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ABSTRACT

The a-level Conditional Tail Expectation (CTE) of a continuous random vari-
able X is defined as its conditional expectation given the event {X > qa} where qa
represents its a-level quantile. It is well known that the empirical CTE (the
average of the n (1 – a) largest order statistics in a sample of size n) is a nega-
tively biased estimator of the CTE. This bias vanishes as the sample size
increases, but in small samples can be significant. In this article it is shown that
an unbiased nonparametric estimator of the CTE does not exist. In addition,
the asymptotic behavior of the bias of the empirical CTE is studied, and a
closed form expression for its first order term is derived. This expression
facilitates the study of the behavior of the empirical CTE with respect to the
underlying distribution, and suggests an alternative (to the bootstrap) approach
to bias correction. The performance of the resulting estimator is assessed via
simulation.

1. INTRODUCTION

Since the publication of Artzner et al. (1997, 1999), the Conditional Tail Expec-
tation (CTE) has gained an increasing level of attention as a measure of risk,
especially among academic actuaries (see Hardy (2003) and the references
therein, and also Landsman and Valdez (2003), Bilodeau (2004), Cai and Li
(2005) and Dhaene et al. (2003)). The main reason for preferring the CTE over
the Value at Risk (the VaR being the most popular measure of risk in the
financial world) is that the former is coherent while the latter is not (see Del-
baen (2000)). That the CTE is now part of the insurance industry regulations
in both Canada (for segregated fund contracts) and the US (C3 Phase 2 Report,
American Academy of Actuaries) has increased its relevance as a risk measure
among practicing actuaries.

The literature on the statistical estimation of the CTE includes Jones and
Zitikis (2003), Manistre and Hancock (2005), and Kim and Hardy (2007). The
main motivation for this article derives from the fact that the empirical CTE
is biased as an estimator of the CTE. This bias was observed in Manistre and
Hancock (2005), and was shown in Kim and Hardy (2007) to almost always
exist. The study of the bias of the empirical CTE is of practical interest because
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the relative bias (bias as a percentage of the CTE) has been observed to be at
a significant level for distributions of actuarial interest and for sample sizes in
the range of a few hundreds. As observed in Kim and Hardy (2007), practicing
actuaries adopting a seriatim approach to simulations may often have to
settle for sample sizes in this range due to heavy computational costs in terms
of both time and money. Hence, it is of interest to understand the bias of the
empirical CTE and to explore methods to correct for it.

We show that under general conditions a nonparametric unbiased estima-
tor for the CTE does not exist (Theorem 1), and hence there is no perfect bias
correction that can be applied to the empirical CTE. Nonetheless, as observed
in Manistre and Hancock (2005) and Kim and Hardy (2007), the bias of the
empirical CTE vanishes as the sample size increases. Corollary 2 implies that
when sampling from a continuous distribution (under some non-restrictive
conditions) the empirical CTE is an asymptotically unbiased estimator of the
CTE. Moreover, Corollary 2 establishes that the bias converges to zero at the
rate 1/n, and provides a closed form expression for its first order term. This
confirms the empirical observation in Manistre and Hancock (2005) and Kim
and Hardy (2007) that the bias converges to zero faster than the standard error;
as the standard error vanishes at the rate 1/ n . It is worth mention that for
discrete distributions the bias may converge at a rate slower than, or in some
cases faster than, 1/n (see Russo and Shyamalkumar (2008)). In the course of
proving Corollary 2, we derive an expression for the bias of the empirical CTE
(Lemma 1) that yields a simple alternative proof of the known result that the
CTE is negatively biased (Corollary 1).

