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ABSTRACT

Recently, Albrecher and his coauthors have published a series of papers on the
ruin probability of the Lévy insurance model under the so-called loss-carry-forward
taxation, meaning that taxes are paid at a certain fixed rate immediately when
the surplus of the company is at a running maximum. In this paper we assume
periodic taxation under which the company pays tax at a fixed rate on its net
income during each period. We devote ourselves to deriving explicit asymptotic
relations for the ruin probability in the most general Lévy insurance model in
which the Lévy measure has a subexponential tail, a convolution-equivalent tail,
or an exponential-like tail.
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1. INTRODUCTION

The ruin probability of an insurance company is the probability that its surplus
process falls below 0 at some time. Recently, the influence of tax payment on the
ruin probability has become an interesting problem in actuarial science. Let S =
(St)t$ 0 be a stochastic process, with S0 = x > 0, representing the underlying sur-
plus process in a world without economic factors (tax, reinsurance, or investment,
etc.) of an insurance company. Assuming that S is a compound Poisson process
with positive drift and that taxes are paid at a fixed rate g ! [0,1) whenever S is
at a running maximum (called the loss-carry-forward taxation), Albrecher and
Hipp (2007) and Albrecher et al. (2009) proved the following strikingly simple
relationship between cg(x) and c0(x), the ruin probabilities with and without tax:

cg(x) = 1 – (1 – c0(x))1/(1 – g). (1.1)

Albrecher et al. (2008b) further showed that the tax identity (1.1) still holds
for a spectrally negative Lévy surplus process under the loss-carry-forward
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taxation. Also, Albrecher et al. (2008a) proved a similar tax identity for a dual
surplus process with general inter-innovation times and exponential innovation
sizes under the same type of taxation.

All these papers cited above assume the loss-carry-forward taxation. In real-
ity, however, taxes are usually paid periodically (e.g. monthly, semi-annually,
or annually). Furthermore, if the surplus process contains a diffusion part, then
the moments of running maxima do not form any continuous time interval.
In this case, the loss-carry-forward type taxation is rather unrealistic, as was
also commented by Albrecher and Hipp (2007).

In this paper, we introduce periodic taxation as well as reinsurance to the
risk model. Precisely, we assume that at each discrete moment n = 1, 2, …, the
company, given that it survives, pays tax at rate g ! [0,1) on its net income
during the period (n – 1, n] and it gets paid by reinsurance at rate d ! [0,1) on
its net loss during the period (n – 1, n]. We are interested in the influence of such
taxation rule and reinsurance policy on the asymptotic behavior of the ruin
probability.

An example of such a reinsurance is the so-called quota-share reinsurance
in which the reinsurer assumes an agreed percentage of an insurer being rein-
sured and shares all premiums and losses accordingly with the insurer. In this
paper we shall assume that the loss process before tax and reinsurance is a
Lévy process, which, after paying reinsurance premiums at a constant rate, is
still a Lévy process. Therefore, for simplicity, in our formulation we shall ignore
the reinsurance premiums or we understand the loss process as after paying the
reinsurance premiums.

Let us intuitively compare these two types of taxation. Under the loss-
carry-forward taxation, as long as the surplus does not hit its historical peak,
the insurance company can legally evade any tax payment possibly for a long
time, even if it makes profits every single period during that time. While under
the periodic taxation, the insurance company has to pay tax whenever it sur-
vives and its net income is positive in that period. Hence, the latter imposes a
more strict taxation rule and produces more significant impact on the ruin
probability than the former does. This will be demonstrated in Section 3.

It is convenient for us to look at the loss process before tax and reinsurance,

Lt = x – St, t $ 0.

For each n = 1, 2, …, the maximal net loss and the net loss of the company
within the period (n – 1, n] are, respectively,

Yn = sup
n t n1# #-

(Lt – Ln – 1), Zn = Ln – Ln – 1.

After introducing the periodic taxation at rate 0 # g < 1 and reinsurance at rate
0 # d < 1, the loss of the company within the period (n – 1, n] becomes

Xn = Zn + gZn
– – dZn

+ = (1 – d )Zn
+ – (1 – g)Zn

–,
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where z+ = z 0 0 and z– = – (z / 0) for a real number z. Then, it is easy to see
that the ruin probability in this situation is equal to

cg,d(x) = nk > ,Pr sup x
n k

n

1 1

1

+
$ =

-

YX!ef o p (1.2)

where, as usual, a summation over an empty set of indices produces a value 0.
Notice that we have used cg(x) (with only one subscript g) for the ruin prob-
ability under the loss-carry-forward taxation and used cg,d(x) (with two sub-
scripts g and d) for the ruin probability under the periodic taxation and rein-
surance. We shall let the notation speak for itself.

