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ABSTRACT

In this paper we examine the claims reserving problem using Tweedie’s com-
pound Poisson model. We develop the maximum likelihood and Bayesian
Markov chain Monte Carlo simulation approaches to fit the model and then
compare the estimated models under different scenarios. The key point we
demonstrate relates to the comparison of reserving quantities with and with-
out model uncertainty incorporated into the prediction. We consider both the
model selection problem and the model averaging solutions for the predicted
reserves. As a part of this process we also consider the sub problem of variable
selection to obtain a parsimonious representation of the model being fitted.
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1. CLAIMS RESERVING

Setting appropriate claims reserves to meet future claims payment cash flows
is one of the main tasks of non-life insurance actuaries. There is a wide range
of models, methods and algorithms used to set appropriate claims reserves.
Among the most popular methods there is the chain-ladder method, the Born-
huetter-Ferguson method and the generalized linear model methods. For an
overview, see Wüthrich and Merz (2008) and England and Verrall (2002).

Setting claims reserves includes two tasks: estimate the mean of future
payments and quantify the uncertainty in this prediction for future payments.
Typically, quantifying the uncertainty includes two terms, namely the so-called
process variance and the (parameter) estimation error. The process variance reflects
that we predict random variables, i.e. it describes the pure process uncertainty.
The estimation error reflects that the true model parameters need to be
estimated and hence there is an uncertainty in the reliability of these estimates.
In this paper, in addition to these two terms, we consider a third source of
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error/uncertainty, namely, we analyze the fact that we could have chosen the
wrong model. That is, we select a family of claims reserving models and quan-
tify the uncertainty coming from a possibly wrong model choice within this
family of models.

Such an analysis is especially important when answering solvency ques-
tions. A poor model choice may result in a severe shortfall in the balance sheet
of an insurance company, which requires under a risk-adjusted solvency regime
an adequate risk capital charge. We analyze typical sizes of such risk capital
charges within the family of Tweedie’s compound Poisson models, see Tweedie
(1984), Smyth and Jørgensen (2002) and Wüthrich (2003).

Assume that Yi, j are incremental claims payments with indices i, j! {0,…, I},
where i denotes the accident year and j denotes the development year. At time I,
we have observations 

DI = {Yi, j ; i + j # I } (1.1)

and for claims reserving at time I we need to predict the future payments 

DI
c = {Yi, j ; i + j > I, i # I }, (1.2)

see Table 1. Hence, the outstanding claims payment at time I is given by 
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Its conditional expectation at time I is given by 
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Hereafter, the summation i + j > I is for i # I. Therefore, we need to predict R
and to estimate E [R | DI ]. Assume that R is an appropriate DI-measurable pre-
dictor for R and DI-measurable estimator for E [R |DI]. Then, R is used to pre-
dict the future payments and is the amount that is put aside in the balance sheet
of the insurance company for these payments.

Prediction uncertainty is then often studied with the help of the (condi-
tional) mean square error of prediction (MSEP) which is defined by 

msepR |DI
(R) = E [(R – R)2 | DI ]. (1.5)

If R is DI-measurable, the conditional MSEP can easily be decoupled as follows,
see Wüthrich and Merz (2008), section 3.1:

msepR |DI
(R) = Var(R |DI) + (E [R |DI ] – R)2 (1.6)

= process variance + estimation error.
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It is clear that the consistent estimator R which minimizes the conditional
MSEP is given by E [R | DI ] and is used, hereafter, as the “best estimate” for
reserves. Assuming the model is parameterized by the parameter vector q,
Var(R |DI) can be decomposed as

Var(R |DI) = E [Var(R | q,DI) | DI ] + Var(E [R | q,DI ] |DI) (1.7)

= average process variance + parameter estimation error.

These are the two terms that are usually studied when quantifying prediction
uncertainties in a Bayesian context, where the unknown parameters q are mod-
elled stochastically. That is, we obtain in the Bayesian context a similar decom-
position as in the frequentist estimation (1.6). In the frequentist approach, the
second term in (1.6) is often estimated by Var(R), see for example section 6.4.3
in Wüthrich and Merz (2008).

As discussed in Cairns (2000), in full generality one could consider several
sources of model uncertainty, however unlike Cairns (2000) we focus on a
specific class of models. We consider the setting discussed in Bernardo and
Smith (1994) termed M Complete modelling. In such a setting the premise is
that one considers a set of models in which the “truth” exists but is unknown
a priori. In this setting we demonstrate the risk associated with the model
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uncertainty which we analyze jointly as a decomposition into two main parts.
The first involves the uncertainty in the parameterization of the model, this is
a variable selection problem within a nested model structure in the same vein
as discussed in Cairns (2000). It relates to finding a trade-off between parsimony
and accuracy in the estimation. The second source of model uncertainty that
we study involves the choice of a parameter which determines membership
from a spectrum of possible models within the Tweedie’s compound Poisson
family of models. We restrict the analysis to Tweedie’s compound Poisson mod-
els and justify this by assuming we are working in the M Complete setting.
If we relaxed this assumption and therefore consider competing models not in
this family, then the analysis would be difficult to interpret and analyze in the
manner we develop in this paper. The second source of model uncertainty will
be considered under both a model selection and a model averaging setting,
given the first “variable selection” uncertainty is resolved. As mentioned in
Cairns (2000) achieving such an analysis requires advanced simulation method-
ology. Note, in future work we would also consider the M Open modeling
framework of Bernardo and Smith (1994) which relaxes the belief that the
truth lies in the set of models considered and hence introduces additional
uncertainty associated with the family of models considered. The advanced
sampling methodology required to study the M Open model setting will be
briefly discussed.

The paper is organised as follows. In section 2, we present Tweedie’s com-
pound Poisson model and section 3 considers parameter estimation in the
model, using the maximum Likelihood and Bayesian Markov chain Monte
Carlo approaches for a real data set. Having addressed the variable selection
question in section 4, we then analyze claims reserve estimation and model
uncertainty in both a frequentist and Bayesian setting in section 5. We finish
with conclusions from our findings.

2. TWEEDIE’S COMPOUND POISSON MODEL

We assume that Yi, j belongs to the family of Tweedie’s compound Poisson models.
Below we provide three different parameterizations for Tweedie’s compound
Poisson models, for rigorous derivations we refer to Jørgensen and de Souza
(1994), Smyth and Jørgensen (2002) and Wüthrich (2003).

Model Assumptions 2.1 (1st Representation). We assume that Yi, j are independent
for i, j ! {0, …, I} and have a compound Poisson distribution

,i jj
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Y !" , (2.1)

in which (a) Ni, j and Xi, j
(k) are independent for all k, (b) Ni, j is Poisson distribu-

ted with parameter li, j; (c) Xi, j
(k) are independent gamma severities with the mean
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ti, j > 0 and the shape parameter g > 0. Hereafter, we denote 1{} as an indicator
function.

2nd Representation. The random variable Yi, j given in (2.1) belongs to the family
of Tweedie’s compound Poisson models, see Tweedie (1984). The distribution
of Yi, j can be reparameterized in such a way that it takes a form of the expo-
nential dispersion family, see e.g. formula (3.5) and Appendix A in Wüthrich
(2003):
Yi, j has a probability weight at 0 given by 

P [Yi, j = 0] = P [Ni, j = 0] = exp{–ƒ–1
i, j kp(qi, j)} (2.2)

and for y > 0 the random variable Yi, j has continuous density 

fqi, j
(y; fi, j, p) = c(y; fi, j, p) .exp f

y q
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* 4 (2.3)

Here qi, j < 0, ƒi, j > 0, the normalizing constant is given by 
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and the cummulant generating function kp( .) is given by

g
,p pq q2

1 1p =
-

-
.def

k ] ^g h6 @ (2.5)

where p ! (1,2) and g = (2 – p) / (1 – p).

