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ABSTRACT

The authors review various facts about copulas linking discrete distributions.
They show how the possibility of ties that results from atoms in the probability
distribution invalidates various familiar relations that lie at the root of copula
theory in the continuous case. They highlight some of the dangers and limita-
tions of an undiscriminating transposition of modeling and inference practices
from the continuous setting into the discrete one.
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1. INTRODUCTION

Count data abound in actuarial science, and the issue of how to model the joint
behavior of random variables X and Y taking values on the set � = {0,1,2, …}
of integers is a common problem in analyzing the impact of dependence on
loss distributions, among others.

Given the recent surge of interest for copula modeling of multivariate
continuous data and its successful application in many contexts, one may be
tempted to adopt this approach in the discrete case also. Following Sklar (1959),
this would entail writing the joint cumulative distribution function H of the
pair (X,Y ) as

H (x,y) = C (F (x), G (y)), x,y ! � (1)

where F and G are the marginal distributions of X and Y, respectively. A para-
metric class (Cq ) of copulas could then be postulated for C, and inference
techniques developed in the context of copula models with continuous margins
might then be used, either to develop a descriptive model for H or to make pre-
dictions.
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Assuming for example that X and Y are Poisson random variables with
rate m and n respectively, one could suppose that the copula C in (1) belongs
to Clayton’s family of copulas with dependence parameter q > 0, viz.

Cq(u,v) = (u –q + v –q – 1)–1/q, u,v ! (0,1). (2)

Thus if the Poisson distribution function with intensity l is denoted

Fl(k) = e–l
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the model for (X,Y ) would be of the form

P(X ≤ i, Y ≤ j ) = {Fm
–q(i ) + Fn

–q( j ) – 1}–1/q, i, j ! � .

Based on a random sample (X1,Y1), …, (Xn,Yn) from (X,Y ), one could then
estimate m, n and q, say by the method of maximum likelihood. Alternatively,
m and n could be estimated individually, and to guard against the possibility
that the margins are not Poisson, a nonparametric rank-based approach to
the estimation of q could be adopted. Following Oakes (1982), for example,
one might estimate q by qn = 2tn / (1 – tn), where tn represents the sample
value of Kendall’s t. Confidence intervals for qn could then be computed,
leading to predictions and margins of error for the probability of events of
interest.

Is this alright? Yes and no. The purpose of this paper is to review in the sim-
plest terms possible the issues that lead to this mitigated answer. As explained
in Section 2, the primary source of difficulty arises from the lack of unique-
ness of Sklar’s representation (1) in the discrete case. A problem of statistical
unidentifiability ensues whose extent is delineated in Section 3 using results from
Carley (2002).

Despite the unidentifiability issue, copula models for discrete distribu-
tions are valid constructions. They are helpful, e.g., in the context of simu-
lation and robustness studies. However, their use is subject to caution, because
many of their convenient properties do not carry over from the continuous
to the discrete case. Some crucial differences are highlighted in Sections 4
and 5. Their consequences on the inference program outlined above are
then illustrated in Section 6. A summary of the main findings is given in the
Conclusion.

Most of the facts reported herein are known, but scattered throughout the
literature; some are new. It is hoped that by bringing them together in one source,
those who wish to model count data through copulas can rapidly identify the
advantages and limitations of this approach. While the following discussion is
limited to the bivariate case, most conclusions easily extend to a general multi-
variate setting.
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2. LACK OF UNIQUENESS OF THE COPULA AND CONSEQUENCES THEREOF

Throughout this paper, (X,Y ) denotes a pair of random variables with joint
distribution function H having margins F and G, i.e., for all x, y ! � ,

H (x,y) = P(X ≤ x,Y ≤ y ), F(x) = P(X ≤ x), G(y) = P(Y ≤ y).

The inverses of F and G are defined in the usual way by

F –1(u) = inf{x ! � : F (x) ≥ u}, G–1(v) = inf{y ! � : G (y) ≥ v},

so that they are left-continuous for all u,v ! (0,1]. As they may not be right-
continuous, however, it is useful to introduce

F –1(u!) = lim
s u.

F –1(s), G–1(v!) = lim
t v.

G–1(t).

Similarly, the left limits of discontinuous distribution functions F and G are
denoted

F (x") = lim
s x-

F (s), G (y") = lim
t y-

G (t).

The following definition introduces additional notation which is helpful in clar-
ifying the distinctions between the cases where F and G are either continuous
or discrete.

Definition 1. Let (X,Y) be a pair of random variables such that P(X ≤ x,Y ≤ y) =
H(x,y), P(X ≤ x ) = F (x) and P(Y ≤ y) = G(y) for all x,y ! � .

(A) A is the set of “sub-copulas” associated with H, i.e., the collection of functions
A : [0,1]2 " [0,1] such that for all x,y ! �,

H(x,y) = A (F(x), G(y)).

(B) B : [0,1]2 " [0,1] is the function defined for all u,v ! [0,1] by

B(u,v) = H (F –1(u), G–1(v)).

(C) C : [0,1]2 " [0,1] is the function defined for all u,v ! [0,1] by

C (u,v) = H (F –1(u!), G–1(v!)).

(D) D is the distribution function of the random pair (F(X ), G(Y )).

(E) E is the distribution function of the random pair (F(X"), G(Y")).

When both F and G are continuous, the various objects introduced in Definition 1
are known to coincide by Sklar’s Theorem, i.e.,

A = {B} = {C} = {D} = {E}, (3)
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and A consists of the unique copula associated with H. See Chapter 1 of Nelsen
(1999) for a proof.

This fact, which has important consequences, is the corner stone of inference
in copula modeling as outlined, e.g., by Genest and Favre (2007) or Genest et
al. (2007):

(a) Given H, C is a uniquely defined (functional) parameter that can be estimated
consistently on the basis of a random sample (X1,Y1), …, (Xn,Yn) from H.

(b) If F and G are known, a random sample (U1,V1), …, (Un,Vn ) obtains for
C upon setting Ui = F(Xi) and Vi = G(Yi) for each i ! {1, …, n}.

(c) If F and G are unknown, inference about C can still be performed using
pairs of pseudo observations Ui = F(Xi ), Vi = G(Yi ) derived from esti-
mates F and G of F and G (the empirical distribution functions are often
used to this end).

(d) Given a parametric family (Cq) for C, one can also estimate the dependence
parameter q or perform goodness-of-fit testing using the pairs (U1, V1), …,
(Un, Vn).

The source of difficulties in the discrete case is that when F and G have jumps,
their inverses have plateaus. When this happens, Sklar’s Theorem still guaran-
tees that there exists a copula representation for H in A , but the latter is no
longer unique. Thus, an identifiability issue arises and the above program for
inference breaks down, because one can no longer rely on the string of iden-
tities (3) on which it is based. In fact, the functions defined through (B)–(E)
then represent different objects; neither of them is a copula, and some but not
all of them belong to A .

The following example illustrates these various findings in an extreme case.
The extent of the identifiability issue is qualified in Section 3.

Example 1. Let X and Y be Bernoulli random variables with P(X = 0) = p and
P(Y = 0) = q. Let also P(X = 0,Y = 0) = r ≤ min( p,q).

In that case, A consists of all functions A : [0,1]2 " [0,1] such that

A (0,0) = 0, A (0,q) = 0, A (0,1) = 0,

A (p,0) = 0, A ( p,q) = r, A ( p,1) = p,

A (1,0) = 0, A (1,q) = q, A (1,1) = 1.

It is also straightforward to see that

,
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The difference between them may seem small, but it cannot be neglected. For, C
is a distribution function while B isn’t. In addition, B ! A while C " A . Further-
more, it can be checked that C = E is the distribution function of (F(X"),G(Y")),
which is different from that of (F(X ),G(Y )). The latter, which belongs to A , is
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The observations made in Example 1 hold in general, as stated below.

Proposition 1. Let A, B, C, D and E be as introduced in Definition 1. If the joint
distribution of the pair (X,Y ) is discrete, then

(i) B ! A is not a distribution function.

(ii) D ! A is a distribution function but not a copula.

(iii) C = E " A is a distribution function but not a copula.

Proof. The arguments in support of the above assertions are as follows:

(i) B cannot be a distribution function because it is not right-continuous.

(ii) That B ! A is an immediate consequence of Sklar’s Theorem.

(iii) D and E are distribution functions by definition, but they cannot be copu-
las because F and G have jumps, so that F(X), F(X"), G(Y) and G(Y") are
not uniformly distributed on the interval (0,1).

(iv) That C = E follows from the fact that in view of the definition of F –1, the
equivalence u ≥ F (x") + F –1(u!) ≥ x holds for any u ! (0,1) and x ! �.
Of course, a similar statement holds for G.

(v) Finally, to see that D ! A , one must show that

P{F (X ) ≤ F(x), G (Y ) ≤ G (y)} = H (x,y).
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This stems from the fact that for any x ! �, one has P{F (X ) ≤ F (x)} =
P(X ≤ x), even though the equivalence u ≤ x + F (u) ≤ F (x) is not valid.
Again, a similar statement is valid for G. ¡

3. HOW IMPORTANT IS THE UNIDENTIFIABILITY ISSUE?

Given a bivariate distribution function H with discrete margins, let CH 1 A be
the set of copulas for which identity (1) holds. Should this class be reasonably
small, the copula models that are compatible with H would mimic fairly closely
the dependence characteristics of the latter. The purpose of this section is to
investigate to what extent such is the case.

