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 THE DEVIL IS IN THE TAILS:
ACTUARIAL MATHEMATICS AND THE SUBPRIME MORTGAGE CRISIS

BY

CATHERINE DONNELLY AND PAUL EMBRECHTS* 

ABSTRACT

In the aftermath of the 2007-2008 fi nancial crisis, there has been criticism of 
mathematics and the mathematical models used by the fi nance industry. 
We answer these criticisms through a discussion of some of the actuarial models 
used in the pricing of credit derivatives. As an example, we focus in particular 
on the Gaussian copula model and its drawbacks. To put this discussion into 
its proper context, we give a synopsis of the fi nancial crisis and a brief  intro-
duction to some of the common credit derivatives and highlight the diffi culties 
in valuing some of them.

We also take a closer look at the risk management issues in part of the insur-
ance industry that came to light during the fi nancial crisis. As a backdrop to 
this, we recount the events that took place at American International Group 
during the fi nancial crisis. Finally, through our paper we hope to bring to the 
attention of a broad actuarial readership some “lessons (to be) learned” or 
“events not to be forgotten”.

1. INTRODUCTION

“Recipe for disaster: the formula that killed Wall Street”. That was the title of 
a web-article Salmon (2009) that appeared in Wired Magazine on February 
2009. It was shortly followed by a Financial Times article Jones (2009) called 
“Of couples and copulas: the formula that felled Wall St”. Both articles were 
written about an actuarial model called the Li model which is used in credit risk 
management. The impression gained is that an actuary developed a mathemat-
ical model which subsequently caused the downfall of Wall Street banks.

Both articles attempt to explain the limitations of the model, and its role 
in the 2007-2008 fi nancial crisis (“the Crisis”). While the earlier article Salmon 
(2009) acknowledges that the defi ciencies of  the model have been known for 
sometime, the later Financial Times article Jones (2009) asks why no-one noticed 
the model’s Achilles’ heel.
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2 C. DONNELLY AND P. EMBRECHTS

For some of us, the implication that a mathematical model shoulders much 
of  the blame for the diffi culties on Wall Street and that few people were 
aware of its limitations are untenable. Indeed, we aim to demonstrate that such 
criticism is entirely unjustifi ed.

Yet these criticisms of one particular model, with their unwarranted focus 
on the man who introduced the model to the credit derivative world, fl y within 
a barrage of accusations directed at fi nancial mathematics and mathematicians. 
A typical example is to be found in the New York Times of September 12, 
2009: “Wall Street’s Math Wizards Forgot a Few Variables”; see Lohr (2009). 
Many more have been published. These accusations come not only from news-
paper articles such as those cited above, but even from government-instigated 
reports into the Crisis. Turner (2009) has a section entitled “Misplaced reliance 
on sophisticated maths”. An interesting reply to the Turner Review came
from Professor Sir David Wallace, Chair of the Council for the Mathematical 
Sciences, who on behalf  of several professors of mathematics in the UK states 
that: “Another aspect on which we would welcome dialogue concerns the 
 reference to a misplaced reliance on sophisticated maths and the possible interpre-
tation that mathematics per se has a negative effect in the city. You can imagine 
that we strongly disagree with this interpretation! But of course the purpose 
of mathematical and statistical models must be better understood. In particu-
lar we believe that the FSA [Financial Services Authority] and the research 
community share an objective to enhance public appreciation of uncertainties 
in modelling future behaviour”; see Wallace (2009).

We believe that there should be a reliance on sophisticated mathematics. 
There has been too often a problem of misplaced reliance on unsophisticated 
mathematics or, in the words of  L.C.G. Rogers, “The problem is not that 
mathematics was used by the banking industry, the problem was that it was 
abused by the banking industry. Quants were instructed to build models which 
fi tted the market prices. Now if  the market prices were way out of line, the 
calibrated models would just faithfully reproduce those wacky values, and the 
bad prices get reinforced by an overlay of scientifi c respectability!”; see Rogers 
(2009). For an excellent article (written in German) taking a more in-depth 
look at the importance of mathematics for fi nance and its role in the current 
crisis, see Föllmer (2009). The main contributions from mathematics to eco-
nomics and fi nance are summarized in Föllmer (2009) as follows:

– understanding and clarifying models used in economics;
– making heuristic methods mathematically precise;
– highlighting model conditions and restrictions on applicability;
– working out numerous explicit examples;
– leading the way for stress-testing and robustness properties, and
– offering a relevant and challenging fi eld of research on its own.

We cannot answer every accusation directed at fi nancial mathematics. Instead, 
we look at the Li model, also called the Gaussian copula model, and use it 
as a proxy for mathematics applied badly in fi nance. It should be abundantly 
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clear that it is not mathematics that caused the Crisis. At worst, a misuse of 
mathematics, and we mean mathematics in a broad sense and not just one 
formula, partly contributed to the Crisis.

The Gaussian copula model has been embraced enthusiastically by industry for 
its simplicity. While a simple model is to be preferred to a complex one, especially 
in a fi nancial world which can only be partially and imperfectly described by math-
ematics, we believe that the model is too simple. It does not capture the main fea-
tures of what it is attempting to model. Yet it was, and still is, applied to the credit 
derivatives which played a major part in the Crisis. We devote a large part of this 
article to explaining the Gaussian copula model and examining its shortcomings.

We also rebutt the claim that few people saw the fl aws underlying several 
of  the quantitative techniques used in the pricing and risk management of 
credit derivatives. On the contrary, many academics and practitioners were 
aware of them and on numerous occasions exposed these fl aws.

As the fi elds of insurance and fi nance increasingly overlap, it is maybe not 
surprising that one casualty of the Crisis was an insurance company, American 
Insurance Group (“AIG”). With insurance companies selling credit default 
swaps, which have insurance-like features, and catastrophe bonds and mortality 
bonds, which are a way of selling insurance risk in the fi nancial market, it is 
an opportune time to examine what caused the near-collapse of AIG. We ask 
what lessons other insurance companies and those involved in running them, 
such as actuaries and other risk professionals, can learn from the AIG story.

It is also a good time to pause and think about our roles and responsibilities 
in the fi nance industry. Are the practitioners truly aware of the assumptions, 
whether implicit or explicit, in the mathematics they use? If  not, then they 
have a duty to inform themselves. It is also the duty of the academics who are 
publishing articles not only to make their assumptions explicit but also, upon 
use, to communicate their assumptions more forcefully to the end-user.

Before we delve into the above, we begin by outlining the Crisis.