The parameters, in terms of the 1st representation quantities, are:
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mi, j = li, jti, j > 0. (2.9)
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Then the mean and variance of Yi, j are given by

E [Yi, j ] =
,i j2

2
q kp(qi, j) = k�p(qi, j) = [(1 – p)qi, j]

1/(1 – p) = mi, j , (2.10)

Var(Yi, j) = fi, j k�p(qi, j) = fi, j mp
i, j. (2.11)

That is, Yi, j has the mean mi, j, dispersion fi, j and variance function with the 
variance parameter p. The extreme cases p " 1 and p " 2 correspond to the
overdispersed Poisson and the gamma models, respectively. Hence, in this spirit,
Tweedie’s compound Poisson model with p ! (1,2) closes the gap between the
Poisson and the gamma models. Often in practice, p is assumed to be known and
fixed by the modeller. The aim of this paper is to study Model Uncertainty, that
is, we would like to study the sensitivity of the claims reserves within this sub-
family, i.e. Tweedie’s compound Poisson models (which are now parameter-
ized through p). This answers model uncertainty questions within the family of
Tweedie’s compound Poisson models. In this paper the restriction on p! (1,2)
is taken in the context of practical application of these models to claims
reserving, Wüthrich (2003) comments that the majority of claims reserving
problems will be captured under this assumption. However, in general, in the
exponential dispersion family p can be outside of the (1,2) range, e.g. p = 0
produces a Gaussian density and p = 3 leads to an inverse Gaussian model.

3rd Representation. Utilizing the above definitions, the distribution of Yi, j can
be rewritten in terms of mi, j, p and fi, j as 

,i j
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and for y > 0
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3. PARAMETER ESTIMATION

Our goal is to estimate the parameters mi, j, p and ƒi, j based on the observations
DI. In order to estimate these parameters we need to introduce additional struc-
ture in the form of a multiplicative model.

Model Assumptions 3.1. Assume that there exist exposures A = (a0, …, aI) and
a development pattern b = (b0, …, bI) such that we have for all i, j !{0, …, I}

mi, j = ai bj . (3.1)
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Moreover, assume that fi, j = f and ai > 0, bj > 0.

In addition, we impose the normalizing condition a0 = 1, so that the estimation
problem is well-defined. That is we have (2I + 3) unknown parameters p, f, A,
b that have to be estimated from the data DI. Next we present the likelihood
function for this model and then develop the methodology for parameter esti-
mation using the maximum likelihood and Bayesian inference methods.

3.1. Likelihood function

Define the parameter vector q = ( p, f, A, b ). Then the likelihood function for
Yi, j, i + j # I, is given by
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where we set c(0; f, p) = 1 for Yi, j = 0. The difficulty in the evaluation of the
likelihood function is the calculation of c(y; f, p) which contains an infinite sum 
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where g = g(p) = (2 – p) / (1 – p). Tweedie (1984) identified this summation as
Wright’s (1935) generalized Bessel function, which can not be expressed in
terms of more common Bessel functions. To evaluate this summation we fol-
low the approach of Dunn and Smyth (2005) which directly sums the infinite
series, including only terms which significantly contribute to the summation.
Consider the term

logWr = r log z – logG(1 + r) – logG(gr),

where

g
/

.
f

z
p p

y

1 2

1 g g1

=
- -

+

^ ^

^

h h

h

Replacing the gamma functions using Stirling’s approximation and approxi-
mating gr by gr + 1 we get

logWr . r{log z + (1 + g) – g logg – (1 + g) logr} – log(2p) – 2
1 log g – log r,
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which is also a reasonable approximation for small r. Treating r as continuous
and taking the partial derivative w.r.t. r gives

rlog
r
W

2
2

. log z – log r – g log(gr).

Hence, the sequence Wr is unimodal in r. Solving �Wr /�r = 0, to find (approxi-
mately) the maximum of Wr, results in the approximate maximum lying close to 

R0 = R0(ƒ, p) = .fp
y

2

p2

-
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^ h
(3.4)

This gives a surprisingly accurate approximation to the true maximum of Wr,
r ! �. Finally, the aim is to find RL < R0 < RU such that the following approxi-
mation is sufficiently accurate for the use in the evaluation of the likelihood
terms,
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The fact that �logWr /�r is monotonic and decreasing implies that logWr is strictly
convex in r and hence the terms in Wr decay at a faster rate than geometric on
either side of R0. Dunn and Smyth (2005) derive the following bounds,
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These bounds are typically too conservative since the decay is much faster than
geometric. In practice, an adaptive approach balancing accuracy and efficiency
is to continue adding terms either side of the maximum until the lower and
upper terms satisfy the double precision constraints WRL

G e–37WR0
(or RL = 1)

and WRU
G e–37WR0

. When evaluating the summation for c(y; f, p), it was impor-
tant to utilize the following identity to perform the summation in the log scale
to avoid numerical overflow problems,

logc(y; f, p) = – log y + logWR0
+ log R R .exp log log
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We made an additional observation when analyzing this model. For our data
set, as p approaches 1 (i.e. when the distribution approaches the overdispersed
Poisson model) the likelihood may become multimodal. Therefore, to avoid
numerical complications in actual calculations, we restrict to p H 1.1. At the
other extreme, when p = 2 the number of terms required to evaluate c(y; f, p)
may become very large, hence to manage the computation burden, we restrict
p G 1.95. These limitations are also discussed in Dunn and Smyth (2005). For
our data set, we checked that this restriction did not have a material impact
on the results.

3.2. Maximum likelihood estimation

The maximum likelihood estimator (MLE) for the parameters is given by maxi-
mizing LDI

(q) in q = ( p, f, A, b ) under the constraints ai > 0, bj > 0, f > 0 and
p ! (1,2). This leads to the MLEs q 5MLE = ( pMLE, f5MLE, A5MLE, b 5MLE) and to
the best estimate reserves for R, given DI,

RMLE =
>i j I+

! a5iMLE b 5jMLE. (3.8)

A convenient practical approach to obtain the MLEs is to use the fact that at
the maximum of the likelihood, b are expressed through A and p according to
the following set of equations, p ! (1,2):
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obtained by setting partial derivatives
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equal to zero. Hence, after maximizing the likelihood in A, p, f one then cal-
culates the set of equations (3.9) for the remaining parameters utilizing the
normalization condition a0 = 1.
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Under an asymptotic Gaussian approximation, the distribution of the
MLEs is Gaussian with the covariance matrix elements 

cov(q 5iMLE, q 5jMLE) . (I –1)i, j, (3.11)

where I is Fisher’s information matrix that can be estimated by the observed
information matrix 

(I )i, j .
j

I .
ln q

i
q q

D
2
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2

2

=

L
q 2q

] g
(3.12)

It is interesting to note that, b 5IMLE = Y0, I. Also, it is easy to show (using (3.10)
and (3.11)) that b 5IMLE is orthogonal to all other parameters, i.e.

cov( b 5IMLE, q 5iMLE) = 0, q 5iMLE ! b 5IMLE. (3.13)

The next step is to estimate the parameter estimation error in the reserve as a
function of the parameter uncertainty. We do this via propagation of error by
forming a Taylor expansion around the MLEs, see England and Verrall (2002)
formulae (7.6)-(7.8) and Wüthrich (2003) formulae (5.1)-(5.2),
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Additionally, using the independence assumption on Yi, j and (2.11), the process
variance is estimated as

jia bRVar
>

p

i j I
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=
+

!%
] ag k f 5MLE. (3.16)

Then the conditional MSEP (1.6) is estimated by

MLE MLER RRmsep Var Var
R D i

= +
% % %

` ] `j g j (3.17)

