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ABSTRACT

In this paper we estimate operational risk by using the convex risk measure
Expected Shortfall (ES) and provide an approximation as the confidence level
converges to 100% in the univariate case. Then we extend this approach to the
multivariate case, where we represent the dependence structure by using a Lévy
copula as in Böcker and Klüppelberg (2006) and Böcker and Klüppelberg, C.
(2008). We compare our results to the ones obtained in Böcker and Klüppelberg
(2006) and (2008) for Operational VaR and discuss their practical relevance.
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1. INTRODUCTION

Within the framework of Basel II banks not only have to put aside equity
reserves for market and credit risk but also for operational risk. In §664 of
Basel Committee of Banking Supervision (2004) the Basel Committee defines:
“Operational risk is the risk of loss resulting from inadequate or failed internal
processes, people and systems or from external events”.

The particular difficulty in measuring this new risk type arises from the
fact that partially the corresponding events are extremely rare with enormously
high losses and at the same time there are comparatively few data.

Banks have to apply one of three methods in order to calculate the capital
requirement: the Basis Indicator Approach, the Standardized Approach or the
Advanced Measurement Approach (AMA). Within the first two methods, the
capital charge is a percentage of the average annual gross income. According
to the AMA, a bank is allowed to develop an internal operational risk model
with individual distributional assumptions and dependence structures. Hence
it is of great interest to develop suitable methods to estimate the capital reserve.

The most common way of estimating the amount of equity reserve for
operational risk is by using the risk measure Value at Risk (VaR). In Böcker
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and Klüppelberg (2005) the so-called Operational Value at Risk (OpVaR) at
level k ! (0,1) is defined as the k-quantile of the aggregated loss process.
Operational Value at Risk has been extensively studied both in the univariate
and multivariate case respectively in Böcker (2006), Böcker and Klüppelberg
(2005), (2006) and (2007) and (2008).

An essential disadvantage of this risk measure is that, in general, it is not
coherent. In particular, it can happen that VaR attributes more risk to a loss port-
folio than to the sum of the single loss positions. Moreover, VaR exclusively
regards the probability of a loss whereas its size remains out of consideration.

The most popular alternative to VaR is the Expected Shortfall (ES), which
is also known as Average VaR, Conditional VaR or Tail VaR. This risk mea-
sure is coherent and indicates the expected size of a loss provided that it exceeds
the VaR. In particular, the ES seems to be the best convex alternative to the
VaR, since it is the smallest law-invariant, convex risk measure continuous
from below that dominates VaR (Theorem 4.61 of Föllmer and Schied (2004)).
In addition, within the framework of Solvency II and the Swiss Solvency Test,
insurers have to calculate their target capital by using the ES. The Federal
Office of Private Insurance justifies this in chapter 2.4.1 of Federal Office of
Private Insurance (2006) as follows:

The risk measure Expected Shortfall is more conservative than the VaR at the
same confidence level. Since it can be assumed that the actual loss profile
exhibits several extremely high losses with a very low probability, the Expected
Shortfall is the more appropriate risk measure, as, in contrast to the VaR, it
regards the size of this extreme losses.

This argumentation is also suitable for operational risk, since it is very similar
to the quoted actuarial risk. In Chavez-Demoulin and Embrechts (2004) and
Moscadelli (2004) ES is then suggested as an alternative to VaR for quantify-
ing operational risk. Hence, in this paper we evaluate operational risk by using
the Expected Shortfall and derive asymptotic results in univariate and multi-
variate models.

The organization of the paper is the following. First we consider a one-
dimensional Loss Distribution Approach (LDA) model. Since in §667, Basel
Committee of Banking Supervision (2004), the Basel Committee sets the
confidence level at 99,9%, it is reasonable to focus on the right distribution
tail instead of estimating the whole distribution. Therefore we study the asymp-
totic behavior of the right distribution tail and, assuming that the severity dis-
tribution has a regularly varying tail with index a > 1, we derive an asymptotic
approximation of the Operational Expected Shortfall:

ESt(k) + a
a

1-
VaRt(k), k " 1, a > 1.