The derivation of a closed form expression for the first order term of the
bias allows us to understand its behavior with respect to the a level and the
tail heaviness of the underlying distribution. In particular, we show that, rather
unexpectedly, the relative bias is not monotone with respect to tail heaviness.
Bias correction via the Bootstrap was proposed in Kim and Hardy (2007).
Here we show that correcting for the first order bias term by using a plug-in
estimator involving a default density estimator on the R computing platform
(see R Development Core Team (2008)) works very well in that it reduces bias
significantly while keeping the mean square error close to that of the empiri-
cal CTE. Another appeal of this approach is that it does not entail any addi-
tional computing as the asymptotic standard error of the empirical VaR (and
in fact even the asymptotic covariance between the empirical VaR and empir-
ical CTE, see Manistre and Hancock (2005)) is also a function of the density
evaluated at the appropriate quantile.

1.1. Definitions and Notation

Let X, X1, X2, …, Xn be independent and identically distributed random vari-
ables with a common loss distribution F (·). Let S (·) = 1 – F (·) denote the sur-
vival function corresponding to F (·), and f (·) and m(·) the density and hazard
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rate functions if they exist. Also, let Q (·) = F –1(·) denote the quantile function
associated with F, or more precisely:

Q (u) := inf{x ! � : F (x) $ u}, u ! (0,1). (1)

For a ! (0,1), qa := Q(a) denotes the a-quantile. The order statistics of the
sample are represented by X1:n, X2:n, …, Xn:n, with X1:n and Xn:n being the sam-
ple minimum and maximum, respectively. Also, let U1:n, …, Un:n represent the
order statistics from a random sample of size n from a uniform distribution
on (0,1). It will be convenient occasionally to assume that Ui:n = Q (Xi:n) for
i = 1, …, n.

The a-level CTE of X, denoted either by ja(X ) or ja(F ), is defined as 

ja(X ) := � (X | X > qa).

Our focus is on the a-level empirical CTE defined as 

n
n :CTE 1

:
a

i n
i n k

n

1n

=
= - +

k X!c m (2)

where kn is equal to n (1 – a) if integer valued, else can be defined as either the
integer immediately below or immediately above n (1 – a). The above quantity
is called the empirical CTE as for na an integer we have,

CTEn
a = ja(Y )

where Y is a random variable having the empirical CDF as its distribution
function, i.e.

Pr(Y # y) := n I1
, y

i

n

1
3-

=

! ] ?
(Xi ).

For real numbers x and y we denote by x / y (resp., x 0 y) the minimum (resp.,
maximum) of x and y. The sign function sgn(·) is defined such that sgn(x)
equals 1 (resp., –1) when x is non-negative (resp., negative). By U (0,b ) we
denote the continuous uniform distribution on the interval (0,b ), for b > 0.
A class F of distributions is said to be convex if for F, G ! F and b ! [0,1] we
have bF + (1 – b )G ! F.

2. NON-EXISTENCE OF AN UNBIASED NON-PARAMETRIC ESTIMATOR

Recall that an estimator T is unbiased for some function q(·) defined on a
given class of distributions F , if

�F(T ) = q(F ), 6F ! F .
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Hence, results on the non-existence of an unbiased estimator need to specify
the function q(·) and also the class F. In this section, we show (see Theorem 1)
that there does not exist an unbiased estimator of the a-level CTE, a ! (0,1),
when the class of distributions F is taken to be all distributions for which that
CTE is finite. More concisely, we establish the non-existence of an unbiased
non-parametric estimator of the a-level CTE, for a ! (0,1). The qualifier non-
parametric refers to the fact that the set of all distributions with a finite a-level
CTE is not parametrizable with a finite dimensional parameter. Theorem 1 is akin
to a result for density estimation in Rosenblatt (1956).

While it is well known that there does not exist a non-parametric unbiased
estimator of the a-level VaR, for a ! (0,1), it is not clear that this can be used
to easily conclude the non-existence of a non-parametric unbiased estimator
of the a-level CTE. For example, in the case of a sample of size one from a
Bernoulli(p) distribution, p2 cannot be unbiasedly estimated but p (which is a
one-to-one function of p2) can be unbiasedly estimated.

