > xq). (2.2) 

In fact, after differentiating in P under the integral sign of the expected loss, one
straightforwardly obtains TVP as the solution of the equation

x
x x P
q

-
3

# ] gdFX = 0.

Similarly to Definition 1 we may propose the tail standard deviation premium.

Definition 2. Tail standard deviation premium is

TSDPq(X ) = TCEq(X ) + a · TV Xq ] g , (2.3) 

where a ≥ 0, xq is defined in (1.2), TCEq(X ) and TVq(X ) are given in (1.1) and
(1.3), respectively.

Certainly, the tail standard deviation premium shares all three properties of the
tail variance premium. However, we draw the reader’s attention to the fact that
it satisfies the so-called positive homogeneity property as well.

4. Positive homogeneity. For any risk X and any positive constant b

TSDPq(bX ) = b · TSDPq(X ).

If the risk exposure of a company is proportionally increased/decreased then
its risk measure must also increase/decrease correspondingly.

Further, let us consider an n-variate random vector X = (X1, X2, ..., Xn)T, where
each marginal random variable Xk represents a risk associated with k-th business
line for an insurance company or a loss from the k-th asset in a portfolio of
investment for an individual or an enterprise. The aggregate risk or loss is then
S = X1 + X2 + ··· + Xn.

Definition 3. Tail variance premium for the marginal risk Xk is 

TVPq(Xk |S ) = TCEq(Xk |S ) + a · TVq(Xk |S ), (2.4) 

and consequently the tail standard deviation premium is

TSDPq(Xk |S ) = TCEq(Xk |S ) + a · kTV X Sq ^ h, (2.5)

where a ≥ 0, sq follows from (1.2), TCEq(Xk |S) and TVq(Xk |S) are defined in (1.10)
and (1.9), respectively.
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Equations (2.4) and (2.5) may also serve as allocation rules, although not fully addi-
tive ones. Note that, for instance, (2.5) preserves the sub-additivity property, i.e.,

5. Sub-additivity. For any random risks X,Y and the aggregate sum S = X +Y

TSDPq(S) ≤ TSDPq(X |S ) + TSDPq(Y |S ).

Nothing is gained by disaggregation.

Moreover, we define tail covariance premium (TCovP) for situations when the
full-additivity of the allocation rule is crucial.

Definition 4. Tail covariance premium is 

TCovPq(Xk |S ) = TCEq(Xk |S ) + a · TCovq(Xk |S ), (2.6) 

where a is again some non-negative constant, sq is given in (1.2), and TCEq(Xk |S)
and TCovq(Xk |S ) are defined in (1.10) and (1.12), respectively.

In current research we found an appealing way to characterize the proposed
premium principles in the general frameworks of elliptical distributions. The
next section provides a brief discussion of this family.

3. THE CLASS OF ELLIPTICAL DISTRIBUTIONS

The class of elliptical distributions provides a rich range of symmetrical multi-
variate distributions, which are becoming widely popular in actuarial sciences
and finance. Many members of this class are more leptokurtic than the normal
distributions, and this property allows one to model tails that are frequently
observed in financial data (see Embrechts et al. (2001)). A helpful and exten-
sive discussion of these distributions may be found in Fang et al. (1990).

Let Cn be a class of functions c(t) : [0,∞) " R such that function i 1= tc i
n 2!` j is

an n dimensional characteristic function (Fang et al., 1987). It is clear that

Cn 1 Cn – 1 ··· 1 C1.

Further, consider an n-dimensional random vector X = (X1, X2, ..., Xn)T.

Definition 5. The random vector X has a multivariate elliptical distribution, writ-
ten as X ` En(m, S, c), if its characteristic function can be expressed as

fX(t) = exp(i tTm)c( 2
1 tT St) (3.1) 

for some column-vector m, n ≈ n positive-defined matrix sS
,ij i j

n

1
=

=
, and for some

function c(t) ∈ Cn, which is called the characteristic generator.
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In general, from X ` En(m, S, c) it does not follow that X has a density fX(x),
but if that density does exist, it has the following form 

fX(x) = Tn 1- .
c

x xSm m2
1

n - -
S

g ^ ^b h hl (3.2) 

In the above equation gn(·) is called the density generator and the normalizing
constant cn is

-
/n 2 1-/

,
n

x x dx
p

G

2
2
/n n n2

0

1

=
3

c g#
]

]
]c

g

g
g m (3.3)

which is subject to the convergence of the integral 

/n 2 1- < .x x dxn
0

3
3

g# ] g (3.4) 

While Definition 5 presents the elliptical class in terms of the characteristic gen-
erator, one can similarly introduce the elliptical distributions by the density
generator and then write X ` En(m, S, gn).

