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ABSTRACT

In Kim and Hardy (2007) the exact bootstrap was used to estimate certain
risk measures including Value at Risk and the Conditional Tail Expectation.
In this paper we continue this work by deriving the influence function of the
exact-bootstrapped quantile risk measure. We can use the influence function
to estimate the variance of the exact-bootstrap risk measure. We then extend
the result to the L-estimator class, which includes the conditional tail expecta-
tion risk measure. The resulting formula provides an alternative way to estimate
the variance of the bootstrapped risk measures, or the whole L-estimator
class in an analytic form. A simulation study shows that this new method is
comparable to the ordinary resampling-based bootstrap method, with the
advantages of an analytic approach.
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1. INTRODUCTION

Risk measures have become an important tool in financial risk management for
actuaries and other risk managers. The risk measure is often used for setting
economic or regulatory capital standards for complex portfolios that are not
amenable to analytic approaches. In such cases, the risk measure is generally esti-
mated from a Monte Carlo simulation of the appropriate liability distribution.

In actuarial applications, generating scenarios can be very costly, compu-
tationally. We are often, therefore, estimating risk measures with relatively small
samples. Furthermore, where the risk measure is applied to determine a sol-
vency capital requirement, the risk measure may fall in the far tail of the loss
distribution, adding to the uncertainty.

In an earlier paper (Kim and Hardy (2007)) we demonstrated the useful-
ness of the ordinary and (in particular) the exact bootstrap in reducing the bias
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in certain risk measures, including the conditional tail expectation (CTE).
The exact bootstrap offers an analytic form for a bootstrap estimator of a dis-
tribution statistic, thus eliminating the bootstrap resampling uncertainty, and
in addition reducing the computational burden compared with the ordinary
bootstrap.

The focus of this paper is the measurement of uncertainty associated with
estimated risk measures. For some standard risk measures estimated using
Monte Carlo samples, we have some tools available. Manistre and Hancock
(2005) tackled this problem for the conditional tail expectation, using an influ-
ence function, or non-parametric delta approach. The ordinary bootstrap was
used in Kim and Hardy (2007) to estimate the variance of the standard Monte
Carlo estimates of the risk measures. However the underlying assumptions are
changed where we have used the bootstrap methodology to determine the risk
measure estimation.

Jones and Zitikis (2003) extended the non-parametric delta approach to
the family of distortion risk measures, but little is known about the influence
function of a bootstrapped distortion risk measure.

In this paper, we explore two non-parametric methods to estimate the
variance of the bootstrapped distortion risk measure; in this sense this paper
is a sequel of Kim and Hardy (2007). The first method is the bootstrap itself.
We will examine the exact bootstrap method by Hutson and Ernst (2000) that
provides an analytic bootstrap solution, thus eliminating the resampling error.
The second method is the non-parametric delta method. In this paper we derive
the influence function of the bootstrapped distortion risk measure in an
analytic form and thus provide an alternative way of estimating its variance.
The resulting formula requires only the analytic form of the risk measure
and not the form of its influence function. This means that estimating the
variance of the exact bootstrapped distortion risk measure is actually more
straightforward than the original Monte Carlo or empirical estimate, as less
information is required. Consequently the computation algorithm is generally
simpler than the delta method for the empirical risk measure. The develop-
ments in this paper have other applications in statistics because the distortion
risk measure is essentially the same as the L-estimator class; the variance of
the bootstrapped L-estimators can also be computed with no additional
difficulty.

This paper is organized as follows: In Section 2 we briefly review distortion
risk measures. In Section 3 we present a brief review of the bootstrap and the
delta methods as non-parametric variance estimation tools. While the bootstrap
is straightforward in estimating the variance of any estimate, there has been
no discussion on its relative efficiency compared to the nonparametric delta
method counterpart in the actuarial context. In Section 4 we derive the influ-
ence function of the bootstrapped quantile and extend this to the L-estimator
class. Also a qualitative discussion on statistical aspects of the result follows
in this section. In Section 5 we illustrate the methods using a simulation study.
Section 6 concludes the paper.
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2. THE DISTORTION RISK MEASURE

Expressed as a functional mapping a random variable to a real value, the dis-
tortion risk measure (DRM) tg(F) is defined for a distribution function F(x) by
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where g is an increasing function defined on [0,1] with g(0) = 0 and g(1) = 1,
and F(x) = 1 – F(x). The DRM satisfies translation invariance, positive homo-
geneity, monotonicity, and additivity for comonotonic losses. If g is concave,
the risk measure is coherent, in the sense of Artzner et al. (1999); see Wirch
and Hardy (2000) and Dhaene et al. (2006).

Examples of the DRM include the Value-at-Risk (VaR) measure, the Con-
ditional Tail Expectation (CTE), and the Proportional Hazards Transform (PHT)
measure. All of these except the VaR are coherent because the corresponding
g’s are concave.