= MLE process variance + MLE estimation error.
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Note that, in practice, typically MLE is done for a fixed p (expert choice) and
hence model selection questions are neglected. In our context it means that the
expert chooses p and then estimates A5MLE, b 5MLE and f 5MLE (see also Wüthrich
(2003), section 4.1). The case p = 1 corresponds to the overdispersed Poisson
model and provides the chain-ladder estimate for the claims reserves (see
Wüthrich and Merz (2008), section 2.4). It is important to note that, often the
dispersion parameter f is estimated using Pearson’s residuals as

f 5P =
j

j

i

i

2

,
a b

a b
N k

1 ,

p

i j

i j I MLE MLE

MLE MLE

-

-
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Y
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k
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(3.18)

where N is the number of observations Yi, j in DI and k is the number of estimated
parameters ai, bj (see e.g. Wüthrich and Merz (2008), formula (6.58)). Also note
that for a given p, RMLE given by (3.8) does not depend on f and the estimators
for the process variance (3.16) and estimation error (3.15) are proportional to f.
Next we present the Bayesian model which provides the posterior distribution
of the parameters given the data. This will be used to analyze the model uncer-
tainty within Tweedie’s compound Poisson models.

3.3. Bayesian inference

In a Bayesian context all parameters, p, f, ai > 0 and bj > 0, are treated as random.
Using Bayesian inference we adjust our a priori beliefs about the parameters of
the model utilizing the information from the observations. Through the Bayesian
paradigm we are able to learn more about the distribution of p, f, A and b
after having observed DI.

Our a priori beliefs about the parameters of the model are encoded in the
form of a prior distribution on the parameters p(q). Then the joint density of
DI = {Yi, j > 0; i + j # I} and q = (p, f, A, b ) is given by 

LDI
(q) p(q). (3.19)

Now applying Bayes’ law, the posterior distribution of the model parameters,
given the data DI, is

p(q |DI ) ? LDI
(q) p(q). (3.20)

Usually, there are two problems that arise in this context, the normalizing
constant of this posterior is not known in closed form. Additionally, generat-
ing samples from this posterior is typically not possible using simple inversion
or rejection sampling approaches. In such cases it is usual to adopt techniques
such as Markov chain Monte Carlo (MCMC) methods, see for example Gilks
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et al. (1996) and Robert and Casella (2004) for detailed expositions of such
approaches.

The Bayesian estimators typically considered are the Maximum a Postiori
(MAP) estimator and the Minimum Mean Square Estimator (MMSE), that is
the mode and mean of the posterior, defined as follows:

MAP : q 5MAP = arg max
q

[p(q |DI)], (3.21)

MMSE : q 5MMSE = E [q |DI ]. (3.22)

We mention here that if the prior p(q) is constant and the parameter range
includes the MLE, then the MAP of the posterior is the same as the MLE.
Additionally, one can approximate the posterior using a second order Taylor
series expansion around the MAP estimate as

jji
j

I I

I .

ln ln

ln q q

p p

p q q

q q

q2
1

,

MAP

ii j
i

MAP MAP

q q

2

MAP
2
2

.

+ - -

=
q

D D

D
2q!

^ `
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h k k
(3.23)

This corresponds to p(q |DI ) approximated by the Gaussian distribution with
the mean q 5MAP and covariance matrix calculated as the inverse of the matrix

(I)i, j =
j

I ,lnp q
i

q q

2

MAP
2
2

-

=
q D
2q ^ h (3.24)

which in the case of diffuse priors (or constant priors defined on a large range)
compares with the Gaussian approximation for the MLEs (3.11)-(3.12).

In the Bayesian context, the conditionally expected future payment, for
Model Assumptions 3.1, is given by 

I Ij .E R E
>

i
i j I

=
+

aD Db!6 8@ B (3.25)

Denote the expected reserves, given the parameters q, by 

j .R E R q
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i
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= =
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Then, the best consistent estimate of reserves (ER) is given by 
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which is, of course, a DI-measurable predictor. Hence, the conditional MSEP
is simply 
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D
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This term, in the Bayesian approach for Tweedie’s compound Poisson model,
is decomposed as, see also (1.7),
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p

i j I
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aD D D DY b! !
J

L

K
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N

P

O
Oh i i: D (3.29)

Hence, we obtain the familiar decoupling into average process variance and esti-
mation error. However, in addition we incorporate model uncertainty within
Tweedie’s compound Poisson model, which enters the calculation by the aver-
aging over all possible values of the variance parameter p.

3.4. Random walk Metropolis Hastings-algorithm within Gibbs

In this section we describe an MCMC method to be used to sample from the
posterior distribution (3.20). The following notations are used: q = (p, f, A, b )
is the vector of parameters; U(a,b) is the uniform distribution on the interval
(a, b); fN (x; m, s) and FN (x; m,s) are the Gaussian density and distribution
correspondingly with the mean m ! R and standard deviation s > 0 at position
x ! R.
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TABLE 2

DATA – ANNUAL CLAIMS PAYMENTS Yi, j FOR EACH ACCIDENT YEAR i AND

DEVELOPMENT YEAR j, i + j # 9.

Year 0 1 2 3 4 5 6 7 8 9

0 594.6975 372.1236 89.5717 20.7760 20.6704 6.2124 6.5813 1.4850 1.1130 1.5813

1 634.6756 324.6406 72.3222 15.1797 6.7824 3.6603 5.2752 1.1186 1.1646

2 626.9090 297.6223 84.7053 26.2768 15.2703 6.5444 5.3545 0.8924

3 586.3015 268.3224 72.2532 19.0653 13.2976 8.8340 4.3329

4 577.8885 274.5229 65.3894 27.3395 23.0288 10.5224

5 618.4793 282.8338 57.2765 24.4899 10.4957

6 560.0184 289.3207 56.3114 22.5517

7 528.8066 244.0103 52.8043

8 529.0793 235.7936

9 567.5568



Prior Structure: We assume that all parameters are independent under the prior
distribution p(q) and all distributed uniformly with qi + U(ai, bi). The prior
domains we used for our analysis were p! (1.1, 1.95), f! (0.01, 100), ai ! (0.01,
100) and bj ! (0.01, 104). These are reasonable ranges for the priors in view of
our data in Table 2 and corresponding to the MLEs in Table 3. Other priors
such as diffuse priors can be applied with no additional difficulty. The choice
of very wide prior supports was made with the aim of performing inference
in the setting where the posterior is largely implied by the data. Subsequently,
we checked that making the ranges wider does not affect the results.

Next we outline a random walk Metropolis-Hastings (RW-MH) within Gibbs
algorithm. This creates a reversible Markov chain with the stationary distribu-
tion corresponding to our target posterior distribution (3.20). That is, we will
run the chain until it has sufficiently converged to the stationary distribution
(=posterior distribution) and in doing so we obtain samples from that posterior
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TABLE 3

MLE AND BAYESIAN ESTIMATORS. sRW IS THE PROPOSAL STANDARD DEVIATION

IN THE MCMC ALGORITHM AND [Q0.05; Q0.95] IS THE PREDICTIVE INTERVAL, WHERE Qa IS THE QUANTILE OF

THE POSTERIOR DISTRIBUTION AT LEVEL a. THE NUMERICAL STANDARD ERROR, IN BAYESIAN ESTIMATORS

DUE TO FINITE NUMBER OF MCMC ITERATIONS, IS INCLUDED IN BRACKETS NEXT TO ESTIMATES.