From (3.1), it follows that, if X ` En(m, S, gn), A is some m ≈ n matrix of
rank m ≤ n and b some m-dimensional column-vector, then 

AX + b ` Em(Am + b, ASAT, gm). (3.5) 

In other words, any linear combination of elliptical distributions is another
elliptical distribution with the same characteristic generator c or from the same
sequence of density generators g1, ..., gn, corresponding to c.

The following condition guarantees the existence of the mean 

g1
0

3

# (x)dx < ∞ (3.6) 

and then the mean vector for X `En(m, S, gn) is E(X) = m. Additionally, the next
condition guarantees the existence of the covariance matrix 

|c�(0) | < ∞ (3.7) 

and the former is equal to 

Cov (X) = – c�(0) S (3.8) 

(Cambanis et al., 1981). Afterwards, the characteristic generator can be chosen
such that 

c�(0) = – 1 (3.9) 
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and one automatically obtains

Cov (X) = S.

For the detailed list of examples and properties of particular members of the
elliptical class of distributions (normal, Student-t, Logistic and more) see Fang
et al. (1990).

4. TAIL VARIANCE AND TAIL VARIANCE PREMIUM

FOR UNIVARIATE ELLIPTICAL RISKS

In this section, we develop tail variance formulas for univariate elliptical dis-
tributions, which as a matter of fact coincide with the class of symmetric dis-
tributions on the real line R. Recall that we denote by xq the q-th quantile of the
loss distribution FX (x). As we are interested in considering the tails of symmet-
ric distributions, we suppose that q > 1/2. Then clearly 

xq > m. (4.1) 

Now suppose g (x) is a non-negative function on [0,∞), satisfying the follow-
ing condition

x /1 2

0

3
-# g(x)dx < ∞.

Then (see Section 3) g(x) can be a density generator of an univariate ellipti-
cal distribution of the random variable X ` E1( m,s2, g) whose density can be
expressed as 

,x c g
x

s s
m

X 2
1

2

=
-

f ] deg n o (4.2) 

where c is the normalizing constant. (We sometimes omit the dimension index,
when the univariate density generator is considered).

Note that, because X has an elliptical distribution, the standardized random
variable Z = (X – m) /s will have a standard elliptical (often called spherical) dis-
tribution function

FZ(z) = c g u du
z

2
1 2

3-
# ` j

with mean 0 and variance

s2
Z = 2c u g u du2

2
1 2

0

3

# ` j = c�(0),

if condition (3.7) holds. Furthermore, if the generator of the elliptical family
is chosen such that condition (3.9) holds, then s2

Z = 1.
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In this paper we assume that the covariance matrix of Z is finite; then Lands-
man and Valdez (2003) showed that 

Z
Z

f z G z
s
1

* 2 2
1 2

=] `g j (4.3) 

is a density of some spherical random variable Z*. Here 

s2
Z = Var (Z) (4.4) 

and

.G x c g u du
x

=
3

#] ]g g (4.5) 

Let us notice that up to a probability space, (4.3) defines the random variable Z*

uniquely up to the class of equivalences (see Loève (1977), Chapters 10.1, 10.2).
A significant number of important results obtained for the normal family

of distributions, such as the tail conditional expectation formulas, the risk cap-
ital allocation based on it and Stein’s Lemma, which is of special interest in
financial economics and in actuarial sciences for its important application
to capital asset pricing models (CAPM) (see Panjer et al. (1998), Sect. 4.5.),
can be generalized to the elliptical context, and Z* plays an important role in
performing this generalization. The latter indicates the distortion from the nor-
mal distributions in the more complicated elliptical cases.

Let us recall that we denote by

Z

Zr z
F z
F z*=]

]

]
g

g

g
(4.6) 

and

Z

Z *h z
F z
f z

, *Z Z =]
]

]
g

g

g
(4.7) 

the elliptical distortion ratio function and the elliptical distorted hazard function,
respectively. The following theorem derives the expression for the tail variance
risk measure in the univariate elliptical case.

Theorem 1. Let X ` E1( m, s2, g). Under condition (3.7), the tail variance of X is
given by 

TVq(X ) = Var (X ) [r (zq) + g (zq)] , (4.8) 

where

g (zq) = hZ,Z* (zq) (zq – hZ,Z* (zq) · s2
Z ) , (4.9) 

and zq = (xq – m ) / s.
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Corollary 1. Under the conditions in Theorem 1, the tail variance premium for the
univariate elliptical distributions is

TVPq (X )

= E (X ) + s
1 hZ,Z* (zq) · Var (X ) + a · Var (X ) [r (zq) + g (zq)]

= E (X ) + Var (X ) [ s
1 hZ,Z* (zq) + a · (r (zq) + g (zq))],

where r (zq) and g (zq) follow from (4.6) and (4.9), correspondingly.