To assess the importance of the unidentifiability issue, one must somehow
measure the size of CH. This can be done in two steps:

(1) Identify the smallest and largest elements in the class CH.

(2) Measure their associated degree of dependence, e.g., via Kendall’s t or Spear-
man’s r, respectively defined for every copula C by

, , ,C C u v dC u vt 1 4
0

1

0

1
= - + ##^ ^ ^h h h (4)

, .C C u v dvdur 3 12
0

1

0

1
= - + ##^ ^h h (5)

Sections 3.1 and 3.2 address these problems in turn. As will be seen, the class
CH is generally quite large. The unidentifiability of the copula is thus a real issue,
whose importance is shown in Section 3.3 to be related to the flatness of the
margins.

3.1. Carley’s bounds on CH

When the variables X and Y take only finitely many values, the best pointwise
bounds for elements of the class CH have been identified by Carley (2002). Her
construction is presented here in the slightly more general case of a distribu-
tion H that specifies the copula at all grid points (F ( i ), G ( j )) with i, j ! � .

Assume without loss of generality that X and Y take integer values and let

hij = P(X = i ,Y = j ), H (i, j ) = P(X ≤ i, Y ≤ j ),

so that hij is the mass assigned by C to the rectangle (F(i –1), F(i)] ≈ (G( j –1),
G ( j )] with F(–1) = G (–1) = 0 by convention. Let also

,h h X i h h Y jP Pij
j

j i
i0 0

= = = = = =
3 3

+

=

+

=

i j! !^ ^h h

stand for the marginal probability functions of X and Y, respectively.
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Proposition 2. Let CH be the set of copulas which fulfill equation (1) for a fixed
discrete distribution H on �2. The upper Carley bound for the class CH is given by

C+
H (u,v ) = i i, , ,max min au v hb0

ji
j j i

00

- -
33

==

j!! _ i# -

and the lower Carley bound is equal to

C –
H (u,v ) = i i, , , ,max min minh u h v hg d0

ji
i j i j i

00

- + - + -
33

==

j j j!! _ _i i# -

where

i i, ,a h h h hbj k
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and by convention, an empty sum is equal to zero.

This result is essentially the same as that given by Carley (2002), and hence the
proof is omitted. The reader will derive far more benefit from the following
illustration, which reveals the nature of Carley’s construction.

Example 2. Consider a bivariate distribution on {0,1,2,3} ≈ {0,1,2} whose fre-
quencies fij = 24 hij are given in Table 1. It can be seen from Fig. 1 that the cor-
responding Carley bounds C –

H and C+
H are “shuffles of min”, in the sense of Miku-

sinski et al. (1992). In the lower bound (on the left) all the segments have slope
–1, while in the upper bound (on the right) their slope is +1. On each segment, the
probability mass is uniformly distributed and equal to the corresponding value of hij.
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TABLE 1

CONTINGENCY TABLE DEFINING THE GENERIC DISTRIBUTION FUNCTION H FOR EXAMPLE 2.

X = 0 X = 1 X = 2 X = 3 Total

Y = 2 1 2 3 0 6
Y = 1 1 3 6 2 12
Y = 0 1 1 3 1 6

3 6 12 3 24

The location of segment (i, j ) is best explained by reference to Fig. 2. Note that
the shadowed regions in that figure contain no mass. For added clarity, the locations
of the x- and y-divisions are given in Tables 2 and 3 for C –

H and C+
H, respectively.
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FIGURE 1: Carley’s bounds C –
H and C+

H corresponding to the distribution function H
defined in Table 1; left panel: lower bound; right panel: upper bound.

Comparing the two panels of Fig. 2, one can detect a form of symmetry between
the bounds. What is being perceived is in fact a reorientation and reposi-
tioning of each segment within the limits of its confining box. Just how the
repositioning is achieved is the object of the following proposition, also
excerpted from Carley (2002). Although this fact is only valid for the distribu-
tions of count data with finite support, it is stated here formally, as it has useful
implications.
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TABLE 2

COORDINATES OF THE SEGMENTS OF C –
H FOR THE DISTRIBUTION H DEFINED IN TABLE 1.

24 gij i = 0 i = 1 i = 2 i = 3 24 dij i = 0 i = 1 i = 2 i = 3 

j = 2 0 3 9 21 j = 2 23 21 18 18
j = 1 1 5 12 21 j = 1 17 14 8 6
j = 0 2 8 18 23 j = 0 5 4 1 0

TABLE 3

COORDINATES OF THE SEGMENTS OF C+
H FOR THE DISTRIBUTION H DEFINED IN TABLE 1.

24 aij i = 0 i = 1 i = 2 i = 3 24 bij i = 0 i = 1 i = 2 i = 3 

j = 2 2 7 18 24 j = 2 18 19 21 24 
j = 1 1 4 12 22 j = 1 6 7 10 16 
j = 0 0 3 9 21 j = 0 0 1 2 5

F(x)

G
(y

)

F(x)

G
(y

)
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FIGURE 2: Intersections of the supports of C –
H (left panel) and C+

H (right panel)
with the rectangle (F (i – 1), F ( i )] ≈ (G ( j – 1), G ( j )].
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F (i − 1) F (i )g ij g ij + h ij

G( j − 1)

dij

dij + h ij

G( j)

F (i − 1) F (i )^ ij ^ ij + h ij

G( j − 1)

b ij

b ij + h ij

G( j)

Proposition 3. Let H be a distribution function on �2 whose support is comprised
in {0, …, m} ≈ � . If H* is another distribution on �2 with probabilities h*

ij =
h(m – i) j for all i ! {0, …, m} and j ! � , then for all u,v ! (0,1),

C –
H* (u,v) = v – C+

H (1 – u,v) and C+
H* (u,v) = v – C –

H (1 – u,v).

In the above, H* is the distribution of the pair (m – X,Y ). An extension of
this result to the case where the support of H is unbounded may be found in
Appendix A.

3.2. Extreme values for t and r in CH

The Carley bounds make it possible to measure the breadth of degrees of
dependence spanned by the set CH of copulas that are compatible with a given
pair (X,Y ) of counting random variables with joint distribution function H.
If k stands for any measure of concordance in the sense of Scarsini (1984), a
standard result of Tchen (1980) implies that

k(C –
H ) ≤ k(C) ≤ k(C+

H ).

These bounds are best possible, given that both C –
H and C+

H belong to CH. Fur-
thermore, all points in [k(C –

H ), k(C+
H)] are possible values for k(C), because for

every q ! [0,1]

Cq = qC –
H + (1 – q) C+

H ! CH

and k(Cq) is a continuous function of q.
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For Kendall’s t and Spearman’s r, the computation of the bounds is facilita-
ted by the following propositions, whose proofs are relegated to Appendices B
and C.

Proposition 4. Let H be a distribution function on �2 with probabilities hij for
all i, j ! �. Then

t(C –
H ) = ih h1 4 j k

j

k

i

ji 0

1

0

1

00

- +
,

33

=

-

=

-

==

,!!!!

and
t(C+

H ) = i .h h1 4 j k
jk

i

ji 10

1

00

-
,

333

= +=

-

==

,!!!!

Proposition 5. Let H be a distribution function on �2 with probabilities hij for
all i, j ! � . Then

r (C –
H ) = ih1 6 j

ji 00

- -
33

==

!! {dij + hij – (1 – gij)}{2(1 – gij) – hij}

and

r (C+
H ) = ih1 6 j

ji 00

+
33

==

!! (bij – aij) (2aij + hij),

where aij, bij, gij and dij are as defined in Proposition 2.

The following examples show that the Carley bounds on Kendall’s t and Spear-
man’s r can sometimes be fairly wide.

Example 3. Let X and Y be Bernoulli random variables with P(X = 0) = p and
P(Y = 0) = q. Let also r = P(X = 0, Y = 0) ! [max(0, p + q – 1), min(p,q)].
Then C is a possible copula model for the relation between X and Y if and only
if C (p,q) = r. Simple substitution into the bounds from Proposition 4 implies
that

4rs – 1 ≤ t(C ) ≤ 1 – 4( p – r) (q – r),

where s = 1 – p – q + r = P(X = 1,Y = 1). Similarly, Proposition 5 yields

6rs (r + s) – 1 ≤ r (C ) ≤ 1 – 6( p – r) (q – r) (1 – r – s).

The bounds on t are displayed in Fig. 3 along with their difference, in the special
case p = q. One can see from the graphs (this is easily checked algebraically) that

(i) the lower bound equals 0 precisely when p = q = r = 1/2, i.e., when X = Y
almost surely;
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FIGURE 3: Plot of the lower bound t(C –
H) (left panel) and upper bound t(C+

H) (middle panel) on t
as a function of p = q and r for the bivariate Bernoulli model of Example 3.

The difference t(C+
H) – t(C –

H) is represented in the right panel.

(ii) the upper bound vanishes precisely when p = q = 1/2 and r = 0, i.e., when Y =
1 – X almost surely;

(iii) the difference between the two bounds is never smaller than 1.

The graphs for the bounds on r (not displayed here) are similar in shape, but the
range of values is larger. Specifically, the lower bound on r varies in [–1, 0.5], the
upper bound lies in [–0.5,1], and hence the difference spans the interval [0.5,2].