Then we consider a multivariate model, whose cells represent the different
operational risk classes, since according to the AMA, operational risk shall be
allocated to eight business lines (Basel Committee of Banking Supervision
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(2004), §654) and seven loss types (Basel Committee of Banking Supervision
(2004), appendix 7).

In the literature, the single risk classes are prevalently modelled by a compound
Poisson process, i.e. the loss in one risk category i at time t $ 0 is represented
by the random sum

Si(t) = k ,X
( )

i

k

t

1

i

=

N

!

where (Xk
i )k ! � is an independent and identically distributed (iid) severity

process and (Ni(t))t $ 0 is a Poisson process independent of (Xk
i )k ! �. The total

operational risk is the sum

S+(t) = S1(t) + ··· + Sd (t) .

However it is not realistic to assume that risk classes are independent. Hence
in order to describe the dependencies between the Si(t), 1 # i # d, we follow
the approach of Böcker and Klüppelberg (2006) and use a Lévy copula. This
yields a relatively simple model with comparatively few parameters as the
dependencies between severities and frequencies are modelled simultaneously.

In this setting, we derive asymptotic conclusions for the OpES in various
scenarios. For further details, we also refer to Ulmer (2007).

Finally we examine the practical relevance of our results.

2. APPROXIMATION OF THE OPES IN A ONE-DIMENSIONAL MODEL

We suppose that operational risk follows an LDA model.

Definition 2.1. Loss Distribution Approach (LDA) model) 

1. The severity process: The severities are modelled by a sequence of positive iid
random variables (Xk)k ! �. Let F be the distribution function (in short, df)
of the Xk.

2. The frequency process: The random number N(t) of losses in the time inter-
val [0, t] is a counting process, i.e. for t $ 0 

N(t) := sup{n $ 1: Tn # t}

is generated by a sequence of random points in time (Tn)n ! � , which satisfy
0 # T1 # T2 # … a.s.

3. The severity process and the frequency process are assumed to be independent.

4. The aggregated loss process is defined as S(t) := k.( )
k
N t

1=
X!

In order to measure operational risk, we introduce the Operational Value at
Risk (OpVaR) and the Operational Expected Shortfall (OpES). In this paper
we will then focus on the OpES.
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Definition 2.2. (OpVaR, OpES) Let Gt be the df of the aggregated loss process
(St)t $ 0 of an LDA model. The Operational Value at Risk until time t at level
k ! (0,1) is the generalized inverse Gt

! of Gt

VaRt(k) := Gt
!(k) = inf{x ! � : Gt(x) $ k}.

The Operational Expected Shortfall until time t at level k ! [0,1) is defined as

ESt(k) := .VaR u duk1
1

t
k

1

- # ] g

In order to compute these risk measures, we need to know the df Gt of S(t).
Because of the independence assumptions we know

Gt(x) = �(S(t) # x) = *

n 0

3

=

nF! (x) �(N(t) = n), (1)

where F n* is the n-th convolution of F and F 1* = F and F 0* = 1[0,3).

We study now the asymptotic behavior of Gt(x) = �(S(t) > x) for x " 3 and
derive asymptotic results in univariate and multivariate models.

We say two real functions F, G are asymptotically equal for x " 3 (F (x) +
G(x), x " 3) if

.lim G x
F x

1
x

=
"3 ]

]

g

g

Remark 2.3. From the asymptotic equality of the summands we can infer the
asymptotic equality of the sum. The same holds for the integrand and the integral:

a) Let Fi, Gi , i = 1, …, d, be positive real functions with 

Fi(x) + Gi(x), x " 3. (2)
Then

F1(x) + ··· + Fd (x) + G1(x) + ··· + Gd(x), x " 3.

b) Let f, c : [0,1] " [0,3) with f(k) + c(k), k" 1, and suppose there exists a
t ! [0,1) such that f1

t
# (t)dt < 3 and c1

t
# (t)dt < 3. Then 

,t dt t dt
k k

1 1
+f c# #] ]g g k " 1.

Furthermore, by §667, Basel Committee of Banking Supervision (2004), oper-
ational risk usually presents a heavy-tailed distribution. We take this into
account by admitting only regularly varying distribution tails.
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Definition 2.4. A positive measurable function U on (0,3) is called regularly
varying in 3 with index r ! � (U ! R r) if

,lim U x
U xt

t
x

r
=

"3 ]

]

g

g t > 0.