Turning to the actual estimation of tg(F ) from a sample, an obvious choice
is the empirical risk measure tg(F) where F is the empirical distribution function.
That is 

tg(F) = c1X(1) + c2X(2) + … + cnX(n) = c�X:n (2)

where c = (c1, c2, …, cn)�, X:n = (X(1), X(2), …, X(n))�, X(1) # … # X(n), and 
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The variability of a given risk measure can be measured by a confidence inter-
val (see, e.g., Kaiser and Brazauskas (2007)) or a variance estimate, provided
that it exists. For estimating the variance of any general statistic of a distrib-
ution, t(F) say, we can use non-parametric methods such as the bootstrap or
the nonparametric delta method. For the latter method Jones and Zitikis (2003)
identified that the DRM in (1) is equivalent to the L-estimator class whose
standard expression is given by 

,F u J u du1

0

1 -# ] ]g g (3)

where J(u) is commonly called the score function defined on [0,1] in the sta-
tistics literature. Thus, by setting J(u) = g�(1 – u), they have an access to known
statistical results, such as the asymptotic variance of the empirical estimate of
DRM.
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Different choices, however, are possible to estimate tg(F). Most notably, Kim
and Hardy (2007) investigated the bias of the Value-at-Risk (VaR) and the
Conditional Tail Expectation (CTE), using the exact bootstrap by Hutson and
Ernst (2000), and proposed a guideline on how to use the bootstrap without
obtaining a compromising increase in variance. Their simulations show that the
guideline often favors the exact bootstrapped risk measure over the empirical
one for the CTE case, in terms of the mean squared error, but the variance for
the bootstrapped risk measures is not considered in their paper. While it is true
that bootstrap estimate and the empirical estimate converge, they can be sub-
stantially different for finite samples and there are many practical situations where
increasing the sample size is constrained, as discussed in Kim and Hardy (2007).

3. NON-PARAMETRIC VARIANCE ESTIMATION

This section provides a brief review of the two well-known non-parametric meth-
ods with the variance estimation application. We assume that F is continuous
and the estimated variance makes sense in an asymptotic manner throughout
this paper; see Jones and Zitikis (2003) for conditions of the variance existence
of the L-estimator class.

3.1. The bootstrap method

The core idea of the nonparametric bootstrap is to repeatedly resample from
the original sample with replacement. Suppose that we have a sample from an
unknown distribution F and are interested in parameter q = q(F ) whose empir-
ical estimate is q = q(F), where F is the empirical distribution function (e.d.f.).
Now a series of the resamples – each resample is of the same size as the origi-
nal sample – is drawn from F with replacement to produce Fi

*, …, FR
*, assuming

R repetitions; we call Fi
* the i-th resample or bootstrap sample. The corre-

sponding estimates q1
*, …, qR

*, where qi
* = q (Fi

*), are then used for statistical
inferences. Since the e.d.f. is treated as if it was the population distribution
function any inference can be possible to make, though its accuracy may not
be satisfactory. For example, the bootstrap mean and variance estimates of q
then are 

q* = R –1

i

R

1=

!qi
*

and

(R – 1)–1

i

R

1=

! (qi
* – q*)2,

respectively. As a nonparametric inference tool the bootstrap is a widely-used
in many areas; see, e.g., Efron and Tibshirani (1993), Shao and Tu (1995),
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Hall (1992), and Davidson and Hinkley (1997) for a comprehensive treatment
for this subject. Although the bootstrap estimate is subject to the resampling
simulation error due to a finite R, sometimes it is possible to analytically eval-
uate at R = 3 with no simulation, in which case the bootstrap is called exact
in the sense that the simulation error is eliminated. For the L-estimator class
Hutson and Ernst (2000) derived the exact bootstrap (EB) mean and variance
estimate.

Theorem 3.1 (Hutson and Ernst (2000)) The EB estimate of E (X(r)|F ), 1 #
r # n is

E (X(r) | F) =
j

n
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This result immediately extends to the L-estimator class. Following the nota-
tion in (2), the EB estimate of the DRM is 

E (t (F) | F) = E (c�X:n | F) = c�w�X:n, (4)

where the matrix w = {wi( j)}
n
i, j =1 comes from the EB weights for each element

of X:n. Hutson and Ernst (2000) also gives the analytic formula for EB variance
estimate or the EB covariance matrix 

!:n = {Cov (X(r),X(s) | F)}n
r, s=1, as follows (5)

Theorem 3.2 (Hutson and Ernst (2000)) The EB covariance matrix !:n is obtained
by

Var (X(r) | F) =
j

n

1=

!wj (r) (X( j ) – m(r))
2

and, for 1 # r # n and r < s,

Cov (X(r),X(s) | F) =
j

j

j

n

1

1

2 =

-

=

!! vij (rs) (X(i) – m(r)) (X( j ) – m(s))

+
j

n

1=

!vjj (rs) (X( j ) – m(r)) (X( j ) – m(s))
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where m(r) = E (X(r) | F), the weights are 
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and frs:n(ur,us) = nCrs ur
r –1(us – ur)

s–r–1(1 – us)
n –s is the joint distribution of two

uniform order statistics Ur:n and Us:n with nCrs = n! / (r – 1)!(s – r – 1)!(n – s) !.

