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ABSTRACT

A new approach to goodness-of-fit for Pareto distributions is introduced. Based
on Euclidean distances between sample elements, the family of statistics and tests
is indexed by an exponent in (0,2) on Euclidean distance. The corresponding
tests are statistically consistent and have excellent performance when applied
to heavy-tailed distributions. The exponent can be tailored to the particular Pareto
distribution. The goodness-of-fit statistic measures all types of differences between
distributions, hence it is also applicable as a minimum distance estimator.
Implementation of the test statistics is developed and applied to estimation of
the tail index in three well known examples of claims data, and compared with
the classical EDF statistics.
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1. INTRODUCTION

The Pareto family of distributions is often applied in economics, finance, and
actuarial science to measure size; for example, income, loss, or claim severity.
Thus, estimation and fitting from data, and goodness-of-fit procedures that address
the issue of model adequacy, are of particular interest. Pareto distributions and
their properties are described in section 2.1.

In this paper we introduce and implement goodness-of-fit statistics and
tests for Pareto distributions based on Euclidean distances between sample
elements. These statistics have excellent empirical performance, particularly for
distributions with heavy tails. Actually, we introduce a family of tests indexed
by an exponent b in (0,2). The proposed test applies to univariate or multivariate
data. This paper focuses on the univariate case, but there is a natural extension
of the theory to multivariate loss models.
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1.1. Existing literature

Commonly applied formal goodness-of-fit (GOF) tests for Pareto distributions
are generally in the class of tests based on the empirical distribution function
(EDF), such as the Kolmogorov-Smirnov (KS) test, Cramér-von Mises (CvM) test,
or the Anderson-Darling (AD) test. The EDF statistics measure the distance
between distributions by some function of the distance between the empirical
and the hypothesized distributions. There is much literature on estimation of
Pareto parameters, including Baxter (1980), Likes (1969), Rytgaard (1990),
and relevant chapters of Arnold (1983) or Kleiber and Kotz (2003). Statistics
for measuring departure from a Pareto distribution are discussed in Brazauskas
and Serfling (2003) and Porter et al. (1992), and procedures for fitting Pareto
distributions or estimation of the tail parameter are covered in Brazauskas and
Serfling (2000a,b). Recent empirical studies include Brazauskas and Serfling
(2001, 2003).

Brazauskas and Serfling (2003) used the KS, CvM, and AD statistics as dis-
tance measures to rank 13 robust estimators of the tail index parameter a, as
well as the unbiased maximum likelihood estimator (MLU), with the goal of
obtaining a kind of consensus vote for the best estimators. That study in effect
optimized each of the GOF statistics over a finite set of possible estimates.
We extend and modify the study in two ways; by optimizing the goodness-of-
fit statistics over the parameter space to obtain estimates, and by considering
the new statistics proposed in this work.

Although the purpose of the comparison in Brazauskas and Serfling (2003)
was primarily to evaluate robust estimators, one can also investigate whether
the GOF statistics used to rank the estimators should be given equal weights.
Indeed if one statistic is generally superior (or inferior) for the problem at
hand, it is not clear how to resolve the differences in rankings.

The notion of “better” of course needs some criteria. Given that the sam-
pled distribution is Pareto, and the location parameter is correctly specified,
then in one sense an optimal estimator is the unbiased MLE. Perhaps the goal
is to find the best fit for data that is only approximately Pareto. In this case
the goodness-of-fit statistics measure goodness-of-fit (of the incorrect model
to the data), not the goodness of the estimate. For small samples of data with
large variance, robust statistics may perform better than asymptotically opti-
mal estimates. To investigate we follow up with a cross-validation study, to
determine which of the GOF statistics perform well for fitting a Pareto type I
distribution. A better fit in this case corresponds to the fit with smaller error. Per-
formance can also be compared in terms of power of the goodness-of-fit test.

1.2. Organization

The results below are organized as follows. Theoretical background and prop-
erties of the proposed statistics are presented in Section 2. Implementation
including derivation of computing formulae for several Pareto goodness-of-fit
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statistics follows in Section 3. In Section 4, Empirical Results and Discussion,
results are applied to three examples of observed claims data, and compared
with existing tests. Performance of statistics as minimum distance estimators
is investigated via cross-validation, and power of goodness-of-fit tests is inves-
tigated by a Monte Carlo power comparison. Our findings are summarized in
Section 5.

2. GOODNESS-OF-FIT

Let X1, …, Xn be a complete random sample from the distribution of X, and
let F be a cumulative distribution function (CDF). Consider the goodness-of-fit
problem of testing H0 : X + F vs H1 : H0 is false. In this paper we are interested
in testing the goodness-of-fit of data to a hypothesized Pareto distribution.