In the light of Example 3, one can see that the unidentifiability of the copula
can sometimes be a severe problem. The following example explores the extent
of this phenomenon and makes additional observations in another context.

Example 4. Suppose X and Y are independent geometric random variables on �
with success probabilities 1 – p and 1 – q, respectively. If C is a possible copula
for the pair (X,Y ), then

.C p
p

q
q

t 1 4 1 1# -
+ +

^ h

This follows from simple algebraic manipulations, upon setting hij = (1 – p)pi

(1 – q )q j in formulas from Proposition 4. It also follows from Proposition 5 that

C pq
p q p p q q

p q pq p q p q
r 1 6

1 1 1 12 2

2 2 2 2

# -
+ + + + + +

+ + + + +
^

^ ^ a a
h

h h k k

and

.C pq
p q p p q q

p q pq p q pq
r 1 6

1 1 1 1

1
2 2

2 2 2 2

$ - +
+ + + + + +

+ + + + +
^

^ ^ a a
h

h h k k

The differences TH = t(C+
H ) – t(C –

H ), RH = r(C+
H ) – r(C –

H ) and TH – RH are shown
in Fig. 4 as a function of p and q. Among the features of the graphs, observe that
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(i) both TH and RH are decreasing in p and q; they reach 0 in the limiting case
where p = q = 1, i.e., when the probabilities of success vanish;

(ii) the fact that TH ≥ RH everywhere shows that the bounds for r are wider than
those for t for all parameter values. In fact, it can be verified (not shown
here) that r(C+

H ) ≥ t(C+
H ) everywhere, but that r(C –

H ) – t(C –
H ) is not always

of the same sign.

3.3. Unidentifiability as a function of the flatness of the margins

Another way of quantifying the size of the class CH is given below as a func-
tion of the “degree of flatness” of random variables X and Y jointly dis-
tributed as H.

Proposition 6. Let (X,Y) be a pair of integer-valued random variables whose joint
distribution function H has margins F and G. For all i, j ! �, let Rij = (F(i – 1),
F(i )] ≈ (G ( j – 1), G ( j )]. Then for arbitrary C,D ! CH and u,v ! (0,1),

, , ,

.max max

C u v D u v X i Y j u v

X i Y j

P P

P P
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� �

j
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i

i j

00
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= + =

33
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==

1!!^ ^ ^ ^ ^

^ ^

h h h h h

h h

#

'

-

1

Proof. For arbitrary (u,v) ! Rij, one has

|C(u,v) – D (u,v) | ≤ |C (u,v) – C (F(i ), G ( j )) | + | D (F(i ),G ( j )) – D (u,v)|.

Indeed, C and D coincide on Ran(F ) ≈ Ran(G), where Ran(F) and Ran(G) denote
the ranges of F and G, respectively. Consequently, C(F(i), G( j)) = D(F(i), G( j))
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FIGURE 4: Plot of the differences TH = t(C+
H) – t(C –

H) (left panel), RH = r(C+
H) – r(C –

H) (middle panel)
and TH – RH (right panel) as a function of p and q for the bivariate geometric model of Example 4.
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for all i, j ! �. Now any copula is Lipschitz, as shown in Chapter 2 of Nelsen
(1999), among others. Therefore, it follows from the above inequality that

|C (u,v) – D (u,v) | ≤ 2 |F(i ) – u| + 2 |G ( j ) – v| ≤ 2{P(X = i ) + P(Y = j )}

and also that

|C (u,v) – D (u,v) | ≤ .max maxX i Y jP P2
� �i j

= + =
! !

^ ^h h' 1

Thus the proof is complete. ¡

It is clear from this proposition that CH shrinks to a singleton when H is
continuous. At the same time, the result suggests that the unidentifiability issue
could be more damaging when either X or Y takes on a small number of values.
To confirm this conjecture, however, a lower bound on the supremum norm
of the difference between the Carley bounds would be needed. This issue is left
unresolved.

4. WHAT IMPACT DOES THIS HAVE ON COPULA MODELS

FOR DISCRETE DATA?

A copula model for a pair (X,Y ) is a class of bivariate distributions of the
form (1), where C, F and G are assumed to belong to parametric classes, viz.,
C ! (Cq), F ! (Fm), G ! (Gn). That many copulas are compatible with the joint
distribution H when the latter is discrete does not make such models invalid
prima facie.

For one thing, many common copula models are easy to simulate and thus
provide useful tools for scenario analysis or robustness studies, even when F
and G are discrete. See, e.g., Choulakian and de Tibeiro (2000), Genest et al.
(2003) and Pfeifer and Neslehova (2004), as well as Chapter 8 of McNeil et al.
(2005).

Several examples of copula models for multivariate discrete data can also
be found in the literature; see, e.g., Meester and MacKay (1994), Trégouët et
al. (2004) and Cameron et al. (2004) for illustrations in biostatistics, genetics
and econometrics, respectively.

In actuarial science and finance, the survey papers by Frees and Valdez
(1998) and Embrechts et al. (2002) heralded the current wave of interest for
modeling dependence through copulas. Although this approach does not yet
appear to have been applied to discrete data in peer-reviewed journals, it is clearly
imminent. A careful consideration of the limitations inherent to this methodol-
ogy thus seems urgent.
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4.1. The copula alone does not characterize the dependence between X and Y

When random variables X and Y are continuous, their unique underlying
copula C is often depicted as characterizing the dependence between them.
For example, it is easy to see that X and Y are independent if and only if C =
P, viz.

P (u,v) = uv, u,v ! (0,1).

This fact has been used, e.g., by Genest and Rémillard (2004) to derive power-
ful nonparametric tests of independence based on the empirical copula process.

Similarly, a familiar fact of copula theory is that continuous variables X and Y
are in perfect monotone functional dependence if and only if their copula C
is one of the Fréchet-Hoeffding bounds. In other words,

G (Y ) = 1 – F(X ) a.s. + C = W,

G (Y ) = F(X ) a.s. + C = M,

where

W (u,v) = max(0, u + v – 1) and M(u,v) = min(u,v), u,v ! (0,1).

In contrast, suppose that the joint distribution function of discrete random vari-
ables X and Y is modeled via relation (1) for some copula C. While it is still
true that C = P implies independence between X and Y, the reverse implica-
tion is no longer valid, as the following example shows.

Example 5. Let X and Y be independent Bernoulli random variables with P(X = 0) =
p and P(Y = 0) = q. Then C is a possible copula model for the pair (X,Y ) if and
only if C( p,q) = P(X = 0,Y = 0) = pq. Suppose in particular that p = q = 1/2 and
consider the copula C = (W + M ) /2. Then C (1/2,1/2) = 1/4 = pq and hence this
copula induces independence between X and Y, yet C ! P.

Similarly, it is possible to construct examples of discrete random variables X
and Y that are in perfect monotone functional dependence, even though the
copula used to model their joint distribution is neither W nor M.

More surprisingly, perhaps, although W and M continue to induce the best
pointwise bounds on H, viz.

H –(x,y) = W (F(x), G (y)), H+(x,y) = M (F(x), G (y)), x,y ! � (6)

the pairs (X –,Y –) and (X +,Y+) distributed respectively as H – and H+ are not
necessarily in perfect monotone functional dependence! An example to this effect
is given below.
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Example 6. For the bivariate discrete distribution defined in Table 1, the joint
probability functions of the pairs (X –,Y –) and (X +,Y+) are given in Tables 4 and 5,
respectively. These contingency tables, which were computed using formulas pro-
vided by Nelsen (1987), are reproduced in Appendix D.
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TABLE 4

CONTINGENCY TABLE DESCRIBING THE LOWER FRÉCHET-HOEFFDING BOUND

FOR THE BIVARIATE DISCRETE DISTRIBUTION DEFINED IN TABLE 1.

X = 0 X = 1 X = 2 X = 3 Total

Y = 2 3 3 0 0 6
Y = 1 0 3 9 0 12
Y = 0 0 0 3 3 6

3 6 12 3 24

TABLE 5

CONTINGENCY TABLE DESCRIBING THE UPPER FRÉCHET-HOEFFDING BOUND

FOR THE BIVARIATE DISCRETE DISTRIBUTION DEFINED IN TABLE 1.

X = 0 X = 1 X = 2 X = 3 Total

Y = 2 0 0 3 3 6
Y = 1 0 3 9 0 12
Y = 0 3 3 0 0 6

3 6 12 3 24

While it is plain from Tables 4 and 5 that neither of the pairs (X –,Y –) and (X +,
Y+) has functionally dependent components, it should be stressed that it remains
possible to generate jointly the two components of either (X –,Y –) or (X +,Y+)
with a single uniform random variable. This result, which is stated formally
below, is proved, e.g., by Embrechts et al. (2002). Accordingly, the pairs (X –,Y –)
and (X +,Y+) may still be construed as counter- or co-monotonic, respectively,
in the sense given to those terms by Yaari (1987).

Proposition 7. Let (X,Y ) be a random pair with distribution function H and
margins F and G. Then W ! CH if and only if there exists a random variable U
uniformly distributed on (0,1) such that X = X – = F –1(U) and Y = Y– = G –1(1 – U)
almost surely. Similarly, M ! CH if and only if X =X + = F –1(U) and Y =Y+ = G –1(U)
almost surely.
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4.2. Concordance measures are margin-dependent

When dealing with continuous random variables, measures of concordance
such as Kendall’s t or Spearman’s r are convenient. Because they provide margin-
free measures of the level of dependence in the bivariate distribution, they
can be used to construct reliable estimation procedures when the underlying
copula is assumed to belong to a specific parametric family.