Thus, the EB variance of the empirical DRM c�X:n is given by 

Var (c�X:n | F) = c�S:n c. (6)

Now we turn to the bootstrapped (EB) risk measure, which is our quantity of
interest. As Kim and Hardy (2007) reported, sometimes the EB DRM c�w�X:n,
or the bias-corrected EB DRM c�(2I – w�)X:n, are preferred to the empirical
risk measures in terms of the mean squared error. The EB variance estimates
of these bootstrapped quantities therefore are 

Var (c�w�X:n | F) = c�w�S:nwc, (7)

and 

Var (c�(2I – w�)X:n | F) = c�(2I – w�)S:n(2I – w)c,

respectively.

While this exercise is straightforward and useful, a closer look prompts a com-
putational issue on S:n which Hutson and Ernst (2000) did not discuss. As seen
in Theorem 3.2, S:n is a n ≈ n matrix but computing each element of this matrix
involves another n ≈ n matrix. The total number of computations is of order
O(n4); the computational burden increases exponentially as the sample size
gets larger1. Furthermore, because the bootstrap weights are functions of the
sample size n, one should recalculate S :n whenever the sample size changes.
For these reasons we recommend replacing S:n with the ordinary bootstrap (OB)
version S1 :n based on R bootstrap samples, F1

*, …, FR
*. It is known that R needs

to be bigger for the second moment than for the mean to avoid bias, as dis-
cussed in Section 5; see, e.g., Booth and Sarkar (1998).
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3.2. Nonparametric delta method

An alternative way to estimate the variance of an estimator is using the non-
parametric delta method (or just delta method in short) which employs the
influence function of the estimator. Estimating variance through the non-
parametric delta method is well known and can be found in standard texts
such as Staudte and Sheather (1990) or Hampel et al. (1986). Consider the von
Mises expansion of any statistical functional t(G) at F. The first order approxi-
mation is 

t(G ) . t(F ) + Lt# (x |F ) dG(x).

Here Lt, the first derivative of t at F, is called the influence function (IF). The
IF is a function of x given F and t, and defined by 

Lt (x |F ) = x .lim
t F t F

e
e1

e 0

- + -

"

He] ]g g6 @

where Hx is the c.d.f. of a degenerate random variable at x, commonly referred
to the heaviside function. The IF measures the relative influence on t(F ) of a
very small amount of contamination at x and also can be used to estimate the
variance of t. For our purpose of estimating the variance of the risk measure
from the sample, we set G = F, which is a choice that makes the approxima-
tion reasonably accurate as n increases, so the approximation becomes 

t(F) . t(F ) + L x F d t F n L x F1
t x t i

i

n

1

= +
=

F# !] ] ^g g h

Now by applying the central limit theorem, T = t(F) has asymptotic normality:

t(F) – t(F ) $
d N(0,vL(F )), (8)

as n $ 3, where vL(F) = n–1Var(Lt(X|F)) = n–1 #Lt
2(x|F)dF(x). Assuming no

information on F in practice, we estimate this variance using the sample version:

vL(F) / jt ,
n

L F1

j

n
2

1=
2

x! _ i (9)

where xj is the j-th observation of the sample.

If we restrict our attention to the L-estimator, defined by #
0

1
F –1(u) J(u)du,

of which the score function J is bounded and continuous, the IF and the
asymptotic variance is known by (see, e.g., Appendix B in Staudte and Sheather
(1990)
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Lt(x |F ) = J F y dy F y J F y dy1
x
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with its sample estimate 
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This is the form used in Jones and Zitikis (2003) for the DRM variance esti-
mation. For most DRMs such as the CTE and PHT-measure, the variance
estimate of the empirical estimates can be computed by this formula; see
Gourieroux and Liu (2006) for variance estimates of different risk measures.
However, this result does not apply to the VaR, the quantile risk measure,
because its score function is a discontinuous step function. We will return to
this point in the next section.

We also note that the delta method introduced in this section is meant to
be used for the variance estimation of the empirical DRM estimator, not of
the bootstrapped or bias-corrected counterpart, because the latter ones are not
empirical estimates of continuous functionals even though all these estimators
may be asymptotically equivalent.

Some examples follow to show the IF of different DRMs.

Example 3.3. (Conditional Tail Expectation) The CTE at a confidence level of
a is defined by t(F ) = (1 – a)–1 #Qa

3
xdF and its corresponding score function is

J(u) = (1 – a)–1I(a,1] (u), where IA(u) is the characteristic function that equals one
if u ! A; zero otherwise. The IF and the asymptotic variance are given by
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For derivation of the IF of the CTE, see Appendix.
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Example 3.4 (Proportional Hazard Transform) The PHT measure with a para-
meter b, 0 < b # 1, is defined by t(F) = #

0

1
(1 – F(x))bdx. Its score function is then

J(u) = b(1 – u)b –1 and the IF is given by

b
.L x F F y dy F y dyb 1 1t

x b 1
= - - -

3

3

3

-

--
##] ^^ ^^g hh hh; E

The asymptotic variance is given by formula (11) with the specified score function
and no further simplification seems possible in this case.