The proof of the next theorem relies on Theorem 2.1 of Bickel and Leh-
mann (1969), a powerful tool for establishing the non-existence of unbiased
estimators of a quantity of interest when the unknown distribution could be any
member of a given convex class (closed under finite mixtures) of distributions.
To establish the non-existence of an unbiased estimator of q(·) on F we identify
a suitable convex sub-set G of F so that Bickel and Lehmann’s result can be
employed to establish the non-existence of an unbiased estimator of q(·) on G.
This suffices as the non-existence of an unbiased estimator for q(·) restricted to
the subset G of F implies the non-existence of an unbiased estimator for q(·)
on the whole of F.

Before stating the theorem, it is instructive to rule out the empirical CTE
as a possible candidate for an unbiased estimator of the CTE. We do this by
showing that it is a biased estimator of the CTE for U(0,1), and hence for any
class of distributions F containing U(0,1). The uniform distribution was also
considered in Example 2.2 of Kim and Hardy (2007).

Example 1. [Uniform Distribution] 
Suppose that X is uniformly distributed on (0, 1). It is easily checked that
�(Xk :n) = k/ (n + 1) for k = 1, …, n. Thus, when na is an integer,

�(CTEn
a) = .a

n
n

2
1

2 1+
+] g

Since ja(X ) = (1 + a) /2, it follows that the empirical CTE is downwardly
biased by a /2(n + 1). ¡

Example 1 while ruling out the empirical CTE, falls short of establishing the
non-existence of a nonparametric unbiased estimator for the CTE.

Theorem 1. For 0 < a < 1 there does not exist a finite sample unbiased estimator
for the a-level CTE when the unknown distribution is allowed to be any member
of the class of all distributions that possess a finite a-level CTE.
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PROOF OF THEOREM 1. Let a ! (0,1), and let F0 be the set of distributions with
a finite a-level CTE. Let F0 (resp., G0) be the uniform distribution on (0,1)
(resp., (1,2)), and let G be the convex hull of F0 and G0, i.e. G0 := {H | H =
bF0 + (1 – b )G0, b ! [0,1]}. As any H ! G0 is supported on (0,2), it has a finite
a-level CTE, and this implies that G0 l F0. Hence, it suffices to show that there
does not exist a finite sample unbiased estimator for the a-level CTE when the
unknown distribution is allowed to be any distribution in G0.

By definition G0 is convex, and hence by Theorem 2.1 of Bickel and Leh-
mann (1969) it suffices to show that the a-level CTE of the distribution bF0 +
(1 – b )G0 is not a polynomial in b, for 0 # b # 1. It is easy to show that 

ja(bF0 + (1 – b )G0) =
;

> ;
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Observing that the above is not a polynomial in b completes the proof. ¡

We note that the above theorem can be strengthened to establish the non-existence
of an unbiased estimate for the CTE for classes of distributions much smaller
than F0. In fact, from the proof it follows that any class of distributions
containing G0 is large enough to rule out unbiased estimators for the CTE.
One such class of interest is the class of all unimodal distributions with a finite
a-level CTE, as the class of unimodal distribution on (0,3) is the same as the
class of mixtures of continuous uniform distributions. We note that while the
class {U(0,b ), b > 0} contains both F0 and G0, it does not contain G0. In fact,
if the unknown distribution is one of {U(0,b) : b > 0} then it is easily seen from
Example 1 that 

n
a
nCTE 2

a
:n n+ Xc m

is an unbiased estimator for the a-level CTE.

The goal of the next section is to study the asymptotic behavior of the bias,
� (CTEn

a ) – ja(X ), for a continuous distribution F(·).

3. BOUNDS FOR THE BIAS OF THE EMPIRICAL CTE

In the remainder of this article we assume that F satisfies

1) F is differentiable with a continuous density f

2) f (qa) > 0, for a ! (0,1)

3) � ( |X |) < 3
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We begin by finding an expression for �(CTEn
a):

�(CTEn
a) = �(�(CTEn

a | Xn – kn : n))

= �(�(X | X > Xn – kn : n)) (3)

= �(c(Xn – kn : n))

where the function c(·) is defined as 

c(x) = �(X | X > x) = .S x
S t

t xd
x

+
3

#
]

]

g

g (4)

Note that the above relation does not require X to be non-negative, and that
c(qa) is the a-level CTE under F, so that c(qa) = ja(X ).

