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ABSTRACT

This contribution shows that for certain classes of insurance risks, pricing can
be based on expected values under a probability measure �* amounting to
quasi risk-neutral pricing. This probability measure is unique and optimal in
the sense of minimizing the relative entropy with respect to the actuarial prob-
ability measure �, which is a common approach in the case of incomplete
markets. After expounding the key elements of this theory, an application to
a set of industrial property risks is developed, assuming that the severity of
losses can be modeled by “Swiss Re Exposure Curves”, as discussed by Bernegger
(1997). These curves belong to a parametric family of distribution functions
commonly used by pricing actuaries. The quasi risk-neutral pricing approach
not only yields risk exposure specific premiums but also Risk Adjusted Capi-
tal (RAC) values on the very same level of granularity. By way of contrast, the
conventional determination of RAC is typically considered on a portfolio level
only.
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1. INTRODUCTION

The theory of pricing risk in incomplete markets based on risk-neutral valua-
tion is well established [see e.g. Delbaen, Haezendonck, 1989, or Gerber, Shiu,
1994]. While a risk-neutral probability measure is not unique in an incomplete
market, various approaches have been proposed and discussed for achieving
minimum distance of the risk-neutral probability measure with respect to the
actuarial measure [see e.g. Föllmer, Schweizer, 1991].

Coherent risk measures, such as expected shortfall [see Artzner, Delbaen,
et al., 1999], are widely used in modern Risk Management to measure (aggre-
gated) portfolio risk. At the same time ad hoc pricing methods continue to be
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very much in use by pricing actuaries to price underlying individual risks. This
is surprising since distortion principles provide a pricing approach that while
applicable to individual risks is consistent with coherent risk measures [see e.g.
Dhaene, Vanduffel, et al., 2006]. With respect to assets, Wang (2000) bridged
the gap between theory and practice by showing that the Black-Scholes formula
can be reproduced by a distortion principle relating to Choquet pricing [see e.g.
Denneberg, 1994], introducing the so-called ‘Wang transform’ to the literature.
However, according to Pelsser (2008), the ‘Wang transform’ does not amount
to arbitrage-free pricing independently of the underlying stochastic process.

The focus of this work is to motivate and apply Choquet pricing to indus-
trial property insurance, which by the infrequent nature of loss events (excess
of some basic threshold) is typically exposed to heavy tails. Although distor-
tion principles do take into account the extra loading required for heavy-tailed
loss distributions, even pricing actuaries familiar with Choquet pricing are
hesitant to use them. One reason may be the considerable choice of distortion
operators [see e.g. Denuit, Dhaene, et al., 2005, for an overview]. Once a dis-
tortion operator has been selected, the task of calibrating in a least arbitrary
(and most sensible) way must still be solved.

In the present work we try to overcome these obstacles by proposing both

1. a distortion operator that is optimal in the above stated sense;

2. a unique rule of calibration based on Lorenz order [for a general overview
see Denuit, Dhaene, et al., 2005].

A set of insurable risky prospects X 1 (W,A , �) and a pricing functional,

H : (W,A , �) " �+

(1) 
X 7 H(X ),

are assumed. Expected values under the actuarial probability measure � are
referred to as actuarial expectation or actuarially fair premium, implying a
pricing rule in accordance with the concept of a long-term pure risk premium.
We abstract from insurance cycles or price shocks caused by temporary short-
ages of insurance capacity. The pricing concept presented in this work takes
into account the pure loss dynamics underlying an insurance portfolio, risk
aversion of market participants and the insurer’s solvency. However, it neglects
administrative and other expenses, which are very much company-specific.

This paper is structured as follows. Section 2 presents the axiomatic frame-
work that provides the basis for the results reviewed in section 3 and the
practical application to follow in section 4. After applying the theory of quasi
risk-neutral pricing to the Swiss Re exposure curves in section 4.1, premiums
and Risk Adjusted Capital values are calculated for a property insurance port-
folio in section 4.2. Discussion and conclusions with an outlook to further
research are given in the final sections 4.3 and 4.4. Appendix A offers some
more detail of the pricing rule developed with respect to Swiss Re Exposure
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curves. In turn, Appendix B substantiates the optimality of the exponential dis-
tortion principle in section 3 under the criterion of relative entropy mini-
mization, subject to the assumptions made in section 2.

2. AXIOMATIC FRAMEWORK AND ESTABLISHED RESULTS

For ease of reference, we briefly revisit the set of axioms to be satisfied by H.
With very little variation only these axioms have been extensively discussed in
literature [see e.g. Goovaerts, Dhaene, 1998].

Axiom 1 [No Rip-off]. For any risky prospect X ! X, we require the pricing func-
tional H to satisfy

�(X ) # H(X ) # sup(X ),

where

sup(X ) := sup{X(w) | w ! W}. (2)

If H(X ) = 3, a risk is assumed non-insurable.

Axiom 2 [Monotonicity]. The pricing functional H is required to preserve first-
order stochastic dominance in that for any two risky prospects X1 and X2, such
that X1 #st X2,

X1 #st X2 ( H(X1) # H(X2).