2.1. Pareto Distributions

A Pareto distribution of the first type has survival function 

F(x) = x
s

a-

c m , x $ s > 0, (2.1)

and density function f (x) = a ,
x

s
a

a

1+ x $ s > 0. Here s > 0 is a scale parameter,
and a > 0 is a shape parameter (Pareto’s index of inequality), which measures
the heaviness in the upper tail. The notation X + P(I ) (s,a) or simply P(s,a)
indicates that X has the classical Pareto (type I) distribution given by (2.1).
Pareto’s second model, referred to as the Pareto type II distribution, has the
survival distribution 

F(x) = ,
x

s
m

1
a

+
- -

< F x $ m, (2.2)

where m ! � is a location parameter, s > 0 is a scale parameter and a > 0 is
a shape parameter. The Pareto type II model defined by (2.2) is denoted
P(II ) ( m,s, a). Pareto type I and type II models are related by a simple trans-
formation. If Y + P(II ) ( m,s, a) then Y – (m – s) + P(I ) (s,a).

Pareto densities have a polynomial upper tail with index – (a + 1). Small
values of a correspond to heavier tails, and the kth moments exist only if a > k.
The moments of X + P(I ) (s,a) are given by 

E [Xk] = a ,a k

k

-
s

] g
a > k; (2.3)

in particular, E [X ] = a ,a
s

1- a > 1 and Var (X ) = a ,
a a

s
1 22

2

- -] ]g g
a > 2. For P(II)

( m,s, a) distributions, E [X ] = a
a

s
1- + ( m – s), a > 1.
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Thus, theoretical results that depend on the existence of moments do not
necessarily extend to Pareto distributions with arbitrary shape parameter a.
However, our proposed statistics are formulated with a stability index b in (0, a)
that can be chosen so that the corresponding moments exist.

2.2. Goodness-of-fit statistics

In the following, ||·|| denotes Euclidean norm, or absolute value in one dimension.
The notation X� indicates that X� is an independent copy of X; that is, X and
X� are independent and identically distributed (iid).

Theorem 1. If X ! �d and Y ! �d are independent random vectors, and
E ( ||X || b + ||Y || b) < 3, then for all 0 < b < 2

2E || X – Y || b – E || X – X�|| b – E ||Y – Y �|| b $ 0, (2.4)

with equality if and only if X and Y are identically distributed.

The expectation E || X – Y || b is taken with respect to the joint distribution,
which by independence is FX,Y (x, y) = FX (x)FY (y), so that 

E || X – Y || b = ## || x – y || b dFX (x) dFY (y).

Theorem 1 is proved in Székely and Rizzo (2005b). For each sample observation
Xj, let E ||Xj – X || b = # ||Xj – X || bdFX ; that is, Xj is a constant in the integrand.
Then an empirical version of the left side of inequality (2.4) is the statistic 

Qb = n j j

b b b

2 ,n E X X E X X
n

X2 1

,
k

j k

n

j

n

11

- - - - -
==

� X!!* 4 (2.5)

which can be applied to goodness-of-fit problems and certain estimation prob-
lems. In this paper we restrict attention to univariate Pareto models, and goodness-
of-fit to (or departure from) Pareto distributions is measured by the univariate
statistic, where E|Xj –X|b and E|X – X�|b are computed under the hypothesized
Pareto model, and exponent b is chosen to satisfy the moment condition ( b <
a /2). The exponent b is a stability index in the sense that when b < a /2 the dis-
tribution of X b has finite variance. Expressions for E|Xj –X|b and E|X – X�|b

are derived in section 3.
Alternately, for goodness-of-fit tests of P(s,a) models, it is equivalent to test

the hypothesis that T = log(X ) has a two-parameter exponential distribution,

H0 : T + Exp(m,a),
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where m = log(s) is the location parameter and a is the rate parameter. Here
log(X ) always refers to the natural logarithm. The density of T is 

fT (t) = ae–a(t – m), t $ m .

The first and second moments of T are finite. For all a > 0 we have E [T ] =
a
1 + m, and Var(T ) = a–2. Hence we can alternately apply the test statistic

Vb = n j j
bb b

2 ,n E T T E T T
n

T T2 1

,
k

j k

n

j

n

11

- - - - -
==

� !!* 4 (2.6)

where Tj = log(Xj ), j = 1, …, n, and E|Tj – T |b and E|T – T�|b are computed
under the hypothesized exponential (log Pareto) model.

For Pareto type II samples, Xj + P(II ) (m,s,a), let Yj = Xj – (m – s). Then
Yj + P(I ) (s,a). Moreover, Q and V are invariant to this transformation, as
|Xj – Xk| = |Yj – Yk |, etc. Thus the statistics developed for Pareto type I
distributions can be applied to the corresponding transformed Pareto type II
distributions.

2.3. Properties

It can be shown that Qb $ 0, with large values of Qb indicating departure from
the hypothesized distribution. Similarly, Vb $ 0 and large values of Vb support
the alternative hypothesis.
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FIGURE 1: Empirical distribution of 10,000 replicates of V for the wind catastrophes data, assuming a
Pareto(s = 1.5, a = 0.745) model; the observed test statistic is marked with a triangle.
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The expected values are E[Qb ] = E ||X –X�||b and E [V1] = E || log(X ) – log(X�) ||.
When the Pareto hypothesis is true and Var(X ) is finite, Qb converges in dis-
tribution to a quadratic form 

jj ,
j

2

1

3

=

Zl! (2.7)

as sample size n tends to infinity, where lj are non-negative constants, and Zj

are iid standard normal random variables. Asymptotic theory of V-statistics can
be applied to prove that tests based on Qb (or Vb) are statistically consistent
goodness-of-fit tests. See Székely and Rizzo (2005a) for details.