2. THE ROOTS OF THE SUBPRIME MORTGAGE CRISIS

The Crisis was complex and of global proportions. There will undoubtedly be 
a multitude of articles and books penned about it for years to come. Among 
currently available, more academic, excellent analyses are Brunnermeier (2009), 
Crouhy et al. (2008) and Hellwig (2009). We also highly recommend The Econ-
omist (2008) as well as Liedtke (2010). The latter publication contains a very 
detailed time line of events which contributed to the crisis. As our focus is
on some of the mathematical and actuarial issues which arose from the Crisis, 
we relate only the story of the Crisis which is relevant for this article.

The root of the Crisis was the transfer of the risk of mortgage default from 
mortgage lenders to the fi nancial market at large: banks, hedge funds, insurance 
companies. The transfer was effected by a process called securitization. The prac-
tical mechanics of this process can be complicated, as institutions seek to reduce 
costs and tax-implications. However, the essence of what is done is as follows.

93216_Astin40_1_01.indd   393216_Astin40_1_01.indd   3 11-05-2010   09:34:5211-05-2010   09:34:52



4 C. DONNELLY AND P. EMBRECHTS

A bank pools together mortgages which have been taken out by residential 
home-owners and commerical property organizations. The pool of mortgages 
is transferred to an off-balance-sheet trust called a special-purpose vehicle 
(“SPV”). While sponsored by the bank, the SPV is bankruptcy-remote from it. 
This means that a default by the bank does not result in a default by the SPV. 
The SPV issues coupon-bearing fi nancial securities called mortgage-backed 
securities. The mortgage repayments made by the home-owners and commercial 
property organizations are directed towards the SPV, rather than being received 
by the bank which granted the mortgages. After deducting expenses, the SPV 
uses the mortgage repayments to pay the coupons on the mortgage-backed 
securities. Typically, the buyers of the mortgage-backed securities are organi-
zations such as banks, insurance companies and hedge funds. This process 
allowed banks to move from an “originate to hold” model, where they held 
the mortgages they made on their books, to an “originate to distribute” model, 
where they essentially sold on the mortgages.

Not only mortgages can be securitized, but also other assets such as auto 
loans, student loans and credit card receivables. A security issued on fi xed-income 
assets is called a collateralized debt obligation (“CDO”), and if the underlying 
assets of the CDO consist of loans then it is called a collateralized loan obliga-
tion. However, the underlying assets do not have to be fi xed-income assets and 
the general term for a security issued on any asset is an asset-backed security.

There is nothing inherently wrong with the securitization process. It is a 
transfer of risk from one party to another, in this case the risk of mortgage 
default. It should increase the effi ciency of fi nancial markets as it allows those 
who are happy to take on the risk of mortgage default to buy it. Moreover, as 
banks must hold capital against the loans on their books, selling most of the 
pool of mortgages allows them to free up capital. The view on the benefi ts of 
securtization to overall fi nancial stability in 2006 is summarized in the following 
quote from one of the IMF’s Global Financial Stability Reports in that year: 
“There is a growing recognition that the dispersion of credit risk by banks to 
a broader and more diverse group of investors, rather than warehousing such 
risk on their balance sheets, has helped make the banking and overall fi nancial 
system more resilient. ... The improved resilience may be seen in fewer bank 
failures and more consistent credit provision. Consequently, the commercial 
banks, ..., may be less vulnerable today to credit or economic shocks”; see IMF 
(2006, Chapter II). Indeed, this was the prevailing view until late 2006. Yet the 
process of transferring one type of risk creates other types of risks.

As it turned out, the main additional risk in securitization was moral hazard. 
A lengthy discussion of the role of moral hazard in the Crisis can be found in 
Hellwig (2009). For securitized products, sources of moral hazard included:

– the failure of some originators of securitized products to retain any of the 
riskiest part of the CDO. We examine this point in the next paragraph;

– the credit rating agencies had a confl ict of interest in that they were advising 
customers on how to best securitize products and then credit rating those 
same products. SEC (2008) gives a fl avor of the practices in the three main 
credit rating agencies leading up to the Crisis;
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– the chain of fi nancial intermediation from the originators to the buyers of 
some securitized products may have been too long, resulting in opaqueness, 
a loss of  information and an increased scope for moral hazard (see also 
Subsection 6.2), and

– some fi nancial institutions may have deemed themselves “too big too fail”, 
with a corresponding disregard for the level of risk they were exposed to 
and a belief  on their part that the government would not allow them to fail 
since they were systematically too important. Wolf (2008) has a delightful 
phrase for this: “privatising gains and socialising losses”. See also anecdotal 
evidence from Haldane (2009b, page 12).

If a bank is not exposed to the risk of mortgage default, then it has no incentive 
to control and maintain the quality of the loans it makes. To protect against 
this, the theory was that the banks should retain the riskiest part of the mort-
gage pool. In practice, this did not always happen, which led to a reduction in 
lending standards; see Keys et al. (2008). This possibility was foreseen some 
fi fteen years before the Crisis with remarkable prescience by Stiglitz, as he 
points out in Stiglitz (2008). Because of its prime importance in the current 
discussion of the Crisis, but also as it refl ects indirectly on the possibility of 
bank-assurance products, we repeat some of its key statements, written in 1992: 
“...has the growth in securitization been a result of more effi cient transactions 
technologies, or an unfounded reduction in concern about the importance of 
screening loan applicants? ... we should at least entertain the possibility that 
it is the latter rather than the former... At the very least, the banks have dem-
onstrated an ignorance of two very basic aspects of risk: (a) the importance 
of correlation,... (b) the possibility of price declines.”

As the quality of the mortgages granted declined, the risk characteristics 
of the underlying pool of mortgages changed. In particular, the risk of mort-
gage default increased. It appears that many market participants either did not 
realize this was happening or did not think that it was signifi cant. In February 
2007, an increase in subprime mortgage defaults was noted, and the Crisis 
started unfolding. There were many factors which contributed strongly to the 
Crisis, such as fair-value accounting, systemic interdependence, a move by 
banks to fi nancing their assets with shorter maturity instruments, which left 
them vulnerable to liquidity drying-up, and other factors, such as ratings agen-
cies and an excessive emphasis on revenue and growth by fi nancial institutions. 
However, the reader should look elsewhere for an explanation of their impact, 
such as in the references mentioned at the start of this section.

3. SECURITIZATION

Securitization is the process of  pooling together fi nancial assets, such as 
 mortgages and auto loans, and redirecting their cashfl ows to support coupon 
payments on CDOs. Here we describe CDOs in more detail.