The notation “X1 #st X2” means that X2 exhibits first stochastic dominance
over X1 which is defined in terms of distribution functions by the relation

FX1
(x) $ FX2

(x), 6x ! �+.

It is noted that this monotonicity assumption is weaker than the point-wise
notion as discussed in Wang’s papers, since it just relates to distribution func-
tions rather than to an underlying probability space. However, on any given
probability space point-wise monotonicity implies monotonicity with respect
to first stochastic dominance so that this axiom is neither unrelated nor in
contradiction to Wang’s monotonicity axiom.

Axiom 3 [Subadditivity]. For any two risky prospects X1 and X2 it must hold true
that

H(X1 + X2) # H(X1) + H(X2). (3)
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For a potential purchaser of insurance strictly subadditive premiums, the
case of strict inequality in (3), constitute a motivation for transferring risks in
particular rather than resorting to self-insurance. However, from the insurer’s
point of view, subadditive pricing is not an obvious general rule. In terms of
the covariance principle for instance, any sort of risk accumulation (e.g. in the
context of natural perils or terror risk) may call for super-additive premiums,
since the required return on risk capital for risk accumulation zones is higher
than otherwise. On the other hand, in a competitive insurance market, insureds
would always split their risk between two or more insurers who are well diversified
with respect to a potentially accumulating risk. In essence, this argument under-
lies the concept of ‘securitization’, i.e. transferring suitably sized and collater-
alized portions of accumulation risk (e.g. Earthquake California or Earth-
quake Tokyo) to the capital market. Thus, the subadditivity axiom rules out
the possibility of insurers loading their premiums with extra charges for non-
diversifying risks.

Axiom 4 [Commonotonic Additivity]. For any two comonotonic risky prospects
X1 and X2,

H(X1 + X2) = H(X1) + H(X2).

Comonotonic risks exhibit perfect positive stochastic dependence. For details
concerning the concept of comonotonicity, see for instance Denuit, Dhaene,
et al. (2002a,b).

Axiom 5 [Continuity]. For any increasing sequence Xn(w) 3 X(w), 6w ! W,

lim
n "3

H(Xn) = H(X ).

For later reference, we recall the representation of H as integral. For some risk
X ! X with a continuous distribution function on �+

X X X ,H X x x x dx x d xp p�

��

= =
++

fF F##] ]^ ] ]^g gh g gh7 A (4)

where the distortion function p (p� denotes its derivative) mirrors the above
axioms by the following properties,

(p1) p is increasing on (0,1);

(p2) p is convex on (0,1);

(p3) p [0] = 0 and p [1] = 1.
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Details showing how the above Axioms 1-5 translate into these properties can
for instance be found in Goovaerts, Dhaene (1998). An additional property
advocated by Wang (2000),

(p4) p�[1] = 3,

deserves mentioning. It is of practical concern because it counterbalances the
decreasing likelihood of large losses, preventing expected loss levels in high lay-
ers from approaching zero. Also, as shown in Wang (2000), there is a distortion
operator having property (p4) which reproduces the Black-Scholes formula
for option pricing. However, this property is not a logical consequence of the
axiomatic framework introduced above. Hence, it will not be considered any
further in this paper. As a means of emphasis we remind the reader of the above
mentioned limitations otherwise as given by Pelsser (2008).

Various additional properties of the operator H can be shown from the
above axiomatic framework [see for instance Goovaerts, Dhaene, 1998]. Lin-
earity of the operator H for comonotonic risks and its convexity property are
derived explicitly in what follows. Both properties are important for ensuing
argument with respect to scaling risk [see Remark 3, section 3] in particular
but also in regard of quota-share and excess of loss insurance covers [see sec-
tion 4.3], respectively.

Proposition 1. For any comonotonic risks X1 and X2 and arbitrary non-negative
scalars a and b it holds true that

H(aX1 + bX2) = aH(X1) + bH(X2). (5)

Proof. We have H(aX1 + bX2) = H(aX1) + H(bX2) as a consequence of
Axiom 4, since scaling does not change comonotonicity. Thus it only remains
to show that H(gX ) = gH(X ) for any non-negative scalar g. As a consequence
of Axiom 4, H is positively homogeneous in n ! �. Now it is first shown that
H is positively homogeneous in q ! �+. To verify this, note that for arbitrary
m,n ! � one has

H(X ) = H(n ( n
1 X ))

, H(X ) = nH( n
1 X )

, n
m H(X ) = mH( n

1 X )

, n
m H(X ) = H( n

m X ).

Using the fact that the rational numbers lie densely in �, define some non-neg-
ative g := lim

n "3
qn, with qn ! �+, 6n. Using Axiom 5, one finds that
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H(gX ) = H( lim
n "3

qnX )

= lim
n "3

H(qnX )
(6)

= lim
n "3

qn H(X )

= gH(X ).

¬

Proposition 2. The operator H is convex on the cone of non-negative random
prospects.

Proof. Denote X the cone of non-negative random prospects. For X1, X2 ! X
and arbitrary non-negative scalars a and b, it follows from Axiom 3 that H is
a sublinear functional on X, i.e.