Lemma 1. Let a and n be such that na is an integer. Then we have,

c(qa) – �(CTEn
a) = �

n
n

a
a

n

n
.F t td1

1
:

:
n

n
q Q

q Q

:

:

a a

a a

n

n

-
-

/

0

U

U

U U# ]
]

]
d g
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n (5)

Proof. See Appendix. ¡

From Lemma 1 we obtain:

Corollary 1. Let a and n be such that na is an integer. Then the a-level empirical
CTE estimator based on a random sample of size n from F is negatively biased
as an estimator of the a-level CTE.

We note that for noninteger valued na, the negative biasedness of the empirical
CTE estimator follows if kn (as in (2)) is taken to be SnaV. However, if kn is
taken to be SnaV+ 1, the estimator may be positively biased, as in the uniform
case of Example 1 with n = 4 and a = 1/3.

Theorem 2. Let a and n($4) be such that na is an integer, and let An be defined as 

An := (a + (2a – 1) / (n – 2) – qns / n 3- , a + (2a – 1) / (n – 2) + qns / n 3- )

where s2 = (na – 1) (n (1 – a) – 1) / (n – 2)2. Then we have,

nmax
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(6)
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where en is bounded above by 

n
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n

/ /
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Proof. See Appendix. ¡

Corollary 2. For a sequence {mn}n $ 1, such that mn "3 and mna is an integer
for all n $ 1, we have

mn
.lim �

an q
f q

CTEc
2a

a

an
- =

"3
^ `a

^
h jk

h

Proof. Defining qn = C log n in the statement of Theorem 2, for some C >
3, the result follows from Theorem 2. ¡

In Corollary 2 we restrict ourselves to sample sizes n for which na is an integer.
If we do not do so, the limit need not exist. For example, from the calculations
in Example 1 we see that for rational a with a = p/q for p and q coprimes,
n = mq + r for some r ! {0,1, …, q – 1}, and kn = SnaV in the definition of
CTEn

a, we have,

n(c(qa) – � (CTEn
a)) = .

a ar r
n2

1
1 1

1+ -
-

+
]

c
g

m< F
6 @

In particular, the above implies that the sequence {n (c(qa) – � (CTEn
a))}n $1 is

oscillatory in nature. Nonetheless, under the conditions of Theorem 2, it can
easily be shown that 

lim sup
n "3

n(c(qa) – �(CTEn
a)) < 3

for kn in the definition of CTEn
a such that kn – na is bounded.

For any F satisfying the conditions of Theorem 2, we define the asymptotic bias
of the a-level empirical CTE estimator to be – a /(2 f (qa)), and the asymptotic
relative bias to be 

.a
q f qc2 a a

-
^ ^h h

The following example demonstrates that in the case of the exponential dis-
tribution, the asymptotic bias is a good approximation to the n-times magnified
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bias even for a moderate sample size n, and that the absolute value of the rel-
ative bias increases with a, for a close to 1.

Example 2. [Exponential Distribution]
Suppose that X is exponentially distributed with mean b. The exponential is
particularly interesting as it is on the boundary of heavy and light tailed dis-
tributions. Since Xj :n is distributed as the sum of j independent exponential
distributions with means b /n, …, b / (n + 1 – j ), we have

�(CTEn
a) = �(X | X > Xn – kn : n) = �(X – Xn – kn : n | X > Xn – kn : n) + �(Xn – kn : n) 