The shape of the distribution is similar to a gamma random variable. For
an example, see Figure 1, a histogram of the empirical distribution of the sta-
tistic V for one of the examples considered below. The rejection region for a
goodness-of-fit test based on a statistic V or Q is in the upper tail.

Another family of statistics with asymptotic distribution of the form (2.7)
are the Cramér-von Mises statistics (von Mises, 1947), including the CvM and
AD goodness-of-fit statistics.

3. IMPLEMENTATION

3.1. Statistics for the Exponential Model

Assume that X + P(s, a), and T = log(X ). Then T +Exp(m,a), where m =
log s, a is the rate parameter, and FT (t) = 1 – e–a (t – m), t $ m. Then the integrals
in V1 are 

E |s –T | = s – m + a
1 (1 – 2FT (s)), s $ m; (3.1)

E |T – T�| = a
1 . (3.2)

A computing formula for the corresponding test statistic is derived as follows.
The first mean in the statistic V = V1 is

j j
j ,Ta a an T e em m

1 1 1 2 1 2 a
a

T
j

n

j

n

1 1

- + - = - + +
=

-

=

T
m

nF T! !_`c cijm m

where T = jj 1=n
n1 T! is the sample mean.

Also, for b = 1, the last sum in (2.5) or (2.6) can be expressed as a linear
function of the ordered sample. If T( j ) denotes the j th largest sample element,
then 

j .T j n T2 2 1
,

( )k
j k

n

j
j

n

1 1

- = - -
= =

T! ! ^^ h h
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Hence the computational complexity of the statistic Q1 or V1 is O(n log n). The
statistic V = V1 is given by

j .T a a aV n e e
n

j n Tm2 1 2 1 2 2 1 ( )

a
a

j

n

j

n

j
1

2
1

= - - + - - - -
-

= =

m
T

n ! !^ h

R

T

S
SS

V

X

W
WW

* 4 (3.3)

If parameters are estimated, the corresponding estimates are substituted in (3.3).
(Formula (3.3) can be simplified further for computation.)

3.2. Pareto Statistics

In this section we develop the computing formula for Qb. First we present two
special cases, b = 1 and b = a – 1.

Case 1. If X + P(s,a), a > 1 and b = 1, then

, ;

/ .

a

a
a

a a
a

a

E y X y E X
y

y
y

y

E X X
E X

s
s

1
2

1
2

1 2 1
2

1 2

a

a

a a

1

1

$

- = - +
-

= +
-

-

- =
- -

=
-

-

- s

s

s
�

]

] ]

g

g g

6

6

@

@

(3.4)

(3.5)

Case 2. If X + P(s,a), a > 1 and b = a – 1, then

a
a 1-

, ;E y X y
y

y
s s

s
a

$- =
- +^ h

(3.6)

a2 .aE X X s
1

a
a

1
1

- =
+

-
-

� (3.7)

The statements of cases 1 and 2 can be obtained by directly evaluating the
integrals.

Although the special cases above are easy to apply, in general it may be
preferable to apply b that is proportional to a. For this we need case 3 below.

The Pareto type I family is closed under the power transformation. That
is, if X + P(s,a) and Y = X r, then Y + P(sr, a /r). It is always possible to find
an r > 0 such that the second moments of Y = X r exist, and Q1 can be applied
to measure the goodness-of-fit of Y to P(sr, a /r). This goodness-of-fit measure
will be denoted Q (r).

Beta functions arise in some of the expressions below. For reference, Bx( p, q) =
t px 1-

0
# (1 – t)q –1 dt is the incomplete beta function, and B ( p, q) = B1( p, q) is the
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complete beta function, B ( p, q) = p q

p q

G

G G

+]

] ]

g

g g, p > 0, q > 0, and G(·) is the com-
plete gamma function.

Proofs of the following statements are given in Appendix A.

Case 3. If X + P(s,a) and 0 < b < a < 1, then

b b ay , ,
, ;

a a
E y X y

y

B
ys

s b b b
s

1 1a
0 $- = - -

- - - +

a b-

bB
^

^ ^
h

h h8 B

(3.8)

b ,
,a

a a
E X X

B
b

s b b
2

2 1b2

- =
-

- +
�

^ h
(3.9)

where .y y
y s

0 =
-

Case 4. If X + P(s,a = 1), 0 < b < 1, and y0 = ( y – s) /y, then

bb 0 0

b

, ; ;

, , ;

, ,

E y X y y
y y

y

y B y

E X X B

s sb b b b b

s b b s

b
s

b b

1 1 1 2

1 1

2
2 1 1

b
b b

b

b

1
1

2 1 0

1 $

- = - - +
+

+ +

+ + -

- =
-

- +

-
+

-

F

�

^ ^

^

^

h h

h

h

* 4

(3.10)

(3.11)

where 2F1(a, b; c; z) denotes the Gauss hypergeometric function,

2F1(a, b; c; z) =
k

k k

! ,c
a b

k
z

k 0

3

=

k

!
]

] ]

g

g g

and (r)k = r (r + 1) ··· (r + k – 1) denotes the ascending factorial.