H(aX1 + bX2) # aH(X1) + bH(X2). (7)

This is seen as follows. Let Z1 := aX1, Z2 := bX2, then Z1, Z2, and Z1 + Z2 ! X
because X is a cone. Due to Axiom 3 it holds true that 

H(aX1 + bX2) = H(Z1 + Z2) # H(Z1) + H(Z2) = aH(X1) + bH(X2). (8)

The latter equality is justified by the property of positive homogeneity as
verified above. Now to prove that H is convex on X , one needs to shown that
for some X1, X2 ! X and 0 # l # 1, it holds true that

H(lX1 + (1 – l) X2) # lH(X1) + (1 – l)H(X2).

Assuming a + b > 0, set l = a / (a + b ) which concludes the proof. ¬

3. THE EXPONENTIAL DISTORTION OPERATOR

As stated in section 1, in a first motivating step for pricing actuaries to use
Choquet pricing we propose a particular distortion operator given by a scaled
exponential function

,q
e
e

p
1
1 q

l

l

=
-

-
^ h 0 # q # 1, l $ 0. (9)

In order to assure convexity, as postulated by (p2), the parameter l is non-
negative. Before a calibration of (9) based on Lorenz order is developed in a
second step below, we give some definitions on stochastic order first.
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Definition 1. Two risks X1 and X2 with positive finite expectation are Lorenz
ordered (notation: X1 #L X2), if and only if

LX1
( p) $ LX2

( p), 6p ! (0,1). (10)

With respect to the unit interval the Lorenz function is defined as

X

X
,

�

�
L p

F V

F V V p
X 1

1 #
=

-

-

^

]`

]`
h

gj

g j
p ! [0,1], (11)

where V =
d

U(0,1). One can also consider the Lorenz function on the image of
X which leads to the expression 

,
�

�
L x X

X X x
X

#
=]

]

]
g

g

g x $ 0.

The latter representation is also denoted the first moment distribution of X.
For details on Lorenz functions see for instance Johnson, Kotz, and Bala-
krishnan (1995). Some interesting aspects relating to Lorenz functions and
their application in insurance is expounded for instance in Embrechts, Klüp-
pelberg, et al. (1997).

Although stop-loss order (second order stochastic dominance) strikes as
being the more well-known concept of stochastic order [as compared to Lorenz
order], a definition is given next for completeness [for more details, see e.g.
Antal, 1997].

Definition 2. A random prospect X2 dominates X1 in stop loss order (notation:
X1 #sl X2), if and only if

� [(X1 – a)+] # � [(X2 – a)+] , 6a $ 0.

Well-established results due to the Hardy-Littlewood-Polya Theorem (1929)
show that Lorenz order and stop-loss order are equivalent in the presence of
equal means [for a detailed discussion see e.g. Shaked, Shantikumar, 1997].
The following theorem and the subsequent reasoning proceed on equal means,
with justification given below.

Theorem 1. For any pair of comonotonic and Lorenz ordered random prospects
X1 and X2, with � (X1) = � (X2) < 3 and X1 #L X2, it holds true that 

� (u (–X1)) $ � (u (–X2)) , H(X1) # H(X2), (12)

for any increasing concave risk utility function u.
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The “if” part in (12) is a consequence of the stop-loss order preserving prop-
erty of H, as shown by Hürlimann (1998). For the “only if” part, the reader is
referred to the proof in Niederau [2000, see Appendix E]. The expected utility
order [see the lefthand-side in (12)] has been used here to elucidate the concept
of quasi risk-neutral pricing [see more comments in the final paragraph of this
section]. For a general discussion of expected utility order, including definition,
see for instance Varian (1992).

Remark 1. Following the introductory remarks above, due to the assumed equal-
ity in means, Theorem 1 can be restated equivalently with respect to stop-loss order.

Remark 2. Equal expectations under � and Lorenz order X1 #L X2 ensure that
the expected utility order on the left-hand side in (12) is well defined for expected
utility maximizers with any concave risk utility function u. Likewise, note that
for any X ! X , �(X ) = 3 & H(X ) = 3, in which case a risk X was agreed to be
non-insurable in Axiom 1. In the case of the exponential distortion operator one
even has H(X ) < 3 if and only if �(X ) < 3. The latter equivalence motivates
the assumption of finite means to assure that also the inequality on the right-hand
side in (12) is well defined.

Remark 3. Theorem 1 may appear restrictive due to the required equality in
expectation. But even in presence of random prospects with unequal expected
values (the usual case in reality), this apparent limitation can be overcome by
using scaled random prospects. In section 2 it has been shown in the proof of
Proposition 1 that H is positively homogenous with respect to positive scalars.
For scaling, let b / 1 / �(X ) to find that H(X ) = �(X ) · H(bX ). Accordingly,
with X := bX, the premium H(X ) is determined uniquely by H(X), provided the
actuarial expectation of X exists. Hence, in view of Theorem 1, it is sufficient to
concentrate on scaled random prospects for the remaining part of this work.