We have described the creation of  a CDO in the previous section. How-
ever, what we did not mention is that commonly CDOs are split into tranches. 
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6 C. DONNELLY AND P. EMBRECHTS

The tranches have different risk and return characteristics which make them 
attractive to different investors. Suppose that a CDO is split into three tranches. 
Typically, these are called the senior, mezzanine and equity tranches. Payments 
from the underlying assets are directed through the CDO tranches, in order of 
priority. There is a legal document associated with the CDO which sets out the 
priority of payments. After expenses, the fi rst priority is to pay the coupons for 
the senior tranche, followed by the mezzanine tranche and fi nally the equity 
tranche. The contractual terms governing the priority of payments is called 
the payment waterfall. A schematic of a tranched CDO is shown in Figure 1. 
If defaults occur in the underlying assets, for example some bonds in the under-
lying portfolio default, then that loss is borne fi rst by the equity tranche holders. 
The coupons received by the equity tranche holders are reduced. If  enough 
defaults occur, then the equity tranche holders no longer receive any coupons 
and any further losses are borne by the mezzanine tranche holders. Once the 
mezzanine tranche holders are no longer receiving coupons, the senior tranche 
holders bear any further losses.

The tranching of the CDO allows the senior tranche to receive a higher credit 
rating than the mezzanine tranche. This allows investors who may not normally 
invest in the underlying assets to invest indirectly in them, through the CDO. For 
example, suppose the underlying pool of assets has an aggregate credit rating of 
BBB. Before tranching, the credit rating of the CDO would also be BBB. However, 
with judicious tranching, the senior tranche can achieve a AAA credit rating. This 
is because it is exposed to a much reduced risk of default from the underlying assets, 
since any losses arising from default in the underlying portfolio are borne fi rst 
by the equity tranche holders and then the mezzanine tranche holders. Usually, 
the mezzanine tranche is BBB-rated and the equity tranche is not credit rated.

The SPV aims to maximize the size of the senior tranche, subject to it attaining 
a AAA credit-rating. The maximization of the size of the senior tranche may mean 
that it is just within the boundary of what constitutes a AAA-rated investment. 
Typically, the senior tranche is worth around 80% of the nominal value of the 
underlying portfolio of assets. This means that 20% of the underlying port folio 

Pool of assets Senior

Mezzanine

Equity

SPV
Coupons

CDO

Coupons

FIGURE 1: Diagram showing the tranching of a Collateralized Debt Obligation into three tranches:
senior (highest priority), mezzanine and equity (lowest priority).
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 ACTUARIAL MATHEMATICS AND THE SUBPRIME MORTGAGE CRISIS 7

must default before the holders of  the senior tranche of  the CDO have
their coupon payments reduced. Similarly, the SPV maximizes the size of the 
mezzanine tranche, subject to it attaining a BBB credit-rating. Typically, the 
mezzanine tranche is worth in the region of 15% of the nominal value of the 
underlying portfolio of assets. This means that 5% of the underlying portfolio 
must default before the holders of the mezzanine tranche of the CDO have their 
coupon payments reduced. The remaining part of the CDO is allocated to the 
equity tranche, which is unrated and is worth the remaining 5% nominal value 
of the underlying portfolio of assets. As the equity tranche has the lowest priority 
in payments, any defaults in the underlying portfolio of assets reduce the cou-
pon payments of  the equity tranche holders. The fact that Large, Complex 
Financial Institutions (“LCFI’s”) were increasingly shifting from holding the 
equity tranche to massively warehousing the senior tranche must be one of the 
major contributions to the crisis (see Acharya et al. (2010)).

The key to valuing CDOs is modeling the defaults in the underlying port-
folios. It is clear from the description above that the coupon payments received 
by the holders of the CDO tranches depend directly on the defaults occurring 
in the underlying portfolio of assets. As Duffi e (2008) points out, the modeling 
of default correlation is currently the weakest link in the risk measurement 
and pricing of CDOs. There are several methods of approaching the valuation 
of a CDO, a few of which we mention briefl y in Section 7, but fi rst we clear 
the stage and allow the Gaussian copula to enter.

4. THE GAUSSIAN COPULA MODEL

On March 27 1999, the second author gave a talk at the Columbia-JAFEE 
Conference on the Mathematics of Finance at Columbia University, New York. 
Its title was “Insurance Analytics: Actuarial Tools in Financial Risk-Manage-
ment” and it was based on a 1998 RiskLab report that he co-authored with 
Alexander McNeil and Daniel Straumann; see Embrechts et al. (2002). The 
main emphasis of the report was on explaining to the world of risk manage-
ment the various risk management pitfalls surrounding the notion of linear 
correlation. The concept of copula, by now omnipresent, was only mentioned 
in passing in Embrechts et al. (2002). However, its appearance in Embrechts 
et al. (2002) started an avalanche of copula-driven research; see Genest et al. 
(2009). During the coffee break, David Li walked up to the second author, 
saying that he had started using copula-type ideas and techniques, but now 
wanted to apply them to newly invented credit derivatives like CDOs. The well-
known paper Li (2000) was published one year later. In it is outlined a copula-
based approach to modeling the defaults in the underlying pool. Suppose we 
wish to value a CDO which has d bonds in the underlying portfolio. As we 
mentioned in the previous section, we can do this if  we can fi nd the joint 
default distribution of the d bonds. Denote by Ti the time until default of the 
ith bond, for i  =  1,  …, d. How can we determine the distribution of the joint 
default time, �[T1  ≤   t1,  …, Td   ≤   td ]? If  we can do this, then we have a way to 
value the CDO.
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8 C. DONNELLY AND P. EMBRECHTS

4.1. A brief introduction to copulas

Using copulas allows us to separate the individual behaviour of the marginal 
distributions from their joint dependency on each other. We focus only on the 
copula theory that is necessary for this article. An introduction to copulas can 
be found in Nelsen (2006) and a source of some of the more important refer-
ences on the theory of copulas can be found in Embrechts (2009).

Consider two random variables X and Y defi ned on some common prob-
ability space. For example, the random variables X and Y could represent
the times until default of  two companies. What if  we wish to specify the
joint distribution of X and Y, that is to specify the distribution function (“df”) 
H(x, y) :=  �[X  ≤  x, Y  ≤  y ]? If  we know the individual dfs of X and Y then we 
can do this using a copula. A copula specifi es a dependency structure between 
X and Y, that is how X and Y behave jointly.

More formally, a copula is defi ned as follows.

Defi nition 4.1. A d-dimensional copula C   :   [0, 1]d  "  [0, 1] is a df with standard 
uniform marginal distributions.

An example of a copula is the independence copula C=, defi ned in two-dimen-
sions as

 C=(u, v) : = uv,  6 u, v  !  [0, 1].

It can be easily checked that C=  satisfi es Defi nition 4.1. We can choose from 
a variety of  copulas to determine the joint distribution. Which copula we 
choose depends on what type of  dependency structure we want. The next 
theorem tells us how the joint distribution is formed from the copula and the 
marginal dfs. It is the easy part of Sklar’s Theorem and the proof can be found 
in Schweizer and Sklar (1983, Theorem 6.2.4).