When the random variables are discrete, however, all but one measure of
concordance in the sense of Scarsini (1984) share with Pearson’s correlation a
dependence on the marginal distributions. The following result, due to Marshall
(1996), shows that the only exception is not a particularly useful one.

Proposition 8. Let H be the class of bivariate distribution functions whose sup-
port is contained in �2. Assume that k is a dependence measure for which the
implication C ! CH & k(H) = k(C ) holds for all H ! H . Then k is a scalar.

The following example illustrates this dependence concretely in the case of
Kendall’s t and Spearman’s r.

Example 7. Let X and Y be Bernoulli random variables with P(X = 0) = p and
P(Y = 0) = q. Let also r = P(X = 0,Y = 0) ! [max(0, p + q – 1), min(p,q)] . Then

t (X,Y ) = r (X,Y ) = r – pq.

4.3. The probabilistic and analytical definitions of t and r do not coincide

In Example 7 as in other cases where variables X and Y are discrete, t (X,Y )
and r(X,Y ) refer to the probabilistic definitions of Kendall’s t and Spearman’s
r, i.e.,

t (X,Y ) = P{(X1 – X2) (Y1 – Y2) > 0} – P{(X1 – X2) (Y1 – Y2) < 0}

and

r (X,Y ) = 3[P{(X1 – X3) (Y1 – Y3) > 0} – P{(X1 – X3) (Y1 – Y3) < 0}] ,

where (X1,Y1) and (X2,Y2) are two independent copies of (X,Y ) while X3 and
Y3 are independent and distributed as X and Y, respectively.

When X and Y are continuous random variables with unique underlying
copula C, the above definitions are known to be equivalent to formulas (4) and
(5); see, e.g., Chapter 5 of Nelsen (1999). Expressed symbolically, this means
that

t (X,Y ) = t(C ) and r (X,Y ) = r (C ) .
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When X and Y are discrete, however, this is no longer true. For, each possible
choice of C ! CH leads to different values for t(C ) and r(C ). In fact,

{t(C ) : C ! CH} = [t(C –
H ), t(C+

H )], {r(C ) : C ! CH} = [ r(C –
H ), r(C+

H )] .

Nevertheless, t(X,Y ) = t(H ) and r(X,Y ) = r(H) remain uniquely defined as
functions of H. The following result, which makes this dependence explicit, is
stated in total or in parts by Conti (1993), Kowalczyk and Niewiadomska-
Bugaj (2001), Mesfioui and Tajar (2005) and Neslehova (2007).

Proposition 9. Let (X,Y ) be a random pair with joint distribution H. Then

t(X,Y ) = –1 + E{H(X,Y ) + H(X",Y ) + H(X,Y") + H(X",Y")}

and

r (X,Y ) = –3 + 3E{H(X*,Y*) + H(X*
",Y*) + H(X*,Y*

" ) + H(X*
",Y*

" )},

where X* and Y* are independent and distributed as X and Y, respectively. When
H is continuous, the formulas immediately reduce to

t(X,Y ) = –1 + 4E{H(X,Y )}, r (X,Y ) = –3 + 12E{H(X*,Y*)},

which further reduce to (4) and (5), upon making the margins uniform.

Interestingly, there exists a copula C ✠
H ! CH such that

t (X,Y ) = t (C ✠
H ) and r(X,Y ) = r(C ✠

H ). (7)

As shown, e.g., in Schweizer and Sklar (1974) or Whitt (1976), this copula can
be constructed in a unique way for any pair (X,Y ) with margins F and G.
It is obtained by linear interpolation of the distribution D of the pair (F(X),
G(Y)) in such a way that C ✠

H(u,v) = D(u,v) for all pairs (u,v) ! Ran(F) ≈ Ran(G).
An algebraic description of C ✠

H is given in Lemma 2.3.5 of Nelsen (1999).
The following alternative definition stems from the work of Denuit and Lam-
bert (2005) and Mesfioui and Tajar (2005).

Definition 2. The bilinear extension C ✠
H ! CH of a bivariate distribution func-

tion H on �2 is the unique copula associated with the pair (X ✠,Y ✠) defined by
X ✠ = X + U, Y✠ = Y + V where U,V are independent uniform random variables
on (0,1).

For various proofs of identity (7), see Denuit and Lambert (2005), Mesfioui
and Tajar (2005) or Neslehová (2007).
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4.4. Perfect monotone dependence does not imply |t | = | r | = 1

It was already mentioned in Section 4.1 that when X and Y are discrete random
variables, the Fréchet-Hoeffding bounds do not necessarily induce perfect
monotone functional dependence. However, one might wonder whether the
following equivalences remain valid in that case:

G (Y ) = 1 – F(X ) + t (X,Y ) = r(X,Y ) = – 1 a.s.,

G (Y ) = F(X ) + t (X,Y ) = r(X,Y ) = 1 a.s.

While these equivalences hold true when X and Y are continuous random vari-
ables, the following example shows that they break down in the discrete case.
As a result, not only do t (X,Y ) and r(X,Y ) depend on the marginal distrib-
utions when the latter are discrete, but their range is also a function thereof.

Example 8. Let X and Y be Bernoulli random variables such that P(X = 0) =
P(Y = 0) = P(X = 0,Y = 0) = p ! (0,1). Then Y = X almost surely and t(X,Y) =
r(X,Y) = p(1 – p) < 1. Similarly, if P(X = 0) = p = 1 – q = P(Y = 1) and P(X = 0,
Y = 0) = r = 0, then Y = 1 – X almost surely and t(X,Y) = r(X,Y) = –p(1 – p) > –1.

4.5. Rescaled versions of t and r may be more relevant

The dependence of Kendall’s t and Spearman’s r on the margins may be
regarded as a consequence of two facts. On one hand, if (X1,Y1) and (X2,Y2)
are two independent observations from H, there is a non-zero probability that
a tie occurs, i.e., X1 = X2 or Y1 = Y2 or both. On the other hand, the probabilistic
definitions of t(H ) and r(H ) do not account for ties.

As a further manifestation of the presence of ties, the range of t and r is
variable in the discrete case. This makes their interpretation much less straight-
forward than when the variables X and Y are continuous. This problem was
recognized very early on; see, e.g., Hoeffding (1940) or Kendall (1945). The fol-
lowing rescaled versions of Kendall’s t and Spearman’s r were introduced in
an attempt to correct it.

Definition 3. Let (X,Y) be a pair of discrete random variables with margins F(x) =
P(X ≤ x) and G (y) = P(Y ≤ y) for all x,y ! �. Kendall’s “tau-b” is then given
by

1 2! !
,

,
,X Y

X Y

X Y

P P
t

t
b

2 1

=
X Y

^
^ ^

^
h

h h

h

where X1 and X2 are two independent copies of X, while Y1 and Y2 are two inde-
pendent copies of Y. Furthermore, Spearman’s “grade correlation coefficient” may
be defined as
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where X = {F(X ) + F(X")} /2 and Y = {G (Y ) + G (Y")} / 2.

Note that when X and Y are continuous, P(X1 ! X2) = P(Y1 ! Y2) = 1 and
hence tb(X,Y) = t(X,Y). Furthermore, the unique copula C associated with H
is then the joint distribution of the pair (X, Y ), so that rs(X,Y ) = r (X,Y ).

Remark 1. Neslehová (2007) shows that one can also write rs(X,Y) = corr(X, Y).

The normalizations used in Definition 3 are obviously not the only possible
ones; see, e.g., Denuit and Lambert (2005) for an alternative. As argued by
Neslehová (2007), however, an argument in favor of the above is that they
coincide with the empirical definitions of tb and rs when the sample is treated
as a finite population.

4.6. Perfect monotone dependence does not always imply |tb| = | rs | = 1 either

While rescaling Kendall’s t and Spearman’s r broadens their range of values
by correcting for ties, it may still happen that |tb(X,Y ) | < 1 and |rs(X,Y ) | < 1
when discrete variables X and Y are in perfect monotone dependence. The fol-
lowing example illustrates this fact.

Example 9. Let X and Y be uniform distributions on the sets {1, …, m} and {1,
…, n}, respectively. The upper and lower bounds on t(X,Y) are displayed in Fig. 5
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FIGURE 5: Value of tb as a function of m and n for co- (left panel) and counter-monotonic (right panel)
uniform random variables X ! {1, …, m} and Y ! {1, …, n}.
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for all values of m, n ! {2, …, 10}. In the graphs, the values at non-integer values
of m and n were obtained by linear interpolation; they do not correspond to any-
thing real but help to interpret the overall pattern.

Note that in the special case m = n, the bounds on tb are exactly ±1. This is in
accordance with a result of Mesfioui and Tajar (2005), who show that in this
case, t(X,Y) ! [–1 + 1/n, 1 – 1 /n ]. The upper and lower bounds are reached when
Y = X and Y = n + 1 – X, respectively. This clearly implies that |tb(X,Y ) | = 1
when X and Y are in perfect monotone dependence, because P(X1 = X2) = P(Y1 =
Y2) = 1/n and hence the denominator of tb equals (n – 1) /n in that case. Similar
results hold for rs, as can readily be checked.