MLE MLE stdev
Bayesian posterior

sRW
MMSE stdev [Q0.05; Q0.95]

p 1.259 0.149 1.332 (0.007) 0.143 (0.004) [1.127;1.590] 1.61
f 0.351 0.201 0.533 (0.013) 0.289 (0.005) [0.174;1.119] 1.94
a1 0.918 0.056 0.901 (0.004) 0.074 (0.001) [0.778;1.022] 0.842
a2 0.946 0.051 0.946 (0.003) 0.073 (0.001) [0.833;1.072] 0.907
a3 0.861 0.048 0.861 (0.003) 0.068 (0.001) [0.756;0.977] 0.849
a4 0.891 0.049 0.902 (0.003) 0.072 (0.002) [0.794;1.027] 0.893
a5 0.879 0.051 0.876 (0.003) 0.070 (0.001) [0.768;0.994] 0.932
a6 0.842 0.048 0.843 (0.002) 0.069 (0.001) [0.736;0.958] 0.751
a7 0.762 0.046 0.762 (0.003) 0.066 (0.001) [0.660;0.876] 0.888
a8 0.763 0.047 0.765 (0.003) 0.067 (0.001) [0.661;0.874] 0.897
a9 0.848 0.059 0.856 (0.003) 0.090 (0.002) [0.716;1.009] 1.276
b0 669.1 27.7 672.7 (2.1) 39.7 (0.7) [610.0;740.0] 296
b1 329.0 14.4 331.1 (1.0) 20.6 (0.4) [298.1;365.9] 190
b2 77.43 4.38 78.06 (0.24) 6.10 (0.06) [68.58;88.29] 75.4
b3 24.59 1.96 24.95 (0.08) 2.64 (0.03) [20.89;29.64] 40.9
b4 16.28 1.55 16.65 (0.05) 2.09 (0.03) [13.44;20.30] 40.6
b5 7.773 1.028 8.068 (0.024) 1.356 (0.020) [6.064;10.473] 26.0
b6 5.776 0.937 6.115 (0.022) 1.261 (0.016) [4.246;8.347] 24.1
b7 1.219 0.396 1.494 (0.006) 0.609 (0.013) [0.739;2.609] 13.1
b8 1.188 0.476 1.622 (0.008) 0.802 (0.016) [0.674;3.070] 15.1
b9 1.581 0.790 2.439 (0.021) 1.496 (0.026) [0.829;5.250] 32.1



MODEL UNCERTAINTY IN CLAIMS RESERVING 15

distribution. It should be noted that the Gibbs sampler creates a Markov chain
in which each iteration of the chain involves scanning either deterministically
or randomly over the variables that comprise the target stationary distribution
of the chain. This process involves sampling each proposed parameter update
from the corresponding full conditional posterior distribution. The algorithm
we present generates a Markov chain that will explore the parameter space of
the model in accordance with the posterior mass in that region of the parameter
space. The state of the chain at iteration t will be denoted by q t and the chain
will be run for a length of T iterations. The manner in which MCMC samplers
proceed is by proposing to move the ith parameter from state qi

t –1 to a new pro-
posed state qi

*. The latter will be sampled from an MCMC proposal transition
kernel (3.30). Then the proposed move is accepted according to a rejection rule
which is derived from a reversibility condition. This makes the acceptance
probability a function of the transition kernel and the posterior distribution
as shown in (3.31). If under the rejection rule one accepts the move then the
new state of the i th parameter at iteration t is given by qi

t = qi
*, otherwise the

parameter remains in the current state qi
t = qi

t –1 and an attempt to move that
parameter is repeated at the next iteration. In following this procedure, one
builds a set of correlated samples from the target posterior distribution which
have several asymptotic properties. One of the most useful of these properties
is the convergence of ergodic averages constructed using the Markov chain
samples to the averages obtained under the posterior distribution.

Next we present the algorithm and then some references that will guide
further investigation into this class of simulation methodology. Properties of
this algorithm, including convergence results can be found in the following ref-
erences Casella and George (1992), Robert and Casella (2004), Gelman et al.
(1995), Gilks et al. (1996) and Smith and Roberts (1993).

Random Walk Metropolis Hastings (RW-MH) within Gibbs algorithm.

1. Initialize randomly or deterministically for t = 0 the parameter vector q0

(e.g. MLEs).

2. For t = 1, …, T

a) Set q t = q t –1

b) For i = 1, …, 2I + 3

Sample proposal qi
* from Gaussian distribution whose density is truncated below

ai and above bi and given by 
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to obtain q* = (q t
1, …, qt

i –1, q*
i , qi + 1
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where p(q*|DI) is given by (3.20). That is, simulate U + U(0,1) and set qi
t = qi

*

if U < a(q t, q*).

& Note that in (3.31) the normalizing constant of the posterior p(q |DI) from
(3.20) is not needed.

Remark. The RW-MH algorithm is simple in nature and easily implemented.
However, if one does not choose the proposal distribution carefully, then the
algorithm only gives a very slow convergence to the stationary distribution.
There have been several studies regarding the optimal scaling of proposal dis-
tributions to ensure optimal convergence rates. Gelman et al. (1997), Bedard
and Rosenthal (2007) and Roberts and Rosenthal (2001) were the first authors
to publish theoretical results for the optimal scaling problem in RW-MH algo-
rithms with Gaussian proposals. For d-dimensional target distributions with
i.i.d. components, the asymptotic acceptance rate optimizing the efficiency of the
process is 0.234 independent of the target density. In this case we recommend
that the selection of sRWi are chosen to ensure that the acceptance probability
is roughly close to 0.234. This number is the acceptance probability obtained
for asymptotically optimal acceptance rates for RW-MH algorithms when
applied to multidimensional target distributions with scaling terms possibly
depending on the dimension. To obtain this acceptance rate, one is required
to perform some tuning of the proposal variance prior to final simulations.
An alternative approach is to utilize a new class of Adaptive MCMC algorithms
recently proposed in the literature, see Atchade and Rosenthal (2005) and
Rosenthal (2007), but these are beyond the scope of this paper.

3.5. Markov chain results and analysis

This section presents the results comparing both MLE and Bayesian estimates
for the parameters of Tweedie’s compound Poisson model. It is also demon-
strated how additional information in a Bayesian framework can be obtained
through the complete knowledge of the target posterior distribution obtained
from the MCMC algorithm described above. In this regard we demonstrate how
this additional information can be exploited in the claims reserving setting to
provide alternative statistical analysis not obtainable if one just considers point
estimators. We also analyze model averaging solutions in section 5. These can
be obtained by forming estimates using the information given by the full poste-
rior distribution p(q |DI) that we find empirically from the MCMC samples.
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The maximum likelihood and MCMC algorithms were implemented in
Fortran. The maximization routine for the MLEs utilizes the direct search
algorithm DBCPOL (that requires function evaluation only) from the IMSL
numerical library. Note that, gradient based optimization routines such as the
BFGS algorithm can be more efficient, but the direct search algorithm we used
was sufficient for our problem in terms of computing time (. 4 seconds on a
typical desktop PC1).

The algorithm was analyzed on synthetic data and found to provide correct
estimates. In particular with uniform priors the MAP estimates of the para-
meters are the same as the MLEs, up to numerical errors. This was confirmed
for different sized claims triangles. The actual data set studied in this paper
is presented in Table 2. The data we study is the standard data set used in
Wüthrich and Merz (2008) scaled by 10,000.
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1 Intel® Core™ 2 Duo, 2.13GHz processor.

FIGURE 1: Markov chain sample paths (p, f, a1, b0).
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FIGURE 2: Posterior scatter plots, marginal posterior histograms and linear correlations
for (p, f, a1, b0, aI, bI).

The results presented for the Bayesian approach were obtained after pre-
tuning the Markov chain random walk standard deviations, sRWi

, to produce
average acceptance probabilities of 0.234. Then the final simulation was for 105

iterations from a Markov chain (. 17 min1) in which the first 104 iterations were
discarded as burnin when forming the estimates.

The pretuned proposal standard deviations sRWi
are presented in Table 3.

