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ABSTRACT

In this paper, a long-term equilibrium model of a local market is developed.
Subject to minor qualifications, the model is arbitrage-free. The variables
modelled are the prices of risk-free zero-coupon bonds – both index-linked
and conventional – and of equities, as well as the inflation rate. The model is
developed in discrete (nominally annual) time, but allowance is made for
processes in continuous time subject to continuous rebalancing. It is based
on a model of the market portfolio comprising all the above-mentioned asset
categories. The risk-free asset is taken to be the one-year index-linked bond.
It is assumed that, conditionally upon information at the beginning of a year,
market participants have homogeneous expectations with regard to the forth-
coming year and make their decisions in mean-variance space. For the purposes
of illustration, a descriptive version of the model is developed with reference
to UK data. The parameters produced by that process may be used to inform
the determination of those required for the use of the model as a predictive
model. Illustrative results of simulations of the model are given.
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1. INTRODUCTION

Numerous stochastic models have been developed in the actuarial literature.
In these models, the issues of arbitrage and equilibrium are generally not
addressed; the models tend to be based on ex-post estimates. This means that
they are essentially developed as descriptive models. While descriptive models
may have use in actuarial practice, predictive models are needed for the pric-
ing of the liabilities of financial institutions advised by actuaries and for the
determination of capital adequacy. If a descriptive model is used for predictive
purposes, however, it may produce risk-adjusted expected returns that exceed
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those of the market for some asset categories and understate those of the mar-
ket for others.

If a model is to be used to indicate under- or over-priced asset categories,
then it should not assume no-arbitrage or equilibrium conditions. For many
actuarial applications, however, a model is required that will reflect market
expectations. These applications include the estimation of fair-value prices of lia-
bilities and the determination of benchmarks for the mandating of investment
management and the measurement of investment performance. For the purposes
of such applications, a model should be arbitrage-free. It should also arguably
be an equilibrium model; that is, it should assume that, at any time, all market
participants (including the financial institution concerned) are satisfied with
their current exposures to the respective asset categories at current market
prices after any adjustments at that time to their exposures and to those prices.
Otherwise it cannot be held that the model reflects fair value.

While actuarial practice may relate to short-term liabilities, this paper
focuses on long-term modelling typically required for life offices and retirement
funds. A long-term equilibrium model of a local market is developed. Subject
to minor qualifications, the model is arbitrage-free. The variables modelled are
the prices of risk-free zero-coupon bonds – both index-linked and conven-
tional – and of equities, as well as the inflation rate. These variables have been
chosen as they comprise major constituent variables of the assets and liabilities
of life offices and retirement funds. The model is developed in discrete (nomi-
nally annual) time, but allowance is made for processes in continuous time
subject to continuous rebalancing. It is based on a model of the market portfo-
lio comprising all the above-mentioned asset categories combined. That model
is used as the basis of development of the arbitrage-free equilibrium model of
its constituent asset categories. The risk-free asset is taken to be the one-year
index-linked bond. It is assumed that, conditionally upon information at the
beginning of a year, market participants have homogeneous expectations with
regard to the forthcoming year and make their decisions in mean-variance space.

The distinction between a descriptive model and a predictive model is drawn
in Thomson (2006). In this paper, that distinction is used to distinguish between
the development and parameterisation of the proposed model for descriptive
purposes and its parameterisation for predictive purposes. For the purposes of
illustration, a descriptive version of the model is developed with reference to
United Kingdom data. The parameters produced by that process may be used
to inform the determination of those required for the use of the model for
prediction purposes. Illustrative results of simulations of the model are given.

Relevant literature is reviewed in section 2. The theory of the equilibrium
model is developed in section 3. The theory of the market model – that is,
the model of the market portfolio – is developed in section 4. In section 5,
a descriptive version of the model is estimated with reference to UK data.
Illustrative results of simulations of the predictive model are presented in
section 6. Conclusions are drawn, and some suggestions for further research
are given, in section 7.
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2. LITERATURE REVIEW

There have been a number of publications on the topic of stochastic models
of investment returns. The Wilkie (1986) model was the first published sto-
chastic investment return model for actuarial use. The model was extended in
Wilkie (1995).

Thomson (1996) proposed a stochastic model of investment returns specifically
for South Africa.

Whitten & Thomas (1999) suggested a threshold autoregressive system (Tong,
1990) as an improvement to the Wilkie (1995) model.

A model referred to by its authors as the “TY model” was proposed by
Yakoubov, Teeger & Duval (1999).

All the above models include variously defined short-term and long-term
interest rates. In effect, this implies a two-factor model for the term structure
of interest rates. A model of the rest of the yield curve can be derived from the
realisation of the short-term and long-term interest rates using the technique of
principal-components analysis. (See Maitland (2002) for an application of this
technique to the interpolation of the South African yield curve.)

Hibbert, Mowbray & Turnbull (unpublished) proposed a model that gener-
ates consistent values for the term structure of real and nominal interest rates,
inflation rates, equity capital returns and dividend yields. They used a two-
factor Hull-White (1990) model for the real interest rates.

Affine models are models in which the short-term interest rate can be
expressed as (Dai & Singleton, 2000):

i ;r t tb i
i

M

0
1

= +
=

b X!] ]g g

where:

Xi (t) are random state variables; and
M is the number of random factors driving the interest-rate model.