For additional illustrations of this phenomenon, refer to Denuit and Lambert
(2005) and Neslehová (2007), respectively. The final result of this section, excerpted
from the latter paper, delineates the conditions under which |tb| = |rs| = 1.

Proposition 10. Let (X,Y ) be a random pair with distribution function H. Then
|tb| = |rs| = 1 if and only if X = f(Y) almost surely, where f is a strictly monotone
mapping on Ran(Y ).

In a further attempt to correct for ties, Vandenhende and Lambert (2003)
recently proposed several new indices of association whose functional form dis-
tinguishes between positive and negative degrees of dependence. For example,
the index of concordance that they propose is based on a normalization of

t*(X,Y ) = E{H(X,Y )} – E{F(X )}E{G (Y )}.

More specifically, they define
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where H –(x,y) = W(F(x),G(y)) and H +(x,y) = M (F(x),G(y)), as in (6).

The downside is that t*(X,Y ) ! t(X,Y ), i.e., tVL is no longer interpretable as
a scaled difference between the probabilities of concordance and discordance.

An alternative measure that preserves this interpretation while achieving
the bounds ±1 in cases of co- and counter-monotonicity is offered below.

Definition 4. Let X and Y be random variables with distributions F and G, respec-
tively. Let H be the joint distribution of the pair (X,Y ). Let also (X –,Y –) and
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(X+,Y+) be random pairs with distributions H – and H+, respectively. A concor-
dance measure is then given by

, , , < ,
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X Y X Y X Y
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if
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It is immediate that |tCJ| = 1 if X and Y are either co- or counter-monotonic.
It also follows from equation (7) that tCJ can be alternatively expressed in terms
of copulas as follows:

H

H

-

+

HH

H H

< ,

> .

/

/

C C C

C C C

if

if
t

t t t

t t t

0

0

✠ ✠ ✠

✠ ✠ ✠
CJ =

- a a a

a a a

k k k

k k k

Z

[

\

]]

]]

Needless to say, a similar strategy could be used to construct alternatives to
Spearman’s rho, etc. The properties of such measures may be the object of
future work.

5. ARE COPULA MODELS FOR DISCRETE DATA INTERESTING AT ALL?

The accumulation of evidence in Section 4 may conduce the belief that models
of the form (1) with C ! (Cq) are totally inappropriate for describing the depen-
dence between two discrete random variables X and Y. This view is misguided
on many accounts, as highlighted below.

In addition to the fact that construction (1) yields bona fide bivariate dis-
tributions with given margins F and G, it is seen in Section 5.1 that H inherits
most of the common dependence properties of the copula C ! (Cq) from which
it is derived. As explained in Section 5.2, the dependence parameter q continues
to govern the association between the variables X and Y. However, Section 5.3
emphasizes that this parameter is not a natural object to interpret.

5.1. The dependence properties of Cq are often inherited by H

Beyond their specific algebraic form, copula families are often chosen because
of the nature of association that they induce between variables X and Y. In the
continuous case, say, a class of copulas might be deemed appropriate because
when (U,V ) = (F(X ),G (Y )) is distributed as C ! (Cq),

4P(X ≤ mX,Y ≤ mY) – 1 = 4P(U ≤ 1/2, V ≤ 1/2) – 1 ≥ 0,

where mX and mY are the medians of X and Y, respectively. This amounts to
requiring that Blomqvist’s median correlation coefficient between X and Y is
positive whatever C ! (Cq), a fact that might be denoted DEP0(X,Y ).
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Now suppose that X and Y are integer-valued variables and that their joint dis-
tribution H is given by a model of the form (1). One might then wonder whether

DEP0(U,V ) & DEP0(X,Y ),

where the right-hand side now means that

4P(X ≤ mX, Y ≤ mY) – 1 ≥ 0,

with mX and mY being the smallest integers such that P(X ≤ mX) ≥ 1/2 and
P(Y ≤ mY) ≥ 1/2.

The answer is trivially yes, because

P(X ≤ mX, Y ≤ mY) ≥ , .C 2
1

2
1

4
1

$d n

The reverse implication is not valid, however, as the following simple example shows.

Example 10. Let X and Y be Bernoulli random variables such that P(X = 0) =
P(Y = 0) = 0.7 and P(X = 0, Y = 0) = 0.4. Then mX = mY = 0 and P(X = 0,
Y = 0) > 1/4, so that DEP0(X,Y) holds true. However, H(0,0) = W(0.7, 0.7) and
hence H can be regarded as being generated via the copula model (1) with C =W,
the Fréchet-Hoeffding lower bound. Unfortunately, W (1/2,1/2) = 0 < 1/4, i.e.,
one does not have DEP0(U,V ) for a pair (U,V ) distributed as W.

In practice, of course, copula models satisfy much stronger concepts of posi-
tive dependence. Most common are the following notions, introduced by
Lehmann (1966), as well as Esary and Proschan (1972).

Definition 5. Let (X,Y ) be a pair of random variables. Then

(a) X and Y are said to be in positive quadrant dependence, denoted DEP1(X,Y),
if and only if P(X ≤ x,Y ≤ y) ≥ P(X ≤ x) P(Y ≤ y) for all x,y ! � .

(b) Y is said to be left-tail decreasing in X, denoted DEP2(X,Y ), if and only if
P(Y ≤ y|X ≤ x) is a non-increasing function of x for every y ! � .

(c) Y is said to be right-tail increasing in X, denoted DEP3(X,Y ), if and only if
P(Y ≤ y|X > x) is a non-decreasing function of x for every y ! � .

(d) Y is said to be stochastically increasing in X, denoted DEP4(X,Y), if and only
if P(Y ≤ y|X = x) is a non-increasing function of x for every y ! � .

(e) X and Y are said to be in positive likelihood ratio dependence, denoted DEP5

(X,Y ), if and only if for all x1 < x2, y1 < y2 ,

h (x1, y1) h (x2, y2) ≥ h (x1, y2) h (x2, y1),

where h(x,y) stands for the probability function or the density of the pair (X,Y)
as the case may be. (In the continuous case, the concept only makes sense if
the density function exists.)
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The following proposition shows that as in the case of Blomqvist’s median
correlation dependence, each of the above concepts is preserved in a copula
model construction. As in Example 10, however, none of the implications can
be reversed, except in the special case of the bilinear extension copula.

Proposition 11. Let X and Y be random variables with marginal distribution
functions F and G, respectively. Let C be a copula such that P(X ≤ x,Y ≤ y ) =
C (F (x),G(y)) for all x,y ! �.

(a) If (U,V ) denotes a random pair with joint distribution C, then DEPi (U,V ) &
DEPi (X,Y ) for i = 1, …, 5.

(b) Let C ✠
H ! CH be the bilinear extension of H from Definition 2. If (X ✠,Y ✠) is

as in Definition 2, then DEPi (X,Y ) + DEPi(X✠,Y ✠) for i = 1, …, 5.

Proof. For DEP1, statement (a) is an observation of Marshall (1996) and state-
ment (b) is a special case of Proposition 13 below, due to Neslehová (2004).
For i = 2,3, the claims concerning DEPi are proved by Mesfioui and Tajar
(2005). As for the results pertaining to DEP4 and DEP5, they are shown in
Appendix E. ¡

Another important concept used in practice is the notion of tail dependence,
introduced by Joe (1993). The following result, whose proof is given in Appen-
dix F, shows that tail dependence is also preserved in a copula model con-
struction, at least under the restriction that the marginal distributions coincide.

Proposition 12. Let X and Y be random variables with margins F and G, respec-
tively. Assume that H(x,y) = P(X ≤ x,Y ≤ y) = C (F(x),G (y)) for all x,y ! �
and some copula C. Let (U,V ) be a random pair distributed as C. If F = G, then

lim
u 1-

P(V > u |U > u ) = lim
t 1-

P{Y > G–1(t) | X > F –1(t)}, (8)

provided that the limit on the left exists. In that case, therefore, H has upper tail
dependence as soon as C does.

Whether the result extends to the general case is not clear, because after dis-
cretization, the right-hand side of (8) amounts to the limit of C (un,vn) for a
sequence (un,vn) " (1,1) as n " 3, but for which un ! vn.

5.2. q can still be interpreted as a dependence parameter

In order for a model of the form (1) to be statistically meaningful, a fundamen-
tal requirement is that the members of the copula family (Cq) be ordered by
positive quadrant dependence, i.e.,

q < q� & Cq (u,v) ≤ Cq�(u,v) (9)
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holds true for all u,v ! (0,1). Tchen (1980) showed that this condition, denoted
Cq 'PQD Cq�, implies

k(Cq) ≤ k(Cq�)

for any measure of concordance in the sense of Scarsini (1984). The latter is a
minimal requirement in order for q to be interpreted as a dependence parameter.

Fortunately, this property is inherited by the parametric family (Hq) defined by

Hq(x,y) = Cq(F(x), G ( y)), x,y ! � .

In other words,

Cq 'PQD Cq� & Hq 'PQD Hq�.

This implication holds whether the margins F and G are continuous or not.
The following result, whose proof is given in Section 5.3 of Neslehová (2004),
provides a partial converse.

Proposition 13. Let H and L be two bivariate distribution functions with the same
margins. Let C ✠

H and C ✠
L be their bilinear extensions, as per Definition 2. Then

H 'PQD L + C ✠
H 'PQD C ✠

L.