In this paper, we shall assume that the loss process L is a Lévy process (that
is, it starts with 0, is right continuous with left limit, and has stationary and
independent increments) with mean EL1 = – m < 0 (so that ignoring possible
ruin it converges to –3 almost surely). Consequently, the random pairs (Xn,Yn),
n = 1, 2, …, appearing in (1.2) are independent and identically distributed (i.i.d.)
copies of the random pair

(X,Y ) =
D ((1 – d )L1

+ – (1 – g)L1
–, sup

t0 1# #

Lt). (1.3)

Write m+ = EL1
+ and m– = EL1

–, which are assumed to be finite. Throughout this
paper, we always choose g ! [0,1) and d ! [0,1) such that

EX = (1 – d)m+ – (1 – g) m– < 0, (1.4)

so that the insurance company still has positive expected profits under such taxa-
tion and reinsurance and that the ruin is not certain.

The rest of this paper consists of four sections. After listing some prelimi-
naries on Lévy processes and several important distribution classes in Section 2,
we present our main results in Sections 3-5 for the cases that the Lévy measure
of the loss process L has a subexponential tail, a convolution-equivalent tail,
and an exponential-like tail, respectively.

2. PRELIMINARIES

For a Lévy process L = (Lt)t $ 0, its characteristic function can be written in the
form

EeisLt = e–tF(s),

where the characteristic exponent F(·) has the Lévy-Khintchine representation

F(s) = ias + 2
1

s2 s2 + ii sx xdr1 1e
sx

x 1- +
3

3

#
-

# ]a ]gk g
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with a ! (–3,3), s $ 0, and Lévy measure r on (–3,3) satisfying r({0}) = 0
and 

3-
( )x 12 /

3
# r(dx) < 3. The triplet (a, s2, r) (called Lévy triplet) uniquely

determines the distribution of the Lévy process L.
Throughout this paper, for a Lévy measure r and a distribution F on (–3,

3), write r(x) = r((x,3)) and F(x) = 1 – F(x) for x $ 0. When r(1) > 0, intro-
duce P(·) = (r(1))–1r(·)1(1,3), which is a proper probability measure on (1,3).
Hereafter, all limit relationships are according to x"3 unless otherwise stated,
and for two positive functions a(·) and b(·), write a(x) + b(x) if a(x) /b(x) " 1.

A distribution F on [0,3) is said to belong to the class L (a) for some a $
0 if F(x) > 0 for all x $ 0 and the relation 

lim
F

F
x

x y
e

a

x

y+
=

"3

-

]

^

g

h
(2.1)

holds for all y ! (–3,3). Furthermore, a distribution F on [0,3) is said to
belong to the class S(a) for some a $ 0 if F ! L (a) and the limit

lim
F x

F x
c2

*

x

2

=
"3 ]

]

g

g (2.2)

exists and is finite, where F 2* denotes the 2-fold distribution convolution of F,
i.e., F 2*(x) =

0 -
F

x
# (x – y) F (dy) for all x $ 0. For later use, we write F 1* = F

and Fn* = F (n – 1)*
* F for n = 2, 3, …. It is known that the constant c in (2.2) is

equal to 
0 -

ea3 x# F (dx); see Rogozin (2000) and references therein. In the liter-
ature, a distribution F in L (a) with a > 0 is usually said to have an exponential-
like tail, and F in S (a) with a > 0 is said to have a convolution-equivalent tail.

We shall assume that the Lévy measure r of the Lévy process L in our
model has a tail r asymptotically equivalent to a convolution-equivalent tail.
This is a natural assumption when studying the tail probability of Lévy processes.
In risk theory, this assumption has recently been used by e.g. Klüppelberg et al.
(2004) and Doney and Kyprianou (2006).