We now illustrate Theorem 1 by considering useful examples for such well-known
symmetric distributions as normal and student-t.

1. Normal Distribution. Let X ` N ( m,s2) so that the function in (4.2) has the
form g (u) = exp(–u). Then

z
Z ,expf z G z z z

s p
f1

2
1

* 2
1 2

2
1 2

2= = - =] ` ` ]g j j g

i.e., in the context of normal distributions Z* =
D

Z, and therefore the ellip-
tical distortion ratio function and the elliptical distorted hazard function are 

r (z) = 1 (4.10) 

and 

hZ,Z* (z) =
Z

.
F z

zf
]

]

g

g (4.11)

Finally, the tail variance risk measure in this case is

TVq(X ) = Var (X ) .
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The next table enables a comparison of the various known measures of risk
and tail variance premium proposed in this paper. As a basis, we take some
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TABLE 1

COMPARISON OF TCE, TV AND TVP (� = 0.2)

q xq TCEX (xq) TVX (xq) TVPX (xq)

0.5 500 525.2313 363.3802 597.9074
0.75 521.3292 540.1959 241.6370 588.5233
0.9 540.5262 555.4974 169.1352 589.3245
0.95 552.0148 565.2287 138.0765 592.8440
0.975 561.9795 573.9278 116.6874 597.2653
0.999 597.7217 606.4767 67.7949 620.0357
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FIGURE 2: Comparison of VaR, TCE and TVP.

risk X distributed normally with m = 500 and s2 = 1000, the parameter a
equals 0.2.

From the above table, one can deduce that for the chosen a, TVP is not a
monotonic function in q. Actually, while the well-known TCE and VaR always
increase, when one moves along the right tail of the risk distribution, TVP
decreases at the very beginning of such a movement. This phenomenon is eas-
ily explained by the opposite directions of E(X |X > xq) and Var(X |X > xq).
In fact, for small q’s, when the influence of the conditional variance is very
significant, TVP goes down; at the same time, for relatively high probabilities,
the conditional expectation takes over and therefore the tail variance pre-
mium begins to rise.

As for the insurance industry, our result seems to state an important fact.
Assuming that the influence of tail variance is substantial, there exists
some optimal q and therefore a quantile xq that minimizes the value of TVP.
In other words, an insurance company may bring its risk to minimum by
choosing the xq above to be the deductible in a policy with a deductible, or
the retention level in the context of reinsurance contracts.

The next plot compares TVP’s having different a’s with other well-known risk
measures.
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2. Generalized Student-t Distribution (GST). An elliptical random variable X is
distributed Student-t with some power parameter p > 2

1 , i.e., X ` t(m, s2 : p),
if the density generator of X can be expressed as

p
.g u k

u1
p

= +] dg n

Therefore

p

p
, > .G u c g t dt c p

k
k
u p1 1 1p

u
p

p 1

= =
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+
3 - +

#] ] eg g o

Here, we denote the normalizing constant by cp with the subscript p to empha-
size that it depends on the parameter p. Recall that 

/
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h
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(4.12) 

Bian and Tiku (1997) and MacDonald (1996) suggest putting kp = (2p – 3)/2
if p > 3/2 to obtain the so-called Generalized Student-t (GST) univariate dis-
tribution with density
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where B (·, ·) is the beta function. This parameterization leads to the very
important property that Var(X) = s2, i.e., s2

Z = 1. Recall that in the context
of the GST family we have
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In the case when 1/2 < p ≤ 3/2 the variance does not exist and therefore TVP
is inapplicable. Let us denote by t (z : p) = fZ (z) and T” (z : p) = F” Z (z) the
density and the tail functions of the standardized student random variable
Z. The expressions for the density of the random variable Z* associated with
Z readily follow after considering 
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and 
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FIGURE 3: The Relation Between the Distorted Hazard hZ,Z* (zq) and the Parameter p
for the GST Distributions, q = 0.99.
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and the distorted hazard functions are
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The formulas for the tail variance risk measure are now obtained by straight-
forward substitution.

The next two figures relate the distorted hazard function hZ,Z * (z) with the
power parameter p for different q’s. We would like to draw the reader’s attention
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FIGURE 4: The Relation Between the Distorted Hazard hZ,Z* (zq) and the Parameter p
for the GST Distributions, q = 0.85.

