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ABSTRACT

In this paper we compare the current Solvency II standard and a genuine
bottom-up approach to risk aggregation. This is understood to be essential for
developing a deeper insight into the possible differences between the diversifi-
cation assumptions between the standard approach and internal models.

1. INTRODUCTION

There are various approaches to model diversification benefits using linear cor-
relation at solo level. In the current Solvency II standard two-level approach,
there is a base correlation matrix within each risk class (market, life, non-life,
health, default) and a top level correlation matrix between these risk classes.
Internal models tend to follow a genuine bottom-up approach which uses a
correlation matrix that combines all risk types. See e.g. the recent CEIOPS
documents [1,2] and the CRO Forum QIS3 Benchmarking study [6].

In this paper we compare the two approaches. In particular, we discuss the
interplay between the top level correlation between risk classes and the base cor-
relation matrix between the risk types. This is understood to be essential for
developing a deeper insight into the possible differences between the diversifi-
cation assumptions between the standard approach and internal models.

In Section 2, we show that in general only correlation parameters set at the
base level lead to unequivocally comparable solvency capital requirements across
the industry (Theorem 2.2). This also supports the findings in the technical paper
[7] of the Groupe Consultatif. In Section 3, we then consider portfolio depen-
dent base correlations. These implied correlations are not unique in general.

We provide at least three possible specifications and give sufficient conditions
such that they actually qualify as positive semi-definite correlation matrices.
We then show that there exists a unique minimal base correlation matrix
(Theorem 3.2). This distinguished correlation matrix may serve as a benchmark
for comparison of standard and internal correlation specifications. In Section 4,
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we compute the three base correlation matrices for a life and non-life insur-
ance portfolio which reflect the EEA average from the QIS3 Benchmarking
Study of the CRO Forum [6]. These results may be used as benchmark for a
possible standard specification of base correlations between market, life and
non-life risk types. Section 5 concludes.

2. CONSTANT BASE CORRELATION

For the sake of illustration, we consider two risk classes composed of m and n
risk types with stand alone solvency capital requirements (i.e. 99.5%-quantiles)
given by the vectors
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Here and subsequently, with a vector we mean a column vector. It is straight-
forward to extend the following to more than two risk classes.

The current Solvency II standard model is based on a two-level correlation
aggregation. First, some m ≈ m and n ≈ n base correlation matrices A for x and
B for y yield the solvency capital requirements per risk class 

X = x A x$ $T and Y = ,y B y$ $T (1)

respectively. Second, some top level correlation factor R between X and Y
yields the total solvency capital requirement 

SCR = .X RXY Y22 2
+ + (2)

The standard model provides base and top level correlation parameters A,B
and R. Input from the insurance company are the portfolio specific data x,y.

A genuine bottom-up model, in contrast, uses a full (m +n) ≈ (m + n) base
correlation matrix 

M =
A

C
C
BTe o (3)

that aggregates all risk types, across risk classes, in one go:

SCR = , .x y M
x
y

$ $T T
` dj n (4)
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Equalling (2) and (4) implies 

xT · C · y = R x A x$ $T .y B y$ $T (5)

It is understood that the full base correlation matrix M is fundamental part
of the risk model. It reflects the underlying nature of the risks, which is generic
and company independent. Company specific, in contrast, is the individual
exposure to the risks. Thus, M should simultaneously apply to all companies.
In that sense, M should not depend on the company specific portfolio x, y,
while the implied top level correlation

R = R(x,y) =
x A x y B y

x C y

$ $ $ $

$ $

T T

T

then does. Conversely:

Definition 2.1. For A, B, R given, we call C(x, y) a base correlation matrix for
x, y if M in (3) is a correlation matrix (i.e. positive semi-definite) and (5) is
satisfied.

Now suppose the standard model (1)-(2) specified by A, B, R is applied by N
companies with portfolio data x(i), y(i), i =1, …, N. We then shall say that the
resulting solvency capital requirements SCR(i) are unequivocally comparable if
there exists a common base correlation matrix C(x(i),y(i)) / C for all i = 1,…,N.
In other words, the solvency capital requirements are unequivocally comparable
if they are based on a common underlying risk model.

Checking for unequivocal comparability is an inverse problem, which is
difficult to solve in general. Indeed, (5) can be seen as linear system of N equa-
tions for the mn-vector (Cij):

i
j

n
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11 ==

x!! (k) yj (k)Cij = z(k), k = 1, …, N, (6)

with z(k) := R ( ) ( )x k A x k$ $T ( ) ( ) .y k B y k$ $T Since the set of solutions C
to (6) equals the (possibly empty) preimage of the N-vector z(k) for the N ≈
(mn)-matrix (xi(k) yj(k)), a necessary and sufficient condition for the existence
of a solution C of (6) is that the N-vector (z(k)) lies in the image of the N ≈
(mn)-matrix (xi(k) yj(k)). For a generic vector z(k) in �+

N this essentially requires
that N # mn, see e.g. [5, Paragraph 0.2.3]. But the number of tested companies
will typically be greater than mn (there are currently six risk types in market
and seven in life, that is mn = 42). Moreover, even if a solution C of (6) exists,
it yet has to satisfy that M in (3) is positive semi-definite.