Note that S (0) = S is the well-known subexponential class. A useful subclass
of S is S*. By definition, a distribution F on [0,3) is said to belong to the class
S* if F(x) > 0 for all x $ 0, mF =

0
< ,F x xd 3

3
# ] g and

.lim
F

F F
x

x y
y yd 2

x

x

F
0

-
=

"3
m#

]

^
^

g

h
h

This class was introduced by Klüppelberg (1988), who pointed out that if F !
S *, then both F ! S and FI ! S, where FI denotes the integrated tail distribu-
tion of F, defined as 

FI (x) = ,F y ydm
1

F

x

0
# ^ h x $ 0.
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According to Chover et al. (1973) and Klüppelberg (1989), a measurable func-
tion f : [0,3) " [0,3), not necessarily a probability density function on [0,3),
is said to belong to the class Ld(a) for some a $ 0 if f(x) > 0 for all large x and
the relation

lim f x
f x y

e
a

x

y+
=

"3

-

]

^

g

h
(2.3)

holds for all y ! (–3,3). Furthermore, a measurable function f : [0,3) " [0,3)
is said to belong to the class Sd (a) for some a $ 0 if f ! Ld(a) and the limit 

_

lim f x
f x

c2
x

2

=
"3 ]

]

g

g
(2.4)

exists and is finite, where f 2_ denotes the 2-fold density convolution of f, i.e.,
f 2_(x) = f

x

0
# (x – y) f (y)dy for all x $ 0. For later use, we write f 1_ = f and

f n_ = f (n – 1)_ _ f for n = 2,3, …. It is known that the constant c in (2.4) is equal
to eax3

0
# f (x)dx. For a distribution F with a density f ! Ld(a) for some a > 0,

it is easy to see that f (x) / F(x) " a. Furthermore, for this case F ! S (a) if and
only if f ! Sd(a). The convergence in both (2.1) and (2.3) is automatically uni-
form on compact y-intervals. See Klüppelberg (1989) for these assertions.

Lemma 2.1. (Embrechts and Goldie (1982)) If F ! S (a) for some a $ 0, then
for every n = 1, 2, …,

n*

.lim
F x

F x
n F ye da

x

y
n

0

1

=
"3

3

-

-

#
]

]
^c

g

g
hm

Furthermore, for every e > 0 there exists some K e > 0 such that for all n = 1, 2, …
and x > 0,

n* .FF x F y xe de ay
n

e
0

# +
3

-
K #] ^c ]g hm g

Lemma 2.2. (Chover et al. (1973); Klüppelberg (1989)) If f ! Sd (a) for some
a $ 0, then for every n = 1, 2, …,

f
_

.lim f x
f x

n y ye da

x

n
y

n

0

1

=
"3

3
-

#
]

]
^c

g

g
h m

Furthermore, if f is bounded, then for every e > 0 there exists some Ke > 0 such
that for all n = 1, 2, … and x > 0,

f
_

.f x y y f xe de an y
n

e
0

# +
3

K #] ^c ]g h m g
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3. THE CASE OF SUBEXPONENTIAL TAILS

In our first main result below we look at the case that the Lévy measure r has
a subexponential tail.

Theorem 3.1. Consider the Lévy insurance model introduced in Section 1. If both
P and PI belong to the class S (which is satisfied when P ! S *), then for every
0 # g < 1 and 0 # d < 1 for which relation (1.4) holds, we have

,g .rx y ydc
g m d m1 1

1
x

d +
- - -

3

- +
#]

^ ]
^g

h g
h (3.1)

Klüppelberg et al. (2004) systematically studied the asymptotic behavior
of the ruin probability in the Lévy insurance model without tax or reinsurance.
Restricting to the case that L is spectrally positive with Lévy measure r such that
P ! S *, we see that Theorem 6.2(i) of Klüppelberg et al. (2004) corresponds
to our Theorem 3.1 with g = d = 0.

Clearly, the tax identity (1.1) under the loss-carry-forward taxation implies
that

0g ;x xc g c1
1

+
-

] ]g g (3.2)

see also Albrecher and Hipp (2007). While under our periodic taxation, plug-
ging d = 0 into (3.1) yields that

,g 0 ,0 0 .x xc
g

c
1

1

m m
m+

- -- +

-
] ]g g (3.3)

Note that c0(x) in (3.2) and c0,0(x) in (3.3) are identical. The coefficients in rela-
tions (3.2) and (3.3) respectively capture the impact of the two taxation rules
on the asymptotic behavior of the ruin probability. Now that m– / (m– – m+) > 1
in (3.3), comparing (3.2) with (3.3) we conclude that, at least for the current
heavy-tailed case, periodic taxation produces more significant impact on the
ruin probability than the loss-carry-forward taxation does.