The first set of results in Table 3 demonstrates the MLE versus the Bayesian
posterior estimator MMSE for all model parameters. Included are the [5%,
95%] predictive intervals for the Bayesian posterior distribution. The MLE
standard deviations are calculated using (3.11). The numerical standard errors
(due to a finite number of MCMC iterations) in the Bayesian estimates are
obtained by blocking the MCMC samples post burnin into blocks of length 5000
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and using the estimates on each block to form the standard error (these are
given in brackets next to the estimates).

The next set of analysis demonstrates the performance of the MCMC
approach in converging to the stationary distribution given by the target pos-
terior p(q |DI). To analyze this, in Figure 1, we present the trace plots for the
Markov chain for the parameters, (p, f, a1, b0). Also, in Figure 2, we demonstrate
the marginal posterior distribution histograms and pair-wise posterior scatter
plots for (p, f, a1, b0, aI, bI). The lower panels in Figure 2 are the scatter plots
for the pair-wise marginal posteriors, the diagonal contains the marginal
posteriors and the upper panels contains the correlations between parameters.
These plots demonstrate strong linear correlations between several parameters.
Some of these correlations are similar to MLE correlations calculated using
(3.11). For example, we found that under the posterior distribution r(p, f) .
–0.82 and r(b0,a1) . – 0.63, see Figure 2, are similar to r(pMLE, f 5MLE) . – 0.94
and r(b 50MLE, a 51MLE) . – 0.68 correspondingly. However, we also observed
that under the posterior distribution r(p, bI) . – 0.17 and r(f, bI) . 0.23, see
Figure 2, while corresponding MLE correlations are zero, see (3.13).

4. VARIABLE SELECTION VIA POSTERIOR MODEL PROBABILITIES

In the development so far it has been assumed that variable selection is not
being performed, that is we are assuming that the model is known and we
require parameter estimates for this model. This is equivalent to specifying
that the number of a and b parameters is fixed and known in advance. We now
relax this assumption and will demonstrate how the variable selection problem
can be incorporated into our framework. The procedure we utilize for the
variable selection is based on recent work of Congdon (2006) and specifies the
joint support of the posterior distribution for the models and parameters under
the product space formulation of Carlin and Chib (1995).

In this section we consider the subset of nested models which create homoge-
nous blocks in the claims reserving triangle (I = 9) for the data set in Table 2.

• M0 : q[0] = (p, f, a~0 = a0, …, a~I = aI, b0 = b0, …, bI = bI) – saturated model.

• M1 : q[1] = (p, f,b0) with (b0 = b0 = … = bI), (a0 = … = aI = 1).

• M2 : q[2] = (p, f, a~1, b0, b1) with (a0 = … = a4 = 1), (a~1 = a5 = … = aI),
(b0 = b0 = … = b4), (b1 = b5 = … = bI).

• M3 : q[3] = (p, f, a~1, a~2, b0, b1, b2) with (a0 = a1 = 1), (a~1 = a2 = … = a5)
(a~2 = a6 = … = aI), (b0 = b0 = b1), (b1 = b2 = … = b5), (b2 = b6 = … = bI)

• M4 : q[4] = (p, f, a~1, a~2, a~3, b0, b1, b2, b3) with (a0 = a1 = 1), (a~1 = a2 = a3),
(a~2 = a4 = a5 = a6), (a~3 = a7 = a8 = aI), (b0 = b0 = b1), (b1 = b2 = b3),
(b2 = b4 = b5 = b6), (b3 = b7 = b8 = bI) .
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• M5 : q[5] = (p, f, a~1, a~2, a~3, a~4, b0, b1, b2, b3, b4) with (a0 = a1 = 1), (a~1 = a2 = a3),
(a~2 = a4 = a5), (a~3 = a6 = a7), (a~4 = a8 = aI), (b0 = b0 = b1), (b1 = b2 = b3),
(b2 = b4 = b5), (b3 = b6 = b7), (b4 = b8 = bI) .

• M6 : q[6] = (p, f, a0, a~1, b0, b1, …,bI) with (a~1 = a1 = … = aI) .

Now, to determine the optimal model, we first consider the joint posterior
distribution for the model probability and the model parameters denoted
p(Mk, q[k] |DI), where q[k] = (q1, [k], q2, [k], …, qN [k], [k]) is the parameter vector for
model [k]. Additionally we denote the prior bounds for qi,[k] as [aqi, [k]

, bqi, [k]
] . We

assume a prior distribution p(Mk) for the model selection and a prior for the para-
meters conditional on the model p(q[k] |Mk). It is no longer possible to run the
standard MCMC procedure we described in section 3.4 for this variable selection
setting. This is because the posterior is now defined on either a support con-
sisting of disjoint unions of subspaces or a product space of all such subspaces,
one for each model considered. A popular approach to run Markov chains in
such a situation is to develop a more advanced sampler than that presented
above, typically in the disjoint union setting. This involves developing a Reversible
Jump RJ-MCMC framework, see Green (1995) and the references therein. This
type of Markov chain sampler is complicated to develop and analyze. Hence,
we propose as an alternative in this paper to utilize a recent procedure that will
allow us to use the above MCMC sampler we have already developed for a
model Mk. The process we must follow involves first running the sampler in the
simulation technique described in section 3.4 for each model considered. Then
the calculation of the posterior model probabilities p(Mk |DI) is performed
using the samples from the Markov chain in each model to estimate (4.3).

Furthermore, our approach here removes the assumption on the priors
across models, made by Congdon (2006), p. 348,

p(q [m] | Mk) = 1, m ! k (4.1)

and instead we work with the prior 

p(q [m] | Mk) = ,b aq q
i

N
1

1
, ,i m i m
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5 5
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? ?
C

?

m ! k. (4.2)

That is, instead we use a class of priors where specification of priors for a
model Mk automatically specifies priors for any other model. This is a sensible
set of priors to consider given our product space formulation and it has a clear
interpretation in our setting where we specify our models through a series of
constraints, relative to each other. In doing this we also achieve our goal of
having posterior model selection insensitive to the choice of the prior and being
data driven. The modified version of Congdon’s (2006), formula A.3, we obtain
after relaxing Congdon’s assumption, allows the calculation of the posterior
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model probabilities p(Mk |DI) using the samples from the Markov chain in
each model to estimate
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Here K = 6, and for a proof, see Congdon (2006), formula A.3. Note that, the
prior of parameters (given model) contributes in the above implicitly as qj, [k]

are MCMC samples from the kth models posterior distribution. In the actual
implementation we used T = 100,000 and the burnin period Tb = 10,000. Note,
the prior probabilities for each model are considered diffuse and are set such that
all models a priori are equiprobable, hence p(Mk) = 1/(K+1) and p(qj,[k] |Mk) is
the prior for model Mk’s parameters evaluated at the jth Markov chain iteration.
Once we have the posterior model probabilities we can then take the MAP
estimate for the optimal model (variable selection) for the given data set. In this
paper we do not consider the notion of model averaging over different para-
meterized models in the variable selection context. Instead we simply utilize
these results for optimal variable selection from a MAP perspective for the
marginal posterior p(Mk|DI).

In addition to this model selection criterion we also consider in the Bayesian
framework the Deviance Information Criterion (DIC), see Bernardo and Smith
(1994). From a classical maximum likelihood perspective we present the likeli-
hood ratio (LHR) p-values.

Application of this technique to the simulated MCMC samples for each of
the considered models produced the posterior model probabilities given in
Table 4. This suggests that within this subset of models considered, the saturated
model M0 was the optimal model to utilize in the analysis of the claims reserv-
ing problem, p(M0 |DI) . 0.7. It is followed by model M6 with p(M0 |DI) . 0.3.
Additionally, the choice of M0 was also supported by the other criteria we
considered: DIC and LHR.