It is unclear whether similar statements hold for stronger stochastic orderings,
e.g., the LTD and RTI partial orders of Avérous and Dortet-Bernadet (2000),
let alone the monotone regression dependence ordering of Yanagimoto and
Okamoto (1969) and its extensions considered by Capéraà and Genest (1990)
or Fang and Joe (1992).

5.3. t (Cq) ! t (H ) and r (Cq) ! r (H )

Suppose that the joint distribution H of a random pair (X,Y) is of the form (1),
where C belongs to a parametric class of copulas (Cq). If the latter satisfies con-
dition (9), there is then a one-to-one correspondence between q and t(Cq), as
well as between q and r(Cq).

When the margins F and G of X and Y are continuous, it is well known that

t(Cq) = t(H ), r (Cq) = r (H ) .

This, in turn, provides a natural interpretation for q, either in terms of Kendall’s t
or Spearman’s r. In the event that X and Y are discrete random variables, how-
ever, it was mentioned in Section 4 that

t(X,Y ) ! t(Cq) ! tb(X,Y ) and r (X,Y ) ! r (Cq) ! rs(X,Y ) .
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Furthermore, there is no simple way of expressing the relation between Ken-
dall’s t or Spearman’s r for Cq and either one of the dependence measures based
on (X,Y ). Recall from Section 4.2 that the latter all depend on the marginal
distributions.

This lack of direct interpretability of the parameter q is not a serious con-
cern when the copula model for the pair (X,Y ) is used, say, to investigate the
robustness of a procedure under various scenarios of dependence. As seen
in the next section, however, it calls for additional care when time comes to esti-
mate the parameter q.

6. DOING INFERENCE ON THE BASIS OF A DISCRETE

COPULA MODEL

Let us now return to the initial estimation problem in the context of a copula
model for count data. To be specific, suppose that (X1,Y1), …, (Xn,Yn) are
n ≥ 2 independent copies of a pair (X,Y ) of integer-valued random variables
with joint distribution H. Assuming that H is of the form (1) for some copula
C ! (Cq), what are the implications of the accumulated wisdom on an appro-
priate course of action for estimating the dependence parameter q?

When the variables X and Y are continuous, the estimation of q from the
data does not pose any major challenge. If one is willing to assume paramet-
ric forms for the margins F and G, one can either maximize the full likelihood
or proceed in two steps, i.e., estimate the margins first, and subsequently con-
sider them as given in the maximization of the likelihood for q. The relative
merits of these two approaches are described and compared by Joe (1997,
2005).

An alternative approach advocated by Genest et al. (1995) and Shih and
Louis (1995) also proceeds in two steps but replaces parametric estimates of
F and G by their empirical distribution functions; the latter are often multi-
plied by n / (n + 1) to avoid evaluating the density cq (u,v) at the edges of the
unit square. This approach is generally preferred in practice because in addi-
tion to being reasonably efficient, the resulting estimator for q is rank-based
and hence robust to the misspecification of the marginal distributions, as
recently illustrated by Kim et al. (2007).

In many applications, however, a simpler technique is preferred. It is based
on an interpretation of q ! � as a function of some concordance measure.
For instance, simple formulas are available for Kendall’s tau in Archimedean
and meta-elliptical models; for the basic properties of these two classes of dis-
tributions, see, e.g., Chapter 4 of Nelsen (1999) and Chapter 5 of McNeil et al.
(2005), respectively.

Assuming that the mapping t : q 7 t(Cq) is one-to-one, a method-of-moment
estimator of q is obtained by finding the unique value qn of q such that

t(Cq) = tn(X,Y ) .

A PRIMER ON COPULAS FOR COUNT DATA 499

0345-07_Astin37/2_14  28-11-2007  16:10  Pagina 499



Here, tn denotes the standard sample value of Kendall’s t, defined by

tn(X,Y ) = dN
n

c

2

-N
d n

(10)

as a function of the numbers of concordant and discordant pairs in the sam-
ple, viz.

i

i

i

i

j j

j j

> ,

< .

X

X

0

0

1

1
<

<

c
i j n

d
i j n

1

1

= - -

= - -

# #

# #

Y

Y

N

N

X Y

X Y

!

!

_ _

_ _

i i

i i

#

#

-

-

For instance if (Cq) is the Clayton family defined by (2), then t(Cq) = q/(q + 2) and

,
,

.
X Y

X Y
2

1n
n

n=
- t
t

q
^

^

h

h

In the continuous case, the estimator qn of q based on the inversion of Kendall’s
tau is known to be consistent and asymptotically normal. Section 6.1 shows
that the situation is radically different in the discrete case. As emphasized in
Section 6.2, however, this is not to say that q cannot be estimated.

6.1. Estimates of q based on Kendall’s t are biased

When data (X1,Y1), …, (Xn,Yn) are assumed to arise from a copula model of
the form (1) for some C ! (Cq), each observation (Xi,Yi) can be construed as
arising from a latent pair (Ui,Vi ), viz.

Xi = F –1(Ui), Yi = G –1(Vi ),

where (U1,V1), …, (Un,Vn) is a random sample from copula C. When F and G
are continuous, it was seen in Section 4 that t(H ) = t(C ). Furthermore,

tn(X,Y ) = tn(U,V ) (11)

because the quantile functions F –1 and G –1 are strictly monotone. For this rea-
son, tn(X,Y ) is an unbiased estimate of t(Cq), even though the pairs (Ui,Vi )
are not observable. This holds true whether F and G are known or not.

When F and G are discrete, however, it is not at all clear whether relation
(11) still holds. For one thing, given that the quantile functions are not strictly
monotone, there is now a non-zero probability that (Xi –Xj ) (Yi –Yj ) = 0 for
some i ! j. At a more fundamental level, however, the relationship between
(Xi,Yi) and (Ui,Vi ) is no longer one-to-one, even when F and G are known. As
a result, the discretization process is irreversible, whatever the sample size!
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Notwithstanding this fact, an optimistic user might be tempted to estimate q
by solving the equation

t(Cq) = tn(X,Y ).

Or perhaps, in the light of the discussion in Section 4, this person might attempt
to improve the estimate of t(H ) by correcting for ties, considering that 

(i) unless the definitions of Nc and Nd are modified, ties observed in the sam-
ple do not contribute to the numerator of (10);

(ii) treating each tie as a half concordance and a half discordance does not
affect the numerator of tn either;

(iii) a random allocation of ties to the Nc or Nd counts would be unacceptable,
because two analysts would not always get the same solution.

Standard remedies consist of correcting the denominator of tn(X,Y ), e.g., by
letting

d

d
n ,X Y N

N
,a

c

c=
+

-
t N

N
^ h or 

y

d

x
n , ,X Y

N
N
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where Nx = <i j1! (Xi ! Xj ) and Ny = <i j1! (Yi ! Yj ). The first coefficient is
often referred to as “gamma” in the categorical analysis literature; it was intro-
duced by Goodman and Kruskal (1954). As for tb,n, which is a consistent esti-
mate of tb, it is often attributed to Kendall.

While tn(X,Y ), ta,n(X,Y ) and tb,n(X,Y ) all coincide with the usual empir-
ical version of Kendall’s t in the absence of ties, the following examples show
that the mere fact that ties could occur with probability greater than zero causes
these estimators to have different behavior, both in finite samples and asymptot-
ically. In particular, all of them lead to biased estimates of q when the marginal
distributions are discrete.

Example 11. Ten thousand random samples of size n = 100 were generated from
a pair (X,Y ) of geometric random variables whose joint distribution H is of the
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TABLE 6

AVERAGE AND STANDARD ERROR OF FOUR ESTIMATES OF q IN EXAMPLE 11.

Estimate of q based on

tn(U,V ) tn(X,Y ) ta,n(X,Y ) tb,n(X,Y ) 

Average 2.054 1.979 2.331 2.153
Standard deviation 0.444 0.412 0.542 0.476
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form (1). It was assumed more specifically that P(X = 0) = 0.05, P(Y = 0) = 0.1
and that C ! (Cq), the Clayton family of copulas defined by (2). In the simula-
tion, q was taken equal to 2, so that t(Cq) = 1/2.

Displayed in panels (b)-(d) of Fig. 6 are histograms of the observed bias of
estimators of q based on tn(X,Y ), ta,n(X,Y ) and tb,n(X,Y ). For comparison pur-
poses, panel (a) shows the bias of the estimator of q derived from tn(U,V ), the
empirical value of Kendall’s t based on the continuous bivariate observations
generated from copula C, prior to the transformation of their margins.

In practice, of course, tn(U,V ) is not a possible estimator for t, because the
process by which the data were made discrete is irreversible. Complementary
numerical information about the mean and standard deviation of each of the four
estimators is provided in Table 6.
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FIGURE 6: Histograms showing, from left to right and top to bottom, the bias of estimators of q
based on tn(U,V ), tn(X,Y ), ta,n(X,Y ) and tb,n(X,Y ) in 10,000 random samples of size n = 100

from the bivariate geometric distribution described in Example 11.
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In his/her anonymous comments about the first draft of this article, a referee
suggested that one possible way of circumventing the discrete nature of the data
would be to add independent random components to the coordinates of each
pair (Xi,Yi ) by setting

Xi = Xi + Ui , Yi = Yi + Vi ,

for each i ! {1, …, n}, where U1, …, Un and V1, …, Vn are independent random
samples from the uniform distribution on the interval (0,1). An estimate of q
might then be given by

qn = t –1{tn( X, Y )}.