It has been shown (e.g. Duffie & Kahn, 1996) that affine models yield convenient
closed-form expressions for the prices of zero-coupon bonds. For example, the
price at time t of a zero coupon maturing at time T is expressed as:
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where A (t,T ) and Bi (t,T ) are parameters expressed as functions of t and T
whose forms need not concern us here. In other words, the exponent of the price
formula is itself an affine function of the state variable. The model used by
Hibbert, Mowbray & Turnbull (op. cit.) belongs to the affine class.
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None of the above papers investigates the modelling of the market at
equilibrium. While some of them may be arbitrage-free, the requirements of
equilibrium are more exacting: under arbitrage-freedom a market participant
cannot make a risk-free profit, whereas under equilibrium a market participant
cannot even make a risk-adjusted profit.

3. THE EQUILIBRIUM MODEL

In this section the theory of the arbitrage-free equilibrium model is developed.
For the purposes of this section it is assumed that a model of the return during
year t on the market portfolio has been developed, which may be expressed in
the form:

dMt = mMt + sMt eMt ;

where:

mMt is the expected return during that year, conditional on information at the
start of that year;
sMt is the standard deviation of the return during that year, conditional on
information at the start of that year; and
eMt + N(0,1) is such that cov(eMt, eMs ) = 0 for t ! s.

The development of this model is deferred to section 4.

3.1. Assumptions

We assume that a local market comprises default-free index-linked and con-
ventional government-issued zero-coupon bonds and equities. In principle, all
risky capital assets (e.g. corporate loan stock, warrants and fixed property)
should be included. Foreign assets should also be included to the extent to
which local investors (i.e. investors with liabilities in the local currency) invest
in such assets. For the purposes of this paper, such assets were excluded.

On the other hand the market is limited to capital assets in which equilibrium
pricing may reasonably be supposed to be taking place. It therefore excludes
unmarketable assets. In principle, also, assets held by foreign investors in local
capital may be also excluded. This was not done in this paper. Derivative instru-
ments and products issued by financial institutions should not be included.
Only capital assets issued in the primary market to cover real investments in
the economy should be included. For all other assets there are equal and opposite
counterparties, whose holdings offset each other. The model may be used to
price such instruments as described, for example, in Thomson (2005), but that
is beyond the scope of this paper.

We further assume that market participants have homogeneous expecta-
tions and are able to borrow or lend unlimited amounts at the same risk-free
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return, and that the market is frictionless. Homogeneous expectations are
required because, as indicated in section 1, a model is required that will reflect
market expectations. The extension of the model to allow for differences
between borrowing and lending rates and for friction is left for further research.
At the end of a year, before decisions are made for the following year, the means
and variances of factors affecting the average returns on each asset during the
forthcoming year are known. (The choice of one-year intervals is arbitrary).
For this purpose, we define the return on an asset during a year as the average
instantaneous real rate of return over the year. At the beginning of the
year, portfolios are selected by optimisation in mean-variance space so that
the market is in equilibrium (i.e. so that all participants are satisfied with their
positions in every asset at current prices). The extension of the model to higher
moments than mean and variance is also a matter for further research. Real
returns are used because, in the final analysis, equilibrium must relate to goods
and services, not to currencies. Here the mean and variance are those of the
returns during the forthcoming year.

Arising from these assumptions, the capital-asset pricing model (CAPM)
applies to the local market for a particular year, conditionally upon informa-
tion and expectations at the end of the previous year. This follows from the
assumptions of the CAPM (Elton & Gruber, 1995: 295). This model ensures,
inter alia, that the equilibrium condition is satisfied.

In this paper, a model of the form of equation (1) is used for zero-coupon
bonds. Instead of adopting the usual approach of deriving the pricing formula
from the process for the short-term interest rate, the reverse is done here.
In this way one can allow greater generality in the modelling of the term struc-
ture, as well as using the current yield curve as the starting point for simulations.

In this paper, a two-factor term-structure model is proposed. Although a
two-factor model may adequately capture the volatility of the yield curve
(e.g. Maitland, op. cit.), it suffers from the problem of not being able to mimic
the correlation between the forward rates of different maturities. In particular,
a two-factor model will over-estimate the correlation between forward rates
for neighbouring maturities and under-estimate the correlation between forward
rates with maturity dates far apart (Rebonato, 1998). This matter is further dis-
cussed in section 7.

3.2. Index-linked bonds

Let PIt(s) denote the price at time t = 0, …, T of an index-linked bond matur-
ing at time t + s, where T is the time horizon to which projections will be
required. For i, k = 1, …, 6 let:

eit + N(0,1); and (2)

cov(eit, ekt ) = 0 for i ! k. (3)
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Let:

YI; t(s) = –ln{PIt(s)} = fIt(s){1 + bI1(s)j1t + bI2(s)j2t}; (4)

where:

for j = 1,2:

j ;a et ij it
i 1

6

=
=

j ! and (5)
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6

=
=

! (6)

The reason for the six dimensions referred to in equations (5) and (6) becomes
apparent below. In equation (6), the value is an arbitrary scaling factor; its
value is set so as to simplify equation (26) below. The dependence of the para-
meter fIt(s) on t is explained below. From (4) it follows that the return on that
bond during year t – i.e. the interval (t – 1, t] – is:

dIt(s) = ln s
s

1,I t

It

1 +-P
P
]

]

g

g
= YI, t –1(s + 1) – YIt(s). (7)

The expected return is:

mIt(s) = YI, t –1(s + 1) – fIt(s). (8)

Thus, from (4):

dIt(s) = mIt(s) – fIt(s){bI1(s)j1t + bI2(s)j2t}. (9)

Without loss of generality:

bI1(0) = bI2(0) = 0.