Theorem 4.2. Let C be a copula and F1,  …, Fd  be univariate dfs. Defi ning

 H(x1,  …,  xd)   : =   C(F1(x1),  …,  Fd  (xd)),  6 (x1,  …,  xd)  !  �d,

the function H is a joint df with margins F1,  …, Fd .

4.2. Two illustrative copulas

We look more closely at two particular copulas: the Gaussian copula and the 
Gumbel copula. For notational reasons, we restrict ourselves to the bivariate 
d  =  2 case. The Gaussian copula is often used to model the dependency struc-
tures in credit defaults. We aim to compare it with the Gumbel copula for 
illustrative purposes. As before, let X and Y be random variables with dfs F 
and G, respectively.
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 ACTUARIAL MATHEMATICS AND THE SUBPRIME MORTGAGE CRISIS 9

First consider the bivariate Gaussian copula Cr
gau. This copula does not 

have a simple closed form but can be expressed as an integral. Denoting by F 
the univariate standard normal df, the bivariate Gaussian copula Cr

gau is 
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for all u,  v  !  [0, 1], | r| < 1. The parameter r determines the degree of depend-
ency in the Gaussian copula. For example, setting r  =  0 makes the marginal 
distributions independent so that C0

gau  =  C=. As the Gaussian copula is a df, 
we can plot its distribution. Figure 2a shows a random sample of the df of 
Cr

gau with r   : =   0.7.
Applying Theorem 4.2 with the bivariate Gaussian copula Cr

gau, the joint 
df H of  the random variables X and Y is

 H(x, y) := Cr
gau(F(x), G(y)),  6(x, y)  !  �2.

The Gaussian copula arises quite naturally. In fact, it can be recovered from the 
multivariate normal distribution. This is a consequence of the converse of Theo-
rem 4.2, which is given next. This is the second, less trivial part of Sklar’s Theorem 
and the proof can be found in Schweizer and Sklar (1983, Theorem 6.2.4). 

Theorem 4.3. Let H be a joint df with margins F1,  …, Fd . Then there exists a 
copula C   :   [0, 1]d  "  [0, 1] such that, for all (x1,  …, xd )  !  �d,

H (x1,  …, xd)   :=   C(F1(x1),  …, Fd  (xd)),  6(x1,  …, xd)  !  �d.

(b) Gumbel copula Cq
gum with q   :=   2.(a) Gaussian copula Cr

gau with r   :=   0.7.

FIGURE 2: Figures showing 2000 sample points from the copulas named under each fi gure.

93216_Astin40_1_01.indd   993216_Astin40_1_01.indd   9 11-05-2010   09:34:5311-05-2010   09:34:53



10 C. DONNELLY AND P. EMBRECHTS

If the margins are continuous then C is unique. Otherwise C is uniquely determined 
on Ran(F1)  ≈  ···  ≈  Ran(Fd ), where Ran(Fi  ) denotes the range of the df Fi.

To show how the Gaussian copula arises, suppose that Z  =  (Z1, Z2) is a two-
dimensional random vector which is multivariate normally distributed with 
mean 0 and covariance matrix S  =  ( 1r 

r
1 ). We write Z  + N2 (0, S) and denote 

the df of Z by F2. We know that margins of any multivariate normally distrib-
uted random vector are univariate normally distributed. Thus Z1, Z2  + N(0, 1) 
and the df  of  both Z1 and Z2 is F. The Gaussian copula Cr

gau appears by 
applying Theorem 4.3 to the joint normal df F2 and the marginal normal dfs 
F to obtain

 F2(x, y) = Cr
gau (F(x), F(y)),  6 x, y  !  �.

From this we see that a multivariate normally distributed distribution can be 
obtained by combining univariate normal distributions with a Gaussian copula. 
Figure 3(a) shows a simulation of  the joint df  of  X and Y when both are 
normally distributed with mean 0 and standard deviation 1 and with depend-
ency structure given by the Gaussian copula Cr

gau with r   :=   0.7. This is exactly 
the bivariate normal distribution with a linear correlation between X and Y 
of  0.7.

Of course, we do not have to assume that the marginals are univariate 
normal distributions. For instance, Figure 2(a) shows a df which has standard 
uniform marginals with the Gaussian copula Cr

gau with r   :=   0.7.

(b) Gumbel copula Cq
gum with q   :=   2.(a) Gaussian copula Cr

gau with r   :=   0.7.

FIGURE 3: Figures showing 5000 sample points from the random vector (X,Y ) which has standard 
normally distributed margins and dependency structure as given by the copula named under each fi gure.
To the right of the vertical line x  =  2 and above the horizontal line y  =  2, in the Gaussian copula fi gure 

there are 43 sample points. The corresponding number for the Gumbel copula fi gure is 70.
To the right of the vertical line x  =  3 and above the horizontal line y  =  3, in the Gaussian copula fi gure 

there is 1 sample point. The corresponding number for the Gumbel copula fi gure is 5.
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The second copula we consider is the bivariate Gumbel copula Cq
gum which has 

the general form

 Cq
gum(u, v) = exp +qln lnu v

1

- - - q q] ]_ g g i& 0,  1  ≤   q  <  3,  6u, v  !  [0, 1].

The parameter q has an interpretation in terms of  a dependence measure 
called Kendall’s rank correlation. Like linear correlation, Kendall’s rank cor-
relation is a measure of dependency between X and Y. While linear correlation 
measures how far Y is from being of  the form aX+b, for some constants 
a  ! � 5 {0}, b  ! �, Kendall’s rank correlation measures the tendency of X to 
increase with  Y. To calculate it, we take another pair of  random variables 
(X,  Y ) which have the same df as (X,Y ) but are independent of (X,Y ). Kendall’s 
rank correlation is defi ned as

 rt(X, Y )   :=   �[(X  –  X)  (Y  –  Y) > 0 ]   –   �[(X  –  X)  (Y  –  Y) < 0].

A positive value of Kendall’s rank correlation indicates that X and Y are more 
likely to increase or decrease in unison, while a negative value indicates that it 
is more likely that one decreases while the other increases. For the Gumbel 
copula, Kendall’s rank correlation is rt

gum(X,Y )  =  1 – 1
q . 

Figure 2(b) shows a sample of 2000 points from the Gumbel copula Cq
gum 

with q   :=  2. Using the Gumbel copula and fi xing q  !  [1,3), the joint df  of 
X and Y is

H(x, y) = Cq
gum(F(x), G(y))  =  exp  ln- G- F ( (ln

1

+ -
q q ,)qx y)^_ ^_a hi hi k' 1  

6x, y  !  �.