As explained in Section 1, this is natural since with loss-carry-forward tax-
ation one does not need to pay tax until a large loss is fully recuperated, whereas
with periodic taxation every time unit counts anew.

To prove Theorem 3.1, we need the following two lemmas:

Lemma 3.1. Let L be a Lévy process with Lévy measure r such that P ! S. Then

> .Pr sup rL x x
t

t
0 1

+
# #

d ]n g (3.4)

484 X. HAO AND Q. TANG



Lemma 3.2. Let random pairs (Xn,Yn), n = 1,2, …, be i.i.d. copies of a random pair
(X,Y ). Denote M = X 0Y. If –3 < EX < 0, E|M| < 3, and Pr

3

x
# (M > y)dy

is asymptotically equivalent to a subexponential tail, then

k n > > .Pr sup Prx X M y yE d1
n k

n

x1 1

1

++
3

$ =

-

YX #!ef ^o p h

Lemma 3.1 is an implication of Theorem 3.1 of Rosinski and Samorod-
nitsky (1993) (see the example of Lévy motion on their page 1006). Lemma 3.2
is exactly Theorem 1 of Palmowski and Zwart (2007).

Proof of Theorem 3.1. Recall (1.2) in which the random pairs (Xn,Yn), n = 1,
2, …, are i.i.d. copies of the random pair (X,Y ) given in (1.3). Use the nota-
tion M = X 0Y in Lemma 3.2. Since P ! S , from Lemma 3.1 we have

Pr(Y > x) + r(x). (3.5)

It is clear that Y $ L1
+ $ X +. Hence by (3.5) and PI ! S,

> > ,Pr Pr rM y y Y y y y yd d d
x x x

+=
3 3 3

# # #^ ^ ^h h h

a subexponential tail. Then by Lemma 3.2, we obtain (3.1). ¬

4. THE CASE OF CONVOLUTION-EQUIVALENT TAILS

Next, we consider the case that the Lévy measure r has a light tail such that
P ! S (a) for some a > 0.

Theorem 4.1. Consider the Lévy insurance model introduced in Section 1. Assume
EL1

2 <3 and P ! S (a) for some a > 0. If 0 # g < 1 and 0 < d < 1 are such that

Eea�((1 – d)L1
+ – (1 – g)L1

– ) < 1 (4.1)

for some a� > a, then

a ,rx x
Ee

c
1

, a L Lg d d g1 1
+

-
- - -

+ -

C
1 1

]
] ]^

]g
g g h

g (4.2)

where the constant Ca is defined as

a
> >

, .lim
Pr

lim
Pr sup

r rx
Y x

x
L x

0
x x

t t0 1 3!= =
" "3 3

# #C
]

]

]

^
]

g

g

g

h
g (4.3)
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The existence of the limit Ca in (4.3) was proved by Braverman and Samorod-
nitsky (1995). Condition (4.1) is feasible in view of (1.4) and EeaL1

+
< 3.

Lemma 3.1 of Tang (2007) says that, for a > 0, P ! L (a) if and only if
r(x) + .ra y yd

3

x
# ^ h Therefore, relation (4.2) may be rewritten as 

a .ra
x y y

Ee
dc

1
, a L L x

g d d g1 1
+

-

3

- - -
+ -

C
1 1

#]
] ]^

^g
g g h

h (4.4)

With the understanding that C0 = 1 by relation (3.4) and that the fraction on the
right-hand side of relation (4.4) converges to ((1 – g) m– – (1 – d) m+)–1 as a " 0,
relation (3.1) in Theorem 3.1 indicates that relation (4.4) still holds when a = 0.

To prove Theorem 4.1 we need the following lemma, which corresponds to
the light-tailed case of Theorem 1.1(i) of Hao et al. (2009):

Lemma 4.1. Let random pairs (Xn,Yn), n = 1, 2, …, be i.i.d. copies of a random
pair (X,Y ). If EX < 0, EX 2 < 3, the distribution of Y belongs to L (a) for some
a > 0, and Eea�X < 1 for some a� > a, then

k n > > .Pr sup Prx Y x
Ee1
1

a
n k

n

X
1 1

1

++
-$ =

-

YX!ef ]o p g

Proof of Theorem 4.1. Use the notation in (1.3). By relation (4.3) and closure
of the class S (a) under tail equivalence, the distribution of Y also belongs to
the class S (a). The moment conditions on X required in Lemma 4.1 are clearly
satisfied. Then, using Lemma 4.1 we obtain (4.2). ¬