Therefore, from (7), since PIt(0) / 1, the risk-free return for year t is:

dIt(0) = YI, t –1(1). (10)

Without loss of generality, j1t and j2t may be taken as the drivers of the short
rate (s = 1) and a suitable long rate (say s = t) respectively so that:

t
1 bI1(t) = 0; and

bI2(1) = 0. (11)
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3.3. Inflation

The average instantaneous rate of inflation during year t is modelled as:

gt = mgt + bg j3t ; (12)

where:

i3 ;aj et i t
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6

=
=

! (14)

The determination of mgt is explained in section 3.4 below.

3.4. Conventional bonds

Let PCt(s) denote the price at time t of a conventional bond maturing at time
t + s. Let:

YCt(s) = ln{PCt(s)} = fCt(s){1 + bC1(s)j4t + bC2(s)j5t}; (15)

where:

for j = 4,5:

j ;a et ij it
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6

=
=

j ! and (16)
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=
=

! (17)

Then the return on that bond during year t is:

dCt(s) = YC, t –1(s + 1) – YCt(s) – gt. (18)

and the expected return is:

mCt(s) = YC, t – 1(s + 1) – fCt(s) – mg, t. (19)

Thus, from (12) and (15):

dCt(s) = mCt(s) – bg j3t – fCt(s){bC1(s)j4t + bC2(s)j5t}. (20)
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As for index-linked bonds (section 3.2):

bC1(0) = bC2(0) = bC2(1) = 0.

Suppose that the inflation risk premium

ft = mCt(0) – mIt(0)

is constant, so that:

ft = f for all t.

Hence, from (10) and (19):

mgt = YC, t – 1(1) – YI, t – 1(1) – f. (21)

3.5. Equities

Let PEt denote the price of equities at time t, including reinvested dividends.
Then the return on equities during year t is:

dEt = ln
ln

,E t

E

1-

t

P
P

= mEt + bE1j6t ; (22)

where:

mEt is the expected return;
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3.6. Notional risky assets

If there are 6 risky assets in a market and an investor maintains constant expo-
sure wi (at market prices) to asset i during a year then, if all income is rein-
vested when paid, the total return is:

i ;i
i 1

6

=

dw!

where di is the average return on asset i during that year.
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Consider a set of 6 notional risky assets, whose return during year t is:

dit = c + deit for i = 1, …, 6;

where eit is as defined in section 3.2.
Now jjt being a linear function of eit, and dIt(s), dCt(s) and dEt being linear

functions of jjt, it follows from the preceding paragraph that any portfolio of
index-linked bonds, conventional bonds and equities may be constructed from
a portfolio of notional risky assets, and vice versa, with constant exposure to
the constituents of the respective portfolios during year t. Furthermore, the
decomposition of any portfolio of actual assets into the corresponding portfo-
lio of notional assets constitutes a no-arbitrage hedging strategy, since the returns
on the corresponding portfolio will be identical. This means that, as between the
asset categories modelled, the model developed in this paper is arbitrage-free.

It may be shown that, in mean-variance space, the equilibrium market port-
folio will reduce to equal exposure to each of these assets. The return on the
market portfolio is thus:

iM ;d6
1

t t
i 1

6

=
=

d !

and hence:

c = mMt ;

i.e. the expected return on the market portfolio. It may be shown that, since
cov{eit, ejt} = 0 for i ! j, the variance of the return on that portfolio is:

Mt ;d
s 6

2
2

=

so that:

d = 6 sMt.

From the above it may be shown that:

dMt = mMt + sMt lt ;

where:

i .l e
6

1
t t

i 1

6

=
=

!

From (5), (13), (16) and (23):

j ;a et ij it
i 1

6

=
=

j ! (25)
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where, from (6), (14), (17) and (24) the common scaling factor is:

.a 6ij
i 1

6

=
=

!

From the above, and from (2) and (3), it may be shown that:

sjj Mt = covt – 1{jjt, dMt} = sMt . (26)

As explained in section 3.2, the simplicity of this equation is attributable to the
choice of scaling factor.

3.7. Development of the equilibrium model

In order for an asset X ! {(I; t,s), (C; t,s), (E; t)} to satisfy the CAPM during
year t, and therefore to ensure that the model is an equilibrium model, we
require that:

mX = dIt(0) + kt sXM ; (27)

where:

Mt

M .
s

m 0
t

t It
2=

-
k

d ] g
(28)

This is referred to by some authors as the ‘market price of risk’, though Elton &
Gruber (op. cit.: 302-3) criticise that usage, preferring:

M

M .
m 0

t
t

t It=
-

k s
d ] g

For a given model of the return on the market portfolio in year t, (28) may be
used to determine kt. For each asset category, given the covariance of its return
with that of the market, (27) may then be used to determine its expected return.