A positive measurable function L on (0,3) is called slowly varying in 3 (L!R 0) if

,lim L x
L xt

1
x

=
"3 ]

]

g

g t > 0.

From now on we will consider dfs with regularly varying tails F ! R –a for
a $ 0. Note that F becomes more heavy-tailed for a smaller. Examples for this
kind of dfs are the Pareto and the Burr distribution (see Examples 2.6 and 2.7).

Examples for slowly varying functions are the logarithm and functions that
converge to a positive constant. For U ! R r, L(x) := ( )

x
U x

r ! R 0. Thus, for
every U ! R r there exists an L ! R 0 with U(x) = xrL(x).

By Theorem 2.13 of Böcker and Klüppelberg (2006) we obtain that given
an LDA model for a fixed time t > 0 with a severity distribution tail F ! R –a,
a > 0, the following asymptotic equality for the OpVaR holds:

VaRt(k) + F ! ,
� N t

k1 1
-

-

]
d

g
n

6 @
k " 1, (3)

if there exists an e > 0 such that 

e1 n

n 0

+
3

=

!] g �(N(t) = n ) < 3. (4)

For further details about (4), we refer to Theorem 1.3.9 of Embrechts, Klüp-
pelberg and Mikosch (1997).

Both economically relevant frequency processes, the Poisson process and the
negative binomial process (see Embrechts, Klüppelberg and Mikosch (1997),
Example 1.3.11), satisfy condition (4). To derive a similar representation of
the OpES as in (3) we need several properties of regularly varying distribution
tails (see Appendix). We now prove our main result.

Theorem 2.5. (Analytic OpES) Consider an LDA model at a fixed time t > 0,
where the severities have a distribution function F such that the distribution tail 
F ! R –a for a > 1. Assume that there exists an e > 0 such that 

e1 n

n 0

+
3

=

!] g �(N(t) = n ) < 3.

Then we have the following asymptotic equality for the OpES:
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PROOF. Put qk := VaRt(k). By Corollary 4.49 of Föllmer and Schied (2004)
the Expected Shortfall is given by
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Since condition (4) is satisfied and the df F is subexponential1 due to Proposi-
tion A.1 b), by Theorem 1.3.9 of Embrechts, Klüppelberg and Mikosch (1997)
we have that

Gt(x) + � [N(t)] F(x), x " 3.

Hence
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(6)

From Theorem 2.13 of Böcker and Klüppelberg (2006) we know:

: ,
�

q VaR F N tk
k1 1

k t += -
-!( )3

]
]

dg
g
n

6 @
k " 1. (7)
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1 Let Xk, k ! � , be positive iid random variables with df F. The df F (or F) is called subexponential,
if F(x) = 0 for all x ! � , and if for all n $ 2:

n

n
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>
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Since F ! R –a and by (7), from Proposition A.1c) with c = 1 we have that 

,F F
�

q F N t
k1 1

k + -
-!

^
]

ddh
g
nn

6 @
k " 1. (8)

Moreover, since F ! R –a, by Resnick (1987) page 15 we have that 

F(F!(x)) + x, x > 0. (9)

Putting everything together we obtain:
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� �
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that proves (5). ¡

Example 2.6 (Pareto distribution) If the severities are Pareto distributed, i.e.
with distribution function 

,F x x
q1 1

a
= - +

-

] cg m a, q, x > 0,

then F ! R –a. By (5) we obtain

, .

�

�

a
a

a
a

ES F N t

N t

k
k

q k k

1 1 1

1 1 1

t

a
1

"

+

+

-
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-

- -

!
]

]
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g
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g
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6

6
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(10)

Example 2.7 (Burr distribution) Let

t

,F x x
q1 1

a

= - +

-J

L

K
K]

N

P

O
Og t, a, q, x > 0

be the Burr df. Then F ! R –at since

t

,lim lim
F
F

x
xt

x
xt

t
q

q
a

a

x x t
t

=
+

+
=

" "3 3

-
-

]

] ]
f

g

g g
p t > 0.