To apply Theorem 4.1, an immediate problem is how to determine the con-
stant Ca in (4.3). This has been a very difficult problem for a Lévy process L
whose Lévy measure r has a convolution-equivalent tail. For related discussions
see Albin and Sundén (2009) and references therein. The following lemma gives
an expression for Ca:

Lemma 4.2. Let L be a Lévy process with Lévy measure r such that P ! S (a)
for some a > 0. Then for all t > 0,

aL>
.lim

Pr
r x
L x

t h tEe
x

t t= =
"3 ]

^
]

g

h
g

There is a unique probability distribution G on [0,1] satisfying t 11 -

0
# G(dt) < 3

with moments given by

d

!
,G

h t t

n
m

1
n

n

0

=
+

1

v

#
]

]

]
g

g

g
n = 1, 2, …,
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where

d d .t t tEe
<

mina
n

L

t t
n1

0 1
1 1

k n tk

n

1 1

1 1

g=
g# # #

+
# # +

+

v # (4.5)

Finally,

ad
>

.lim
Pr sup

r x
L x

t G t h t td
x

t t0 1 1

0

1

0

1
= =

"3

# # - C##
]

^
] ]

g

h
g g (4.6)

Lemma 4.2 is a combination of Proposition 1.3 and Theorem 2.1 of Braver-
man (1997). Here we need to point out that the constants vn defined by Braver-
man (1997) are not correct. This is due to a calculation error in his Lemma 3.1.
Indeed, under his assumptions and in his notation, instead of his relation (3.1)
we should have

Pr(Sk > x, 1 # k # n) + F1
” (x) Eea(min1# k # n Sk – X1),

where Sk = Sk
i =1Xi, 1 # k # n. Therefore, to qualify his Theorem 2.1, the con-

stants vn should be given by our (4.5) above. However, we remark that the
expression for Ca given in (4.6) is far from being explicit and can not be evalu-
ated unless L is a subordinator.

To pursue a more explicit expression for Ca, we then restrict the Lévy process
L to a compound Poisson process with negative drift:

t

,L ptzt k
k

N

1

= -
=

! t $ 0, (4.7)

where p > 0 represents the constant premium rate, N is a Poisson process with
intensity l > 0, and z1, z2, … are i.i.d. copies of a random variable z indepen-
dent of N and with distribution F on (0,3).

Corollary 4.1. Consider the Lévy insurance model introduced in Section 1 in
which the loss process L is given by (4.7). Suppose that F has a bounded density
f ! Sd (a) for some a > 0 and that condition (4.1) holds. Then

a Fx x
Ee

c
l

1
, a L Lg d d g1 1

+
-

- - -
+ -

C
1 1

]
] ]^

]g
g g h

g

with the constant Ca given by 

a

t

.PraC ps s t
t td dz

1
e e

a a
k

k

Nt t p tEe Eel l1

100

1 1 1 1a a

#= +
-- -

=

- - - -pz z

## !
J

L

K
K

^ ] ^ ]
N

P

O
O

h g h g

(4.8)

ASYMPTOTIC RUIN PROBABILITIES OF THE LEVY INSURANCE MODEL 487



For example, if F is an inverse Gaussian distribution with density 

2

,expf x
x

a
b x

a x b
p2 2

/

3

1 2

2=
- -

] d
]

fg n
g
p a, b, x > 0,

which is a typical example of f ! Sd(a) with a = a/ (2b2), then we can appro-
priately choose the constants p, g, and d such that condition (4.1) is satisfied.

While the expression for Ca defined in (4.8) is still not completely explicit,
with the only unknown part k 1=

Pr ps sdz
t

k
t #

N

0
# !b l for 0 < t # 1, it is simple

enough for simulations, especially when z follows an inverse Gaussian distribution.
To prove Corollary 4.1, we need a result below. Let F (·, t) be the distribu-

tion of aggregate claims,

, ,PrF x t xzk
k

N

1

t

#=
=

!
J

L

K
K]

N

P

O
Og

and let f (·, t) be its density. Write Yt = sup0 # s # t Ls. Then Y1 = Y. The lemma
below is a combination of Theorems 2.1 and 2.2 of Asmussen (2000):

Lemma 4.3. For the compound Poisson model (4.7), we have

, ,Pr t F ps t sd0 1
t

t

0
# =Y #^ ^h h t > 0,

and

1 – Pr(YT > x) = F (x + pT,T ) – Pr
T

0
# (YT – t # 0) f (x + pt, t) dt, T > 0.