Remark 4. The result of Theorem 1 can be extended by induction to any set of
risky prospects which is totally Lorenz ordered. In the practical part of this paper
we will encounter such a set which is characterized by the distribution functions
of its elements [cf. Remark 6, section 4.1].

Remark 5. While Theorem 1 is a general result which applies to any distortion
operator, a clear-cut rule of calibration with respect to the exponential distortion
operator is developed in Niederau [2000, see Lemma 1, section 5.4]. What is shown
there is that under Lorenz order the quasi risk-neutral criterion in (12) uniquely
relates to a bijective non-linear mapping,

l : [0.5,1) " [0,3)
(13)

z 7 l (z),
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which is determined by the implicit equation 

(e l – le l – 1) / (l (e l – 1)) = z. (14)

Here, z denotes the point on [0,1] at which the Lorenz function LX associated with
some underlying risk X assumes its mean value. Letting V := FX =

d
U(0,1), the

very same ratio in (14) can be rewritten as 

�(VelV) / �(elV). (15)

Some more interpretation of how the function in (13) relates to risk-aversion,
with risk-neutrality being the limit case, is given in Appendix B.

To conclude this short review of results, the pricing rule obtained from (14) in
essence relates to the Esscher transform as discussed by Bühlmann (1980),
according to (15). Here, however, the Esscher transform is applied to the dis-
tribution function FX rather than to the random prospect X. The difference
between these two types of transform is discussed e.g. in Wang (2000).

Up to this point, focus on the exponential distortion operator under the
criterion of minimizing relative entropy was not justified. Indeed, Reesor,
McLeish, et al. (2003) show that other distortion operators, e.g. normal (so-
called ‘Wang transform’), beta, piece-wise linear, and others can be motivated
under the same criterion. However, it is shown in Appendix B that the
exponential distortion operator is the only optimal one under relative entropy
minimization, subject to the axioms stated in section 2 and the first moment
constraint (14) on the distribution function, such as motivated by Lorenz order.
It is for this reason that distortion functions other than the exponential are not
considered in this work. Moreover, Reesor, McLeish, et al. (2003) show that a
premium derived under the exponential distortion principle is a coherent mea-
sure of risk such as discussed in the pertinent literature [see e.g. Dheane, Van-
duffel, et al., 2006]. In particular this verifies that the values of Risk Adjusted
Capital (RAC) which are derived later in section 4.2 can be interpreted as
coherent measure of risk alike.

Note that Theorem 1 holds true for all increasing concave risk utility func-
tions. Therefore, the equivalence in (12) means that all risk-averse (including
risk-neutral) market actors order two such risks X1 and X2 as indicated by H.
But since in the presence of comonotonic risks H has an expected value rep-
resentation as in (4), a risk-averse market can be considered quasi risk-neutral
with respect to the transformed density f *(x) := p�(F (x)) f (x). This notion of
risk neutrality extends classical expected utility theory, where risk neutrality
refers to a market where decision makers order risks uniquely with respect to
actuarial expectation, implying linear risk utility functions. In this sense the
qualifier “quasi” is used as a sign of caution rather than indicating a concept
of risk neutrality beyond the theory of expected utility.
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4. A PRACTICAL PRICING APPLICATION

When it comes to practical application, there are many ad hoc methods to
calibrate the distortion operator in (9). For instance, one way is to fix a layer
premium for some basic layer (e.g. the first million Euro) and calibrate l to
match a preset premium for that basic layer. This value of l then determines
the risk loading for any higher layer. However, this approach is judgemental
in various respects. Even choosing a “meaningful” basic layer and its premium,
assumes that the loss dynamics in the basic layer are indicative for the pricing
of high-excess layers. The latter approach characterizes layer pricing with
increased limit factors (ilf) [see for details Wang, 1995].

By way of contrast, a consistent rule of calibration is developed in sec-
tion 4.2 below, using Theorem 1 and its extension as alluded to in Remark 4
in section 3. Rather than relying on some layer for calibrating l, this rule takes
into account the shape of the whole distribution function by means of Lorenz
order. In section 4.2, this theory will be applied to an assumed wind risk
portfolio such as typically insured by industrial insurers. A member of the
Maxwell-Boltzmann, Boese-Einstein, Fermini-Dirac (MBBEFD for short)
class of distribution functions as discussed by Bernegger (1997) will be used
to model the severity of loss in such a portfolio.

4.1. Swiss Re exposure curves and Lorenz order

The MBBEFD function of most practical interest for insurance applications
[cf. Bernegger, 1997 for an extensive discussion] is given by 

,ln

ln

x g b

b
g b g b b

s
1

1 1 x

=
-

- + -
J

L

K
K

]
^

^ ^
N

P

O
O

g
h

h h

(16)

b > 0, b ! 1, bg ! 1, g > 1, x ! [0,1], s(x) ! [0,1], where with c > 0

b := exp{3.1 – 0.15 c (1 + c)},
(17)

g := exp{c (0.78 + 0.12 c )}.