ASYMPTOTICS FOR OPERATIONAL RISK 741



Thus, the Burr distribution satisfies the conditions of Theorem 2.5 if at > 1, and
we have 

, .
�

a
aES

N t
k q k k1 1 1 1t

a
t1
1

"+
- -

-

J

L

K
KK

]
]

d

N
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g
g
n

R

T

S
S
S

6

V

X

W
W
W

@
(11)

For a further example, we also refer to Section 2 of Böcker (2006), where an
analytical expression for the ES of operational risk has been computed for
high-severity losses following a generalized Pareto distribution.

Comparing our result with the ones of Böcker and Klüppelberg (2006), we
have

> ,lim VaR
ES

k
k

1
t

t

k 1" ]

]

g

g

and the closer a is to 1, the higher is the difference between Expected Short-
fall and Value at Risk. For instance if

a = 1,1 ESt(k) + 11 · VaRt(k), k " 1,

a = 2 ESt(k) + 2 · VaRt(k), k " 1.

Hence using OpVaR and its asymptotic estimation, we obtain an underesti-
mation of the capital reserve that becomes bigger for a smaller.

3. TOTAL OPES IN THE MULTIVARIATE MODEL

As mentioned before, the banks using AMA are required to divide their oper-
ational risk into several risk classes. Therefore, we investigate now a higher
dimensional model, in which the single risk cells may be dependent.

Following the approach of Böcker and Klüppelberg (2006) we model the
dependence structure with a Lévy copula. From now on we assume that the
frequency process is a Poisson process. Since operational risks are always
losses, we concentrate on Lévy processes admitting only positive jumps in every
component, hereafter called spectrally positive Lévy processes.

Being interested in very high losses we introduce the notion of tail integral.

Definition 3.1. (tail integral) Let L be a spectrally positive Lévy process on �d

with Lévy measure P. The tail integral of L is the function P : [0,3]d " [0,3]
with the following properties:

1. P(x) = P([x1,3) ≈ ··· ≈ [xd,3)), x ! [0,3)d,
where P(0) = limx1 . 0, …, xd . 0 P([x1,3) ≈ ··· ≈ [xd,3)).

2. P(x) = 0 if for any i ! {1, …, d} xi = 3.
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3. P(0, …, 0, xi, 0, …, 0) = Pi(xi), xi! [0,3), i = 1, …, d, where Pi(x) = Pi([x1,3))
is the tail integral of the i-th component.

For a one-dimensional compound Poisson process with any jump size df F, we
have that P(x) = lF(x).

We model the dependence structure of the d components with a Lévy copula.
By Definition 3.1 of Kallsen and Tankov (2004) we have

Definition 3.2. (Lévy copula) A d-dimensional Lévy copula of a spectrally positive
Lévy process is a function C : [0,3]d

" [0,3] such that

1. C (u1, ···, ud) ! 3 for (u1, ···, ud) ! (3, ···, 3),

2. C (u1, ···, ud) = 0 if ui = 0 for at least one i ! {1, ···, d},

3. C is d-increasing,

4. the margins Ci (ui) := lim
!, j ij " 3 6+u

C(u1, ···, ui, ···, ud) = ui for any i ! {1, ···, d}.

From now on we consider a special case of the LDA model and assume that
the severity distribution satisfies all the prerequisites of Theorem 2.5 such that
in this model the asymptotic approximation (5) for the OpES holds.

Definition 3.3. (RVCP model) A regularly varying compound Poisson model
consists of the following elements:

1. The severity process: The severities are modelled by a sequence of positive iid
random variables (Xk)k ! �. Let the distribution tail F of the Xk be regularly
varying with index –a, a > 1, and continuous.

2. The frequency process: The random number N(t) of losses in the time inter-
val [0, t], t $ 0, is a Poisson process with parameter l > 0.

3. The severity process and the frequency process are assumed to be independent.

4. The aggregated loss process is defined as S(t) := k ,( )
k
N t

1=
X! t $ 0.

The severities Xk being positive, (St)t $ 0 is a compound Poisson process with
positive jumps and tail integral given by 

P(x) = lF(x), x $ 0.