= .n i
n

b 1 1

i k

n

1n

+
= +

!
J

L

K
K

N

P

O
O

But as ja(X ) = b (1 – ln(1 – a)), the bias is given by

�(CTEn
a) – ja(X ) = .ln an i
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It is worth observing that
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with the approximation being an upper bound. By Theorem 2,

lim
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n (�(CTEn
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For the calculations in Figure 1a we used the base case of b = 1. The value for
the asymptotic bias is – 9.5 and is indicated by the dashed line. Figure 1a shows
that the first order approximation for bias performs very well in this case, even
for moderate values of n. For the asymptotic relative bias, we have the fol-
lowing expression:
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Figure 1b shows that the relative bias worsens with increasing a. ¡

It is clear that the asymptotic relative bias depends on the tail of F. The next
example studies this dependence within the class of Pareto distributions.
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We chose the Pareto because it is an important class of distributions in actuarial
applications, and because it contains distributions with tails both heavier and
lighter than the exponential.

Example 3. [Pareto Distribution]
For our purpose we will use the same parameterization as in Manistre and
Hancock (2005). By Pareto(b,z) we mean the distribution with hazard rate
function

;

> ;
.x
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x x
m

b z

0 0
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+

] g
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]]

]

It is clear that for b fixed, the lower the value of z, the lighter the tail of the
Pareto, and that for z = 0 the Pareto reduces to the exponential distribution with
mean b. Moreover,

�(X | X > u) = ,
u
z

b
1 -

+
z < 1.

Applying Theorem 2, we obtain
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(b) Asymptotic First Order Relative Bias

FIGURE 1: Exponential with mean 1.

(a) Accuracy of the Asymptotic Bias: a = 0.95.



FIGURE 2: Asymptotic First Order Expression of Relative Bias: Pareto(10,z) Case.

Figure 2 plots the asymptotic relative bias for varying values of z, for a = 0.95.
Note that the relative bias does not depend on the value of b as it is a scale
parameter. The worst case value of the asymptotic relative bias is – 2.799 which
is attained at z = 0.344. It is interesting to note that with increasing z the tail
gets heavier, but the relative bias does not necessarily get worse. ¡

4. FIRST ORDER BIAS CORRECTED EMPIRICAL CTE

As observed in Manistre and Hancock (2005), the bias of the empirical CTE
could be significant for small samples. In Kim and Hardy (2007) the bootstrap
was suggested as a way to estimate, and hence correct for, this bias. However,
the closed form expression for the asymptotic bias (Corollary 2) suggests an
alternative estimator obtained by substituting into this expression an estimate
of f (qa). In fact, Figure 1a suggests that this estimator could have good small
sample performance. Moreover, the fact that the standard error of the empirical
VaR and the covariance between the empirical CTE and the empirical VaR both
involve 1/ f (qa) implies that estimating the asymptotic bias does not add further
to the computation, making this approach more appealing. In this section we
present simulation results pertaining to three practical examples from Manistre
and Hancock (2005) and Kim and Hardy (2007). In these simulations we com-
pare the performance of the empirical CTE, Exact Bootstrap Bias Corrected
empirical CTE, and the First Order Bias Corrected empirical CTE (FOBC).

726 B. KO, R.P. RUSSO AND N.D. SHYAMALKUMAR



4.1. The Examples

The first two examples consider the liability from a naked position in a written
10-year European put option with the initial price of the asset set at $100, the
strike price set at $180, and the risk free rate set at 0.5% per month effective.
Note that the strike price of 180 approximately equals 100 * 1.005120. In the
first example, the monthly log-return on the asset is assumed to be normally
distributed with mean 0.00947 and standard deviation 0.04167, these values
being estimated from monthly S&P 500 data during 1956-2001 (see Hardy
(2003)). The second example assumes instead that the monthly log-return follows
a regime switching normal distribution with the parameters (estimated using the
same S&P 500 data, see Hardy (2003)) being (0.0127, – 0.0162) for the mean
vector, (0.0351, 0.0691) for the two standard deviations, and the transition prob-
abilities p12 = 0.0468 and p21 = 0.3232. We note that the mean and the standard
deviation of the stationary distribution of the monthly log-return are 0.0091 and
0.0421, respectively, which expectedly is close to that of the first example. The lia-
bility in the Lognormal (LN) example has a .95-level VaR of 18.11 and a .95-level
CTE of 31.26. The liability in the second, Regime Switching Lognormal distrib-
ution with two regimes (RSLN), is relatively heavier tailed and this is reflected in
a higher .95-level VaR of 29.2 and higher CTE at the .95-level of 42.96.