The following example shows that a solution may not exist if N > mn: let
m = 2, n = 1, A = 1

0
0
1c m , B = (1), R = 0.4, and N = 3. The portfolio data are
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x(1) = 3
4c m, x(2) = 1

1c m, x(3) = 1
2c m, y(1) = y(2) = y(3) = 1 (y actually cancels out 

in (5) and (6), respectively). Then x(1), x(2) already uniquely determine the

solution C = ,
,

0 26
0 30c m of (6). But a straightforward inspection shows that (5) does

not hold for x(3).
The next result shows that the above inverse problem is in fact generically

ill-posed. Indeed, if we assume infinitely many companies with a continuum of
portfolio data (x, y) ! �+

m+n, then a common base correlation matrix C(x,y) /
C exists for all (x,y) ! �+

m+n if only if the risk types are either uncorrelated or
fully correlated. Denote by Jm ≈ n the m ≈ n-matrix with all entries equal 1.

Theorem 2.2. Suppose A, B, R are given as above. Then there exists a common base
correlation matrix C(x,y) / C for all (x,y) ! �+

m+n if and only if C = RJm ≈ n and
either R = 0 or A = Jm ≈ m and B = Jn ≈ n.

PROOF. Sufficiency of the statement is clear. For necessity, we insert x = ei and
y = ek (the standard basis vectors in �m or �n, respectively) in (5) and obtain
C = RJm ≈ n. If R = 0 we are done. Otherwise, we divide (5) by R and square on
both sides to obtain

,,
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!! Bkl xi xj yk yl .

Matching coefficients yields Aij Bkl = 1 and, since Aii = Bkk = 1, thus the claim.
¡

Based on Theorem 2.2, we may state that in general only correlation parame-
ters set at the base level lead to unequivocally comparable solvency capital
requirements across the industry.

3. MINIMAL BASE CORRELATION

Theorem 2.2 showed that it is generically impossible to find a common base
correlation matrix C(x,y) / C for all (x,y) ! �+

m+n.
In this section, we relax this assumption and find base correlation matri-

ces C(x,y) which may depend on the given portfolio data (x,y) ! �+
m+n. Such

solutions exist, but are not unique, in general. The next lemma provides some
examples. For two vectors u ! �m, v ! �n we write u · vT for the m ≈ n-matrix

(uivj). We denote by || D || = ( )D Dtr $ T the Euclidian norm of a matrix D.

Hence, in particular, ||u || = u um1
2 2g+ + for an m-vector u. It follows by

inspection that the following matrices satisfy (5):

C(x,y) = R ,
x A x

A x

y B y

y B

$ $

$
$

$ $

$

T T

T

(7)
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C(x,y) = R ,
x y

x A x y B y
x y2 2

$ $ $ $
$

T T
T (8)

C(x,y) = R .
x y

x A x y B y

m n
m n

$ $

$ $ $ $

#

#T

T T

J
J (9)

We next provide sufficient conditions on A and B such that examples (7)-(9)
qualify as base correlation matrix.

Lemma 3.1. (i) (7) is a base correlation matrix for x,y.

(ii) If there exists p, q $ 0 with pq = R2 such that both matrices

A p
x

x A x x x4
$ $

$-
T

T and B q
y

y B y
y y4

$ $
$-

T
T (10)

are positive semi-definite, then (8) is a base correlation matrix for x,y.

(iii) If there exists p, q $ 0 with pq = R2 such that both matrices

A p
x x

x A x

m m
m m

$ $

$ $
-
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T
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J and B q

y y
y B y

n n
n n

$ $

$ $
-

#

#T

T

J
J (11)

are positive semi-definite, then (9) is a base correlation matrix for x,y.

PROOF. It remains to show that M in (3) is positive semi-definite, that is,

uT · A · u + 2uT · C(x,y) · v + vT · B · v $ 0, 6(u,v) ! �
m+n.

This is equivalent to 

(uT · A · u) (vT · B · v) $ (uT · C(x,y) · v )2, 6(u,v) ! �
m+n. (12)

For (7), property (12) follows by the Cauchy–Schwarz inequality (uT · A · x)2 #
(uT · A · u) (xT · A · x ) and analogously for B. This proves (i).