In particular, for each index-linked bond:

mIt(s) = dIt(0) + kt sIMt(s) ; (29)

where, from (9) and (26):

sIMt(s) = covt – 1 [dIt(s), dMt ] = – sMt fit(s){bI1(s) + bI2(s)}. (30)

Making fIt(s) the subject of equation (8), we have, for s < t:

fIt(s) = YI, t – 1(s + 1) – mIt(s). (31)
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From the above it may be shown that, for s < t:
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g g
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(32)

In order to obtain the full yield curve, equation (32) will need to be evaluated
for all values of s. A problem arises in the determination of fIt(s) for the last
point of the yield curve (s = t), where bI1(t + 1) and bI2(t + 1) are not defined.
An assumption is required about the behaviour of the yield curve beyond t.
For the sake of simplicity it is assumed that, at any time t, the one-year for-
ward rate for maturity at time t + t is equal to the equivalent forward rate for
maturity at time t + t – 1; i.e.:
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whence:

YI, t – 1(t + 1) = 2YI, t – 1(t) – YI, t – 1(t – 1). (33)

From (7) and (33), since bI1(t) = 0 it may be shown that:
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(34)

Similarly we require that, for each conventional bond:

mCt(s) = dIt(0) + kt sCMt(s) ; (35)

where, from (20) and (26):

sCMt(s) = covt – 1{dCt(s), dMt} = – sMt [bg + fCt(s){bC1(s) + bC2(s)}]. (36)

Making fCt(s) the subject of equation (19), we have, for s < t :

fCt(s) = YC, t – 1(s + 1) – mgt – mCt(s).

From the above it may be shown that, for s < t :

M
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g

g g

g g

" ,
(37)

As for index-linked bonds:
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For inflation, from (12) and (26):

sgMt = covt – 1{gt, dMt} = bg sMt. (39)

Finally, for equities:

mEt = dIt(0) + kt sEMt ; (40)

where, from (22) and (26):

sEMt = covt – 1{dEt, dMt} = bE1sMt. (41)

3.8. Summary of the equilibrium model

The model may be implemented as follows.

STEP 1:

The parameters required are as follows:

– for s = 1, …, t:
YI0(s) and YC0(s); and
bIj(s) and bCj(s) for j = 1, 2; and

– bg ;
– bE1;
– f; and
– aij for i, j = 1, …, 6.

STEP 2:

For t = 1 we then determine the variables mMt and sMt, using the market model.
Also:

dIt(0) = YI, t – 1(1) (equation (10)).

STEP 3:

Using Monte Carlo methods we then simulate pseudorandom standard nor-
mal variables:

eit for i = 1, …, 6.
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STEP 4:

From the above values we calculate:

Mt

k
s
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t

Mt It
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- d ] g
(equation (28));

for j = 1, …, 6:

j a et ij it
i 1

6

=
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j ! (equation (25));

mgt = YC, t – 1(1) – YI, t – 1(1) – f (equation (21));

gt = mgt + bg j3t (equation (12));

for s = 1, …, t – 1:
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(equation (38));

for s = 1, …, t :

sIMt(s) = – sMt fit(s){bI1(s) + bI2(s)} (equation (30));

sCMt(s) = – sMt [bg + fCt(s){bC1(s) + bC2(s)}] (equation (36));

mIt(s) = dIt(0) + kt sIMt(s) (equation (29));

mCt(s) = dIt(0) + kt sCMt(s) (equation (35));

dIt(s) = mIt(s) – fIt(s){bI1(s) j1t + bI2(s) j2t} (equation (9));

dCt(s) = mCt(s) – bg j3t – fCt(s){bC1(s) j4t + bC2(s) j5t} (equation (20));

sEMt = bE1sMt (equation (41));

mEt = dIt(0) + kt sEMt (equation (40));

dEt = mEt + bE1j6t (equation (22)).
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STEP 5:

For t < T, we calculate:

for s = 1, …, t :

YIt(s) = YI, t –1(s + 1) – dIt(s) (from equation (7)); and

YCt(s) = YC, t –1(s + 1) – dCt(s) – gt (from equation (18)).

Steps 2 to 5 are repeated for t = 2, …, T.

4. MARKET MODELS

In the equilibrium model, no consideration is given to the processes governing
the variables mMt and sMt.

Depending on the local market, these variables can be treated as constants, or
they can be modelled using a model such as a regime-switching or ARCH model.

It is not possible to assume that mMt is constant, otherwise whenever
dIt(0) > mM, we have kt < 0, which means that the market price of risk is negative.
In order to address this problem, the expected return on the market portfolio
is expressed as a function of the risk-free return as follows:

mMt = gdIt(0) + h for dIt(0) > 0

= dIt(0) otherwise. (42)

For dIt(0) > 0, equation (42) is justified on the grounds that the risk premium

M

M .p
m 0

t
t

t It=
-
s

d ] g

is positive, though it may vary according to the level of dIt(0). In general, since
the sensitivity of the volatility of the return on the market to the risk-free return
may be expected to be positive, it may be expected that g > 1. For dIt(0) # 0,
this does not apply; under such circumstances it is effectively being assumed
that the risk premium is zero. While this is an arbitrary assumption, it is unlikely
to apply frequently.

The exploration of alternative market models is left for further research.

5. DESCRIPTIVE ESTIMATION OF THE MODEL

The method of determination of the model parameters is explained in the
Appendix for the purpose of the estimation of a descriptive version of the model.
In this section the results of the descriptive estimation of the parameters are
presented.
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FIGURE 1. Yield curves of conventional and index-linked bonds as at 31 December 2006.