In future research it would be interesting to extend to the full model space
which considers all models in the power set |q[0] |. This is a large set of models
including all combinatorial combinations of model parameters for a’s and b ’s.
In such cases it is no longer feasible to run standard MCMC algorithms in each
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model since this will involve an impractical number of simulations. Hence,
more sophisticated model exploration techniques will be required such as
RJ-MCMC, see Green (1995) or the product space samplers of Carlin and Chib
(1995).

We note here that we do not claim M0 is the optimal model in all possible
models, only in the subset we consider in this section. In saying this we acknowl-
edge that we aim to work in the saturated model but consider it important
to illustrate how variable selection can be performed in this class of models
and also raise awareness that this will impact the model uncertainty analysis
subsequently performed.

Hence, using these findings and the analysis of the MCMC results for model
M0 provided above, we may now proceed to analyze the claims reserving prob-
lem. Of interest to the aim of this paper is the sensitivity of the model choice
parameter p to the parameterization of the claims reserving triangle. This is
particularly evident when one considers the MMSE estimate of the model
specification parameter p estimated under each model. In the most parsimo-
nious, yet inflexible model M1 the estimate obtained was MMSE(p).1.9, a very
similar estimate was obtained in models M2, M3, M4 and M5, however, inter-
estingly in the saturated model the estimate was MMSE(p) . 1.3 which is
almost at the other extreme of the considered range for which the parameter p
is defined.

5. CALCULATION OF THE CLAIMS RESERVES

We now demonstrate the results for several quantities in the claims reserving
setting, utilizing the MCMC simulation results we obtained for the Bayesian
posterior distribution under the variable selection model M0 (saturated model).
In particular, we start by noting that we use uniform prior distributions with
a very wide ranges to perform inference implied by the data only. In this case,
theoretically, the Bayesian MAP (the posterior mode) and MLEs for the para-
meters should be identical up to numerical error due to the finite number
of MCMC iterations. A large number of MCMC iterations was performed so
that the numerical error is not material. In general, the use of more informative
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TABLE 4

POSTERIOR MODEL PROBABILITIES p(Mk |DI), DEVIANCE INFORMATION CRITERION (DIC)
FOR VARIABLE SELECTION MODELS M0, …, M6 AND LIKELIHOOD RATIO (LHR) p-VALUES

(COMPARING M0 TO M1, …, M6).

M0 M1 M2 M3 M4 M5 M6

p(Mk |DI) 0.71 4.19E-54 3.04E-43 1.03E-28 6.71E-20 2.17E-21 0.29
DIC 399 649 600 535 498 507 398
LHR p-value 1 2.76E-50 1.67E-40 3.53E-28 5.78E-21 3.03E-23 0.043



priors will lead to the differences between the MAP and MLE. Some of the
MMSE estimates (the posterior mean) were close to the MAP estimates, indi-
cating that the marginal posterior distributions are close to symmetric. When
the posterior is not symmetric, MMSE and MAP can be very different. Also,
note that the uncertainties in the parameter MLEs are estimated using the
asymptotic Gaussian approximation (3.11)-(3.12). In the case of constant priors,
this should lead to the same inferences as corresponding Bayesian estimators
if the posterior distributions are close to the Gaussian approximation, see
(3.23)-(3.24). In addition, the MLEs for the reserves, estimation error and
process variance, see section 3.2, are based on a Taylor expansion around para-
meter MLEs assuming small errors. In many cases the posterior is materially
different from the Gaussian distribution, has significant skewness and large stan-
dard deviation leading to the differences between the MLEs and correspond-
ing Bayesian estimators. Having mentioned this, we now focus on the main
point of this paper which involves analysis of the quantities in Table 5 related
to the model uncertainty within Tweedie’s compound Poisson models (intro-
duced by fixing model parameter p ) in a Bayesian setting.
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TABLE 5

QUANTITIES USED FOR ANALYSIS OF THE CLAIMS RESERVING PROBLEM UNDER MODEL AVERAGING AND

MODEL SELECTION IN RESPECT TO p.

Model Averaging Model Selection for p

Estimated Reserves ER = RB = E [R |DI] ERp = E [R |DI, p]

Process Variance PV = E [ !f(ai bj)
p |DI] PVp = E [ !f(ai bj)

p |DI, p] 

Estimation Error EE = Var(R |DI) EEp = Var(R |DI, p)

It is worth noting that point estimates of model parameters are either in the
frequentists approach MLEs or in a Bayesian approach the MAP or MMSE
estimates. These are under the auspice that we wish to perform model selection
(i.e. selection of p). The focus of this paper is to demonstrate the difference
in results obtained for reserve estimates that can arise by performing model
averaging instead of the typical approach of model selection, using a priori
chosen p. In this regard we perform estimation utilizing the full posterior
distribution of the parameters and not just point estimators. This allows us to
capture the influence of the model uncertainty (uncertainty in p), since in a
Bayesian setting we can account for this uncertainty using the posterior dis-
tribution. In particular, the Bayesian analysis specifies the optimal p (either in
the MAP or the MMSE context) and it also provides a confidence interval for
the choice of p (see Figure 7), which corresponds to the choice of the optimal
model within Tweedie’s compound Poisson models. Moreover, we demonstrate
the impact on the claims reserve by varying p from 1.1 to 1.9 (i.e. for a fixed
model choice).



FIGURE 3: Predicted distribution of reserves, R = !
i + j > I ai bj .

5.1. Results: average over p

Initially it is worth considering the predicted reserve distribution for the esti-
mator R. This is obtained by taking the samples t = 10,001 to 100,000 from the
MCMC simulation {pt, ft, At, b t} and calculating {Rt} via (3.26). The histogram
estimate is presented in Figure 3. In the same manner, we also estimate the
distributions of Ri, j = ai bj for the individual cells of the I ≈ I claims matrix,
presented as subplots in Figure 4. Note that the total observed loss in the
upper triangle (. 9274) is consistent with E [!

i + j# I ai bj ] and [Var(!
i + j# I ai bj)]1/2

estimated using the MCMC samples as (. 9311) and (. 190) respectively. The
maximum likelihood approach results in !i + j# I a 5iMLE bj

MLE . 9275 with standard
deviation . 124 also conforming with the observed total loss.

Now we focus on quantities associated with the estimated distribution for R
to calculate the results, see Table 5, which can only be estimated once the entire
posterior distribution is considered. These quantities are the key focus of this
paper since they allow assessment of the conditional MSEP as specified in
(3.28). In particular, we may now easily use the posterior probability samples
obtained from the MCMC algorithm to evaluate the estimated reserve (ER),
the process variance (PV) and the estimation error (EE) in the conditional
MSEP. This provides an understanding and analysis of the behaviour of the
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FIGURE 4: Posterior distributions for Ri, j = ai bj estimated using MCMC.

proposed model in both the model averaging and model selection (i.e. selection
of p) contexts whilst considering the issue of model uncertainty, the goal of
this paper. The Bayesian estimates for ER, PV, EE and MSEP are presented
in Table 6. The corresponding MLEs were calculated using (3.8), (3.16), (3.15)
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TABLE 6

MODEL AVERAGED ESTIMATES OF CLAIM RESERVE, PROCESS VARIANCE AND ESTIMATION ERROR.
NUMERICAL ERROR IN BAYESIAN ESTIMATES IS REPORTED IN BRACKETS.
SEE TABLE 5 FOR DEFINITIONS OF ER, PV, EE AND MSEP = EE + PV.