For a > 1 the expressions for E|y – X|b are complicated and involve the Gauss
hypergeometric function. It is simpler and more computationally efficient to
apply the Q(r) statistics (or V ) in this case.

3.3. Estimations

The proposed Pareto goodness-of-fit statistics provide a new approach to estima-
tion of the tail index a of a P(s,a) distribution. A minimum distance approach
can be applied, where the objective is to minimize the corresponding goodness-
of-fit statistic under the assumed model. For this application the statistic V1 can
be normalized to mean 1 by dividing by the mean E|T – T�|, and Qb can be

698 M.L. RIZZO



normalized by dividing by E|X – X�|b, where E|T – T�| or E|X – X�|b are com-
puted under the hypothesized model.

For a formal goodness-of-fit test based on V or Q, the unknown parameters
of the hypothesized P(s, a) distribution can be estimated by a number of
methods. See Arnold (1983, Ch. 5) or Kleiber and Kotz (2003, Ch. 3). Here we
summarize the maximum likelihood estimators. Robust generalized median,
quantile, and trimmed mean type estimators of a are described in Brazauskas
and Serfling (2000a,b, 2003) and the references therein.

The joint maximum likelihood estimator (MLE) of (a, s) is (â, s), where 

â = n
j

,log s

1-X
!= G s = X(1),

and X(1) is the first order statistic. By the invariance property of the MLE,
substituting â for a and s for s, or m = log s, we obtain the corresponding
MLEs of the mean distances in the test statistics V or Q.

Alternately, unbiased estimators of the parameters can be derived from the
MLEs. If both parameters are unknown,

s* = X1:n ,an
1

1
1

-
- t]

d
g

n a* = n1 2
-c m â

are unbiased estimators of the parameters (Baxter, 1980; Likes, 1969). If one
parameter is known, then 

a* = n1 1
-c m â or s* = X1:n an1 1

-c m

is unbiased for the unknown parameter.

3.4. The EDF tests

Among the formal goodness-of-fit tests applicable for this problem, the EDF
tests described in Stephens (1986) are widely applied. Let F denote an estimate
of F. The Kolmogorov-Smirnov (KS) statistic 

x
supD F X XF= -] ]g g

measures the distance of F from the CDF F. The quadratic EDF statistics are
based on the integrated squared distance 

Wc
2 = x F xF -

2
# ] ]_ g gi c(x) dF(x),
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where c(x) is a suitable weight function. If c is the identity function we obtain
the Cramér-von Mises (CvM) statistic 

W 2 = x F xF -
2

# ] ]_ g gi dF(x),

while the Anderson-Darling (AD) statistic 

A2 = F x F x
x F xF

1

2

-

-
#

] ]^

] ]_

g gh

g gi
dF(x),

is obtained by applying the weight function c(x) = (F(x) F(x))–1.
Using the EDF as the estimate of the CDF F, and F to denote the hypo-

thesized model, the EDF test statistics are 

D = max(D+, D–), where

( ) ( )

( )

( ) ( )

j j

j

j j2

; ;

;

.

max max

log log

D n
j

D n
j

W n n

A n n j

F F

F

F F

1

2
2 1

12
1

1 2 1 2 1 1

j n j n

j

n

j

n

1 1

2
2

1

2

1

= - = -
-

= -
-

+

= - - - + + - -

# # # #

+ -

=

=

n

X X

X

X X

j

j

!

!

_ _

_

^ _` ^ _`

i i

i

h ij h ij

<

8

F

B

( (2 2

For a test of fit for Pareto type I when parameters are specified or estimated
by maximum likelihood, one can refer to the critical values of EDF tests given
for testing the exponential model (Stephens, 1986, pp. 135-141).

4. EMPIRICAL RESULTS AND DISCUSSION

Three data sets are described and analyzed below: Wind Catastrophes (1977),
OLT Bodily Injury Liability Claims (1976), and Norwegian Fire Claims (1975).
These three examples were chosen for comparison with results by Brazauskas
and Serfling (2003) and to extend a study that compared and ranked 14 esti-
mators of the tail index of Pareto type I models. The data sets described below
are given in the appendix of this paper for easy reference.

The statistics applied in this paper were implemented in the R statistical
computing software, which is available by general public license.

4.1. Wind catastrophes data

The wind-catastrophes data shown in Table 6 is from an example in Hogg and
Klugman (1984, p. 64). Losses due to wind-related catastrophes were recorded
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to the nearest million dollars; the data comprise 40 rounded loss amounts of
$2 million or more.

Although the wind catastrophe losses are assumed to arise from a contin-
uous model, the data have been discretized by grouping. To be consistent with
Brazauskas and Serfling (2003) and for reproducible results, we de-group by
equally spacing the data, according to the method outlined in Brazauskas and
Serfling (2003), letting 

Xk = (1 – k / (m + 1)) A + k / (m + 1) B, k = 1, …, m, (4.1)

where interval (A,B ) contains exactly m grouped sample observations. After
de-grouping, the scale parameter is s = 1.5 rather than s = 2. The maximum
likelihood estimate of a is 0.764 and the unbiased estimator is a* = 0.745.