The underlying distribution function is given by 

Fb,g(x) = 1 – .
g b gb

b
1 1

1
x1

- + -

-
-

^ ^h h
(18)

In practical insurance pricing the ensemble (16) and (17) is referred to as the
Swiss Re Exposure curve. Subject to the calibration in (17), which will also be
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assumed below, in terms of shape both functions (16) and (18) are completely
characterized by the value of c. A risk X with distribution function (18) is
referred to as being of type sre(c) below. Note that the functions (16) and (18)
are not defined for the critical value 

c = – 0.5 + . . / . . ,0 25 3 1 0 15 4 07.+ (19)

where they have a different representation [see Bernegger, 1997, for details].
Some important facts and interpretations are outlined below while again,

for the full detail, the reader is referred to Bernegger’s work.

1. In both (16) and (18), x = y / MPL, where y relates to possible realizations
of some underlying random prospect Y which is bounded from above by
its Maximum Possible Loss (MPL) which is assumed finite in property insur-
ance. Note that in insurance terminology MPL does not necessarily mean
total physical destruction; rather it stands for maximum damage if all risk
protection and prevention measures fail. The function in (16) means that an
insurance layer in amount of (x · 100)% of the MPL absorbs (s(x · 100)%
of the total loss expectation. In other words, s(x) is nothing but the lim-
ited expected value function of the scaled random variable X = Y / MPL.
In the present case of property insurance, Y stands for a production plant,
a switching station, a warehouse and the like. The calibration given in (17)
reproduces certain pricing schemes used in industrial reinsurance markets.
In particular, for c = 5 one obtains the so-called Y6 curve, a premium allo-
cation scheme used by Lloyd’s and many other industrial insurers.

2. If Y is of type sre(c), then 

,ln� Y b g b
MPL g b b

1
1

=
-

-Y
]

] ^

^ ]
g

g h

h g

the factor

ln
ln

b g b
g b b

1
1
-

-

] ^

^ ]

g h

h g
(20)

just being the expectation of X =Y / MPLY. Unlike the c-parameter, the MPL
thus serves as a scale parameter.

3. if Y is of type sre(c), its limited expected value function (LEV) is

LEVY ( y) := �(Y |Y # y ) = sY MPL
y

Y
d n �(Y ), y $ 0. (21)

Proposition 3. Let Y1 and Y2 be sre(c1) and sre(c2), respectively with c1, c2 > 0.
Then Y1 and Y2 are Lorenz ordered.
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Proof. We assume �(Y1) = �(Y2) which is justified by the scale invariance prop-
erty of Lorenz order. Recalling the second property above, this equality in
expectations implies a parametric constraint given by

,
ln ln
ln ln

b g b b b
b b b b

MPL
MPL

1 1
1 1

1 1 1 2 2 2

1 1 1 2 2 2

1

2

- -

- -
=

g
g g

^ ^ ^ ^

^ ^ ^ ^

h h h h

h h h h
(22)

where the indices 1 and 2 relate to Y1 and Y2, respectively. Now it needs to be
shown that either Y1 #sl Y2, or Y1 $sl Y2. This will already conclude the proof
according to Remark 1 in section 3. Assume c1 # c2, then along the contour
given by (22) one has

s(x1 | c1) $ s(x2 | c2),

with xi := y /MPLi, i = 1,2 and y $ 0. But due to the third property above, for
all y $ 0 this is equivalent to

LEV1(y) $ LEV2(y),

, �(Y1) – LEV1(y) # �(Y2) – LEV2(y)

, �(Y1 |Y1 $ y) # �(Y2 |Y2 $ y) 

, Y1 #sl Y2 .

The latter equivalence is shown for instance by Antal (1997). ¬

Remark 6. The proof highlights that for risks of type sre(c), Lorenz order is
determined by the order of the according values of c. Moreover, since c1 and c2

were chosen arbitrarily the set of all risks which are of type sre(c) is even totally
ordered under the relation #L [see Remark 4, section 3] which motivates the
application as outlined in the next section.

4.2. Calculation of prices and RAC in a quasi risk-neutral setting

The data shown in table 1 below assume a selection of industrial storm exposures
in Belgium and the Netherlands. For the sake of focus, actuarial parameters
in this case study, i.e. those relating to the severity and annual frequency of
storm losses, are assumed to be given best-estimates and will not be discussed
in any detail. The labels, “Loc” and “Ins Val” denote the location and the
insured value, respectively. Throughout this section, sums insured, MPL and
RAC values are stated in million (mn.) of Euros, while (fair) premium values
are stated in thousands of Euros. Due to the typical pathways of European
cyclones, locations in Belgium and the Netherlands are usually exposed to the
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same storms, causing them to present comonotonic risks. For all locations the
value of c differs from the critical value of 4.07, as in (19), indicating that the
distribution function in (18) is well defined. Therefore the data satisfy all pre-
requisites of Theorem 1 and Remark 4, since (besides comonotonicity) these
ten locations are completely Lorenz ordered by their value of c, according to
Proposition 3. A full value cover is assumed for the sake of simplicity, meaning
that neither the insured nor the insurer imposes any loss limits other than the
location-specific MPL1. A common expected loss frequency of 3.5% percent
per location and per annum was assumed. In such a situation theory suggests
using a Poisson distribution. However, from a practical viewpoint, in the pres-
ence of such a low frequency the probability of more than one loss occurring
per year is negligibly low (an argument which is elaborated in some more detail
by Daykin, Pentikäinen, et al. (1994) in the context of so-called shadow claims).
This is why in this practical study a diatomic distribution with parameters
pi = 0.035 and ni = 1, 6i = 1, ..., 10 , respectively, is used for simplicity. The
diatomic representation of the loss frequency implies that with probability pi

one loss occurs at location i and accordingly, no loss occurs with the counter
probability 1 – pi. Thus, treating each location as a single risk unit Xi, the total
portfolio loss can be written as