Figure 3(b) shows a simulation of the joint df of X and Y when both are nor-
mally distributed with mean 0 and standard deviation 1 and with dependency 
structure given by the Gumbel copula Cq

gum with q   :=  2. The linear correlation 
between X and Y is approximately 0.7. Thus while we see that the two plots 
in Figure 3 have quite different structures – Figure 3(a) has an elliptical shape 
while Figure 3(b) has a teardrop shape – they have approximately the same 
linear correlation. This illustrates the fact that the knowledge of linear cor-
relation and the marginal dfs does not uniquely determine the joint df of two 
random variables. This is also true for Kendall’s rank correlation: as a random 
vector (X,Y ) with continuous margins and dependency structure given by the 
bivariate Gaussian copula Cr

gau has Kendall’s rank correlation rt (X,Y )  =  2
p  

arcsin (r) (see McNeil et al. (2005, Theorem 5.36)), we fi nd that the two plots 
in Figure 3 have approximately the same Kendall’s rank correlation of 0.5. In 
summary, a scalar measure of dependency together with the marginal dfs does 
not uniquely determine the joint df.

This is especially important to keep in mind in risk management when we 
are interested in the risk of extreme events. By their very nature, extreme events 
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12 C. DONNELLY AND P. EMBRECHTS

are infrequent and so data on them is scarce. However, from a risk management 
perspective, we must make an attempt to model their occurrence, especially 
their joint occurence.

As we see from the two plots in Figure 3, which have identical marginal dfs 
and almost identical linear correlation and Kendall’s rank correlation, these 
measures of dependency do not tell us anything about the likelihood of extreme 
events. In Figure 3, it is the choice we make for the copula which is critically 
important for determining the likelihood of extreme events. For example, con-
sider the extreme event that both X  >  2 and Y  >  2. In Figure 3(a), which 
assumes the Gaussian copula, there are 43 sample points which satisfy this, 
whereas in Figure 3(b), which assumes the Gumbel copula, there are 70 such 
sample points. Next consider the extreme event that both X  >  3 and Y  >  3. In 
Figure 3(a) there is 1 sample point which satisfi es this, whereas in Figure 3(b) 
there are 5 such sample points. Under the assumption that the dependency 
structure of the random variables is given by the Gaussian copula, extreme 
events are much less likely to occur than under the Gumbel copula.

4.3. The Gaussian copula approach to CDO pricing

At the start of this section, we introduced the default times (Ti  ) of the d bonds 
in the underlying portfolio of some CDO. Using Fi to denote the df of default 
time Ti, for i  =  1,  …,  d, the Li copula approach is to defi ne the joint default 
time as 

�[T1  ≤   t1,  …, Td   ≤   td  ]   :=   C(F1(t1),  …, Fd  (td  )), 6(t1,  …,  td )  !  [0, 3)d, (4.2)

where C is a copula function. The term “Li model” or “Li formula” has become 
synonymous with the use of the Gaussian copula in (4.2). While Li (2000) did 
use the Gaussian copula as an example, it would be more accurate if  these 
terms referred to (4.2) in its full generality, rather than just one particular 
instance of it. However, we use these terms as they are widely understood, that 
is to mean the use of the Gaussian copula in (4.2).

In practice, the Li model is generally used within a one-factor or multi-factor 
framework. We describe the one-factor Gaussian copula approach. Suppose the 
d bonds in the underlying portfolio of the CDO have been issued by d com-
panies. Denote the asset value of  company i by Zi. Under the one-factor 
framework, it is assumed that

 Zi = rZ ir + -1 e ,  for i  =  1,  …,  d,

where r  !  (0, 1) and Z, e1,  …,  ed are independent, standard normally distrib-
uted random variables. The random variable Z represents a market factor 
which is common to all the companies, while the random variable ei is the 
 factor specifi c to company i, for each i  =  1,  …,  d. Under this assumption, the 
transpose of the vector (Z1,  …, Zd ) is multivariate normally distributed with 
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mean zero and with a covariance matrix whose off-diagonal elements are each 
equal to r. In this framework, we interpret r as the correlation between the 
asset values of each pair of companies.

The idea is that default by company i occurs if  the asset value Zi falls below 
some threshold value. The default time Ti is related to the one-factor structure 
by the relationship Zi   =  F–1 (Fi (Ti )). With this relationship, the joint df of the 
default times is given by (4.2), with C   :=  Cr

gau, where r is the correlation 
between the asset values (Zi ). Once we have chosen the marginal dfs (Fi ), we 
have fully specifi ed the one-factor Li model.

Often, the marginal dfs are assumed to be exponentially distributed. In that 
case, the mean of each default time Ti can be estimated from the market, for 
instance from historical default information or the market prices of default-
able bonds. Using these exponential marginal dfs and the market prices of 
CDO tranches, investors can calculate the implied asset correlation r for each 
tranche. The implied asset correlation r is the asset correlation value which 
makes the market price of  the tranche agree with the one-factor Gaussian 
copula model. However, as we also mention in Subsection 5.2, this results in 
asset correlation values which differ across tranches.

4.4. Credit default swaps and synthetic CDOs

The Li model can be used not only to value the CDOs we described in Section 3, 
but also another type of credit derivative called a credit defaut swap (“CDS”). 
A CDS is a contract which transfers the credit risk of a reference entity, such 
as a bond or loan, from the buyer of the CDS to the seller. The buyer of the 
CDS pays the seller a regular premium. If  a credit event occurs, for example 
the reference entity becomes bankrupt or undergoes debt restructuring, then 
the seller of the CDS makes an agreed payoff to the buyer. What constitutes 
a credit event, the payoff amount and how the payoff is made is set out in the 
legal documentation accompanying the CDS.

There are two categories of  CDSs: a single-name CDS, which protects 
against credit events of a single reference entity, and a multi-name CDS, which 
protects against credit events in a pool of reference entities. In the market, a 
CDS is quoted in terms of a spread. The spread is the premium payable by 
the buyer to the seller which makes the present value of the contract equal to 
zero. Roughly, a higher spread indicates a higher credit risk.

The market for CDSs is large. The Bank of International Settlements Quar-
terly Review of June 2009 gives the value of the notional amount of outstanding 
CDSs as US$42,000 billion as at December 31 2008, of which roughly two-thirds 
were single-name CDSs. Even after calculating the net exposure, this still 
 corresponds to an amount above US$3,000 billion.

As CDSs grew in popularity, the banks which sold them ended up with 
many single-name CDSs on their books. The banks grouped together many 
single-name CDSs and used them as the underlying portfolio of  a type of 
CDO called a synthetic CDO. In contrast, the cash CDOs we described in 
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Section 3 have more traditional assets like loans or bonds in the underlying 
portfolio. As an indication of the market size for these instruments just prior 
to the Crisis, the Securities Industry and Financial Markets Association gives 
the value of cash CDOs issued globally in 2007 as US$340 billion and the 
corresponding value for synthetic CDOs as US$48 billion. It is also important 
to point out that products like CDOs and CDSs are currently not traded 
in offi cially regulated markets, but are traded over-the-counter (“OTC”). 
The global OTC derivative market is of  a staggering size, with a nominal, 
outstanding value at the end of 2008 of US$592,000 billion; see BIS (2009). 
To put this amount into perspective, the total GDP for the world in 2008 was 
about US$61,000 billion. 