According to the AMA operational risk shall be divided into eight business
lines and seven loss types. We describe every single risk cell with an RVCP
model in order to be able to approximate the OpES as in Theorem 2.5. As in
Böcker and Klüppelberg (2006) we model the dependence structure by a Lévy
copula and focus on a multivariate RVCP model.
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Definition 3.4. (Multivariate RVCP model)

1. Let every single risk cell be an RVCP model with aggregated loss process Si,
severity distribution tail Fi ! R –ai

, ai = 1, and Poisson process Nt
i with para-

meter li, 1 # i # d.

2. The dependence between cells is modelled by a Lévy copula. More precisely,
with the tail integral Pi (x) = li Fi (x) of Si, 1 # i # d, and a Lévy copula C
the tail integral of (S1, …, Sd ) is given by

P(x1, …, xd) = C(P1(x1), …, Pd (xd)), (x1, …, xd) ! [0,3)d.

3. The total aggregated loss process is defined as

S+(t) := S1(t) + … + Sd (t), t > 0,

with tail integral 

P+(x) = P({(y1, …, yd ) ! [0,3)d : i
i

d

1=

y! > x}), x $ 0.

We denote Gt
+ the df of S+(t).

Sklar’s Theorem (see Theorem 3.6 in Kallsen and Tankov (2004)) yields that
(S1, …, Sd) is a d-dimensional spectrally positive Lévy process.

Definition 3.5. (total OpES, total OpVaR) The total Operational Expected
Shortfall until time t > 0 at level k ! [0,1) is defined as

t : ,ES VaR u duk k1
1

k

1
=

-
+ +

t#] ]g g

where VaRt
+(k) := inf{x ! � : Gt

+(x) $ k} is the total Operational Value at Risk
until time t at level k.

In this setting we obtain the following results for the total OpEs as a conse-
quence of Theorem 2.5.

1. One dominating cell: First we consider the case where one severity distri-
bution is more heavy-tailed than the other severity distributions. Without
loss of generality we assume that it is the first cell. By Theorem 2.5 and
Theorem 3.4 of Böcker and Klüppelberg (2006) we obtain the following
result for the case of OpES.

Proposition 3.6. Consider a multivariate RVCP model with 1 < a1 < ai, 2 #
i # d and jump size df F+ of the compound Poisson process S+. Then 

F+(x) +
+l

l1 F1(x), x " 3, (12)

and the total OpES is asymptotically equal to the OpES of the first cell 

ESt
+(k) + ESt

1(k), k " 1.
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We see that in this case the total OpES is asymptotically equal to the OpES of
the first cell independently of the general dependence structure. Consequently,
a huge operational loss occurs very likely because of one single loss in the
first cell instead of several dependent losses in different risk cells.

2. Completely dependent cells: we now assume that in all risk cells losses occur
simultaneously, i.e. that the compound Poisson processes S1, …, Sd always
jump together. With a slight abuse of language, we say that in this case
the Lévy processes Si (t), 1 # i # d, are completely dependent (see also
Böcker and Klüppelberg (2006) and Böcker and Klüppelberg (2007)).
By Theorem 3.5 of Böcker and Klüppelberg (2006) the total OpVaR is
asymptotically equal to the sum of the OpVaR of the cell processes 

t ,VaR VaRk ki

i

d

1

++

=

t !] ]g g k " 1. (13)

We have that the same holds for the OpES by using Theorem 2.5.

Proposition 3.7. Consider a multivariate RVCP model at fixed time t > 0.
We assume that the aggregated loss processes S1, …, Sd are completely dependent
with strictly increasing severity dfs F1, …, Fd . Then the total OpES asymp-
totically equals the sum of the cell OpES 

t ,ES ESk k
i

d

1

++

=

t
i!] ]g g k " 1. (14)

In §669 d) of Basel Committee of Banking Supervision (2004), the Basel
Committee indicates the sum over all the risk cells as the standard proce-
dure to quantify the total risk. Therefore, it seems that the Basel Committee
acts on the assumption that the completely dependent case is the worst
case that can happen. If applying a coherent, convex or subadditive risk
measure like Expected Shortfall, this assumption is true, since the ES of
a loss portfolio is always less or equal than the sum of the ES of the sin-
gle losses, in spite of the prevailing kind of dependence. It fails, however,
if VaR is applied. Note that ES has for a > 1 the same properties of VaR
at least asymptotically.