The historical data required include, for each year:

– the zero-coupon yield (conventional and index-linked) for each maturity
modelled (in this case from 1 to 30 years at yearly intervals);

– the total return on equities;
– the inflation rate; and
– the composition of the market portfolio.

The composition of the market portfolio is represented by the split of the total
investment market capitalisation into equity and conventional and index-linked
bonds. For this purpose, the market capitalisation of the bonds was split by
term to maturity. Since the bonds being modelled are zero-coupon bonds, each
traded bond was decomposed into a series of zero-coupon bonds, which were
aggregated by maturity date into annual buckets.

For the purposes of the illustrative estimation of the descriptive model, the
total market capitalisation of the FTSE All-Share Index was taken as a proxy
for the market capitalisation of equities.

The yields on conventional bonds were obtained from the zero-coupon
yield curves published by the UK Debt Management Office (DMO). These are
denoted as CONV01, …, CONV30. The history of these yields was obtained
from 31 December 1979 to 31 December 2006 at yearly intervals.

The yields on index-linked bonds were likewise obtained from zero-coupon
yield curves published by DMO. The index-linked zero-coupon bond yields for
maturities 1, …, 30 years are denoted as ILB01, …, ILB30. These were obtained
at yearly intervals from 31 December 1985 to 31 December 2006.

Figure 1 shows the yield curves of conventional and index-linked bonds as
at 31 December 2006.
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Historical inflation figures were derived as:

gt = ln R
R
t

t

1-

where Rt is the value of the UK retail prices index at the end of year t1.
Historical equity returns were derived from the FTSE All-Share total-return

index as follows:

dEt = ln T
T
t

t

1-
;

where Tt is the value of the relevant equity index at the end of year t 2.
Market capitalisations for bond markets were available only from 31 Decem-

ber 1998 onwards3. It was assumed that the split of total market capitalisation
between equities and bonds prior to 1998 was the same as at 31 December
1998.

Since the yield curves for index-linked bonds were available only since
31 December 1985, it was assumed that the market capitalisation of those
bonds was zero before that date. Since the market capitalisation of index-linked
bonds is small compared with that of conventional bonds and equities, this is
not expected to skew results significantly.

For the purposes of estimating mMt in terms of equation (42), a linear regres-
sion was carried out; for this purpose, the risk-free return for the years prior
to 1986 was calculated using the simplifying assumption that:

dIt(0) = dCt(0) – f.

It was found that the intercept constant h was not significant at the 95% level. Fix-
ing the intercept at zero, we obtain an estimate of g = 1.833 ( p-value = 0.008).

The estimated parameters of the yields on zero-coupon conventional and
index-linked bonds are shown in Table 1. The other model parameters were esti-
mated as follows:

bg = – 0.0083;
bE1 = 0.0685; and

sM = 0.12026.

The inflation risk premium (f) was fixed at the arbitrary value of 0.3% per
annum. Further research is required on the reliable estimation of the inflation
risk premium.
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1 Data supplied by Professor A.D. Wilkie, InQA Limited.
2 Source: Communication from info@ftse.com
3 Source: www.dmo.gov.uk



STOCHASTIC MODELS FOR ACTUARIAL USE 355

TABLE 1

ESTIMATED PARAMETERS OF THE MODEL FOR CONVENTIONAL AND INDEX-LINKED BONDS

s YI,0(s) bI,1(s) bI,2(s) YC,0(s) bC,1(s) bC,2(s)

1 0.0220 0.1302 0.0000 0.0520 –0.1208 0.0000
2 0.0441 0.1300 –0.0001 0.1026 –0.1140 –0.0236
3 0.0661 0.1226 0.0192 0.1518 –0.1072 –0.0357
4 0.0868 0.0834 0.0253 0.2001 –0.0861 –0.0422
5 0.1047 0.0862 0.0502 0.2472 –0.0890 –0.0484
6 0.1205 0.0733 0.0571 0.2929 –0.0799 –0.0525
7 0.1346 0.0633 0.0609 0.3373 –0.0712 –0.0560
8 0.1472 0.0554 0.0628 0.3807 –0.0631 –0.0593
9 0.1587 0.0491 0.0636 0.4234 –0.0555 –0.0624
10 0.1691 0.0439 0.0637 0.4655 –0.0486 –0.0654
11 0.1785 0.0395 0.0635 0.5071 –0.0421 –0.0683
12 0.1872 0.0357 0.0632 0.5483 –0.0361 –0.0711
13 0.1951 0.0324 0.0629 0.5889 –0.0307 –0.0738
14 0.2024 0.0294 0.0627 0.6290 –0.0257 –0.0764
15 0.2092 0.0266 0.0627 0.6683 –0.0213 –0.0789
16 0.2154 0.0241 0.0627 0.7070 –0.0174 –0.0813
17 0.2211 0.0218 0.0630 0.7449 –0.0140 –0.0835
18 0.2265 0.0196 0.0634 0.7821 –0.0112 –0.0856
19 0.2315 0.0175 0.0639 0.8185 –0.0089 –0.0875
20 0.2362 0.0155 0.0646 0.8542 –0.0070 –0.0892
21 0.2407 0.0136 0.0655 0.8892 –0.0054 –0.0908
22 0.2450 0.0118 0.0665 0.9236 –0.0041 –0.0923
23 0.2491 0.0101 0.0677 0.9574 –0.0031 –0.0936
24 0.2530 0.0084 0.0690 0.9908 –0.0024 –0.0949
25 0.2569 0.0068 0.0702 1.0236 –0.0018 –0.0960
26 0.2607 0.0053 0.0714 1.0562 –0.0014 –0.0970
27 0.2645 0.0038 0.0725 1.0888 –0.0010 –0.0980
28 0.2684 0.0025 0.0736 1.1214 –0.0007 –0.0988
29 0.2722 0.0012 0.0746 1.1540 –0.0003 –0.0997
30 0.2760 0.0000 0.0756 1.1866 0.0000 –0.1005