For (8), property (12) holds if and only if

(uT · A · u) (vT · B · v) $ R2

x
x A x

y

y B y

x
u x x u

y

u y y u
2 2 2 2

$ $ $ $ $ $ $ $ $ $T T T T T T

for all (u,v) ! �
m+n. This proves (ii).

Part (iii) follows similarly. ¡
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We now show that (8) is distinguished among all base correlation matrices.

Theorem 3.2. Suppose C* = C(x,y) in (8) is a base correlation. Then it is minimal
in the following sense:

||C*|| = – {||C || |C is base correlation matrix for x, y}.

PROOF. We consider the scalar product GC, DH = tr(C · DT ) on �m ≈ n. Then
||C || = ,C C , and the left hand side of (5) is just the scalar product:

xT · C · y = GC, x · yT H.

Hence every C that satisfies (5) can uniquely be decomposed into

C R
x y

x A x y B y
x y N2 2

$ $ $ $
# $= +

T T
T

` j

where N is orthogonal to x · yT, i.e. Gx · yT, NH = 0. Hence

2 2 2 2* *R
x y

x A x y B y
N2

4 4

$ $ $ $
$= +

T T

C C C
` `j j

with equality if and only if N = 0. ¡

By the very definition, for given A, B, R and x, y, every base correlation matrix
for x, y yields the same total solvency capital requirement SCR. Hence there
is no way in distinguishing a base correlation matrix for x, y by its diversification
effect for the portfolio (x, y). Nonetheless, from Theorem 3.2 we may infer the
following universal minimality property of C*= C(x, y) in (8). Suppose C is any
other base correlation matrix for x, y. Then Theorem 3.2, combined with the
Cauchy–Schwarz inequality (see e.g. [5, Paragraph 0.6.3]), says that the maxi-
mal weighted sum of the entries of C* is strictly smaller than the respective
maximal sum for C in the sense that

iji i< .sup supC
D

j
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= == = ==
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In this sense, (8) allocates the prescribed top level correlation R among the
base risk types in a uniquely minimal way, as illustrated in the next section.

In terms of diversification effects, this can be expressed as follows. Suppose
A, B and some base correlation matrix C = C(x,y) calibrated to the port-
folio (x,y) are going to be used as benchmark risk model for other portfolios.
Moreover, suppose we measure the diversification effect for any portfolio
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(z, j) ! �+
m+n as difference between the squared total solvency capital requirement

and the squared solvency capital requirement with zero top level correlation:

D(z, j,C ) = zRAz + 2zRCj + jRBj – (zRAz + jRBj ) = 2zRCj.

That is, the less D(z, j,C ), the higher the diversification effect. It then follows
as above that

sup
x yz j #

D(z, j,C*) = 2xRC*y # sup
x yz j #

D(z, j,C ).

In words, the lowest diversification effect among all portfolios (z, j) ! �+
m+n

with ||z|| ||j|| # ||x|| ||y|| for C* is higher than the respective lowest diversification
effect for any other base correlation matrix C = C(x,y).

4. APPLICATION TO QIS3 DATA

Figures 1 and 2 in the appendix show the EEA-average solvency capital require-
ments per risk type for a life and non-life insurer, respectively, taken from the
QIS3 Benchmarking Study2 of the CRO Forum [6].

Figures 3-6 show the top and base level correlation matrices according to
the QIS3 standard model [1].

One then checks numerically by computing the eigenvalues that the two
matrices in (10) (for p = 0.1 and q = 0.625) and in (11) (for p = q = 0.25) are
positive semi-definite, both for the life and non-life portfolio. By Lemma 3.1
it follows that all examples (7)-(9) are base correlations for the given capital
requirements in Figures 1 and 2.

The resulting base correlations between market and life and non-life risk
types for the life and non-life insurer, respectively, are shown in Figures 7-9 and
10-12. Cells with correlations greater than 0.1 are indicated.

It becomes obvious that the minimal base correlation matrix (8) assigns
less correlation to risk types than the other two examples (7) and (9).

5. CONCLUSION

In this paper, we rigorously demonstrated the fact that only correlation para-
meters set at the base level lead to unequivocally comparable solvency capital
requirements across the industry.
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2 These figures are derived from the proportion splits of QIS3 capital charges as shown on pages 29,
31, 55 and 39, 41, 43 in the document [6]. The capital requirements are thus normalized such that
the undiversified Basic SCR results in 100 ≈ 100. The risk class “default” is negligible, both for life
and non-life insurers, and therefore is omitted.



Relaxing the assumptions, we then found portfolio dependent base correlation
matrices that correspond to a prescribed top level correlation. Narrowing further
the choice we arrived at a unique minimal solution, which we then explicitly
computed for QIS3 data from [6]. I suggest that further empirical comparison
of standard and internal correlation specifications is carried out with this
minimal solution as a benchmark. However, I also stress the fact that Value-at-
Risk and correlation aggregation does not appropriately capture tails and tail
dependence of risks in the insurance business. In that regard, I encourage the
additional use of risk and dependence modeling beyond correlation such as
indicated in e.g. [4, 3].
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FIGURE 1: EEA-average solvency capital requirements per risk type for a life insurer.
Source: [6].