3. Dependent model with b dominating cells: we now assume that the first b !
{1, …, d } risk cells are more heavy-tailed than the remaining risk cells. Also
in this case the total OpES is asymptotically equivalent to the OpES of the
dominating cells, as it also happens in the case of the OpVaR (see Propo-
sition 3.7 of Böcker and Klüppelberg (2006)).

Proposition 3.8. Consider a multivariate RVCP model at fixed time t > 0.
We assume that the aggregated loss processes S1, …, Sd are completely depen-
dent with strictly increasing severity dfs F1, …, Fd . Let b ! {1, …, d } and

ASYMPTOTICS FOR OPERATIONAL RISK 745



1 < a1 = … = ab =: a < aj, j = b + 1, …, d and let ci ! (0,3), i = 2, …, b
such that

i .lim
F
F

x
x

c
x

i
1

=
"3 ]

]

g

g

Then with c1 := 1 and C := ic /a
i
b 1

1=
!

ESt
+(k) + C · ESt

1(k) + a
a

1-
F1

–1 ,
l

k1 1
a-

-

tC
d n k " 1. (15)

4. Independent cells: we now turn to the case where the aggregated loss processes
S1, …, Sd are independent. This holds if and only if they almost surely
never jump together. By Theorem 2.5 it follows that total OpES behaves
asymptotically as in the one-dimensional case, analogously to the case of
the OpVaR (see Theorem 3.10 of Böcker and Klüppelberg (2006)).

Theorem 3.9. Consider a multivariate RVCP model at fixed time t > 0 with
independent aggregated loss processes S1, …, Sd .

a) Then S+ is a one-dimensional RVCP model with Poisson parameter

l+ = l1 + ··· + ld

and severity distribution tail 

F+(x) =
+l

1 (l1F1(x) + ··· + ld Fd (x)) ! R –a, a := min(a1, …, ad).

The total OpES behaves asymptotically as in the one-dimensional case, i.e.

ESt
+(k) + a

a
1-

F +!

+
,

l
k1 1

-
-

t
d n k " 1. (16)

b) Let 1 < a1 = … = ab =: a < aj , j = b + 1, …, d for b !{1, …, d } and con-
sider for i = 2, …, b ci ! (0,3) with 

i .lim
F
F

x
x

c
x

i
1

=
"3 ]

]

g

g

Then the total OpES can be approximated in the following way:

ESt
+(k) + a

a
1-

F1
!

lC t
k1 1

-
-

c m + ,a
a VaR k1-

+
t ] g k " 1, (17)

with Cl := l1 + c2 l2 + ··· + cb lb.

We conclude the Section with some examples.
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Example 3.10. Let Fi, i = 1, …, d, the Pareto distributions with parameters ai ,
qi > 0 and suppose that for b ! {1, …, d} 1 < a1 = … = ab =: a < aj, j = b + 1, …,
d holds.

If the aggregated loss processes S1, …, Sd are completely dependent, i.e. Nt
i = Nt

6i = 1, …, d, then for i = 1, …, b it follows that

i .lim lim lim
F
F

x
x

x
x

q
q

q1

1
a

a
a a

x x x

x

x i

i i

q

q

1 1

1

1

i

1
=

+

+
=

+

+
=

" " "3 3 3
-

-

1

1

q
q q

]

]

`

`

^

^
e d

g

g

j

j

h

h
o n

Hence, we know that ci =
a

q
qi

1
a k in Proposition 3.8. For the severity distribution tail

F+ of the compound Poisson process S+ we have

a-

i

i

i

, .

F Fx c x x

x x x

q
q

q

q q q

1/a
a a a

a a
a

i

b

i

b

i
i

b

i

b

1

1
1

11 1

1
1

1

"3

+

+

= +

= +

+

= =

-

= =

-

! !

! !

] e ] e c

e ^ e

g o g o m

o h o

For the total Operational Expected Shortfall we obtain 

i

, .

a
a

a
a

ES C ES t

t

k k q
q

q k
l

q k
l

k

1 1

1 1 1

i

b

i
i

b

1

11
1

1

a

a

1

1

"

$+ +
- -

=
- -

+

=

=

( )10
t t !

!