Proof of Corollary 4.1. By Theorem 4.1, it suffices to verify (4.8). By Lemma 4.3,
we have

Pr(Y > x) = F(x + p,1) + Pr
0

1
# (Y1 – t # 0) f (x + pt, t)dt = I1(x) + I2(x). (4.9)

Since f ! Sd(a) for a > 0 implies F! S (a), we apply the dominated convergence
theorem justified by Lemma 2.1 to obtain

1>

!

.

Pr Pr

F

F

I x x p N n

n x p n

x

Ee

z

l

l

e

e

a

a

k
k

n

n

n n

n

Ee

z l

l

1
11

1

1

1a

+

+

= + =

+

3

3

==

-

=

-

- - pz

!!

!

] e ^

` ^

^
]

g o h

j h

h
g (4.10)
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Similarly, by Lemma 2.2, for each fixed t ! (0,1],

f (x + pt, t) + ltelt (Eeaz – 1) – apt f (x). (4.11)

In order to plug (4.11) into I2(x) in (4.9), we need to apply the dominated
convergence theorem again. We notice that, by Lemma 2.2, there exists some
K > 0 such that for all x $ 0 for which f (x) > 0 and for all t ! (0,1],

n

n

_,
!

!

,

Pr
f x

Y f x pt t
n
t

f x pt
f x pt

f x
f x pt

n
t

K

K

Ee

e

l

l

0

1

e

e
a

t

n

t
n

n

t n

Ee

l

l z

l

1

1

1
az

$

$ $
#

#

#

#

+

+

+ +

+

3

3

-

=

-

=

-

!

!

]

^ ^ ]

^

^

]

^

]
`

g

h h g

h

h

g

h

g
j

where in the second step we used the local uniformity of the convergence in (2.3).
Then, applying the dominated convergence theorem and using Lemma 4.3
again,

2 , .I x f x t F ps t s t td dl1
1 1 at t ptEel

0

1

0

1 1a
+

-
-

- - -z

e##] ] ^c
^

g g h m
h (4.12)

Plugging (4.10) and (4.12) into (4.9) and using (4.3) and the facts r (·) = lF(·),
f (x) / F(x) " a, we obtain (4.8). ¬

5. THE CASE OF EXPONENTIAL-LIKE TAILS

Finally, we consider the case that the Lévy measure r has a light tail such that
P ! L (a) \ S (a) for some a > 0.

Theorem 5.1. Consider the Lévy insurance model introduced in Section 1. Assume
EL1

2 < 3, P ! L (a) for some a > 0, and P” (x) = o(P”2*(x)). If 0 # g < 1 and
0 < d < 1 are such that condition (4.1) holds, then

> .Prx L x
Ee

c
1

1
, a L Lg d d g1 1 1+

-
- - -

+ -
1 1

]
] ]^

^g
g g h

h (5.1)

We need the following result, which is a combination of Theorem 3.3 and
Corollary 6.2 of Albin and Sundén (2009):

Lemma 5.1. Let L be a Lévy process with Lévy measure r such that P ! L (a)
for some a > 0 and P” (x) = o(P”2*(x)). Then for all t > 0, the distribution of Lt

belongs to L (a) \ S (a) and
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> > .Pr sup Prx L x
s t

s t
0

+
# #

Ld ^n h

Note that the conditions on the Lévy measure r in Lemma 5.1 are for
instance fulfilled if r is asymptotically equivalent to the tail of an exponential
distribution, a gamma distribution, or, more generally, an Erlang distribution.

Proof of Theorem 5.1. Use the notation in (1.3). By Lemma 5.1 we know that
the distribution of L1 belongs to L (a) \ S (a) and

Pr(Y > x) + Pr(L1 > x).

Hence, the distribution of Y belongs to L (a)\ S(a) as well. Finally, using Lemma 4.1
again we obtain relation (5.1). ¬

The asymptotic relation (5.1) is in terms of the tail of L1 instead of the tail
of the Lévy measure r. In case the tail of L1 is unknown, relation (5.1) is not
completely explicit. We are going to show two special, but important, cases of
Theorem 5.1 in which a completely explicit asymptotic relation for the ruin
probability is given.