Example 3.5 (Wang Tansform) The WT measure with a parameter l is defined
by t(F) = #

0

1
F(F–1(1 – F(x)) + l)dx, where F is the standard normal distribution

function. Its score function is then J(u) = exp(– lF–1(1 – u) – l2/2) and the IF is
given by

.L x F e e dy F y e dy1/
t

F y F yxl l lF F2 1 12 1 1
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gg
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Again the asymptotic variance is given by formula (11).

3.3. Understanding the behavior of IF

In addition to its usefulness for asymptotic variance estimation, the IF of a given
functional t(F ) also helps to describe the behavior of the given functional. In
Figure 1 typical graphs of three risk measures’ IFs are illustrated under the stan-
dard normal distribution, along with the quantile risk measure (also known as
Value at Risk or VaR) that is discussed in the next section more closely. Depend-
ing on the parameter value and the underlying distribution F, the value of
each IF may change but its shape remains similar. Heuristically speaking, the
IF in each graph shows how an additional loss (or contamination) at x affects
the value of the corresponding functional.

In Figure 1 IFs of PHT and WT measures show an increasing influence as
the new observation gets larger. The influence will be negative for a smaller x,
meaning that these risk measures will decrease in this range; the risk measures
will increase for a larger x. This aspect is similar to the ordinary mean functional,
whose IF is Lt (x|F ) = x – E(X ), a linear function, but these measures put
increasingly more weights to large losses to produce conservative numbers in,
say, capital amount setting. The graph thus intuitively shows the impact of the
distortion on different DRMs. Since IFs are not bounded, a single extreme
value of x can make the risk measures arbitrarily large, like the ordinary mean
functional, but at a greater pace.

Let us now turn to the two tail risk measures: VaR and CTE. The IF of
VaR is a bounded step function and therefore the impact of one observation,
however big or small, is limited; the impact actually is constant and rather
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FIGURE 1: IF of different risk measures under the standard normal.

abrupt depending on whether the observation falls right or left side of the
quantile. Thus change in x causes no change in the VaR and as long as x stays
on one of either side of the quantile threshold. The graph intuitively proves the
well-known argument that the VaR cannot account for the magnitude of extreme
loss and consequently which is a significant disadvantage for an insurance risk
measure.

On the other hand, the CTE does reflect the magnitude of loss once the loss
lies beyond the quantile threshold as shown by an increasing linear function;
if the newly-added loss is below the quantile the impact will be negative but
constant and small. The unbounded IF of the CTE again indicates that the
CTE value can get indefinitely large as a single jumbo loss x increases. The slope
of the IF of the CTE above the threshold is also linear in x, like that of the mean,
but is steeper because the coefficient (1 – a)–1 is larger than 1 for 0 < a < 1, indi-
cating the impact of a extreme loss will be bigger on the CTE than on the mean.

We also comment that neither of these tail measures account for losses
below the quantile, whereas the PHT and WT measures are affected by losses
from all parts of the distribution, making the latter two measures potentially
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advantageous in certain applications. This perhaps motivates the usage of cer-
tain risk measures in different purposes; the VaR and CTE are commonly used
in economic capital management in practice, as they are tail-oriented, whereas
the PHT and WT are more associated with the centre of the distribution and
are more commonly used for pricing.

4. VARIANCE OF EXACT BOOTSTRAPPED (EB) RISK MEASURES

In this section we show that the IF of the bootstrapped L-estimator (or DRM)
is available in an analytic form. In particular, the influence function of the boot-
strapped quantile is first derived and is later extended to the whole L-estimator
class, or DRM.

4.1. EB for the quantile risk measure

Let us start with the quantile case. The IF formula in (10) is not applicable here
because the score function is not smooth; it is a single mass at the quantile itself.
The IF of the standard quantile, defined by t(F ) = F –1(a), is given by 
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with the asymptotic variance

vL(F ) = n–1 .
a

a a
f F

1
1 2
-

-
]`

]

gj

g

Thus one needs to estimate f (F –1(a)), the value of the density at the quantile,
to estimate the variance; in fact, if the score function consists of discrete masses
the corresponding IF and variance involve the unknown density f. This task
however might be impractical because estimating the value of density at a large
a from the given sample is not easy. Although there are nonparametric tools
available allowing us to estimate the density, such as kernel density estimation,
this may not produce satisfactory values for tail regions, especially when the
given sample is subject to skewness or (and) excess kurtosis, which is often true
for financial and actuarial data. In practice therefore, using the nonparametric
delta method to estimate the variance of VaR, a tail quantile risk measure, can
be problematic. This is a long-standing problem in many statistical applications.

Here we consider the IF of the EB quantile instead. A closer look at the
EB formula given in Theorem 3.1 sheds a new light. We first note that the
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EB estimate of the r-th order statistic is given by a linear combination of all
the order statistics, again belonging to the L-estimator class, and the weight
coefficients wi(r), i = 1, 2, …, n, form a Beta density function with parameter pair
(r, n – r + 1) if appended together.