In recognition of the fact that the sample ( X1, Y1), …, ( Xn, Yn) was obtained
via randomization, the process might be replicated a large number of times,
say N, and an average of the resulting values of tn might be used in the above
inversion formula. As the following example shows, this randomization strat-
egy does not yield any improvement over the previously considered moment
estimators.

Example 12. The Monte Carlo experiment of Example 11 was repeated in the case
where (X,Y) is a pair of Poisson random variables with E(X) = 1 and E(Y) = 2.
As can be seen from Fig. 7 and Table 7, the bias of the three estimators based
on the observations of (X,Y) is larger here than in Example 11.

In addition, Fig. 8 illustrates the behavior of the estimator of q based on
tn ( X, Y ). The left panel displays its bias, when the randomization process is
performed only once, i.e., N = 1. A comparison of this graph with the upper-right
histogram in Fig. 7 reveals that the inversion of tn(X,Y ) and tn( X, Y ) produces
essentially the same bias. This observation is confirmed by Table 7.

Upon reflection, this is not surprising. For, when the process of generating a
randomized sample is repeated indefinitely, the average of the resulting values of
tn( X, Y ) becomes a consistent estimator of tn(X,Y). This fact is illustrated in the
right panel of Fig. 8 for a single sample of size 100 from the bivariate Poisson
model specified above. In that particular sample, tn(X,Y) was 0.3307, as compared
to 0.3306 for the average value of tn( X, Y ).
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TABLE 7

AVERAGE AND STANDARD ERROR OF FOUR ESTIMATES OF q IN EXAMPLE 12

Estimate of q based on

tn(U,V ) tn(X,Y ) ta,n(X,Y ) tb,n(X,Y ) tn( X, Y ) 

Average 2.039 1.262 4.358 2.213 1.269
Standard deviation 0.446 0.243 1.495 0.537 0.285
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FIGURE 7: Histograms showing, from left to right and top to bottom, the bias of estimators of q
based on tn(U,V ), tn(X,Y ), ta,n(X,Y ) and tb,n(X,Y ) in 10,000 random samples of size n = 100

from the bivariate Poisson distribution described in Example 12.
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FIGURE 8: Histogram showing the bias of a randomized-based estimator of q
derived from tn( X,Y ) in 10,000 random samples of size n = 100 from the

bivariate Poisson distribution described in Example 12.
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Unless a large number of replicates is taken, however, it is also apparent from
Table 7 that inversion of tn( X, Y ) is less efficient than inversion of tn(X,Y). Clearly,
therefore, the randomization-based estimation procedure is not advisable.

As it turns out, this recommendation extends to other estimation procedures
based on randomization. In the present simulation experiment, e.g., the estimator
maximizing the pseudo-likelihood of the randomized sample ( X1, Y1), …, ( Xn, Yn)
exhibited a bias of 1.144 and a mean squared error of 1.339, as compared to
0.604 = (2 – 1.262)2 + 0.2432 for the estimator based on tn(X,Y).

Remark 2. The perceptive reader will of course have noticed that the formal rea-
son for the poor performance of the randomization-based estimator of q is that
for n large, the pairs of normalized ranks associated with ( X1, Y1), …, ( Xn, Yn)
amount to a random sample from C ✠

H . As in general C ✠
H ! Cq , rank-based estimation

from such randomized samples is doomed to failure.

6.2. Is q estimable?

It should not be concluded from the illustrations in Section 6.1 that when the
distribution of a pair (X,Y ) of discrete random variables arises from a copula
model of the form (1) with C ! (Cq ), the dependence parameter q cannot
be estimated. Rather, what these examples show is that rank-based methods in
general (and inversion of Kendall’s tau in particular) will not always lead to a
consistent estimator.

In contrast, the following example shows that in the simplest possible case
— that which involves two Bernoulli variables — standard maximum likelihood
estimation works. However, the exact conditions under which q is estimable in
this context remain to be elucidated.

Example 13. Let (X,Y) be a pair of Bernoulli random variables with P(X = 0) = p,
P(Y = 0) = q and P(X = 0,Y = 0) = r. For i, j = 1,2, let nij represent the number
of times that X = i and Y = j in a random sample of size n. The maximum likeli-
hood estimates of the three parameters are then given respectively by

pn = n
n n00 01+

, qn = n
n n00 10+

, rn = n
n00 .

When the joint distribution of (X,Y ) is of the form (1) for some C ! (Cq ), one
has Cq ( p, q) = r, so that the maximum likelihood estimate qn is the unique
value of q such that Cqn

( pn, qn) = rn. Standard theory then implies that this
estimation is consistent and asymptotically normal. In particular, q is then
estimable.

To illustrate this point concretely, suppose that

Cq(u,v) = uv + quv (1 – u) (1 – v), q ! [–1,1]
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FIGURE 9: Histograms showing, from left to right and top to bottom, the bias of estimators of q based on
maximization of the likelihood and inversion of tn(X,Y ), ta,n(X,Y ) and tb,n(X,Y ) in 10,000 random

samples of size n = 100 from the bivariate Bernoulli distribution described in Example 13.

the Farlie-Gumbel-Morgenstern family of copulas. Then

n n n

n .p q p q
r p q
1 1n

n

n n=
- -

-q
^ ^h h

Panel (a) of Fig. 9 shows the empirical distribution of the above estimate of q,
based on 10,000 random samples of size n = 100 from the pair (X,Y ) with
P(X = 0) = 0.3, P(Y = 0) = 0.4 and P(X = 0,Y = 0) = r = 0.1452; this corresponds
to Cq( p,q) with q = 0.5. For comparison purposes, panels (b)-(d) show the estimates
of q obtained by inversion of tn(X,Y), ta,n(X,Y) and tb,n(X,Y) using t(Cq) = 2q /9.
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7. CONCLUSION

This paper has reviewed some of the pros and cons of modeling the joint dis-
tribution H of a random pair (X,Y ) using copulas when the margins F and G
are discrete. As explained in Section 2, the main source of difficulties is that
while it is always possible to represent H in the form

H(x,y) = C (F(x), G (y)), x,y ! � (12)

in terms of a copula C, the latter is not uniquely defined except on Ran(F ) ≈
Ran(G ). Many copulas are compatible with this representation, and the dis-
tribution function of the transformed pair (F(X ),G (Y )) is not one of them.

Here are, in a nutshell, some important consequences of this unidentifiability
issue:

1. The set of copulas that are compatible with (12) can be quite large. This is
illustrated in Section 3 in terms of the range of possible values for Kendall’s
tau and Spearman’s rho. The unidentifiability issue is likely to be more
severe when the variables X and Y put most of their mass on a few atoms.

2. The dependence between the variables X and Y is no longer a function of
the copula alone and as seen in Section 4, the probabilistic and copula-based
definitions of classical measures of concordance no longer coincide. Similar
discrepancies arise for dependence concepts, as explained in Section 5.

3. Depending on the choice of margins, measures of concordance such as
Kendall’s tau and Spearman’s rho may or may not span the entire interval
[–1,1]; in fact, it is even shown in Section 4 that monotone increasing func-
tional dependence between X and Y does not necessarily imply t = r = 1.

4. To account for the discreteness of margins, several variants of Kendall’s t
and Spearman’s r have been proposed in the literature; a new proposal was
made in Definition 4. None of them is margin-free, however, and some of
them do not reach the bounds ±1.

5. Finally, inference for the dependence parameter q under a copula model
C ! (Cq) should not be founded on the inversion of Kendall’s tau, Spear-
man’s rho or their adjusted versions. As vividly illustrated in Section 6, this
could induce serious bias in the estimation, not to speak of inconsistency.

This being said, copula modeling remains a valid option for constructing multi-
variate distributions with discrete margins. As emphasized in Section 5, many
stochastic dependence properties of copulas are inherited by such models.
Through the preservation of stochastic ordering relations such as 'PQD, the
interpretation of q as a dependence parameter of a copula model C ! (Cq) is
also maintained, even when discrete margins are used.

In short, copula models provide a viable approach to the construction of
multivariate distributions with given margins, even in the discrete case. They
can be recommended without qualification for elaborating counterexamples
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or generating alternatives in the context of simulations or robustness studies.
When dealing with count data, however, modeling and interpreting dependence
through copulas is subject to caution. Furthermore, inference (and particularly
rank-based inference) for copula parameters from discrete data is fraught with
difficulties.

Insofar as the dependence parameter q is identifiable, however, its estima-
tion remains possible via fully parametric maximum likelihood techniques,
although exact conditions under which identifiability is guaranteed are yet to
be delineated. Once obstacles posed by inference are resolved, and in view of their
richness and flexibility, copula-based models are likely to become as attractive
for discrete variables as they have grown to be for continuous data.

APPENDIX A: An extension of Proposition 3

This appendix gives a proof of the following extension of Proposition 3.

Proposition 14. Let H be the distribution of a pair (X,Y ) on �2. If H* is the
distribution of (a (X ),Y ) for some strictly decreasing function a on �, then

v – C+
H (1 – u,v) ≤ CH* (u,v) ≤ v – C –

H (1 – u,v)

for all u,v ! (0,1) and all CH* ! CH*. The bounds, however, are not those of Carley
(2002), simply because a cannot possibly map � to �.