First, we consider a gamma process U = (Ut)t $ 0, which starts with 0, has
stationary and independent increments, with U1 having a gamma(a, b ) distri-
bution with density

g(x) = a
bG

b

^ h
x b – 1e–ax, a, b, x > 0.

Its Lévy triplet is given by a = b (e–a – 1) /a, s = 0, and r(dx) = bx–1e–axdx;
see Section 1.2.4 of Kyprianou (2006) for details. For this case, it is easy to verify
that P” (x) = o(P”2*(x)). By Theorem 5.1, we immediately have the following:

Corollary 5.1. Consider the Lévy insurance model introduced in Section 1. Assume 

Lt = Ut – pt, t $ 0,

where p > 0 and U is a gamma process as introduced above with parameters a,
b > 0. If 0 # g < 1 and 0 < d < 1 are such that condition (4.1) holds, then

.
a

x
x p

Ee

e
c

bG1
, a
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L L

x p

g d d g

b b

1 1

1 1

+
-

+

- - -

- - - +

+ -
1 1

]
] ]^

b ^

^
]

g
g g h

l h

h
g

Next, we again consider the compound Poisson process with negative drift.
The following is another corollary of Theorem 5.1:
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Corollary 5.2. Consider the Lévy insurance model introduced in Section 1 in which
the loss process L is given by (4.7). Suppose F is an exponential distribution with
mean 1/a. If 0 # g < 1 and 0 < d < 1 are such that condition (4.1) holds, then

a .x
xEe

e e dc
p

l
q

1

1 ( )
,

/ cos

a
a a

L L

x p x p
g d d g

l l qp

1 1

2

0

2
+

-
- - -

- + - +
+ -
1 1

#]
] ]^

g
g g h

(5.2)

To prove Corollary 5.2 we need an elementary result below:

Lemma 5.2. Let l (·) be a bounded function on [–1,1], left continuous at 1 with
l(1) ≠ 0, and let c > 0 be a constant. Then

d .cosl le d eq q q1
/cos coscx cxqp qp

0 0

2
+# #] ]g g (5.3)

Proof. Choose some small 0 < e # p/2 such that ; l (x) ; $ 0.5 ; l (1) ; > 0 for all
x ! [cos e,1]. We split the integral on the left-hand side of (5.3) into two parts
as .

pe

0
+

e
## It is easy to see that the second part is asymptotically negligible, as

.
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cos

l

l
O

e d

e d

e d

e
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Hence,

.cos cosl le d e dq q q qcos coscx cxqp qe

0 0
+# #] ]g g (5.4)

Note that, since l is left continuous at 1, if e > 0 in (5.4) is chosen to be
sufficiently close to 0, then l (cos q ) is sufficiently close to l (1). Moreover,

.e d e dq q
/cos coscx cxq qpe

0

2
+

0
## Therefore, by (5.4) and the arbitrariness of e > 0,

we obtain (5.3). ¬

Under the conditions of Corollary 5.2, the Lévy triplet of L is given by a =
p – a1

0
# xe–axdx, s = 0, and r(dx) = lae–axdx; see Section 1.2.2 of Kyprianou

(2006) for details.

Proof of Corollary 5.2. Clearly, EL1
2 < 3, P ! L (a), and P” (x) = o(P”2*(x)).

Therefore by Theorem 5.1, we only need to focus on derivation of the tail
probability Pr(L1 > x). Since the n-fold convolution of an exponential dis-
tribution with mean 1/a is a gamma distribution with parameters (a, n), we
have
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The last series in the above is of the structure of the modified Bessel function
of order 1; that is,

! ! .cos
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e d
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p q q1
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Using Lemma 5.2, as y "3,

.cose d e dq q q
/cos cosa ay yl qp l qp2

0

2

0

2
+# #

Plugging this into (5.6) then plugging (5.6) into (5.5), we obtain
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We are going to simplify this expression. It is easy to see that, for each real
number c,
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It follows that the relation 

a a
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holds uniformly for all q ! (–3,3); that is,
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Actually, this can easily be verified by applying relation (5.8) to the upper and
lower bounds shown below:
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Plugging (5.9) into (5.7), we obtain 
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Finally, plugging this into (5.1) yields (5.2). ¬
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