The third example is that of a liability distributed as a polynomial tailed Pareto
distribution (see Example 3) with parameters b = 10 and z = 0.2. This distribution,
popular in actuarial applications, has mean 12.5 and standard deviation 16.14.
Moreover, it has a .95-level VaR of 41.03 and a .95-level CTE of 63.79.

4.2. Simulation

In all three examples we simulated 100 million random samples for each of the
sample sizes 200 and 1000. In Tables 1, 2, and 3 we report for each of the
three estimators of the CTE, an estimate of their bias and an estimate of their
root mean square error (RMSE) along with an estimate of the standard errors.
The estimate of the bias is the difference between the average sample estimate
(over the 100 million samples) and the true CTE.

The .95-level empirical CTE was calculated for each random sample
using the average of the highest 5% of the values in the sample. To estimate
the asymptotic bias, we estimate f (q.95) by the estimate of the density at the
95-th percentile. We estimate the 95-th percentile by the corresponding empirical
quantile. To estimate the density, we resort to a Gaussian kernel density estimator.
For the bandwidth we use 0.9 times the minimum of the standard deviation
and the interquartile range divided by 1.34 times the sample size to the negative
one-fifth power (i.e. Silverman’s ‘rule of thumb’, see Silverman (1986)) unless
the quartiles coincide, in which case a positive value is used. We note that the
bandwidth being O(n–1/5) leads to the optimal rate of convergence of the mean
square error to zero. The .95-level empirical CTE with first order bias correc-
tion (FOBC) was calculated as the difference between the empirical CTE and
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1/n times the estimator for the asymptotic bias derived by substituting for f (qa)
the Gaussian kernel density estimate at the empirical 95-th percentile. In Kim
and Hardy (2007), using the exact expression of the bootstrap mean of the
k-th order statistic of Hutson and Ernst (2000), an exact expression for the
bootstrap mean of the empirical CTE is derived. Since, for large n, the bootstrap
distribution is close to the exact distribution, one would expect that the dif-
ference between the empirical CTE and the bootstrap mean of the empirical
CTE would be close to the negative bias of the empirical CTE. This leads to
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TABLE 1

LOGNORMAL EXAMPLE: 95% CTE ESTIMATORS (CTE = 31.2552)

Sample Size Estimator Bias S.E. of Bias RMSE S.E. of RMSE

Empirical – 2.67652% 0.00166% 16.859% 0.00122%
200 FOBC – 0.37343% 0.00170% 17.046% 0.00125%

Bootstrap 0.01192% 0.00170% 17.025% 0.00123%

Empirical – 0.54222% 0.00074% 7.4495% 0.00054% 
1000 FOBC – 0.01675% 0.00075% 7.4633% 0.00054% 

Bootstrap 0.00078% 0.00075% 7.4645% 0.00054% 

TABLE 2

REGIME SWITCHING LOGNORMAL EXAMPLE: 95% CTE ESTIMATORS (CTE = 42.9634)

Sample Size Estimator Bias S.E. of Bias RMSE S.E. of RMSE

Empirical – 2.06071% 0.00126% 12.805% 0.00087% 
200 FOBC – 0.19095% 0.00129% 12.891% 0.00086% 

Bootstrap 0.01909% 0.00129% 12.913% 0.00086% 

Empirical – 0.41780% 0.00056% 5.6533% 0.00046% 
1000 FOBC – 0.01023% 0.00057% 5.6625% 0.00046% 