By Sklar’s theorem (Nelsen, 1999, Theorem 2.10.9), all elements of CH coincide
on the closure of Ran(F ) ≈ Ran(G ). Let SH(u,v) be that common value for
each (u,v) ! FRan^ h ≈ GRan^ h. For each such pair (u,v), let also SH* (1 – u,v) =
v – SH(u,v).

It is then a simple matter to show that a copula C* is in CH* precisely when
C*(u,v) = SH* (u,v) for all (u,v) ! *FRan^ h ≈ GRan^ h, with F* standing for the
distribution of a(X). Thus C*! CH* if and only if there exists C ! CH such that
C*(u,v) = v – C (1 – u,v) for all (u,v) ! [0,1]2. This completes the proof. ¡

APPENDIX B: Proof of Proposition 4

It is straightforward to check that C –
H spreads mass uniformly along the line

segments connecting the points (gij, dij + hij) and (gij + hij, dij). Therefore,
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which yields the desired result for t (C –
H ).

Analogously, C+
H spreads its mass uniformly along the line segments con-

necting the points (aij, bij) and (aij + hij, bij + hij). By reference to Fig. 2, it is also
easy to convince oneself that C+

H (u, u + bij – aij) = u – Aij, where

i .aA h h hi j k

j

k

i

kj
k

i

i

j

0

1

0

1

0

1

0

1

= - - -,
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-

=

-

j !! ! !

Further note that for fixed i, the non-decreasing sequence (aij) yields a partition
of the interval [F(i – 1), F(i )). Consequently,

H H, , .C u v dC u v u A du h A2
1

a

a

ij

h

ji
ij ij

ji0

1

0

1

00 00ij

ij ij
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33 33
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== ==

## #!! !!^ ^ _h h i

The announced formula for t(C+
H ) then obtains after a mere substitution, because
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APPENDIX C: Proof of Proposition 5

Using the identity

, , ,u vdC u v uvdC u v1 2
1

0

1

0

1

0

1

0

1
- = -## ##^ ^ ^h h h

valid for any copula C, one can proceed as in the proof of Proposition 4 to
see that

H i i i
- ,uvdC u v u h u dud g2

1 1 j j j

h

ji g
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1
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00 ij

ij ij
= - - + + -
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and

H i i, .auvdC u v u u dub
a
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j j
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ji0
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00 ij
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33
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==
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Exploiting once again the fact that for fixed i, the nondecreasing sequence (aij)
yields a partition of the interval [F(i – 1), F(i )), one then gets 

H i ii i, .a auvdC u v h hb3
1

2
1 2ij j j
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j j

0

1

0

1

00
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33

+

==

## !!^ _ _h i i

This leads to the stated formula for r(C+
H ).

Now for fixed i, the nondecreasing sequence (gij) also yields a partition of
the interval [F(i – 1), F(i )). Consequently,

H i i i

i i i i i i
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h i

i i# #- -

from which the formula for r(C –
H ) ensues. ¡

APPENDIX D: Nelsen’s formulas for computing the Fréchet-Hoeffding
bounds in the discrete case

Given the bivariate joint distribution function H of random variables X and
Y taking values in �, the following expressions are obtained by Nelsen (1987)
for the computation of the probability functions h– and h+ corresponding to
the Fréchet-Hoeffding bounds H– and H+. These are given as functions of the
probability functions f and g of the margins F and G, respectively.

Let

D = {(x,y) ! �2 : F(x) + G (y) – 1 > 0},
∂D = {(x,y) ! D : (x – 1,y), (x,y – 1) or (x – 1, y – 1) " D}.

Then
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Furthermore, let

S = {(x,y) ! �2 : F(x) ≤ G (y)}, T = {(x,y) ! �2 : F(x) > G (y)},

∂S = {(x,y) ! S : (x,y – 1) " S}, ∂T = {(x,y) ! T : (x – 1,y) " T}.

Then

!
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APPENDIX E: Proof of Proposition 11

This appendix contains proofs of statements (a) and (b) of Proposition 11 for
dependence concepts DEP4 and DEP5.

Proof for DEP4. Recall from Chapter 5 of Nelsen (1999) that if V is stochas-
tically increasing in U, then the mapping u 7 C(u,v) is concave for arbitrary
fixed v ! (0,1). Accordingly if u1 < u2 < u3, then

, , , ,
.u u

C u v C u v
u u

C u v C u v

2 1

2 1

3 2

3 2$
-

-

-

-^ ^ ^ ^h h h h

To show statement (a) for DEP4(X,Y ), pick any y, x, x� ! � such that x < x�.
Then F(x� – 1) ≥ F(x) and there is nothing to show in the case of equality.
Otherwise, apply the above inequality with u1 = F(x – 1), u2 = F(x) and u3 =
F(x� – 1). Then

, ,

, ,

, ,
.

Y y X x
F x F x

H x y H x y

F x F x
C F x G y C F x G y

F x F x
C F x G y C F x G y

P

�

�

1
1

1
1

1

#

$

= =
- -

- -

=
- -

- -

-

- -

^
^ ^

^ ^

^ ^

^ ^_ ^ ^_

^ ^

^ ^_ ^ ^_

h
h h

h h

h h

h hi h hi

h h

h hi h hi

Next, set u1 = F(x), u2 = F(x� – 1), u3 = F(x�), and apply the same inequality
on the right-hand most term of the above chain of inequalities. This yields
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In other words, P(Y ≤ y|X = x) is a non-increasing function of x for all pos-
sible values of y ! �, i.e., DEP4(X,Y ).

Turning to part (b), the above argument shows that if (X✠,Y ✠ ) is as in Defi-
nition 2, then DEP4(X✠,Y ✠ ) & DEP4(X,Y ). To prove the reverse implication,
one calls on the fact that for arbitrary (u,v) ! (F(x – 1), F(x)] ≈ (G(y – 1), G(y)],

C✠
H(u,v) = uxvyH(x – 1, y – 1) + (1 – ux)vy H(x,y – 1)

+ ux(1 – vy)H(x – 1,y) + (1 – ux) (1 – vy)H(x,y),

where

ux =
X x

F x u
P =

-

^

^

h

h
and vy = .

Y y
G y v
P =

-

^

^

h

h

Upon differentiation with respect to u, one finds

u2
2

C✠
H (u,v) = vy P(Y ≤ y – 1 |X = x) + wy P(Y ≤ y|X = x),

where vy and wy = {v – G(y – 1)} / P(Y = y) are non-negative constants for fixed
y ! �. Furthermore, the conditional probabilities are non-increasing in x by
assumption. Consequently, the mapping u 7 C✠

H (u,v) is concave for any given value
of v ! (0,1). In other words, DEP4(U,V ) or, equivalently, DEP4(X✠,Y✠). ¡

Proof for DEP5. Note that if C ! CH, then for all i, j ! � ,

hij = P(X = i, Y = j )
= C (F(i ), G ( j )) + C (F(i – 1), G ( j – 1))

– C (F(i ), G ( j – 1)) – C (F(i – 1), G ( j )) = P(U ! Ai, V ! Bj ),

where Ai = (F(i – 1), F(i )], Bj = (G ( j – 1), G ( j)] and the pair (U,V ) is distrib-
uted as C. Thus if i < i� and j < j �, then hij hi�j� ≥ hij�hi�j holds if and only if

P(U ! Ai, V ! Bj ) P(U ! Ai �,V ! Bj �)
≥ P(U ! Ai, V ! Bj �) P(U ! Ai �,V ! Bj ). (13)

Further observe that if x ! Ai and x� ! Ai �, then x < x�, a fact that can be
denoted Ai < Ai �. Likewise, Bj < Bj �.
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Now as observed by Kimeldorf and Sampson (1987), if a pair (U,V ) is in
positive likelihood ratio dependence, inequality (13) is then automatically
verified for any intervals Ai < Ai � and Bj < Bj �. This proves statement (a).

To establish part (b), it is sufficient to show that DEP5 (X,Y ) & DEP5(X✠,
Y✠ ). To do this, first note that C✠

H is absolutely continuous and that whenever
(u,v) ! Ai ≈ Bj, its density is given by

c ✠
H (u,v) = .

X i Y j
h

P P
i

= =
j

^ ^h h

Now take u� > u and v� > v and suppose without loss of generality that u� ! Ai�

and v�! Bj � for some i� > i and j � > j. It then follows from DEP5(X,Y ) that

c ✠
H (u,v) c ✠

H (u�,v�) ≥ c ✠
H (u,v�) c ✠

H (u�,v). ¡

APPENDIX F: Proof of Proposition 12

Under the assumptions of Proposition 12, C has upper tail dependence

,
.lim t

C t t
l 2 1

1
1

t 1
#= -

-

-

-

^ h

Given that F = G, one can easily see that

> >
,

.lim limY G t X F t
F F t

C F F t F F t
P 2

1

1

t t1

1 1

1 1

1 1

%

% %
= -

-

-

- -

- -

-

- -

^ ^
^

^ ^a

h h
h

h hk

% /

Now for t ! (F(n – 1), F(n)], F –1(t) = n and hence F % F –1(t) = F(n). There-
fore, if an = F(n) for each n ! �,

, ,
lim lim

F F t

C F F t F F t

a
C a a

l2
1

1
2 1

1
t n n

n n

1 1

1 1

%

% %
-

-

-
= -

-

-
=

- -3-

- -

^

^ ^a ^

h

h hk h

because an " 1 as n " 3. ¡
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