This observation suggests that the EB estimate

E (X(r) | F) = ( )j n( )j r X uF
j

n

1

1

0

1
=

=

-w #! ] gJq(u)du,

where 

Jq(u) =
n r-

, ,B r n r
u u

1
1r 1

- +
-

-

]

]

g

g (14)

can be thought as the plug-in estimate of a functional

F u1

0

1 -# ] gJq(u)du. (15)

Note that the score function Jq(u) is a density of Beta distribution which is con-
tinuous, bounded, and differentiable for a given n. We will call functional (15) the
EB a-th quantile (a = r/n). Using the beta distribution’s first two moments, it is
easy to see that Jq(u) converges to a point mass at a in distribution as
n "3, recovering the original quantile. The following result leads us to a simple
method to estimate the variance of the EB quantile for any fixed sample size n.

Lemma 4.1. The IF of the EB a–th quantile defined in (15) is given by 
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Proof: See Appendix. ¡

The IF of the EB quantile looks quite different from that of the standard
quantile in (13). It is a function of the sample size n and, more importantly,
does not involve the density f, leading to straightforward computation of variance
estimate with a sample.

Consequently the variance estimate of the EB a-th quantile is then, from
(12), given by 
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where 
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For actual implementation however Jq( n
i ) needs to be approximated because

it often produces 0 for large n and r in mathematical software. Among others
we choose 
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This choice is advantageous because wj(r) is the ( j,r)th element of the EB weight
matrix w, which is already in our hands. Using this approximation the variance
estimate (17) can be presented in a most computationally-convenient form:
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4.2. Extension to EB L-estimator

To extend our result to the L-estimator class, let us reconsider the empirical
DRM defined in (2). That is 

tg(F) = c1X(1) + c2X(2) + … + cnX(n),
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Following a similar argument to the quantile case, the EB estimate is given by
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which can be thought as the plug-in estimate of a functional
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The following is an extended result of Lemma 4.1 and covers the L-estimator
class.

Corollary 4.2. Consider an L-estimator c�X:n = c1X(1) + c2X(2) + … + cnX(n). Then
the IF of the bootstrapped L-estimator, c�w�X:n, is given by
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Proof: See Appendix. ¡

The asymptotic variance is given by (11) with J(u) replaced by JL(u), with its
sample version given by 
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Again we need an approximation for JL:
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(23)

where wi is the i-th row vector of the EB weight matrix w = {wi( j)}1
n and c is the

weight vector. Thus, a most computationally-convenient form of the variance
estimate of a bootstrapped DRM is 

212 J.H.T. KIM AND M.R. HARDY



( ) ( ) ( ) ( )i i j j1 1+ +, .min i j n
ij

X X X Xw c w c
i

n

j

n

1

1

1

1

- - -
=

-

=

-
i j!! ` ` ^ _ _j j h i i< F (24)

If the bias-corrected estimator is required, one needs to change the score func-
tion to
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and repeat the argument in the same fashion.

As examples, we examine the same risk measures as in the previous section
to illustrate the impact of the bootstrapping on the IFs for the selected risk
measures.

Example 4.3. (CTE) Write the weight vector for the empirical CTE estimate as
c = (c1, …, cn)� = (n(1 – a)) –1(0, …, 0, 1, …, 1)�, where c1, ..., cna are all equal to 0,
and cna + 1, ..., cn are all equal to (n(1 – a)) –1, where we assume na is an integer.
The IF of the bootstrapped (EB) CTE is given by
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The variance estimate of the EB CTE can be computed from (24).

Example 4.4. (PHT and WT) The weight vector for the empirical risk measure
is c = (c1, …, cn)�, where ci = ( n

n i 1- + )b – ( n
n i- )b for the PHT measure and ci =

F (F–1( n
n i 1- + ) + l) – F (F–1( n

n i- ) + l ) for the WT measure. The IF of the cor-
responding EB risk measures and their variance estimate can again be computed
from the above Corollary and formula (24), respectively.

As the reader might have noticed, the variance estimation using the delta
method generally requires less effort for the EB estimates than for the original
estimate for a given risk measure since the IF of a bootstrapped risk measure
merely requires the knowledge of the distortion function g(u), whereas for the
empirical risk measure we need its derivative J(u) = g�(1 – u) for the IF.

To examine the general impact of bootstrapping on the DRM estimation,
let us look at the IF graphs of the bootstrapped risk measure. In Figure 2
we compare two IFs of the same four risk measures as in the previous section.
For both the PHT and WT measure we see that the variation of the bootstrapped
IF has reduced from the original IFs through flattened pattern in graph. This
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FIGURE 2: Comparison of two IFs for different risk measures under the standard normal
for sample size 300: original (solid) vs. bootstrapped (dotted).

shows that the bootstrapping would make these two centre-oriented risk measures
more stable. For the VaR case bootstrapping makes the quantile IF continuous
and differentiable by taking average of all order statistics in the sample. For the
bootstrapped CTE case the sharp edge at the quantile has now been smoothed
out, but at a larger value of x, making the IF differentiable everywhere.