Model Averaging
Statistic

Bayesian Estimate MLE Estimate

ER 624.1 (0.7) 602.630

PV 37.3 (0.2) 25.937

EE 44.8 (0.5) 28.336

MSEP 58.3 (0.5) 38.414



FIGURE 5: Distribution of total outstanding claims payment R = !
i + j > IYi, j , accounting for all process,

estimation and model uncertainties.

and (3.17) respectively and presented in Table 6 for comparison. The results
demonstrate the following:

• Claims reserves MLE, RMLE, is less than Bayesian estimate RB by approx-
imately 3%, which is the estimation bias of the claims reserve MLE (see also
Wüthrich and Merz (2008), Remarks 6.15.

• EE and PV are of the same magnitude, approximately 6-7% of the total
claims reserves.

• MLEs for EE and PV are less than corresponding Bayesian estimates by
approximately 37% and 30%, respectively.

• The difference between RMLE and RB is of the same order of magnitude as
EE and PV and thus is significant.

Note that we use constant priors with very wide ranges, the MLE uncertain-
ties are calculated using an asymptotic Gaussian approximation and numerical
error due to the finite number of MCMC iterations is not material (also see the
1st paragraph, section 5). The observed significant differences between the MLEs
and corresponding Bayesian estimators suggest that our posterior distributions
are skewed and materially different from the Gaussian distribution.

We conclude this section with the distribution of R, the total outstanding
claims payment, see Figure 5. This is obtained from the MCMC samples of
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the parameters (p, f, A, b ) which we then transform to parameters (l, g, t)
from model representation 1, section 2, and simulate annual losses in i + j > I.
That is, these samples of R are obtained from the full predictive distribution
f (R |DI) = #g(R |q ) p(q |DI) dq, where g(R |q ) is the distribution of R given by
(1.3) and (2.1). It takes into account both process uncertainty and parameter
uncertainty. We note that while reserving by some measure of centrality such as
RB may be robust, it will not take into account the distributional shape of R.
A viable alternative may be Value-at-Risk (VaR) or a coherent risk measure
such as Expected Shortfall. In Table 7 we demonstrate estimates of the VaR
for R and R at the 75%, 90% and 95% quantiles.

5.2. Results: conditioning on p

As part of the model uncertainty analysis, it is useful to present plots of the
relevant quantities in the model selection (selection of p) settings, see Figure 6,
where we present ERp = E [ R|DI, p], PVp = !

i + j > I E [f(ai bj)
p|DI, p] and EEp =

Var(R |DI, p) as a function of p. Figure 6 shows:

• MLE of ERp is almost constant, varying approximately from a maximum of
603.96 (p = 1.1) to a minimum of 595.78 (p = 1.9) while the MLE for ER
was 602.63.

• The Bayesian estimates for ERp change as a function of p. Approximately, it
ranged from a maximum of 646.4 (p = 1.9) to a minimum of 621.1 (p = 1.5)
while the Bayesian estimator for ER was 624.1. Hence, the difference (estima-
tion bias) within this possible model range is . 25 which is of a similar order
as the process uncertainty and the estimation error.

• Bayesian estimators for pPV and EEp increase as p increases approxi-
mately from 33.1 to 68.5 and from 37.4 to 102.0 respectively, while the
Bayesian estimators for PV and EE are 37.3 and 44.8 correspondingly.
Hence, the resulting risk measure strongly varies in p which has a large influ-
ence on quantitative solvency requirements. The MLEs for PVp and EEp are
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TABLE 7

BAYESIAN MODEL AVERAGED ESTIMATES OF VALUE AT RISK

FOR OUTSTANDING CLAIMS PAYMENT R AND CLAIM RESERVES R.

Model Averaging
VaRq

R RR

VaR75% 659.8 (0.9 650.6 (1.0)
VaR90% 698.4 (1.2) 680.4 (1.3)
VaR95% 724.0 (1.5) 701.7 (1.6)



FIGURE 6: Estimates of quantities from Table 5 conditional on p. Note, numerical standard errors are
not included as they are negligible and are less than the size of the symbols.

significantly less than the corresponding Bayesian estimators. Also, the dif-
ference between the MLE and the Bayesian estimators increases as p increases.

For interpretation purposes of the above results it is helpful to use the follow-
ing relations between model averaging and model selection quantities (easily
derived from their definitions in Table 5):

ER = E [ERp |DI ], (5.1)

PV = E [PVp |DI ], (5.2)

EE = E [EEp |DI ] + Var(ERp |DI). (5.3)

Here, the expectations are calculated with respect to the posterior distribution
of p. The histogram estimate of the later is presented in Figure 7 and highlights
significant uncertainty in p (model uncertainty within Tweedie’s compound Pois-
son model).

We also provide Figure 8 demonstrating a Box and Whisker summary of
the distributions of R | p for a range of values of p. This plot provides the first,
second and third quartiles as the box. The notch represents uncertainty in the
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FIGURE 8: Predicted claim reserves R distributional summaries conditional on model parameter p.

FIGURE 7: Posterior distribution of the model parameter p.
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median estimate for model comparison, across values of p, and the whiskers
demonstrate the smallest and largest data points not considered as outliers.
The outliers are included as crosses and the decision rule to determine if a
point is an outlier was taken as the default procedure from the statistical soft-
ware package R.

The conclusion from this section is that if model selection is performed
(i.e. p is fixed by the modeller), the conditional MSEP will increase significantly
if a poor choice of the model parameter p is made. In particular, though the
median is fairly constant for the entire range of p ! (1,2) the shape of the
distribution of R | p is clearly becoming more diffuse as p " 2. This will lead to
significantly larger variance in the reserve estimate. If risk measures such as
Value-at-Risk are used in place of the mean, it will result in reserves which are
too conservative (if a poor choice of p is made). Also, using the maximum like-
lihood approach may significantly underestimate the claims reserves and asso-
ciated uncertainties.

5.3. Overdispersed Poisson and Gamma models

There are several popular claims reserving models, however we restrict our
comparison to the overdispersed Poisson and gamma models since they fit into
Tweedie’s compound Poisson framework when p = 1 and p = 2 respectively.
Note that the overdispersed Poisson model and several other stochastic models
lead to the same reserves as the chain ladder method but different in higher
moments. The detailed treatment of these models can be found in e.g. England
and Verrall (2002) or Wüthrich and Merz (2008), section 3.2.

The MLEs for the reserves and associated uncertainties within the overdis-
persed Poisson and gamma models are provided in Table 8. These results are
obtained when the dispersion f is estimated by f 5P using Pearson’s residuals
(3.18) and when f is estimated by f 5MLE obtained from the maximization of the
likelihood. The results for the first case are also presented in Wüthrich and Merz
(2008), Table 6.4. Firstly note that, the values of f 5P and f 5MLE are significantly
different both for the overdispersed Poisson and gamma models. As we men-
tioned in section 3.2, for a fixed p, the MLE for the reserves does not depend
on f while the estimation error, process variance and MSEP are proportional
to f. As one can see from Table 8, different estimators for the dispersion f lead
to the same estimators for the reserves but very different estimators for the
uncertainties. Also note that, our MLE calculations for Tweedie’s distribution
conditional on p, i.e. Figure 6, are obtained using f 5MLE and are consistent with
the corresponding results for the overdispersed Poisson and Gamma models
when p" 1 and p" 2 respectively. Though, in the case of the overdispersed Pois-
son we had to use an extended quasi-likelihood to estimate f 5MLE. In Figure 6,
we do not show the results based on f 5P but would like to mention that
these are always above the MLEs and below the Bayesian estimators for the
process variance and estimation error and are consistent with corresponding
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overdispersed Poisson and gamma model limits. Interestingly, the ratio f 5P/f 5MLE

is approximately 1.4-1.5 for all considered cases of p within a range [1,2].
The MLEs obtained using both f 5MLE and f 5P underestimate the uncertain-

ties compared to the Bayesian analysis. Note that, while the MLEs for the uncer-
tainties are proportional to the dispersion estimator, the corresponding Bayesian
estimators are averages over all possible values of f according to its posterior
distribution. The uncertainty in the estimate for the dispersion is large which
is also highlighted by a bootstrap analysis in Wüthrich and Merz (2008), sec-
tion 7.3. This indicates that f should also depend on the individual cells (i, j ).
However, in this case overparameterization needs to be considered with care
and Bayesian framework should be preferred.