] ] e c

e c

g g o m

o m

If the aggregated losses S1, …, Sd are independent, we know from Theorem 3.9 with
Cl = i 1= li i

b c! that 

F+(x) + l
+

C
l

F1(x) = i
+l q

q1

i

b

11=

a

! d n li
x
q1

a

1
+

-

c m +
+ i

l
q

1 a

i

b

1=

! li x
–a,

if x "3. In this case the total OpES can be approximated:

+

t

i

, .

a
a

a
a

ES F
t

t

ES

k
l

k

k
q l

k k

1 1 1

1 1

1

a

a

ii
b

i

i

b

1

1

a

a

1

1

"

+

+

+

-
-

-

- -

!+ +

=

=

( )

( )

16

10

t

!

!

J

L

K
KK

] d

]`e

N

P

O
OO

g n

gj o
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For identical frequency parameters l := l1 = ··· = lb we obtain

i , .a
aES t

k k
l

q k1 1 1a

i

b

1

a a1 1

"+
- -

+

=

t !] c eg m o

Our results hold for a > 1. At first sight this requirement may appear more
restrictive with respect to the case of OpVaR, since for the OpVaR the para-
meter a can be chosen from the interval (0,3). The restriction to a > 1 in The-
orem 2.5 was a result of the Expected Shortfall being an integral of the Value
at Risk. However, also the OpVaR cannot provide a “good” risk measure for
the case 0 < a < 1, as shown in the following Example.

Example 3.11. Consider identical frequency parameters l also in the independent
case and suppose that 0 < a1 = … = ab =: a < aj, j = b + 1, …, d for b! {1, …, d }
like in Example 3.10. Denote by VaR ;

+ the total OpVaR of the completely depen-
dent Pareto model and by VaR=

+ the OpVaR of the independent Pareto model.
Then in Section 3.1.2 of Böcker and Klüppelberg (2006) it is shown that

i

i=

< , >
,

> , < .

a
a
aVaR

VaR

k

k

q

q 1 1
1 1
1 1

/a a

i
b

i
b

1

1

1

+ = =+

+

=

=

; !

!

]

] a

g

g k
Z

[

\

]]

]

In the case 0 < a < 1, the total OpVaR allocates more risk to the independent
model than to the dependent model, VaR=

+(k) > VaR ;
+(k) assuming k close to 1.

Hence, the Pareto distribution for a ! (0,1) is so heavy-tailed that the OpVaR
is not subadditive or convex anymore.

4. PRACTICAL RELEVANCE

We now discuss the practical relevance of our results. First of all a natural
question is whether regularly varying distributions with index –a for a > 1 esti-
mate correctly real loss size distributions. Moscadelli examined in Moscadelli
(2004) over 45.000 operational losses of 89 banks for the year 2002, categorized
according to eight business lines. Due to the scarcity of data, the representa-
tion of the few high losses proves to be considerably more complicated.
Moscadelli therefore uses extreme value theory, in particular the peaks over
threshold method, and assumes that the high loss sizes have a generalized
Pareto distribution, where the generalized Pareto distribution (GPDz, b) with
form parameter z ! � and scale parameter b > 0 is defined as

GPDz, b(x) := !

/ ,exp

for

forx

z z

b z

1 1 0

1 0

x
b

z
1

- +

- - =

-
`

^

j

h

*
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where x $ 0 for z $ 0 and 0 # x # –b /z for z < 0. The GPDz, b is regularly
varying with parameter a = 1/z for z = 0. In Moscadelli (2004) the parameters
(z, b ) are estimated for every business line by maximum likelihood estimation.
The result of this inquiry is that in six out of eight business lines the parame-
ter a is less than 1. If Moscadelli’s analysis were an accurate account of the
actual operational risk, then the conditions of Theorem 2.5 would be satisfied in
25% of the business lines, since the GPD with parameter z > 0 has a decreasing
Lebesgue density. However, in Neslehov, Embrechts and Chavez-Demoulin
(2006) it is suggested that the aggregation chosen in Moscadelli (2004) is ques-
tionable, since the seven loss types are not of the same kind. Therefore the
problem of estimating the parameter a is still highly debated and needs further
research.

The second problem to be discussed is which kind of measure is the most
suitable for the estimation of capital reserves for operational risk.