Focusing on positive range of x, the bootstrapped IFs are positioned below
the original IFs for all four risk measures. This can again be interpreted as
a reduced impact of extreme losses on risk measures. This seems consistent with
the mechanism of the bootstrap for the L-estimator because the resampling pro-
cedure necessarily dilutes the magnitude of extreme losses by including smaller-
valued losses in a form of weighted average of all order statistics. Our last
comment is that the most statistics literature focuses on finding a robust func-
tional which is often linked to bounded and continuous IF (see, e.g., Staudte
and Sheather (1990)) in an attempt to find, say, the location parameter, but
many actuarial risk measures, except for the VaR, do not fall in this category
because they are designed to effectively capture the unlikely loss events that are
well beyond the centre of the distribution.
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4.3. Further remarks

We have derived the IF of the bootstrapped quantile and extended it to the
L-estimator (or equivalently the bootstrapped DRM). There are several com-
ments on this analytic development.

• The key idea of the nonparametric delta method in (9) states that Lt(x|F ) can
be estimated by Lt(x|F), based on the convergence of F to F. Since FEB also
converges to the true F, estimating Lt(x|F ) using Lt(x|FEB) can be likewise
justified. This gives an alternative way to estimate the variance of a statistic
where applying the nonparametric delta method is difficult for some reason.
In the same line, as long as the score function J is bounded and continuous
the variance estimate of the EB DRM in (24) and that of the empirical
DRM in (12) are asymptotically equivalent.

• It is known that both the IF approach and the bootstrap approach produce
similar variance estimates for an arbitrary statistic; see, for example, Section 2.7.4
of Davison and Hinkley (1997). This means that as sample size increases
one would expect the two numbers from both methods to get close. This
point will be illustrated in the numerical examples of the following section.

• The resulting formula can also be used in the practical guideline proposed
in Kim and Hardy (2007) where the authors used the ordinary bootstrap to
compute the variance of bootstrapped CTE.

5. NUMERICAL EXAMPLE

For the simulation study we investigate bootstrapped risk measures for small
sample sizes, say n # 1000, using different nonparametric methods. The sample
size of less than 1000 is common in actuarial loss modelling and in operational
or credit risk modelling, due to the expense of generating additional scenarios.

For the simulation study we consider the same three parametric models
used in Kim and Hardy (2007). The first model is a 10-year European naked
put option with the price return based on the Lognormal (LN) distribution.
The initial price of the asset is set at $100 and strike price is $180, and the
risk free rate is assumed 0.5% monthly effective. The LN parameters of the
P-measure are m = 0.00947 and s = 0.04167 which are derived from the monthly
S&P 500. The second model is the identical put option as the first one except
that the price return follows the Regime Switching Log-Normal distribution
with two regimes (RSLN2). The parameters are derived from the same S&P
data: m1 = 0.0127, m2 = – 0.0162, s1 = 0.0351, s2 = 0.0691, p12 = 0.0468, and
p21 = 0.3232. The final model is a Pareto distribution with parameters b = 10
and z = 0.2 whose distribution function is 

,F x xb z
b

1
/z1

= -
+

] dg n x > 0. (25)
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Note that the Pareto has fatter tail than the other two models. See Kim and
Hardy (2007) for the further description of each model.

For each model we consider four bootstrapped (EB) risk measures dis-
cussed in this paper, but in two separate groups. The first group includes the
CTE and the VaR; in particular, we compare the EB estimate of the 95% CTE
and the 97.5% VaR, which would produce the same number for the uniform
distribution defined in the unit interval. The second group consists of PHT mea-
sure with b = 0.8 and the WT measure with l = 0.1976, which again produce
the same number under the uniform distribution. This grouping is due to
the fact that the values produced by the former two tail risk measures will
generally be too large to be matched by the latter two centre-oriented risk
measures. For example, under a uniform distribution, a VaR at 97.5% can be
matched by a PHT measure with b = 0.02564, but this choice of b is too small
and fails to be asymptotically normal, preventing the use of the delta method;
see, e.g., Jones and Zitikis (2003).

The empirical estimates of these DRM are given by
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Their EB counterparts used in our simulation study are computed by (4).

Since our focus is on the nonparametric variance estimation of the bootstrapped
DRM, the influence function (IF) based nonparametric delta method devel-
oped in the previous section is compared with the variance estimate using the
ordinary bootstrap (OB) simulation for each sample to obtain the estimated
covariance matrix S1 :n. We report the results for sample sizes 400 and 1,000,
respectively, by repeating 5,000 sets of simulations. For the OB simulation, we
used R = 1,000 for each sample of size 400, and R = 2,500 for a sample of size
1,000; the resampling size has been set at 2.5 times the sample size (R = 2.5 ≈ n)
to avoid the bias in the variance estimate2.
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confirming the finding of Booth and Sarkar (1998).