& ,Z i N
i

i
i

1
1

10

1

10

= = =
==

Z X!! ! +
(23)
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TABLE 1

OVERVIEW OF EXPOSURE DATA AND PRICING RESULTS

Loc Ins Val MPL c �(Zi) H(Zi) RAC RAC* RAC+

1 261.9 26.6 4.31 21.8 49.4 1.38 21.4 25.0
2 233.7 19.3 4.26 16.5 37.3 1.04 16.3 18.1
3 130.2 13.2 4.17 12.4 27.8 0.77 12.0 12.4
4 64.1 8.8 4.08 9.1 20.4 0.57 8.9 8.2
5 47.8 7.9 4.05 8.4 18.7 0.52 8.1 7.5
6 36.7 7.3 4.04 7.9 17.6 0.49 7.7 6.9
7 29.9 6.9 4.03 7.5 16.7 0.46 7.2 6.5
8 22.8 6.4 4.00 7.1 15.7 0.43 6.7 6.0
9 19.3 5.7 3.96 6.6 14.7 0.41 6.4 5.4

10 14.9 4.3 3.84 5.6 12.2 0.33 5.2 4.0

Totals 861.3 106.4 n.a. 102.9 230.5 6.40 100 100

1 This is clearly an abstraction from reality since insurers would usually sublimit their exposures to
naturals perils in order to counteract loss accumulation.
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In accordance with the notation introduced before, Xi refers to the scaled loss
variable Xi /E(Xi ). Here, the pricing functional H takes into account that
no loss occurs with probability 1 – pi, which does not give rise to any premium
in keeping with Axiom 1. The total expected loss per location is obtained
by Wald’s identity, i.e. E(Zi) = pi E(Xi). Recalling (24), H(Zi) is nothing but
pi H(Xi), which is why

H(Zi) / �(Zi) = H(Xi) / �(Xi).

The latter ratio can thus be interpreted as the loading factor charged for loca-
tion i [see table 3 in the Appendix for a set of loading factors as a function of c ].

The determination of the (one-year) Risk Adjusted Capital (RAC), or more
precisely, the return on Risk Adjusted Capital (RoRAC), is an important issue
to insurers, since (in conjunction with the insurer’s b from the CAPM) it helps
investors to position an insurer relative to their efficient portfolio frontier [see
for details e.g. Zweifel, Auckenthaler, 2008]. Now recall that under quasi risk-
neutrality, the location-specific surcharges H(Zi) – E(Xi) can be interpreted as cer-
tainty-equivalent net cash-flows. Assuming discrete compounding for simplicity,
this permits to uniquely determine the respective present value of RAC as

RACi = [H(Zi) – �(Zi)] / rf , (25)

where rf denotes the one-year risk-free hurdle rate. The according RAC values
are shown in table 1 for an assumed hurdle rate of 2 percent per annum. Total
RAC, being defined as 

,RAC RACtot i
i 1

10

=
=

!

amounts to about 6 percent of total MPL, or Euro 6.4 mn. Table 2 shows that
this value is close to the 99.6% quantile of the aggregate loss distribution of
the portfolio risk as given in (23). This implies that only once in 250 years will
the aggregate loss burden exceed RACtot, forcing the insurer to raise capital
beyond this value.

It may be worthwhile to emphasize the sensitivity of these estimates to the
cutoff point chosen. At the 95% quantile, no RAC would have been necessary,
while at 99% quantile (a preferred choice in practical applications), RAC would
amount to some Euro 3.2 mn., just about one-half of the calculated value
[see table 2]. More generally, quantile-based rules for the determination of
RAC may expose an insurer to a great potential for error, particularly in the
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presence of highly skewed loss distributions. However, even when using the
exact RAC calculation rule, insurers may still be concerned about parameter
uncertainty, a topic which is not addressed in this paper but merits mentioning
[for details on the treatment of parameter uncertainty see e.g. Wang, 2003].
In table 1, the allocation as derived from the quasi risk-neutral pricing (indicated
by RAC*, in percent of RACtot), is juxtaposed to a typical practitioner’s rule-of-
thumb allocation RAC+, in percent of the very same amount RACtot. The rule
of thumb allocates RAC according to the location’s relative MPL, such that 

i .RAC
RAC

MPL

MPL
tot ii

i

1
10=

+

=
!