Just like any CDO, a synthetic CDO can be tranched and the tranches sold 
to investors. The buyers of the tranches receive a regular premium and, addition-
ally, the buyers of the equity tranche receives an upfront fee. This upfront fee can 
be of the order 20%-50% of the nominal value of the underlying portfolio.

There also exists synthetic CDO market indices, such as the Dow Jones’ 
CDX family and the International Index Company’s iTraxx family, which are 
actively traded as contracts paying a specifi ed premium. These standardized 
market indices mean that there is a market-determined price for the tranches, 
which is expressed in terms of  a spread for each tranche, in addition to an 
upfront fee for the equity tranche.

5. THE DRAWBACKS OF THE COPULA-BASED MODEL IN CREDIT RISK

The main use of the Gaussian copula model was originally for pricing credit 
derivatives. However, as credit derivative markets have grown in size, the need 
for a model for pricing has diminished. Instead, the market determines the 
price. However, the model is still used to determine a benchmark price and also 
has a signifi cant role in hedging tranches of CDOs; see Finger (2009). Moreover, 
it is still widely used for pricing synthetic CDOs.

The model has some major advantages, which have for many people in 
industry outweighed its rather signifi cant disadvantages, a story that we have 
most unfortunately been hearing far too often in risk management. Think of 
examples like the Black-Scholes-Merton model, or the widespread use of Value-
at-Risk (“VaR”) as a measure for calculating risk capital. All of these concepts 
have properties which need to be well understood by industry, especially when 
markets of the size encountered in credit risk are built upon them. 

But fi rst to the perceived advantages of the Gaussian copula model. These 
are that it is simple to understand, it enables fast computations and it is very 
easy to calibrate since only the pairwise correlation r needs to be estimated. 
Clearly, the easy calibration by only one parameter relies on the tenuous assump-
tion that all the assets in the underlying portfolio have pairwise the same 
 correlation. The advantages of the model meant that it was quickly adopted 
by industry. For instance, by the end of 2004, the three main rating agencies 
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– Fitch Ratings, Moody’s and Standard & Poor’s – had incorporated the model 
into their rating toolkit. Moreover, it is still considered an industry standard.

Simplicity and ease of  use typically comes at a price. For the Gaussian 
copula model, there are three main drawbacks:

– insuffi cient modeling of default clustering in the underlying portfolio;
– if we calculate a correlation fi gure for each tranche of a CDO, we would expect 

these fi gures to be the same. This is because we expect the correlation to be a 
function of the underlying portfolio and not of the tranches. However, under 
the Gaussian copula model, the tranche correlation fi gures are not identical, 
and

– no modeling of the economic factors causing defaults weakens the ability 
to do stress-testing, especially on a company-wide basis.

We examine each of these issues in turn.

5.1. Inadequate modeling of default clustering

One of the main disadvantages of the model is that it does not adequately 
model the occurrence of  defaults in the underlying portfolio of  corporate 
bonds. In times of crisis, corporate defaults occur in clusters, so that if  one 
company defaults then it is likely that other companies also default within a 
short time period. Under the Gaussian copula model, company defaults become 
independent as their size of default increases. Mathematically, we can illustrate 
this using the idea of tail dependence. A tail dependence measure gives the 
strength of  dependence in the tails of  a bivariate distribution. We borrow 
heavily from McNeil et al. (2005) in the following exposition. Since dfs have 
lower tails (the left part of  the df) and upper tails (the right part), we can 
defi ne a tail dependence measure for each one. Here, we consider only the 
upper tail dependence measure. Recall that the generalized inverse of a df F 
is defi ned by F !( y)   :=   inf{x  ! � : F(x)  ≥  y}. In particular, if  F is continuous 
and strictly increasing, then F  ! equals the ordinary inverse F –1 of F.

Defi nition 5.1. Let X and Y  be random variables with dfs F and G, respectively. 
The coeffi cient of upper tail dependence of X and Y is

 lu    :=   lu (X,Y )   :=   lim
q -
" 1

  P(Y  >  G!(q) | X > F!(q)),

provided a limit lu  !  [0, 1] exists. If  lu  !  (0, 1] then X and Y are said to show 
upper tail dependence. If  lu  =  0 then X and Y are said to be asymptotically 
independent in the upper tail. 

It is important to realize that lu depends only on the copula C and not on the 
marginal dfs F and G; see McNeil et al. (20056, page 209).
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16 C. DONNELLY AND P. EMBRECHTS

Suppose X and Y have a joint df with Gaussian copula Cr
gau. As long as 

r  <  1, it turns out that the coeffi cient of upper tail dependence of X and Y 
equals zero; see McNeil et al. (2005, Example 5.32). This means that if  we go 
far enough into the upper tail of the joint distribution of X and Y, extreme 
events appear to occur independently.

Recall that the dependence structure in the Li model is given by the Gaus-
sian copula. The asymptotic independence of extreme events for the Gaussian 
copula carries over to asymptotic independence for default times in the Li 
model. If  we seek to model defaults which cluster together, so that they exhibit 
dependence, the property of asymptotic independence is not desirable. This 
undesirable property of the Gaussian copula is pointed out in Embrechts et al. 
(2002) and was explicitly mentioned in the talk referred to at the beginning of 
Section 4. A fi rst mathematical proof is to be found in Sibuya (1960).

Compare the coeffi cient of upper tail dependence of the Gaussian copula 
with that of the Gumbel copula. For X and Y with joint df given by Cq

gum, the
coeffi cient of upper tail dependence is given by lu

gum   : =   2 – 2
1
q . As long as

q  >  1, then the Gumbel copula shows upper tail dependence and may hence 
be more suited to modeling defaults in corporate bonds.

In practice, as we do not take asymptotic limits, we wonder if  the inde-
pendence of the Gaussian copula in the extremes only occurs in theory and is 
insignifi cant in practice. The answer is categorically no. As we pointed out 
in Subsection 4.2 in relation to Figure 3, the effects of the tail independence 
of the Gaussian copula are seen not only in the limit. Of course, this is not a 
proof and we direct the reader to a more detailed discussion on this point in 
McNeil et al. (2005, page 212).

The Gumbel copula is not the only copula that shows upper tail dependence 
and we have chosen it simply for illustrative purposes. However, it demonstrates 
that alternatives to the Gaussian copula do exist, as was pointed out in the 
academic literature on numerous occasions. For example, see Frey et al. (2001) 
and Schönbucher (2003).