TABLE 2

COVARIANCES OF jjt

j1t j2t j3t j4t j5t j6t

j1t 6.00 0.11 2.04 3.49 0.84 0.02
j2t 0.11 5.78 –0.36 0.28 2.62 3.13
j3t 2.04 –0.36 3.90 1.03 0.02 1.00
j4t 3.49 0.28 1.03 3.09 1.03 –0.34
j5t 0.84 2.62 0.02 1.03 1.89 1.02
j6t 0.02 3.13 1.00 –0.34 1.02 3.75



The covariance matrix of jjt and the coefficients aij (see Tables 2 and 3 respec-
tively) were determined as described in the Appendix.

6. ILLUSTRATIVE RESULTS OF THE MODEL

In this section, illustrative results of the predictive model are presented.
Figures 2 to 7 show the results of the projections based on the parameters

estimated from historical data and shown in the previous section. The simulated
variables include short-term interest rates (one-year zero-coupon yields, both
conventional and index-linked), long-term interest rates (20-year zero-coupon
yields, both conventional and index-linked), inflation rates and equity returns.
For each variable the historical values are shown and the mean and 95% confidence
intervals are shown for each of the next 20 years based on 10,000 simulations
of the model.

Equity returns show fairly stable means and confidence limits, though it
should be noted that the scale of Figure 2 is greater than those of the other
figures. In fact, while the drift is gradual, mean returns drift downwards to
very low levels, even though they remain greater than risk-free returns. There
were two apparent historical breaches of the confidence limits, both on the
downside. This is not unreasonable over a 27-year period.

In general, the other variables exhibited an initial widening of the funnel
of doubt until the lower confidence limit reached low levels, after which the
lower confidence interval contracted. The exception was the upper confidence
limit of short-term index-linked bonds (Figure 7), which also contracted.
This contraction may be largely explained by the theoretical lower bound of
zero, coupled with the decreasing mean: although the distribution is skew, it
is not sufficiently skew to produce indefinite expansion of the upper tail.

As shown in Figure 3, inflation rates breached the asymptotes of the
confidence limits two or three times – again not particularly remarkable, espe-
cially since the asymptotes are driven by current yield curves, not by those in
1979.
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TABLE 3

COEFFICIENTS aij

j \ i 1 2 3 4 5 6

1 2.449 0.000 0.000 0.000 0.000 0.000
2 0.046 2.403 0.000 0.000 0.000 0.000
3 0.833 –0.166 1.782 0.000 0.000 0.000
4 1.427 0.087 –0.083 1.018 0.000 0.000
5 0.344 1.084 –0.048 0.435 0.634 0.000
6 0.010 1.300 0.678 –0.403 –0.297 1.161



FIGURE 4. Mean and 95% confidence interval for yields on long-term conventional bonds.

FIGURE 3. Mean and 95% confidence interval for inflation.

FIGURE 2. Mean and 95% confidence interval for equity returns.
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As shown in Figures 4 to 7, yields on bonds – both conventional and index-
linked – have reduced over the historical period. While the means and lower
confidence limits continue this trend, the upper confidence limit allows for a
possible reversal.
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FIGURE 7. Mean and 95% confidence interval for yields on short-term index-linked bonds.

FIGURE 6. Mean and 95% confidence interval for yields on short-term conventional bonds.

FIGURE 5. Mean and 95% confidence interval for yields on long-term index-linked bonds.

As shown in Figures 5 and 7, there remains a small probability of negative
yields (both nominal and real), which, in principle, allows a possibility of arbi-
trage. This is discussed in section 7.
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7. CONCLUSIONS

The model presented in this paper is a long-term model of a local market.
It comprises a model of the market portfolio, which, subject to certain con-
straints, may be specified by the user, as well as an equilibrium model of equity,
bonds and inflation. While no arbitrage is present as between the asset classes
modelled, there remains a small probability of negative yields (both nominal
and real), which, in principle, allows a possibility of arbitrage. That may be
avoided by eliminating projections that produce negative yields, or by applying
a lower limit of zero, but this will have the effect of distorting the distribution
of the returns on the asset classes so that arbitrage may be possible between
asset classes, or so that the equilibrium equations do not apply, or so that the
fidelity of the predictive model to the descriptive model is compromised.

In practice, negative yields should be monitored. If the effects are negligi-
ble in relation to the purpose to which the model is being applied, they may
be ignored or avoided at the discretion of the user. Otherwise the model should
not be used. It should be recognised, however, that, while negative yields
allow arbitrage in principle, it may in practice be difficult to achieve. Particularly
in the case of real yields, it is impossible to hold the basket of goods and ser-
vices comprising a retail prices index without considerable cross-hedge risk or
holding costs. Even in the case of nominal yields, there are costs in holding cash.