FIGURE 5: The Relation Between Tail Variance Risk Measure and various values of the Parameter p
for GST Distributions, q = 0.85.
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to the fact that, according to classical TCE risk measure, GST distributions are
riskier than normal distributions for bigger q’s, while the opposite is true for
relatively small q’s. For instance, Figure 4 implies that for q = 0.85 the normal
N(0,1) is riskier than t (0,1 : p) for every p > 3/2 and this in spite of the fact that
the tail of the last is heavier.

On the other hand, the tail variance risk measure finds Student-t riskier than
standard normal distribution for q = 0.85. (See Figure 5)

5. TV RISK MEASURE AND TVP FOR MULTIVARIATE

ELLIPTICAL DISTRIBUTIONS

Let X = (X1, X2, ..., Xn)T be a multivariate elliptical vector, i.e., X ` En(m,S, gn),
here m = (m1, m2, ..., mn)T, S = ||sij ||ni, j=1 is some positive defined matrix and gn is
the density generator.

Let Z = (X1 – m1) /s1 be a standardized univariate marginal random vari-
able, whose distribution does not depend on m1 and s1. Embrechts and Lands-
man (2004) introduced an absolutely continuous measure P* and the measur-
able map Zn

* : (W, f,P*) → (Rn,B*n) from a measurable space (W, f,P*) into the
n-dimensional Borel space (Rn,B*n), associated with the n-variate elliptical family
as follows

dP* =
nZ *f (z) dz,

where zT = (z1, z2, ...,zn) ∈ Rn, dz = (dz1, dz2, ..., dzn) and under condition (3.7)

Z
n

Gz z z
s
1

2
1

n
T

Z = 2*f ] bg l

is the n-variate density, i.e., P* is a probability measure and Zn
* is a random

vector. Note that equivalently to (4.5), we introduce 

n n .G x u dun
x

=
3

c g#] ]g g (5.1)

Let Zn – 1 and Z*
n – 1 be (n – 1), dimensional marginals of Zn and Zn

*, respec-
tively. In the following lemma we prove a property that can in some sense be
interpreted as a consistency of the associated measure.

Lemma 1. The n – 1 variate marginal distribution of Zn
* coincides with the prob-

ability measure associated with Zn – 1.

The next lemma plays a central role in evaluating the formulas for the contri-
bution of the variability of risk Xk to the total tail variance of the aggregate
sum S = X1 + X2 + ··· + Xn. Note, that if e = (1,...,1)T is a column vector of ones
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with dimension n, and therefore we can define the sum S = eT X, then it imme-
diately follows from (3.5) that 

S ` E1(eTm, eTSe, g1).

Lemma 2. Let Y = (Y1,Y2)T ` E2(m, S, g2) such that condition (3.7) holds. Then

TVq(Y1|Y2) = Var (Y1) [r (z2,q) + g (z2,q) · r 2
12 ],

where

g (z2,q) = hZ,Z*(z2,q) (z2,q – hZ*(z2,q) · s2
Z )

and r12 =
1 2

12
s s
s

, s1 = s11, s2 = s22 , z2,q =
mq

2

2-

s
y

.

Now, we are ready to obtain the formula for the contribution of the variability
of Xk to the total tail variance risk measure of S = X1 + ··· + Xn. Here again the
random variables X1, X2, ..., Xn can be interpreted as all kinds of financial risks.

Theorem 2. Let X = (X1,X2, ...,Xn)T `En(m,S,gn) such that condition (3.7) holds.
Then 

TVq(Xk |S ) = Var (Xk) [r (zS,q) + g (zS,q) · r2
k,S ], (5.3) 

where rk,S = ,

k S

k S

s s
s

and zS,q = (sq – mS) /sS.

Proof. The result immediately follows from Lemma 2 by considering Y = (Xk,S)T

and afterwards recalling that due to (3.5) Y has an elliptical distribution, i.e.,

(Xk,S )T ` E2(mk,S,Sk,S, g2), (5.4) 

where mk,S = , ,mk jj

n T
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and s2
k = skk, skS = kjj

n

1=
s! , s2

S = i, ji j

n

1=
s! . ¬

Corollary 2. Under the conditions in Theorem 2, the tail variance premium for
the marginal risk Xk is
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Lemma 2 allows for immediate evaluation of the tail covariance risk measure
introduced in (1.12).

Corollary 3. The tail covariance risk measure is

TCovq(Xk |S ) = Cov (Xk,S ) [r (zS,q) + g (zS,q)],

where Cov (Xk,S ) = sk,S s2
Z.