Bootstrap 0.00028% 0.00057% 5.6643% 0.00046% 

TABLE 3

PARETO EXAMPLE: 95% CTE ESTIMATORS (CTE = 63.7853)

Sample Size Estimator Bias S.E. of Bias RMSE S.E. of RMSE

Empirical – 1.33789% 0.00180% 18.086% 0.00187% 
200 FOBC – 0.17752% 0.00183% 18.276% 0.00192% 

Bootstrap 0.04017% 0.00184% 18.366% 0.00193% 

Empirical – 0.27034% 0.00081% 8.1470% 0.00068% 
1000 FOBC – 0.01040% 0.00082% 8.1685% 0.00069% 

Bootstrap 0.00165% 0.00082% 8.1707% 0.00070%



the exact bootstrap bias corrected empirical CTE of Kim and Hardy (2007)
which is twice the empirical CTE minus the exact bootstrap mean of the empir-
ical CTE.

All of the code was written on the R software environment for statistical
computing and graphics (see R Development Core Team (2008)). It was run par-
allel on 10 nodes (40 processors) of a 22 node Beowulf cluster using the snow R
package (Tierney et al. (2008, 2009)). For kernel density estimation we used the
R function density, with default setting for both the bandwidth and the kernel.

4.3. Results

The results in Tables 1, 2, and 3 are presented as a percentage of the true
.95-level CTE as this both facilitates comparison among examples and
comparison of our results with those of Kim and Hardy (2007). We make the
following observations:

1. As expected we see negative bias for the empirical CTE. That the bias con-
verges to zero at the 1/n rate (Corollary 2) while the standard error converges
to zero at the rate 1 / n means that bias is less of an issue at sample size
1000 than at sample size 200, a phenomenon that is seen in the tables.

2. Both the bootstrap and the first order bias correction significantly reduce
bias, with the bootstrap correction doing significantly better. In Table 4, we
have tabulated at the a = 0.95 level the exact first order bias correction (as
a percentage of the true CTE value) and the residual bias in the empirical
CTE using this exact asymptotic bias. This suggests that the higher bias of
the FOBC is due to the fact that the choice of the bandwidth is driven by
the goal of reducing the MSE rather than the bias. Hence, using a band-
width which goes to zero at a rate faster than n–1/5 will reduce bias further
at the cost of an increased RMSE.

3. Bias correction either by bootstrap or by first order bias correction leads
to a higher RMSE than the empirical CTE. Among the two bias corrections,
except in the lognormal example with sample size 200, FOBC leads to a
slightly lower MSE than the bootstrap correction. This suggests that the
implicit bandwidth in the bootstrap bias correction goes to zero faster than
n–1/5 leading to lower bias but higher MSE. This is something that should
be explored further.

In Table 5, we report the results from similar simulations but at the 0.99-level,
and for the sample size of 200. Here we observe that the FOBC consistently
has a RMSE very close to that of the empirical CTE, whereas the bootstrap
bias correction has significantly higher RMSE. Again, there is a tradeoff
between lowering the bias and lowering the standard error. We observe that
FOBC consistently keeps the RMSE close to that of the empirical CTE, while
reducing the bias significantly. The Mixed estimator in Table 5 refers to the esti-
mator proposed in Kim and Hardy (2007) which chooses between the empir-
ical CTE estimator and its exact bootstrap mean based on the estimated bias
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and standard error. In fact, the values reported for the Mixed estimator in
Table 5 are from Kim and Hardy (2007). We point out that in Table 7 of Kim
and Hardy (2007) the mixed estimator is compared with the exact bootstrap
mean of the empirical CTE (with approximately twice the bias) whereas in
Table 5 it is compared with the exact bootstrap bias corrected empirical CTE
(with much reduced bias). Since the error in the RMSE for the Mixed estimator
in Kim and Hardy (2007) is not provided, we can only say that the FOBC
seems to compare well in terms of RMSE, and significantly reduces bias unlike
the Mixed where the bias could be significantly higher than that of the empir-
ical CTE (as in the Pareto example).