The failure of  the Gaussian copula to capture dependence in the tail is 
similar to the failure of the Black-Scholes-Merton model to capture the heavy-
tailed aspect of the distribution of equity returns. Both the Gaussian copula 
and the Black-Scholes-Merton model are based on the normal distribution. 
Both are easy to understand and result in models with fast computation times. 
Yet both fail to adequately model the occurrence of extreme events.

 We believe that it is imperative that the fi nancial world considers what the 
model they use implies about frequency and severity of extreme events. For 
managing risk, it is imprudent to ignore the very real possibility of extreme 
events. It is unwise to rely without thought on a model based on the normal 
distribution to tell you how often these extreme events occur. We are not sug-
gesting that models based on the normal distribution should be discarded. 
Instead, they should be used in conjunction with several different models, some 
of which should adequately capture extreme events, and all of whose advantages 
and limitations are understood by those using them and interpreting the 
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results. Extreme Value Theory offers tools and techniques which can help in 
better understanding the problems and diffi culties faced when trying to under-
stand, for instance, joint extremes, market spillovers and systemic risk; see 
Coles (2001), Embrechts et al. (2008) and Resnick (2007) for a start.

5.2. Inconsistent implied correlation in tranches and an early warning

The one-factor Gaussian copula model is frequently used in practice for delta-
hedging of the equity tranche of the synthetic CDO indices. Attracted by the 
high upfront fee, investors like hedge funds sell the equity tranche of a syn-
thetic CDO. To reduce the impact of changes in the spreads of the underlying 
portfolio, they can delta-hedge the equity tranche by buying a certain amount 
of the mezzanine tranche of the same index. The idea is that small losses in 
the equity tranche are offset by small gains in the mezzanine tranche and vice 
versa. They buy the mezzanine tranche rather than the entire index because it 
is cheaper. Assuming the delta-hedge works as envisaged, the investor gains the 
high upfront fee and the regular premium payable on the equity tranche they 
sold, less the regular premium payable on the mezzanine tranche they bought.

First, an implied correlation is calculated for each tranche. This is the 
 correlation which makes the market price of the tranche agree with the one-
factor Gaussian copula model. Using the implied correlations, the delta for each 
tranche can be calculated. The delta measures the sensitivity of the tranche to 
uniform changes in the spreads in the underlying portfolio. Intuitively, we would 
expect that the implied correlation should be the same for each tranche, since it 
is a property of the underlying portfolio. However, the one-factor Gaussian 
copula model gives a different implied correlation for each tranche. Moreover, 
the implied correlations do not move uniformly together since the implied cor-
relation for the equity tranche can increase more than the mezzanine tranche.

Even worse, sometimes it is not possible to calculate an implied correlation 
for a tranche using the one-factor Gaussian copula model. Kherraz (2006) 
gives a theoretical example of this and Finger (2009) gives the number of times 
that there has failed to be an implied correlation in the marketplace. These are 
all serious drawbacks of the one-factor Gaussian copula model, which were 
brought to the attention of market participants in a dramatic fashion in 2005. 
Discussions of these drawbacks can be found in Duffi e (2008) and, particularly 
in relation to the events of May 2005 which we outline next, in Finger (2005) 
and Kherraz (2006).

In 2005, both Ford and General Motors were in fi nancial troubles which 
threatened their credit ratings. On May 4 2005, an American billionaire Kirk 
Kerkorian invested US$870 million in General Motors. In spite of  this, on 
May 5 2005, both Ford and General Motors were downgraded. Coming one 
day after Kerkorian’s massive investment, the downgrade was not expected by 
the market. In the ensuing market turmoil, the mezzanine tranches moved in 
the opposite direction to what the delta-hedgers expected. Rather than the 
delta-hedge reducing their losses, it increased them.
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The losses were substantial enough to warrant a front-page article White-
house (2005) on the Wall Street Journal which, like its successors Jones (2009) 
and Salmon (2009) more than three years later, went into some detail about 
the limitations of the model’s uses. For us, this is suffi cient evidence that people, 
both in industry and in academia, were well aware of the model’s inadequacy 
facing complicated credit derivatives.

The broader lesson to take away is that of model uncertainty. This is the 
uncertainty about the choice of model. Naturally, as models are not perfect 
refl ections of reality, we expect them to be wrong in varying degrees. However, 
we can attempt to measure our uncertainty about the choice of model. Cont 
(2006) proposes a framework to quantitatively measure model uncertainty 
which, while written in the context of  derivative pricing, is of  wider interest. 
In the context of hedging strategies, an empirical study of these using different 
models can be found in Cont and Kan (2008). Their study shows that hedging 
strategies are subject to substantial model risk.

5.3. Ability to do stress-testing

The use of a copula reduces the ability to test for systemic economic factors. 
A copula does not model economic reality but is a mathematical structure 
which fi ts historical data. This is a clear fl aw from a risk-management point of 
view. At this point, we fi nd it imperative to stress some points once more
(they were mentioned on numerous occasions by the second author to the risk 
management community). First, copula technology is inherently static since 
there is no natural defi nition for stochastic processes. Hence any model based 
on this tool will typically fail to capture the dynamic events in fast-changing 
markets, of  which the subprime crisis is a key example. Of course, model 
parameters can be made time dependent, but this will not do the trick when 
you really need the full power of the model, that is when extreme market con-
ditions reign. Copula technology is useful for stress-testing: many companies 
would have shied away from buying the magical AAA-rated senior tranches of 
a CDO if they had stress-tested the pricing beyond the Gaussian copula model, 
for instance by using a Gumbel, Clayton or t-copula model. And fi nally, a 
comment on the term “calibration”: too often we have seen that word appear 
as a substitute for bad or insuffi cient statistical modeling. A major contributor 
to the fi nancial crisis was the totally insuffi cient macroeconomic modeling and 
stress-testing of the North American housing market. Many people believed 
that house prices could only go up and those risk managers who questioned 
that “wisdom” were pushed out with a desultory “you do not understand”.

Copula technology is highly useful for stress-testing fairly static portfolios 
where marginal loss information is readily available, as is often the case in 
multi-line non-life insurance. The technology typically fails in highly dynamic 
and complex markets, of  which the credit risk market is an example. More 
importantly, from a risk management viewpoint, it fails miserably exactly when 
one needs it.
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6. THE DIFFICULTIES IN VALUING CDOS

6.1. Sensitivity of the mezzanine tranche to default correlation

Leaving aside the issue of modeling the joint default times, the problem of valuing 
the separate tranches in a CDO is a delicate one. In particular, the mezzanine 
tranche of a CDO is very sensitive to the correlation between defaults. We illus-
trate this with the following simple example.

Suppose that we wish to fi nd the expected losses of a CDO of maturity 
1 year which has 125 bonds in the underlying portfolio. Each bond pays a 
coupon of one unit which is re-distributed to the tranche-holders. For simplicity, 
we assume that if  a bond defaults, then nothing is recovered.