Remark 1. For the wind catastrophes data, the scale parameter s = 1.5 was
applied by Brazauskas and Serfling (2003) and Hogg and Klugman (1984);
Philbrick (1981) applied s = 2.0. For comparison with results of Brazauskas
and Serfling (2003), we apply scale parameter s = 1.5.

Table 1 illustrates the statistics V and Qb applied as a goodness-of-fit measure
to compare and rank several estimators of a. The estimators include a* (MLU),
three quantile estimators (Q1-Q3), five trimmed mean estimators (TM1-TM5),
and five generalized median estimators (GM1-GM5).

The ranks in Table 1 can be compared with Table 4.1 in Brazauskas and
Serfling (2003), which includes only the EDF statistics. In this example, ranks
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TABLE 1

SUMMARY OF GOODNESS-OF-FIT ANALYSIS OF ESTIMATES OF a FOR THE WIND CATASTROPHE DATA.

â CvM AD KS stat V stat Qa /4 stat Qa /3

MLU 0.745 12 12 6 0.763 7 0.947 12 0.959 12
Q1 0.605 13 13 14 1.244 14 0.954 13 0.975 13
Q2 0.731 10 10 2.5 0.730 5 0.931 10 0.939 10
Q3 0.791 14 14 13 0.980 13 1.030 14 1.060 14 
TM1 0.707 7 5 4 0.713 2 0.911 7 0.916 6 
TM2 0.677 2 2 8 0.765 8 0.903 1 0.908 1 
TM3 0.664 4 6 11 0.813 11 0.905 4 0.911 5 
TM4 0.667 3 4 10 0.800 10 0.904 3 0.910 4 
TM5 0.673 1 3 9 0.778 9 0.903 2 0.908 2 
GM1 0.653 6 8 12 0.867 12 0.909 6 0.917 7 
GM2 0.692 5 1 7 0.729 4 0.905 5 0.909 3 
GM3 0.714 8 7 2.5 0.713 1 0.916 8 0.922 8 
GM4 0.723 9 9 1 0.719 3 0.923 9 0.930 9 
GM5 0.744 11 11 5 0.760 6 0.946 11 0.958 11



based on V are similar to those obtained by the KS test. Two versions of the Qb

statistic are considered; b = â/3 and b = â/4. Corresponding ranks of the esti-
mates are very much in consensus with the CvM and AD statistics, perhaps
most closely aligned with CvM.

In Figure 2 each of the six statistics is plotted against the parameter esti-
mates a. For comparison purposes, the statistics have been scaled to a common
range by dividing each by its respective maximum over the interval. The graphs
reveal that although each statistic achieves its minimum at approximately the
same estimate, the shapes of the curves differ. The minima of the KS, CvM, AD,
V, Qa /3 and Qa /4 statistics are achieved at approximately 0.724, 0.673, 0.686,
0.711, 0.680, and 0.678, respectively.

Figure 1 is a density histogram of the replicates V for the P(s = 1.5, a =
0.745) model, with the value of the observed test statistic V = 0.762 marked by
a triangle. The histogram is a large sample approximation to the asymptotic
distribution of V under the null hypothesis. The median of the empirical dis-
tribution is 0.743 and the observed statistic is at the 51.3 percentile, clearly
non-significant.

4.2. OLT Bodily Injury Liability Claims (1976)

This data from Patrik (1980, p. 99) is shown in Table 7, the grouped losses (in
thousands) for the $500,000 policy limit for 1976 Owners, Landlords and Ten-
ants (OLT) bodily liability claims. A Pareto model is fit to losses at least $25,000.
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TABLE 2.

SUMMARY OF GOODNESS-OF-FIT ANALYSIS OF ESTIMATES OF a FOR

THE OLT BODILY INJURY LIABILITY CLAIMS DATA (RANKS).

â CvM AD KS V1 Qa – 1 Q (3)

MLU 1.140 11 12 12 9 12 8 
Q1 1.172 14 14 14 14 14 14 
Q2 1.111 2 5 6 2 3 6 
Q3 1.161 13 13 13 13 13 12 
TM1 1.098 4 1 4 8 1 9 
TM2 1.093 8 3 2 11 6 11 
TM3 1.110 2 4 5 4 2 7 
TM4 1.125 5 8 8 3 8 1 
TM5 1.127 6 9 9 5 9 2 
GM1 1.133 9.5 10.5 10.5 6.5 10.5 3.5 
GM2 1.082 12 7 1 12 7 13 
GM3 1.094 7 2 3 10 5 10 
GM4 1.113 2 6 7 1 4 5 
GM5 1.133 9.5 10.5 10.5 6.5 10.5 3.5



The data is de-grouped for analysis using (4.1) described above. The hypoth-
esized model is P(s = 25, a), where â = 1.153 is the MLE and a* = 1.140. The
ranks of the estimates are shown in Table 2, corresponding to Table 4.2 in
Brazauskas and Serfling (2003), and estimates are also compared in Figure 3.

For the OLT liability data, it appears that V and Q(3) rank the estimates
similarly. Other Q(r) statistics (not shown) produce essentially the same ranks as Q (3).