As can be seen from the last column of table 1, this rule biases RAC allocation
in favor of the locations with high MPL values. By way of comparison, the allo-
cation based on quasi risk-neutral pricing results in a more balanced RAC
allocation. Since RAC is often used not only as a measure of risk tolerance
but also as a means to measure underwriting performance, choosing an appro-
priate allocation rule is of considerable importance. The rule based on quasi
risk-neutral pricing can be argued to be preferable because it takes account of
the whole distribution function of the risks involved rather than just focussing
on the maximum (foreseeable) exposure to loss, a mere reflection of risk
aversion. In the present context it recognizes the fact that losses in property
insurance do not necessarily occur at locations with large MPL but also hit
locations of medium to small size.

4.3. Discussion

While providing interesting insights, this case study cannot claim general validity.
Usually, insurance portfolios are neither comonotonic nor are they completely
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TABLE 2

SELECTED PERCENTILES OF THE AGGREGATE PORTFOLIO DISTRIBUTION

loss amount percentile

0 96.50
0.71 97.00
1.08 97.50
1.47 98.00
1.98 98.50
3.32 99.00
5.89 99.50
6.45 99.60
8.54 99.75



Lorenz ordered. However, Theorem 1 can be generalized beyond comonoto-
nicity and Lorenz order in the following sense. Denote with X1 and X2 two
single risks (e.g. two locations as in the practical application). Then Axiom 3
implies 

H(X1 + X2) # H(X1) + H(X2).

In turn, provided X1 and X2 have finite expectation, H(X1) and H(X2) are
uniquely determined by H( X1) and H( X2). The latter quantities can be uniquely
calculated following the logic of Theorem 1 and the calibration motivated in
Remark 5, since X1 and X2 are both Lorenz ordered and perfectly correlated
with themselves, hence comonotonic. Proposition 2 [see section 2] ensures that
this reasoning also holds true for any convex mixing of X1 and X2, according
to the convexity property of H. This may be of relevance for instance in the
context of quota-share agreements between primary insurers and reinsurers.
In such a case, X1 and X2 may denote for instance layer risks of the same
underlying or even layer risks of different underlyings, e.g. an (excess of loss)
layer defined on a property risk blended with an (excess of loss) layer of a lia-
bility risk such that the quota-shares on both layers add up to 100%.

These considerations can be used to calculate at least an upper bound RAC
for any insurance portfolio. If PF (I ) = (Yi )i = 1, .., n denotes some insurance
portfolio, Yi single risks for all i, and RAC(PF (I )) the one-year RAC for this
portfolio, then the theory predicts 

fi i .�RAC PF H( )I

i

n

1
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=
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This inequality is of interest for at least three reasons. First, from a risk man-
agement point of view, it provides a value of the maximum RAC assuming
a complete lack of diversification effects in the portfolio under consideration.
Second, the ratio 
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may serve as an operational measure of diversification effects. Indeed, (27) can
be interpreted as the benefit of diversification to potential purchasers of insur-
ance. The closer the ratio on the left-hand side of (27) is to zero the higher the
benefit to the insured is. Third, from a shareholder value point of view, exces-
sive RAC, indicated by a violation of (27), is a cause of concern. Too much
costly capital would be tied up by underwriting and as a consequence, return
to capital is both understated and lower than necessary, to the detriment of
shareholders. However, this means that an insurance company runs the risk of
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not being on investors’ efficient frontier in terms of expected returns and volatil-
ity of returns, unless this shortfall can be made up by a success in capital
investments that outperforms the other investors in the capital market [see e.g.
Zweifel, Auckenthaler, 2008].

4.4. Conclusions and outlook

The objective of this contribution is to derive a quasi risk-neutral pricing rule
for insurance that amounts to an expected value, defined under a modified
probability measure. While assuring minimum relative entropy with respect to
the actuarial probability measure, this modification reflects risk aversion of
market actors in the insurance industry. To the extent that insurance risks are
comonotonic and exhibit Lorenz order, loading factors such as mirrored in
the insurer’s Risk Adjusted Capital can be determined uniquely. They call for
a higher surcharge to those (scaled) risks dominating under Lorenz order.
Moreover, a maximum price can be derived for any portfolio by abstracting
from diversification effects, i.e. by pricing every single risk unit independently.
Quasi risk-neutral pricing is applied to a set of industrial plants having expo-
sure to storm loss. Location-specific RAC values are calculated and compared
to a typical practitioner’s rule that allocates RAC according to the location’s
maximum possible loss (MPL) in proportion to the portfolio’s total MPL.
Since quasi risk-neutral pricing is based not only on the maximum exposure
to loss but also takes into account the shape of the entire loss distribution, it
avoids underreserving for risks that have considerable loss potential in the
small to medium range which fails to be reflected in their limited MPL values.

In view of further research, the maximum price derived for any portfolio
such as motivated in this work may be refined to yield more accurate upper
bounds (or even exact values) by including the effects of risk diversification.
In the same vein, insurers’ capital investments should be taken into account
because they provide additional hedging opportunities. These considerations
might result in a more general rule for RAC allocation, with RAC determined
by a coherent risk measure in the sense of Artzner, Delbaen, et al. (1999).
Finally, the relationships between distortion principles, coherent risk measures
and the concept of relative entropy merit further exploration, following the
suggestion by Reesor, McLeish, et al. (2003).