Table 1 and 2 show the simulation results on the bias, standard deviation (std),
and root mean squared error (rmse), along with standard errors (s.e.). All num-
bers are expressed in percentage of the true variance (true val.) of each risk
measure under three different models.
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TABLE 1

VARIANCE ESTIMATION OF PHT AND WT BOOTSTRAPPED RISK MEASURES FOR DIFFERENT SAMPLE

SIZES (n = 400 AND 1000) AND MODELS (LN PUT, RSLN PUT, AND PARETO):
COMPARISON OF THE ORDINARY BOOTSTRAP (OB) AND THE DELTA METHOD (IF)

Risk measure: PHT with b = 0.8

Model n Method True val. Bias in % (s.e.) Std in % (s.e.) rmse in %

LN 400 OB 0.33 –3.23 (0.29) 20.3 (0.03) 20.55 
IF 0.33 –5.69 (0.27) 19.42 (0.03) 20.24

1000 OB 0.13 –1.33 (0.18) 12.98 (0) 13.05 
IF 0.13 –2.58 (0.18) 12.59 (0) 12.85

RSLN 400 OB 0.57 –1.15 (0.24) 16.8 (0.03) 16.84
IF 0.57 –2.99 (0.22) 15.9 (0.03) 16.17

1000 OB 0.23 –1.18 (0.15) 10.36 (0) 10.42
IF 0.23 –2.14 (0.14) 9.94 (0) 10.17

Pareto 400 OB 1.59 –4.04 (1.53) 108.28 (3.73) 108.35
IF 1.59 –7.53 (1.43) 100.92 (3.24) 101.2

1000 OB 0.68 –5.58 (0.99) 69.96 (0.66) 70.18
IF 0.68 –8.37 (0.93) 65.6 (0.58) 66.13

Risk measure: WT with l = 0.1976

Model n Method True val. Bias in % (s.e.) Std in % (s.e.) rmse in %

LN 400 OB 0.26 –2.01 (0.31) 21.69 (0.02) 21.79
IF 0.26 –2.74 (0.3) 21.16 (0.02) 21.34

1000 OB 0.11 –0.62 (0.2) 13.83 (0) 13.84
IF 0.11 –0.89 (0.19) 13.57 (0) 13.6

RSLN 400 OB 0.49 –0.23 (0.25) 18.01 (0.03) 18.01
IF 0.49 –0.73 (0.24) 17.29 (0.03) 17.31

1000 OB 0.2 –0.68 (0.16) 11.11 (0) 11.13
IF 0.2 –0.93 (0.15) 10.79 (0) 10.83

Pareto 400 OB 1.12 0.17 (1.01) 71.41 (1.14) 71.41
IF 1.12 –0.51 (0.99) 70.07 (1.1) 70.07

1000 OB 0.45 –1.2 (0.57) 40.06 (0.15) 40.08
IF 0.45 –1.69 (0.56) 39.63 (0.14) 39.66



From this simulation study, we have several comments.

• First of all, the two different methods of variance estimation produce very
similar values for the PH, the WT and the CTE, but not for VaR, where the
influence function produces higher mean squared errors. We conjecture this
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TABLE 2

VARIANCE ESTIMATION OF CTE AND VAR BOOTSTRAPPED RISK MEASURES FOR DIFFERENT SAMPLE

SIZES (n = 400 AND 1000) AND MODELS (LN PUT, RSLN PUT, AND PARETO):
COMPARISON OF THE ORDINARY BOOTSTRAP (OB) AND THE DELTA METHOD (IF)

Risk measure: CTE with A = 0.95

Model n Method True val. Bias in % (s.e.) Std in % (s.e.) rmse in %

LN 400 OB 13.28 –1.87 (0.44) 31.14 (2.58) 31.2
IF 13.28 –6.23 (0.44) 31.18 (2.58) 31.8

1000 OB 5.36 –0.45 (0.29) 20.71 (0.46) 20.72
IF 5.36 –2.15 (0.29) 20.79 (0.46) 20.9

RSLN 400 OB 14.34 –0.73 (0.45) 31.77 (2.9) 31.78
IF 14.34 –5.15 (0.45) 31.73 (2.89) 32.15

1000 OB 5.82 –0.54 (0.3) 20.89 (0.51) 20.9
IF 5.82 –2.34 (0.3) 20.95 (0.51) 21.08

Pareto 400 OB 65.72 1.56 (2.26) 160.08 (336.83) 160.09
IF 65.72 1.4 (2.25) 159.1 (332.69) 159.1

1000 OB 26.77 –0.95 (1.15) 81.42 (35.49) 81.43
IF 26.77 –0.96 (1.16) 82.01 (36.01) 82.02

Risk measure: VaR with A = 0.975

Model n Method True val. Bias in % (s.e.) Std in % (s.e.) rmse in %

LN 400 OB 15.24 5.17 (0.65) 45.9 (6.42) 46.19
IF 15.24 8.14 (0.83) 58.92 (10.58) 59.48

1000 OB 6.5 3.7 (0.54) 38.43 (1.92) 38.61
IF 6.5 5.45 (0.68) 47.91 (2.98) 48.22

RSLN 400 OB 16.69 6.52 (0.68) 47.84 (7.64) 48.28
IF 16.69 9.97 (0.87) 61.66 (12.69) 62.47

1000 OB 7.15 4.25 (0.54) 37.85 (2.05) 38.08
IF 7.15 5.96 (0.67) 47.32 (3.2) 47.69

Pareto 400 OB 36.05 15.46 (1.06) 74.62 (40.15) 76.21
IF 36.05 21.37 (1.27) 89.6 (57.88) 92.11

1000 OB 15.3 7.84 (0.72) 50.94 (7.94) 51.54
IF 15.3 10.97 (0.86) 60.91 (11.35) 61.89



is due to the fact that empirical quantiles defined on a single or several fixed
numbers of order statistics (including the VaR used in this section) are not
smooth enough. Heuristically speaking, for any consistent quantile estimator,
its bootstrapped IF gets closer as n increases to the original quantile IF,
a discontinuous step function. This indicates that the delta method is less
satisfactory for a functional depending on local properties even after boot-
strapping.