It is easier to interpret the rankings from the plots in Figure 3, where each
statistic is plotted against the estimates â. For ease of interpretation, in the plots
each statistic is scaled by dividing it by its maximum value over the interval
shown. Here we see that each statistic achieves its minimum at a value within
the range of estimates in Table 2. The minimum values of the KS, CvM, AD,
V, Qa –1 and Q(3) statistics occur at 1.084, 1.111, 1.099, 1.118, 1.104, and 1.123,
respectively.

4.3. Norwegian Fire Claims (1975)

This data is from Beirlant et al. (1996, Appendix I). The part of the data ana-
lyzed here comprise the total damage by 142 fires in Norway for the year 1975,
for claims above 500,000 Norwegian krones. The losses shown in Table 8 are
recorded in 1000’s of Norwegian krones.

Again, the data is de-grouped for analysis using (4.1) described above.
The hypothesized model is P(s = 500, a). The MLE is â = 1.218 and a* = 1.209
is MLU.
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TABLE 3.

SUMMARY OF GOODNESS-OF-FIT ANALYSIS OF ESTIMATES OF a FOR

THE NORWEGIAN FIRE CLAIMS DATA (RANKS).

â CvM AD KS V1 Qa – 1 Q (3)

MLU 1.209 11.5 8 13 6 13 3
Q1 1.234 9.5 10.5 3.5 11.5 3.5 11.5
Q2 1.232 8 9 5 10 5 10
Q3 1.203 13 13 14 8 14 7
TM1 1.221 1 1.5 8 5 8 6
TM2 1.229 5.5 7 6 9 6 9
TM3 1.234 9.5 10.5 3.5 11.5 3.5 11.5
TM4 1.235 11.5 12 2 13 2 13
TM5 1.226 3.5 5 7 7 7 8
GM1 1.242 14 14 1 14 1 14
GM2 1.220 2 1.5 9 4 9 5
GM3 1.217 3.5 3 10 3 10 4
GM4 1.215 5.5 4 11 1 11 2
GM5 1.214 7 6 12 2 12 1



Table 3 extends the analysis as summarized in Table 4.3 of Brazauskas and
Serfling (2003), showing the ranks of the estimates according to each of the
goodness-of-fit measures. Figure 4 summarizes the same analysis graphically,
where the minimum values of the KS, CvM, AD, V, Qa –1 and Q(3) statistics
are at 1.255, 1.222, 1.220, 1.215, 1.251, and 1.212, respectively.

Note that the rankings of the KS statistic and Qa –1 match in Table 3; a rank-
ing which orders the estimates in decreasing order. That is, the KS and Qa –1

statistics achieve their respective minimums outside of the range of the estimates
in the table. The QQ plot in Figure 5 suggests that the P(s = 500, a = 1.209) model
is a very good fit to the fire claims data. Considering the evidence of the QQ plot
in Figure 5, it seems more reasonable that the parameter a should be within the
range of estimates in Table 3. In this example we can also observe that V and Q(3)

are in approximate agreement with each other, ranking 1.214 and 1.215 in first
and second, while the CvM and AD statistics rank 1.221 and 1.220 at the top.

4.4. Hypothesis test results

Goodness-of-fit tests based on V and Q statistics can easily be applied using
Monte Carlo methods to obtain the critical values of the test statistics or
significance probabilities. We tested the null hypothesis H0 : X + P(s, a) using
simulation size 10,000. The results are summarized in Table 4. The p-values for
KS, CvM, and AD tests are reported in Brazauskas and Serfling (2003).
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TABLE 4.

GOODNESS-OF-FIT TESTS FOR FITTED PARETO MODELS BASED ON MAXIMUM LIKELIHOOD ESTIMATES OF TAIL

INDEX a AND SPECIFIED s IN THREE EXAMPLES (p-VALUES BASED ON SIMULATION SIZE 10,000).

Data s MLE KS CvM AD V Qa /3

Wind 1.5 0.764 0.51 0.27 0.24 0.44 0.39 
OLT 25 1.152 0.35 0.42 0.26 0.35 0.60
Fire 500 1.218 0.70 0.89 0.71 0.99 0.99

In each case the Pareto hypothesis is retained when a is estimated by the MLE
in the fitted model. Note that the minimum distance estimate of a using the
statistic V1 is 1.215, which is almost exactly equal to the MLE, 1.218. This fact
is reflected in the high p-value.

The quadratic statistics, V, and Q, represented in Figures 2-4 have similar
shapes. For comparison, we plotted the statistics together in Figure 6, where
it is more obvious that the statistics are not equivalent.

4.5. Cross-validation

Using the goodness-of-fit statistics to rank the estimates in Examples 1-3 implic-
itly supposes that each of the goodness-of-fit statistics is comparable in terms of



the ability to measure departure from a Pareto(I) model. Power of a test
depends on the alternative, and no GOF test is uniformly most powerful against
all alternatives. The test statistics can be compared via cross-validation. Choose
an integer k less than sample size n. Then

1. For each replicate, j = 1, …, m and each GOF statistic  = 1, …, r :
(a) Randomly select a training sample of size k from the full sample, reserving

the remaining n – k observations for the test set.
(b) Using the j th training set find the value of â j that minimizes the th GOF

statistic.
(c) Compute the squared error e2

j when the P(s, â j) model is fit to the
jth test set.