As mentioned in section 3.1, a two-factor model of the term structure of
interest rates overestimates the correlation between forward rates for neigh-
bouring maturities and underestimates the correlation between forward rates
with maturity dates far apart. Depending on the application for which the
model is required, it may be necessary to consider a third factor for either or
both of the models for conventional and index-linked bonds.

The following further research is required:

– the compilation of more historical data;
– the inclusion of corporate loan stock and fixed property;
– the inclusion of a third factor for either or both of the models for conven-

tional and index-linked bonds;
– the comparison of results for various markets;
– the estimation of the inflation risk premium and the modelling of inflation;
– the development of, and comparisons between, alternative models of the

return on the market portfolio;
– the advantages and disadvantages of including a third factor in the bond

pricing models;
– an investigation of the problem of negative yields; and
– the use of the model for research on the pricing of liabilities.
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APPENDIX

A. DESCRIPTIVE ESTIMATION OF THE MODEL

A.1. Introduction

In this appendix, the method of determination of the model parameters is
developed for the purpose of the estimation of a descriptive version of the model.
The purpose of this process is to estimate values of the parameters required both
for the equilibrium model and for a market model. While the mathematical
specification of the equilibrium model does not require specification of the
market model, the estimation of the former requires estimation of the latter.
The latter is therefore dealt with first.

In determining the required parameters, we deliberately invoke the require-
ments of equilibrium, particularly through the use of the relationships between
expected returns on the respective asset categories and the expected return on
the market portfolio, as discussed in section 3.7. This means that the estimates
of these expected returns are not necessarily unbiased estimates ex post.
Equilibrium is essentially established ex ante, and it is therefore important that,
so far as it is possible, ex-ante expected values be estimated. Under the rational
expectations hypothesis, which is normally invoked in the estimation of stochastic
investment models, it is assumed that ex-post estimates are unbiased estimates
of ex-ante expectations. Where that hypothesis conflicts with the requirements
of equilibrium modelling, it is not invoked in this paper.

A.2. Estimation of the Market Model

Consider a sample historical period t = t0 + 1, t0 + 2, …, t0 + T. Let gt denote the
continuously compound rate of inflation during year t. Let yIt(s) and yCt(s)
denote the effective continuously compound spot yields at time t on zero-
coupon bonds – index-linked and conventional respectively – maturing at time
t + s. We assume that, for each t, these have been graduated (either paramet-
rically or non-parametrically) using standard techniques for the fitting of yield
curves (see for example Van Deventer et. al. (2004)). The corresponding one-
year returns are:

dIt(s) = YI, t –1(s + 1) – YIt(s); and

dCt(s) = YC, t –1(s + 1) – YCt(s) – gt ;
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where:
YIt(s) = s yIt(s) ; and

YCt(s) = s yCt(s).

Let dEt be the continuously compound (real) return on equities during year t.

Let:

– wEt be the observed proportion of the market portfolio in equities, by market
capitalisation, in year t; and 

– wIt(s) and wCt(s) be the corresponding proportions in index-linked and con-
ventional bonds respectively, with payment dates at time t + s.

For the purposes of calculation of the above proportions, coupon-paying bonds
need to be notionally stripped into zero-coupon bonds. Bond payments need
to be notionally apportioned between integral payment dates. Allowance needs
to be made for lags in index-linking. Approximations may need to be made in
order to avoid excessive data collection or to accommodate missing data, espe-
cially where the inclusion of such data would merely produce spurious accuracy.

From the above values, the return on the market portfolio during year t may
be calculated as:

Mt Et Ets s s sw w .It It Ct Ct
s 1

= + +
3

=

d d d dw! ] ] ] ]g g g g# -

From these values we may estimate sM as follows:

M M .s mT 1
1

Mt
t

T
2

1

=
-

-
=

d! _ i

As explained in section 4, we may determine the ex-ante estimate of mMt as:

mMt = gdIt(0) + h, for dI,t(0) > 0

= dIt(0) otherwise.

A.3. Estimation of the Equilibrium Model

A.3.1. Parameters required

As stated in section 3.8, the parameters required are as follows:

– for all required values of s :

YI0(s) and YC0(s) ; and

bIj(s) and bCj(s) for j = 1, 2; and
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– bg ;

– bE1; and

– aij for i, j = 1, …, 6.

A.3.1. Estimation of YI;0(s) and YC;0(s)

From equation (4), YI0(s) may be estimated as:

YI0(s) = – ln(PI0(s)) ;

where PI0(s) is the observed value of PI0(s). Similarly:

YC0(s) = – ln(PC0(s)).