5. CONCLUSION

We first established theoretically the non-existence of a nonparametric unbiased
estimator when the unknown distribution is allowed to be any distribution
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TABLE 4

FIRST ORDER BIAS – SAMPLE SIZE OF 200

95%-Level 99%-Level

Example CTE First Order Residual CTE First Order Residual
Bias Bias Bias Bias 

Lognormal 31.255 – 2.718% 0.042% 47.728 – 5.259% 0.3962%
RSLN 42.963 – 2.093% 0.032% 59.999 – 4.327% 0.3239%
Pareto 63.785 – 1.356% 0.018% 106.993 – 5.811% 0.4226%

TABLE 5

99% CTE ESTIMATORS – SAMPLE SIZE OF 200

Example Estimator Bias S.E. of Bias RMSE S.E. of RMSE

Lognormal (CTE = 47.7281) Empirical – 4.86281% 0.00152% 15.967% 0.00111% 
FOBC – 1.79214% 0.00159% 16.031% 0.00111% 
Bootstrap 0.21649% 0.00168% 16.817% 0.00116% 
Mixed – 4.9277% – 16.029% –

RSLN (CTE = 59.9989) Empirical – 4.00327% 0.00123% 12.913% 0.00088% 
FOBC – 1.15370% 0.00129% 12.972% 0.00087% 
Bootstrap 0.16416% 0.00135% 13.549% 0.00095% 
Mixed – 4.0009% – 12.731% –

Pareto (CTE = 106.993) Empirical – 5.38801% 0.00319% 32.366% 0.00620% 
FOBC – 3.15112% 0.00323% 32.455% 0.00626% 
Bootstrap 0.95143% 0.00362% 36.214% 0.00711% 
Mixed – 6.8749% – 30.879% –



with a finite CTE. While this result is part of the folklore, there does not seem
to be any published proof of it, and moreover our proof lends itself to fur-
ther strengthening of the result. Second, we derived a closed form expression
for the bias of the empirical CTE when the underlying distribution admits a
density. Third, in the continuous case we derived finite sample bounds for the
bias, showed that the bias is of order 1/n, and derived a simple closed form
expression for the first order bias.

The only unknown quantity in the first order term of the bias of the a-level
empirical CTE is the density evaluated at the a-level quantile. This suggests
a simple plug-in estimator as an alternate to the bootstrap method of bias
correction. Fourth, we studied this proposed estimator and found that it has
the advantage of being very easily computable on any statistical environment
(in particular on R) that has a kernel density estimator, and tends to have
reduced RMSE compared to the bootstrap method of bias correction. The flip
side of having reduced RMSE is that the proposed method tends to have a
larger bias than the bootstrap method of bias correction.
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APPENDIX

Proof of Lemma 1. The negative bias of CTEn
a can be expressed as 
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Now, the first term in the final expression of (7) vanishes as we have 
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Combining (7) with (8) completes the proof. ¡

Proof of Theorem 2. First, we split the expectation in (5) into two parts: the
first where Una :n is restricted to An, where An is a neighborhood around a, and
the second where Una :n is restricted to An

c . A lower bound for the first part can
be derived as follows:
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Similarly, it can be shown that the following is an upper bound for the above:
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a

n f Q s2 s An! ]^ gh
(10)

Now, the remaining part of the final expectation in (5) can be bounded as fol-
lows:
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As X + F, we have 

x (F(–x ) + 1 – F(x)) # � (|X | I(x,3) (|X |)) # � (|X |).

In particular, u(1 – u)Q(u) # �(|X |). Using this in (11) and Lemma 2 (see below)
we obtain 
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Combining (9), (10) and (12) completes the proof. ¡

The following is Lemma 3.1.1 from Reiss (1989).

Lemma 2. For every e > 0 and r ! {1, 2, …, n} we have
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