2. Compute the mean of the replicates e2
j for the th statistic,  = 1, …, r,

which is an estimate of the expected squared error when the statistic is applied
as a minimum distance estimator.

Remark 2. Estimated squared error for the test set !(Fn(xi) – F(xi))2 is related
to the CvM statistic. Other criteria than an L2 distance for measuring error are
possible, but we use the squared error here for its ease of interpretation.

The cross-validation experiment was replicated 40,000 times using a training
sample size k = 20. The results are summarized in Table 5. For convenient
interpretation, values in each row are divided by the result obtained for the
MLU estimate. Thus, a value greater than 1 indicates that the mean squared
error of the fit corresponding to the GOF distance statistic is higher than that
of MLU, while values lower than 1 indicate better fit on average. In addition
to the three data sets above, a simulated Pareto data set is included in the
analysis for comparison.

Cross-validation suggests that each of the goodness-of-fit statistics performs
reliably well, and it is reasonable to use any of them to rank and compare
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TABLE 5.

CROSS-VALIDATION ESTIMATES FOR SQUARED ERROR OF FITS FOR THREE DATA SETS,
RELATIVE TO MLU ESTIMATES.

Data n k Error MLU MLE KS CvM AD V 

Wind 40 20 Mean 1.00 1.03 1.03 1.05 0.98 0.93 
SD 1.00 1.02 1.11 1.10 0.96 0.88 

OLT 90 20 Mean 1.00 1.01 0.73 0.77 0.72 0.73 
SD 1.00 1.02 0.56 0.58 0.55 0.56 

Fire 142 20 Mean 1.00 1.00 1.06 1.04 0.92 0.84 
SD 1.00 1.01 1.15 1.16 0.98 0.87 

P(500, 1.2)† 142 20 Mean 1.00 1.00 1.05 1.03 0.92 0.83
SD 1.00 1.01 1.15 1.15 0.97 0.86

† Simulated Pareto(s,a) data.



estimates or to fit the distribution. The AD statistic and proposed statistic V
had better performance in the three examples than KS or CvM. In two of three
examples, our statistic V achieves the best result in terms of estimated squared
error for the fit on the test data, and can be considered best overall for the
set of three examples. On the simulated Pareto data, the statistic V has the
lowest average squared error.

Remark 3. If some prior information is available about a, we can also apply
other statistics as minimum distance estimators. The statistic Qa /3 performed
even better than V in some preliminary cross-validation studies. In this opti-
mization problem crossing integer boundaries in the parameter space must be
handled carefully, but the statistic V can be applied across the entire parame-
ter space a > 0.

4.6. Monte Carlo power comparison

Although a comprehensive Monte Carlo power study is beyond the scope of
this paper, we compared the power of the EDF tests with the new test based
on V. In each of these tests, the equivalent two parameter exponential distri-
bution is the null distribution.

The null hypothesis is H0 : X + Pareto(s,a) [ logX+Exp(log(s), a)]. In case
(i) a = 1.2, s = 1 and case (ii) a = 0.7, s = 1. Each test for V applies parametric sim-
ulation of the null distribution with 199 replicates. Power is estimated as the
proportion of significant tests in 2000 simulated data sets at 10% significance.

Results are summarized in Figures 7-10. In results of Figures 7 and 8
the sample size is n = 30 and the alternative a1 varies in increments of 0.1 for
cases (i) and (ii), respectively. In Figures 9 and 10, a = 1.2 and the alternatives
are fixed at a1 = 1.4 and a1 = 1, with sample size n on the horizontal axis. This
comparison suggests that the V test is somewhat more powerful than the EDF
tests for the examples investigated.

5. SUMMARY

We have introduced and implemented several new statistics for measuring good-
ness-of-fit in Pareto type I and type II models, and illustrated their application
in estimation and tests on three examples of claims data.

The empirical studies presented above suggest that the proposed statistic V,
which measures goodness-of-fit of logX to the Exp(logs, a) model, is easy to
apply, universally applicable, and a good measure of fit. The statistic Q1– a is
easy to apply, but may not be the best minimum distance statistic for estimation
purposes. The statistics Qb, for 0 < b < a < 1, perform well but require evaluation
of beta functions and do not have a simple form when a $ 1. Finally, the
statistics Q(r), which measure fit of a power transformation Xr of the data to
a Pareto distribution, are easy to apply, universally applicable, with similar
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performance as V. Both V and Q(r) have computational complexity O(n log n),
as do the EDF tests. Cross-validation on three examples suggests that the V
statistic is a better measure of fit to Pareto(I) distribution than the EDF tests.

Although each of our proposed statistics has desirable statistical properties
including statistical consistency, V or Q(r) could be recommended for simplicity
and universal applicability. Comparative power studies against Pareto and non-
Pareto alternatives are planned for future research.

Application to multivariate loss distributions is a promising extension.
The univariate Pareto goodness-of-fit statistics were given as special cases of
multivariate statistics, hence the statistics introduced in this paper have a nat-
ural extension to testing goodness-of-fit of multivariate loss models. Such an
extension is not possible with the EDF statistics because multivariate obser-
vations cannot be ranked. Theoretical properties of our proposed statistics
including statistical consistency will hold in the multivariate case under the
same assumptions; that is, no distributional properties other than existence of
second moments are assumed for inference.