FIGURE 2: EEA-average solvency capital requirements per risk type for a non-life insurer.
Source [6].

FIGURE 3: Top level correlation matrix between risk classes. Source: [1].

FIGURE 4: Base level correlation matrix between market risk types. Source: [1].
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APPENDIX

Results

Mkt int 1536
eq 2624
prop 512
sp 1408
conc 64
fx 256

Life mort 140
long 1190
dis 245
lapse 700
exp 385
rev 0
CAT 840

Mkt int 572
eq 2508
prop 396
sp 264
conc 572
fx 132

NL pr 4187
CAT 1113

BSCR mkt def life health nl
mkt 1 0,25 0,25 0,25 0,25
def 0,25 1 0,25 0,25 0,5
life 0,25 0,25 1 0,25 0
health 0,25 0,25 0,25 1 0
nl 0,25 0,5 0 0 1

Mkt int eq prop sp conc fx
int 1 0 0,5 0,25 0 0,25
eq 0 1 0,75 0,25 0 0,25
prop 0,5 0,75 1 0,25 0 0,25
sp 0,25 0,25 0,25 1 0 0,25
conc 0 0 0 0 1 0
fx 0,25 0,25 0,25 0,25 0 1



FIGURE 5: Base level correlation matrix between life risk types. Source: [1].

FIGURE 6: Base level correlation matrix between non-life risk types. Source: [1].

FIGURE 7: Base level correlation matrix (7) between market and life risk types.

FIGURE 8: Minimal base level correlation matrix (8) between market and life risk types.

FIGURE 9: Uniform base level correlation matrix (8) between market and life risk types.
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Life mort long dis lapse exp rev
mort 1 0 0,5 0 0,25 0
long 0 1 0 0,25 0,25 0,25
dis 0,5 0 1 0 0,5 0
lapse 0 0,25 0 1 0,5 0
exp 0,25 0,25 0,5 0,5 1 0,25
rev 0 0,25 0 0 0,25 1
CAT 0 0 0 0 0 0

CAT
0
0
0
0
0
0
1

NL pr CAT
pr 1 0
CAT 0 1

mort long dis lapse exp rev
int 0,02 0,10 0,03 0,08 0,08 0,03
eq 0,04 0,15 0,05 0,12 0,12 0,04
prop 0,04 0,16 0,05 0,13 0,13 0,04
sp 0,03 0,11 0,04 0,09 0,09 0,03
conc 0,00 0,00 0,00 0,00 0,00 0,00
fx 0,02 0,08 0,03 0,06 0,06 0,02

CAT
0,05
0,08
0,09
0,07
0,00
0,04

mort long dis lapse exp rev
int 0,01 0,12 0,02 0,07 0,04 0,00
eq 0,02 0,20 0,04 0,12 0,07 0,00
prop 0,00 0,04 0,01 0,02 0,01 0,00
sp 0,01 0,11 0,02 0,06 0,04 0,00
conc 0,00 0,00 0,00 0,00 0,00 0,00
fx 0,00 0,02 0,00 0,01 0,01 0,00

CAT
0,08
0,14
0,03
0,08
0,00
0,01

mort long dis lapse exp rev
int 0,09 0,09 0,09 0,09 0,09 0,09
eq 0,09 0,09 0,09 0,09 0,09 0,09
prop 0,09 0,09 0,09 0,09 0,09 0,09
sp 0,09 0,09 0,09 0,09 0,09 0,09
conc 0,09 0,09 0,09 0,09 0,09 0,09
fx 0,09 0,09 0,09 0,09 0,09 0,09

CAT
0,09
0,09
0,09
0,09
0,09
0,09



FIGURE 10: Base level correlation matrix (7) between market and non-life risk types.

FIGURE 11: Minimal base level correlation matrix (8) between market and non-life risk types.

FIGURE 12: Uniform base level correlation matrix (8) between market and non-life risk types.
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pr CAT
int 0,07 0,02
eq 0,23 0,06
prop 0,21 0,06
sp 0,09 0,02
conc 0,04 0,01
fx 0,08 0,02

pr CAT
int 0,06 0,02
eq 0,26 0,07
prop 0,04 0,01
sp 0,03 0,01
conc 0,06 0,02
fx 0,01 0,00

pr CAT
int 0,14 0,14
eq 0,14 0,14
prop 0,14 0,14
sp 0,14 0,14
conc 0,14 0,14
fx 0,14 0,14