6. DISCUSSION

The results demonstrate the development of a Bayesian model for the claims
reserving problem when considering Tweedie’s compound Poisson model. The
sampling methodology of a Gibbs sampler is applied to the problem to study
the model sensitivity for a real data set. The problem of variable selection is
addressed in a manner commensurate with the MCMC sampling procedure
developed in this paper and the most probable model under the posterior mar-
ginal model probability is then considered in further analysis. Under this model
we then consider two aspects, model selection and model averaging with respect
to model parameter p. The outcomes from these comparisons demonstrate
that the model uncertainty due to fixing p plays a significant role in the evalua-
tion of the claims reserves and its conditional MSEP. It is clear that whilst the
frequentist MLE approach is not sensitive to a poor model selection, the
Bayesian estimates demonstrate more dependence on poor model choice, with
respect to model parameter p. We use constant priors with very wide ranges
to perform inference in the setting where the posterior is largely implied by data
only. Also, we run a large number of MCMC iterations so that numerical error
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TABLE 8

THE MLES FOR THE OVERDISPERSED POISSON (p = 1) AND GAMMA (p = 2) MODELS,
WHEN THE DISPERSION f IS ESTIMATED AS f 5P USING PEARSON’S RESIDUALS (3.18) OR f 5MLE.

Overdispersed Poisson Gamma model
Statistic

z5P ≈ 1.471 z5MLE ≈ 0.954 z5P ≈ 0.045 z5MLE ≈ 0.031

ERp 604.706 604.706 594.705 594.705 

pPV 29.829 24.017 62.481 52.162 

EEp 30.956 24.925 92.826 77.496 

MSEPp 42.989 34.613 111.895 93.415



in the Bayesian estimators is very small. In the case of the data we studied, the
MLEs for the claims reserve, process variance and estimation error were all
significantly different (less) than corresponding Bayesian estimators. This is due
to the fact that the posterior distribution implied by the data and estimated
using MCMC is materially different from Gaussian, i.e. more skewed.

Future research will examine variable selection aspects of this model in a
Bayesian context considering the entire set of possible parameterizations. This
requires development of advanced approaches such as Reversible Jump MCMC
and variable selection stochastic optimization methodology to determine if a
more parsimonious model can be selected under assumptions of homogeneity
in adjacent columns/rows in the claims triangle.

ACKNOWLEDGEMENTS

The first author is thankful to the Department of Mathematics and Statistics
at the University of NSW for support through an Australian Postgraduate
Award and to CSIRO for support through a postgraduate research top up
scholarship. Thank you also goes to Robert Kohn for discussions.

REFERENCES

ATCHADE Y. and ROSENTHAL, J. (2005) On adaptive Markov chain Monte Carlo algorithms.
Bernoulli 11(5), 815-828.

BEDARD, M. and ROSENTHAL, J.S. (2008) Optimal scaling of Metropolis algorithms: heading
towards general target distributions. The Canadian Journal of Statistics 36(4), 483-503.

BERNARDO, J.M. and SMITH, A.F.M. (1994) Bayesian Theory. John Wiley and Sons, NY.
CAIRNS, A.J.G. (2000) A discussion of parameter and model uncertainty in insurance. Insurance:

Mathematics and Economics 27, 313-330.
CARLIN, B. and CHIB, S. (1995) Bayesian model choice via Markov chain Monte Carlo methods.

Journal of the Royal Statististical Society Series B 57, 473-484.
CASELLA, G. and GEORGE, E.I. (1992) Explaining the Gibbs Sampler. The American Statistician

46(3), 167-174.
CONGDON P. (2006) Bayesian model choice based on Monte Carlo estimates of posterior model

probabilities. Computational Statistics and Data Analysis 50(2), 346-357.
DUNN, P.K. and SMYTH, G.K. (2005) Series evaluation of Tweedie exponential dispersion model

densities. Statistics and Computing 15, 267-280.
ENGLAND, P.D. and VERRALL, R.J. (2002) Stochastic claims reserving in general insurance. British

Actuarial Journal 8(3), 443-510.
GELMAN, A., CARLIN, J.B., STERN, H.S. and RUBIN, D.B. (1995) Bayesian Data Analysis. Chap-

man and Hall / CRC Texts in Statistical Science Series, 60.
GELMAN, A., GILKS, W.R. and ROBERTS, G.O. (1997) Weak convergence and optimal scaling of

random walks metropolis algorithm. Annals of Applied Probability 7, 110-120.
GILKS, W.R., RICHARDSON, S. and SPIEGELHALTER, D.J. (1996) Markov Chain Monte Carlo in Prac-

tice. Chapman and Hall, Florida.
GREEN, P. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination. Biometrika 82, 711-732.
JØRGENSEN, B. and DE SOUZA, M.C.P. (1994) Fitting Tweedie’s compound Poisson model to

insurance claims data. Scandinavian Actuarial Journal, 69-93.
ROBERT, C.P. and CASELLA, G. (2004) Monte Carlo Statistical Methods, 2nd Edition Springer Texts

32 G.W. PETERS, P.V. SHEVCHENKO AND M.V. WUTHRICH



in Statistics.
ROBERTS, G.O. and ROSENTHAL, J.S. (2001) Optimal scaling for various Metropolis-Hastings

algorithms. Statistical Science 16, 351-367.
ROSENTHAL, J.S. (2007) AMCMC: An R interface for adaptive MCMC. Computational Statis-

tics and Data Analysis 51(12), 5467-5470.
SMITH, A.F.M. and ROBERTS, G.O. (1993) Bayesian computation via the Gibbs sampler and

related Markov chain Monte Carlo methods. Journal of Royal Statistical Society Series B
55(1), 3-23.

SMYTH, G.K. and JØRGENSEN, B. (2002) Fitting Tweedie’s compound Poisson model to insurance
claims data: dispersion modelling. Astin Bulletin 32, 143-157.

TWEEDIE, M.C.K. (1984) An index which distinguishes between some important exponential
families. In Statistics: Applications in new directions. Proceeding of the Indian Statistical
Institute Golden Jubilee International Conference, J.K. Ghosh and J. Roy (eds.), 579-604, Indian
Statistical Institute Canada.

WRIGHT, E.M. (1935) On asymptotic expansions of generalized Bessel functions. Proceedings of
London Mathematical Society 38, 257-270.

WÜTHRICH, M.V. (2003) Claims reserving using Tweedie’s compound Poisson model. Astin Bul-
letin 33, 331-346.

WÜTHRICH, M.V. and MERZ, M. (2008) Stochastic Claims Reserving Methods in Insurance, Wiley
Finance.

GARETH W. PETERS

CSIRO Mathematical and Information Sciences,
Sydney, Locked Bag 17,
North Ryde, NSW, 1670, Australia
and 
UNSW Mathematics and Statistics Department,
Sydney, 2052, Australia.
E-Mail: peterga@maths.unsw.edu.au

PAVEL V. SHEVCHENKO (corresponding author)
CSIRO Mathematical and Information Sciences,
Sydney, Locked Bag 17,
North Ryde, NSW, 1670, Australia.
E-Mail: Pavel.Shevchenko@csiro.au

MARIO V. WÜTHRICH

ETH Zurich, Department of Mathematics,
CH-8092 Zurich,
Switzerland.
E-Mail: wueth@math.ethz.ch

MODEL UNCERTAINTY IN CLAIMS RESERVING 33