• For the other three risk measures, the OB and IF approaches are barely dif-
ferent. In the CTE case, the OB is marginally (but insignificantly) better in
each case, and in the PHT and WT case the IF approach is marginally better
in each model.

• Table 3 shows the EB risk measures values (not their variances) for each
model. This table indicates that all four measures get larger as the underlying
model becomes thicker in tail. Focusing on group 1, the PHT is bigger than
and WT for all models (note that they would be the same under a uniform),
supporting that its influence puts more weight in the right tail region than
the WT would as suggested in Figure 2. Their variances in Table 1 have the
same message: the variance of the PHT is larger than that of the WT, for
each model. In group 2 of 3, we see that the CTE is consistently bigger than
the VaR counterpart across all models (again, they would be the same under
a uniform loss distribution); this is true for all continuous loss random vari-
able with unbounded support from above. The difference between the two
gets larger as the underlying model’s tail gets thicker, as shown in the Pareto
case. Table 2 however reveals an interesting observation. The CTE is more
stable for the first two models and less stable for the Pareto model. However,
in the Pareto case the CTE measure is much further into the tail than the
other measures, so greater uncertainty is to be expected.
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TABLE 3

EB RISK MEASURE VALUES FOR EACH MODEL WITH N = 1000.

Group LN put RSLN2 put Pareto loss

1 PHT at b = 0.8 3.78 6.00 16.51 
WT at l = 0.1976 3.08 5.08 15.30 

2 CTE at a = 0.95 30.92 42.61 63.43 
VaR at a = 0.975 28.50 40.17 54.32

• In all cases the MSEs of these variance estimators seem large even for sam-
ples of size 1,000, especially for the Pareto example, indicating that both
methods may be less than satisfactory for fat-tailed distributions in practice.
This is particularly the case when the risk measure is heavily weighted in the
tail region, which is the case for the PHT in the first group, and the CTE in
the second group.



• Since both nonparametric methods presented here rely on asymptotic argu-
ments, we generally cannot consider one over the other without a theoreti-
cal justification, and as far as we know there is none. Considering that the
OB for variance needs more bootstrap resamplings than for mean, we believe
that the IF method can sometimes be advantageous because it does not
involve any simulation.

6. CONCLUDING REMARKS

In this paper we derived the influence function (IF) of the EB quantile esti-
mate and showed it exists in an analytic form where no density function needs
to be computed. The result directly extends to the whole L-estimator class.
Based on this finding, we conducted a simulation study to estimate the vari-
ance of the bootstrapped risk measures and compares it against the ordinary
resampling method. The result shows that these two methods would produce
comparable results when the corresponding risk measure is smooth.

We also illustrated the impact of the bootstrap on the IF of the distortion
risk measure (DRM) using graphs of selected examples. The graphs suggests
that bootstrapped DRM would lead to a more stable result than the empirical
counterpart, which is consistent with our insight.

Since the proposed method computes the variance of the bootstrapped
risk measure analytically, it is faster than the ordinary bootstrap and suitable
for applications where variance estimation needs to be repeated. Also, coupled
with the practical guideline on the bootstrap usage by Kim and Hardy (2007)
this provides a package to estimate the mean squared error of given empirical
risk measure non-parametrically.
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APPENDIX

IF of the CTE in Example 3.3

The IF of the CTE was already stated in Manistre and Hancock (2005) but
without proof. The derivation is essentially adapted from the IF of the trimmed
mean as shown in, e.g., Section 3.2.2 of Staudte and Sheather (1990). From its
definition the CTE for continuous F is 
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Therefore by defining Fe(y) = (1 – e) F (y) + eH(y – x), with H(y – x) = Hx(y)
being the heaviside function,
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Differentiating with respect to e gives 
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By setting e = 0 we have the IF of the CTE
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where e aFe e

1

02
2 -

=
] g is the IF of the quantile. Finally plugging the quantile IF

given in (13) into the above equation completes the proof.

Proof of Lemma 4.1

The a–th EB quantile, where a = r /n, is defined by 
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where Jq(u) = ur –1(1 – u) n – r/B (r, n – r + 1). Then from (10) the IF of t(F ) is
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Replacing Jq(u) = ur –1(1 – u) n – r/B (r, n – r + 1) leads to 
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Finally setting r = na completes the proof.

Since quantiles are not uniquely defined for the empirical distribution function
due to its discreteness, other possible a-th quantiles, such as r = (n + 1)a, may
also be used equally. In any case, we note that it is easy to verify that the expected
value of the above IF is zero using differentiation. We emphasize that the IF
is a function of x.

Proof of Corollary 4.2

First note that 

c�w�X:n = k
k

n

1=

c! w�k X:n.

Each term w�k X:n on the right side is the bootstrapped quantile. The result fol-
lows immediately from (16).
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