A. APPENDIX

As show in table 3 the sensitivity of the loading factors is highest for values
of c up to about 3.5. For higher values of c, such as considered in section 4.2,
they still increase but at a decreasing rate. These values may appear counter-
intuitive to insurance practitioners who would usually consider a risk char-
acterized by c = 1 as being more risky than one with c = 5 (e.g.) because the
former exhibits more exposure to MPL and hence seems to require more risk
capital. This apparent paradox can be explained by recalling the separation of
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scale and risk, mentioned in Remark 3 in section 3. According to the parame-
trization in (14), when c approaches zero this means approaching the determin-
istic case, i.e. MPL being realized with certainty2. While depending on the size
of the MPL, such an exposure to loss can call for a great deal of capital. How-
ever, in keeping with Axiom 1, this capital will be completely provided by the
premium charged, which in this case just coincides with the MPL and therefore
with the actuarially fair premium. Hence, in the limit, when c approaches zero,
there is no need or even justification (according to the “no rip-off” part of
Axiom 1) to charge a premium beyond the actuarially fair value. Conversely, a
risk with c = 5 exhibits quite a skewed loss distribution and the actuarially fair
premium is but 1.22 percent of the MPL, regardless of its value3. In case of
such a risk, the insurer needs to raise extra risk capital in order to fund a poten-
tial MPL. The associated opportunity cost of risk capital is reflected in the
loading factor of 2.33, as shown in table 3. A set of comparative loading fac-
tors for the generalized Pareto distribution, discussed for instance in Embrechts,
Klüppelberg, et al. (1997), can be found in Niederau [2000, see Appendix C].

B. APPENDIX

It is mentioned in section 2 that H satisfying the Axioms 1 to 5 is an integral
with respect to a distortion function in the sense of (4) while the distortion
function is characterized by the properties (p1)-(p3), noted in the very same
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TABLE 3

LOADING FACTORS AND RELATED PARAMETERS AS A FUNCTION OF THE C-VALUE

c-value z l (z) loading factor

1.0 0.5784 0.955 1.21
2.0 0.6199 1.492 1.45
2.5 0.6335 1.676 1.62
3.0 0.6644 2.115 1.97
3.5 0.6771 2.307 2.12
4.0 0.6856 2.439 2.22
4.5 0.6905 2.517 2.28
5.0 0.6932 2.560 2.33
5.5 0.6946 2.583 2.37
6.0 0.6953 2.595 2.39
6.5 0.6957 2.601 2.40
7.0 0.6960 2.606 2.41

2 Amunition plants or any industrial plant exposed to vapor cloud explosion may serve as an example.
3 This value can be verified using formula (20).



section. Imposing the implicit equation (14) [see section 3] as equality con-
straint on the maximizing entropy condition, results in the augmented first-
order condition
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which while differentiating with respect to f implies that
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( ln f (x) + 1 – lx = 0

( ln f (x) = lx – 1

( f (x) = nelx.

From the necessary prerequisite of f (x) being a proper density function such
that #(0,1) f (x) = 1, it follows that #(0,1) elx = 1/n and hence n = –l / (1 – el). Insert-
ing the normalizing constant n in the expression of f (x) above, one obtains
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Integrating with respect to x over the unit interval yields
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which corresponds to the exponential operator of (9) [see section 3], subject
to a switch in notation. Hence, the density in (29) is the solution of the prob-
lem in (28). However, since the properties (p1)-(p3) have not been specified
explicitly as constraints in (28), it needs to be ensured that they are satisfied
by (30) to guaranty that the entropy maximizing density found in (29) is still
optimal. But (p1) and (p3) are obviously satisfied by (30) because it is just a
scaled exponential distribution function, whilst convexity of the very same
expression, the requirement in (p2), is verified in Niederau [2000, see Appen-
dix B].

While l appears as a Lagrange multiplier in (28), it also has an economic
interpretation as alluded to next. The (heuristic) interpretation of a parame-
ter in a distortion function as ‘risk-aversion parameter’ is not new. Wang (1995)

QUASI RISK-NEUTRAL PRICING IN INSURANCE 335



for instance alludes to the ph-transform parameter as risk-aversion parameter.
In the present case of the exponential distortion, note that in the limit for
l " 0 the distribution function (30) is a uniform distribution scaled to the unit
interval. According to (4), in this limit case H just corresponds to the actuarial
loss expectation being indicative of risk-neutrality. According to the rule of
calibration in (14), the limit case l = 0 is obtained for degenerate random
prospects, defined as being completely characterized by their first moment.
In such a case, the coincidence of H with the constant value that such a random
prospect assumes for all states of nature implies equality on both sides of (2)
in Axiom 1. Some practical intuition in case of the Swiss Re property curves
with respect to this limit case (when the characteristic parameter c approaches
zero) is already given in the previous Appendix. Indeed, in case of the
exponential distortion operator and subject to the assumptions underlying
Theorem 1, there is some momentum to the perception of l as a measure of
risk-aversion beyond a purely heuristic interpretation. A possible reference for
further detail is given in Remark 5 [see section 3].
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