A.3.2. Estimation of bIj(s)

The values of bIj (s) may be estimated as follows. From (30) it is clear that,
since sMt is constant (say sM) for all t, the value of:

s s
s

x I
It

IMt= f
s

]
]

]
g

g

g
(43)

will also be constant. Since fIt(s) is known ex ante at time t – 1 (though it is
unobservable ex post), and since xI (s) is defined ex ante, and since it is con-
stant, we may write:

, .s s
s

covx I
It

It
Mt= d

d
f]
]

]
g

g

g
( 2

After substitution of equation (31), the ex-post estimate of the ex-ante value
of xI (s) is given by:

.s T s s
s s

1
1

1,
I

I t It

It It
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=
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d
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] ]
_g

g g
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From (28) we have:

M

;
s

k 0
t

Mt It
2=

- dm ] g

and from (29):

mIt(s) = dIt(0) + kt xI(s) fIt(s).
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This linear constraint explains the division by T – 1 in equation (44).
From (31) it may be shown that:
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Substituting this into (44) we obtain, after some algebra:
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where
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On substituting the value of (46) into (45) we obtain ex-post estimates mIt(s)
of the ex-ante expected returns. Ex post, these are clearly biased estimates of
mIt(s); that is a consequence of the need to estimate ex-ante expected values,
which may be ex-post biased. As mentioned in section B.1, we are deliberately
avoiding the rational-expectations hypothesis to the extent that it conflicts with
the requirements of equilibrium modelling.

From (9) we may write:

xt = – (bI1j1, t + bI2 j2t) ; (47)

where:
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and bIj(s) is the estimate of bIj (s) to be determined. This may be done by
finding the first two principal components (e.g. Jackson, 2003), as follows.
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First we estimate the covariance matrix of xt as:
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Once again, we are working with an (ex-post biased) estimate of ex-ante expec-
tations.

Next we determine the first two eigenvalues l1 and l2 and the eigenvectors
u1 and u2 of S, so that:

UŜU = L ;
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The eigenvalues and eigenvectors may be determined either by means of the
power method (Jackson, op. cit.) or by means of more efficient techniques
available in numerous computer packages (ibid.). The matrix L is the variance
matrix of the principal components (their covariances being zero as they are
uncorrelated). The principal-component scores corresponding to the observed
values xt are:

z1,t = u�1xt and z2,t = u�2 xt.

Now we need to determine bI,1 and bI,2. Assuming that the third and higher-order
principal components may be ignored, we have (ibid.):
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xts = u1s z1t + u2s z2t. (48)

Let:

j1t = c11z1t + c12z2t ; and

j2t = c21z1t + c22z2t .

Then, from (47) and (48), for all values of t:

– {bI1(s) (c11z1t + c12z2t) + bI2(s) (c21z1t + c22z2t)} = u1sz1t + u2sz2t.

Equating the coefficients of z1t and those of z2t, we have, respectively:

– {bI1(s) c11 + bI2(s) c21} = u1s ; and (49)

– {bI1(s) c12 + bI2(s) c22} = u2s . (50)

In particular, for s = 1 and t, we have, from (11):

c11bI1(1) = – u11;

c21bI2(t) = – u1t ;

c12bI1(1) = – u21; and

c22bI2(t) = – u2t ; (51)

Now from (30) and (43):
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Thus, from (51), we obtain:
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Equations (49) and (50) may be represented as:

BI C = U ;

where:
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Thus:

BI = UC –1.

A.3.3. Estimation of bg

From equation (21) we may estimate mgt as:

mgt = YC, t – 1(1) – YI, t – 1(1) – f.

An ex-post estimate of the ex-ante value of sgm may be determined as:
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From equation (39), bg may then be estimated as:
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From equation (12) we may also derive:
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A.3.4. Estimation of bCj(s)

For conventional bonds, as for index-linked bonds, we have:

mCt(s) = dIt(0) + kt xC(s) fCt(s) ;

where xC(s) is the ex-post estimate of the ex-ante value of:
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As for index-linked bonds, we obtain:
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1
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As for index-linked bonds, bCj (s) may be determined by finding the first two
principal components as in section B.3.2. In this case:

.
m

x
s

s s b
ts

Ct

Ct Ct tg 3
=

- +d j
f ]

] ]

g

g g

A.3.5. Estimation of bE1

From (40):

mEt = dIt(0) + kt sEMt .

From (41) it is clear that, since sMt = sM is constant, sEMt will also be constant
(say sEM). Let:

.T 1
1

EM Et Et
t

T

Mt Mt
1

=
-

- -
=

d ds m m! _ _i i (52)

From (40) we have:

mEt = dIt(0) + kt sEMt . (53)
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Substituting (53) into (52), we have, after some rearrangement:
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1 1
1

1
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!
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gi i

From (41):

.bE
M

EM
1 = s

s

Also, from (22)

E
6 .j bt

Et Et

1
=

-d m

A.3.6. Estimation of aij

The estimation of aij proceeds by Cholesky decomposition of the sample
covariance matrix:

.
s

s

s

s
S

11

61

16

66

g

g

= h h

J

L

K
K
K

N

P

O
O
O

where:

i .T j1
1

j i j
t

T

1

=
-

=
t ts j!

First, using the values of jjt, the residuals of the descriptive model, as deter-
mined in the estimation process above, we define:

.
j

j
jt

t

t

1

6

= h

J

L

K
K
K

N

P

O
O
O

Now we calculate the sample covariance matrix S.
From equation (25):
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i ,

,

.

a a

a

cov

cov

j

e e

j i j

ki lj
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k l

ki kj
l

1

6

1

6

1

6

=

=

=

==

=
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We now require the matrix:

.
a

a

a

a
A

11

61

16

66

g

g

= h h

J

L

K
K
K

N

P

O
O
O

such that 

A�A = S.

This may be found by Cholesky decomposition.
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