The full-additivity of the allocation rule based on the tail covariance premium
is straightforward:
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6. CONCLUSIONS

In today’s competitive and investment-oriented marketplace every piece of
information about the risk to which an insurance company is exposed may be
of critical importance for decision makers. In this paper we proposed a new
premium principle, named the tail variance premium principle or TVP, which may
be considered some kind of generalization of the popular variance premium.
As distinct from the latter, TVP builds on the tail conditional expectation and
at the same time takes into account the risk load, that is proportional to the
conditional variance of the risk. Hence, due to its very definition, tail variance
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premium’s vocation is to provide a risk assessment in situations when risk man-
agers are concerned with risks exceeding a certain threshold (policies with
deductibles and reinsurance contracts may be considered). Insurance losses
are known to have significant dispersions. We believe that the proposed pre-
mium is particularly useful when the variability along the right tail is crucial.
Moreover, according to our results, in situations when the contribution of tail
variance to TVP is substantial, there exists some optimal threshold, such that
by choosing it, an insurance company minimizes its risk. In the current research,
we were able to present a number of allocation rules, possessing different prop-
erties. One of them, for instance, bases the decomposition of the total uncer-
tainty level on the tail standard deviation risk measure, and consequently, such
an allocation rule preserves the desirable sub-additivity property. Unlike the
allocation based on TCE, where the dependence between marginal and aggre-
gate risks is presented by the correlation parameter, the decompositions derived
from tail variance and tail standard deviation risk measures are stipulated by
squared correlation. On the one hand, this fact reduces the influence of the
dependence between Xk and S and, on the other, it results in violation of the
full-additivity property by the constructed allocation rules. For those concerned
with the full-additivity of allocation rule, we have offered another method of risk
capital decomposition which is based on the tail covariance risk measure (TCov).
We were able to derive exact expressions for every risk measure or premium prin-
ciple that we proposed.

Our investigations were performed in the general framework of the multi-
variate elliptical distributions. This class consists of such well-known distribu-
tions as normal, Student-t, logistic, and exponential power distributions. Many
members of the elliptical class have tails that are heavier than those of normal
distributions, and this attractive property allows one to model financial datasets.
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7. APPENDIX

PROOF OF THEOREM 1.

Proof. Following the definition of the tail variance risk measure in (1.3)
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As for I1, it is easily found by integration by parts 
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Recalling (4.3) and taking into account that Var (X ) = s2s2
z , the above result

may be rewritten as
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The expression for I2 is straightforwardly obtained
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The formula for the tail conditional expectation in the case of elliptical distri-
butions is given by
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(see Landsman and Valdez (2003)). Therefore recalling again that Var(X) = s2s2
Z ,

we get 

Z

Z

Z Z

Z

Z

Z Z Z

Z

Z

Z Z

2

q

z

Z
q

Z

Z Z

q

q

q

q
q

q

q

q

q

q
q

q q

q

q

q

q
q

q

q

q

q q

TV X

Var X
F z

F z

F z

z
z

F z

G z
TCE X

Var X
F z

F z

F z

z
z

F z

G z

F z

G z

Var X
F z

F z

F z

z
z

F z

z

sm m

sm m m s

s

2

2

* *

* *

* * *

Z

Z Z

2
1 2

2

2
1 2

2 2
1 2 2

2
$

= + + + -

= + + + - +

= + -

f

f

f f

J

L

K
K

J

L

K
K

J

L

K
KK

J

L

K
K

]

]
_

_

_

_

_

`

]_

]
_

_

_

_

_

`

_

`

]
_

_

_

_

_

_

N

P

O
O

N

P

O
O

N

P

O
OO

N

P

O
O

g

g
i

i

i

i

i

j

gi

g
i

i

i

i

i

j

i

j

g
i

i

i

i

i

i
R

T

S
SS

V

X

W
WW

and (4.8) follows. ¬

PROOF OF LEMMA 1.

Proof. In fact, one has to prove that
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Taking into account (3.2) and according to the well-known property of elliptical
marginals, we have
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PROOF OF LEMMA 2

Proof. First let us denote
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the quadratic form can be represented as
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First, applying the property of marginal distributions of elliptical family, the inte-
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As for I2, we have (see 7.3)
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where the function I*
1 (z2) can be represented as
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Afterwards, substituting the results in (7.7), we obtain
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Consequently, combining (7.5), (7.6) and (7.8) we get 
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Recall that due to Landsman and Valdez (2003) the expression for tail condi-
tional expectation is
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