As a solution Moscadelli suggests in Moscadelli (2004) the risk measure
Median Shortfall, which adds the median of the exceedance distribution to the
threshold u:

MS(u) := u + Fu
!

2
1

c m, u > 0,

with 

Fu(x) := �(X – u # x | X > u ) = ,F u
F x u F u

1 -
+ -

]

] ]

g

g g 0 # x < xF – u, (18)

where xF # 3 is the right end point of F. The advantage of the median is that
it minimizes the absolute deviation. Reserving equity in the amount of MS(u),
a bank presumably can pay half of all losses that exceed u.

In order to include a confidence level k into the risk measure, we choose
VaR as the threshold

u = VaRt(k) = Gt
!(k),

and obtain the following representation of the Median Shortfall in our
model:

t

t t

t

t
t

t t

: >

:

inf

inf

� �

�

MS VaR

y S t VaR y S t VaR

G y
G G

G y G G G

k k

k k

k
k

k k

2
1

1 2
1

t

t t! # $

! $

=

+ -

= +
-

+ -
!

!

! !

( )18

] ]

] ] ] ]^

]
]`

]` ]`

g g

g g g gh

g
gj

gj gj

'

*

1

4

If Gt is continuous, we can simplify the second summand
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t

t

t

t

t t

: >

:

inf

inf

�

�

y G y G

x G x G

G G

k k
k

k
k

k
k

2
1

2
1

2
1

!

! $

+ -
-

=
+

-

=
+

-

!

!

! !

]`

] ]

c ]

gj

g g

m g

'

'

1

1

and obtain

t t .MS G VaRk
k k

2
1

2
1

t=
+

=
+!

] c cg m m

Hence, in the case of a continuous aggregated loss df Gt, the Median Shortfall
at confidence level k equals the Value at Risk at level k

2
1 + , i.e. for k = 99.9% 

MSt(0.999) = VaRt (0.9995).

This directly yields that Median Shortfall is not coherent and thus is no ideal
candidate for measuring operational risk.

To conclude we remark again that the choice of VaR is not completely sat-
isfactory, since it is too optimistic (see (5)) and not convex. Indicating only the
probability of a loss and not the size of it, it may underestimate the “poten-
tially severe tail loss events” (Basel Committee of Banking Supervision (2004),
§667). In addition, for a ! (0,1) the mere summation of the OpVaR of the
single cells is not an upper bound of the total OpVaR, as the Basel Committee
assumes in Basel Committee of Banking Supervision (2004), §669d). This is
only accurate if applying a convex risk measure like the ES provided it exists.

A. REGULARLY VARYING DISTRIBUTION TAILS

The class of regularly varying functions has several properties, that we recall
here for the reader’s convenience. For further details, see Bingham, Goldie and
Teugels (1987), Embrechts, Klüppelberg and Mikosch (1997) and Resnick
(1987) (especially Theorem 1.7.2 and Proposition 1.5.10 of Bingham, Goldie
and Teugels (1987), Lemma 1.3.1 and Appendix A3 of Embrechts, Klüppel-
berg and Mikosch (1997), Proposition 0.8 of Resnick (1987)).

Proposition A.1.
a) Let F ! R –a be the tail of a df and let X be distributed according to F. Then

� [X b ] < 3 if b < a.

b) Every regularly varying distribution tail is subexponential.

c) Let U !R r with r ! � and f, g positive functions on (0,3) with f (x) " 3,
g(x) " 3, x " 3, and such that there exists a constant c ! (0,3) with

f (x) + c · g(x), x " 3.
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Then
U ( f (x)) + c rU(g(x)), x " 3.

d) Let F ! R –a, a > 0, a distribution tail. Then
F
1 !

` j ! R 1/a.

e) Let F, G ! R –a, a > 0, F a df, G decreasing. If F(x) + cG(x), x "3, for some
c = 0, then 

1 , .
F G

x c x x1 1/a
" 3+

! !

c ] c ]m g m g (19)

f) (Karamata’s Theorem) Let L be slowly varying and r < –1. Then

, .t L t dt x L x xr 1
1

x

r r 1
" 3+

+
-3 +# ] ]g g (20)
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