APPENDIX

A. Proof of Statements

Lemma 1. If X + P(s,a) and 0 < b < a, then
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Proof. After a change of variables t = x – y we obtain
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where p = b + 1 and q = a – b. The integrand above is proportional to a beta
density of the second kind (see e.g. Kleiber and Kotz (2003, 6.1.1)), which has
density function 

NEW GOODNESS-OF-FIT TESTS FOR PARETO DISTRIBUTIONS 707



p q+, /
, > ,f t

b B p q t b
t t

1
0p

p 1

=
+

-

]
^

g
h 6 @

where b > 0, p > 0, and q > 0. Hence

b ,
.a

a a
x y x dx

y

B b b 1a a
a

y

1
- =

- +3 - -

a b-
s

s
# ^

^
h

h

Equation (A.2) follows directly from (A.1) by the power rule of integration.
¡

Case 3. [0 < b < a < 1]

Proof. Make the substitution t = (y – x) /y and set y0 = (y – s) /y. Then using
integration by parts we obtain
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Combining (A.3) and equation (A.1) of Lemma 1 we obtain equation (3.8).
Statement (3.9) follows from (A.2) in Lemma 1. ¡

Case 4. [a = 1 and 0 < b < 1]

Proof. Applying integration by parts and change of variables t = (y – x) / y, we
obtain
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In the last step a known result is applied (see e.g. Prudnikov, et al., 1990,
pp. 29-30). Combining (A.4) and (A.1) from Lemma 1, we obtain (3.10).
Finally, (3.11) can be obtained by integration, or more simply as the limit as a
approaches 1 from below of (3.9). ¡
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B. Data Sets

TABLE 6

WIND CATASTROPHE LOSSES (MILLIONS OF DOLLARS).

2 2 2 2 2 2 2 2 2 2
2 2 3 3 3 3 4 4 4 5
5 5 5 6 6 6 6 8 8 9

15 17 22 23 24 24 25 27 32 43

TABLE 7.

OLT BODILY INJURY LIABILITY CLAIMS (1976) IN $1000’S.

loss n loss n loss n loss n

25-30 11 50-55 3 120-130 2 240-250 2 
30-35 18 55-60 2 140-150 3 260-270 1 
35-40 9 70-75 9 190-200 1 280-290 1 
40-45 4 75-80 1 200-210 2 290-300 2 
45-50 11 95-100 4 220-230 1 340-350 1 

410-420 2

TABLE 8.

NORWEGIAN FIRE CLAIMS (1975) (1000 NORWEGIAN KRONES).

500 550 586 620 680 798 927 1038 1291 1515 2497 4585
500 550 593 622 700 800 940 1041 1293 1519 2690 4810
500 551 596 632 725 800 940 1104 1298 1587 2760 6855
502 552 596 635 728 800 948 1108 1300 1700 2794 7371
515 557 600 635 736 826 957 1137 1305 1708 2886 7772
515 558 600 640 737 835 1000 1143 1327 1820 2924 7834
528 570 600 650 740 862 1002 1180 1387 1822 2953 13000
530 572 605 650 748 885 1009 1243 1455 1848 3289 13484
530 574 610 650 752 900 1013 1248 1475 1906 3860 17237
530 579 610 650 756 900 1020 1252 1479 2110 4016 52600
540 583 613 672 756 910 1024 1280 1485 2251 4300
544 584 615 674 777 912 1033 1285 1491 2362 4397



FIGURE 3: Value of goodness-of-fit statistics vs estimates for the OLT bodily injury liability data,
scaled to (0,1]. The minima are achieved at 1.084 (KS), 1.111 (CvM), 1.099 (AD), 1.118 (V),

1.104 (Qa –1), and 1.123 (Q (3)).

FIGURE 2: Value of goodness-of-fit statistics vs estimates for the wind catastrophes data,
scaled to (0,1]. The minima are achieved at 0.724 (KS), 0.673 (CvM), 0.686 (AD), 0.711 (V),

0.680 (Qa /3), and 0.678 (Qa /4).
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FIGURE 5: QQ plot of fire data on log-log scale, assuming a Pareto(500, 1.209) model.

FIGURE 4: Value of goodness-of-fit statistics vs estimates for the Norwegian fire claims data,
scaled to (0,1]. The minima are achieved at 1.255 (KS), 1.222 (CvM), 1.220 (AD), 1.215 (V),

1.251 (Qa –1), and 1.212 (Q(3)).
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FIGURE 6: Goodness-of-fit statistics vs estimates for the Norwegian fire claims data,
scaled to (0,1].

FIGURE 7: Power comparison of V and EDF tests for case (i) a = 1.2, alternative a1, n = 30,
at 10% significance.
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FIGURE 8: Power comparison of V and EDF tests for case (ii) a = 0.7, alternative a1, n = 30,
at 10% significance.

FIGURE 9: Power comparison of V and EDF tests for case (i) a = 1.2, alternative a1 = 1.4,
at 10% significance.
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FIGURE 10: Power comparison of V and EDF tests for case (i) a = 1.2, alternative a1 = 1.0,
at 10% significance.
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