We value the fi rst three (most risky) CDO tranches, which we call the 
equity, mezzanine and senior tranches. The equity tranche is exposed to the 
fi rst 3 defaults in the underlying portfolio of bonds. The mezzanine tranche is 
exposed to the next 3 defaults and the senior tranche is exposed to the sub-
sequent 3 defaults in the underlying portfolio of bonds. Therefore, 6 defaults 
must occur in the underlying portfolio before further defaults affect the coupon 
payments to the senior tranche. 

Instead of modeling the default times (Ti ), we make the simple assumption 
that each of the underlying bonds has a fi xed probability of defaulting within 
a year. We assume that the correlation between each pair of default events is 
identical. We calculate the expected loss on each tranche at the end of the year 
as follows

Expected loss on equity tranche  = k�
k 1

3

=

/   [ k bonds default by the end of the 
year],

Expected loss on mezzanine tranche  = k�
k 1

3

=

/   [ k  +  3 bonds default by the end 
of the year],

Expected loss on senior tranche  = k�
k 1

3

=

/   [ k  +  6 bonds default by the end of 
the year].

In Figures 4(a)-4(d), we show for various probabilities of  default how the 
expected losses on each tranche vary as we change the pairwise correlation 
between the default events.

For each plot, we see that the expected loss on the equity tranche decreases 
as the pairwise correlation increases. The reason is that as correlation increases, 
it is more likely that either many bonds default or many bonds do not default. 
Since any defaults cause losses on the equity tranche, the increase in probabil-
ity that many defaults do not occur tends to decrease the expected loss on the 
equity tranche. Conversely, the expected loss on the senior tranche increases 
as the pairwise correlation increases. More than 6 bonds must default before 
the senior tranche suffers a loss. An increase in correlation makes it more likely 
that many bonds will default and this causes the expected loss on the senior 
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tranche to increase. However, for the mezzanine tranche there is no clear rela-
tionship emerging. In Figure 4(a), the expected loss on the mezzanine tranche 
increases as the pairwise correlation increases. But in Figure 4(d) the opposite 
happens. This simple example illustrates the sensitivity of  the mezzanine 
tranche. This point is also highlighted by McNeil et al. (2005, Figure 9.3).

We restate the remark in Duffi e (2008) that the modeling of default correla-
tion is currently the weakest link in the risk measurement and pricing of CDOs. 
Given this weakness and the sensitivity of the mezzanine tranche to the default 
correlation, it is clear that there is a lot of  uncertainty in the valuation of 
CDOs. Linking this uncertainty to the astronomical volumes of CDOs in the 
marketplace, it is not surprising that the credit crisis had to erupt eventually.

6.2. Squaring the diffi culty: CDO-squared

Now suppose we wish to value a credit derivative called a CDO-squared. This 
is a CDO where the underlying portfolio itself  consists of  CDO tranches. 
Moreover, these tranches are typically the mezzanine tranches. This is because 
the mezzanine tranches are diffi cult to sell: they are too risky for many inves-
tors, since they are often BBB-rated, yet they are not risky enough for other 
investors, like hedge funds. 

Like any CDO, the CDO-squared can be tranched. However, the valuation 
of the CDO-squared and its tranches are fraught with complexity. As we saw in 
our simple example above, valuing each mezzanine tranche in the under lying 
portfolio is diffi cult. Valuing the tranches of the CDO-squared, which has 
between 100 and 200 mezzanine tranches in the underlying portfolio, is much 
more diffi cult. If we assume that there are 150 mezzanine tranches in the under-
lying portfolio of the CDO-squared, and each mezzanine tranche is based on a 
portfolio of 150 bonds, then this means modeling 22,500 bonds. It is also quite 
likely that some of these bonds are the same, since it is likely given the large 
numbers involved that some of the mezzanine tranches have the same bonds in 
their underlying portfolio. Given these problems, it is questionable whether a 
CDO-squared can be valued with any reasonable degree of accuracy.

Moreover, doing due diligence on such on a CDO-squared is not feasible, 
as Haldane (2009a) points out. The contracts governing each of the mezzanine 
tranches in the underlying portfolio are around 150 pages long. Assuming that 
there are 150 mezzanine tranches in the underlying portfolio, this means that 
there are 22,500 pages to read, not including the contract governing the CDO-
squared itself. On top of that, a typical computer program mapping the cash-
fl ow of just one CDO-like structure can be thousands of lines of computer 
code long (often in an Excel environment), which has the attendant possibility 
of programming errors creeping in.

For the purposes of  risk management, determining the systemic factors 
which the CDO-squared is exposed to would be impossible, given the number 
of fi nancial instruments on which a CDO-squared is based. This means that 
the validity of scenario testing on such instruments is doubtful.
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Even ignoring the valuation diffi culties, the economic value of instruments 
such as CDOs-squared are questionable. As Hellwig (2009, page 153) argues 
in relation to mortgage-backed securities, which we recall are a type of CDO, 
if  the securitization of mortgage-backed securities had been properly handled 
then there should be no signifi cant benefi ts from additional diversifi cation 
through a mortgage-backed security-squared. Such benefi ts could be gained 

FIGURE 4: Expected loss on a CDO with 125 underlying names, each with identical pairwise correlation,
as a function of the pairwise correlation value. The line shows the expected loss on the equity tranche 

(0-3 units of exposure). The circles show the expected loss on the mezzanine tranche (3-6 units of 
exposure) and the crosses show the expected loss on the senior tranche (6-9 units of exposure).

(a) Individual default probability of 1%. (b) Individual default probability of 2%.

(c) Individual default probability of 3%. (d) Individual default probability of 4%.
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by investors putting multiple mortgage-backed securities into their own port-
folio. Furthermore, he points out that the scope for moral hazard was increased 
as the chain of  fi nancial intermediation increased, from the mortgage origi-
nators to the buyers of the mortgage-backed security-squared. This was also 
mentioned by Stiglitz (2008).

If  the problems with valuing and managing the risk involved in CDOs-
squared seem insurmountable, it should give the reader pause for thought that 
instruments called CDO-cubed exist. These are again CDOs which are based 
on the mezzanine tranches of CDO-squareds.

It is clear that at this level, credit risk management did reach a level of per-
versity which questions seriously any socio-economic benefi t of such products 
and puts to shame the whole quant profession. In the end, from a product 
development point-of-view, total opaqueness reigned. The real question is not 
about a particular model used or misused in the pricing of such products but 
much more about the market structures which allowed such nonsensical products 
to be launched in such volumes. Already around 2005, it was noticed that 
 overall risk capital as measured by VaR was down. They key question some 
risk managers asked was “But where is all the credit risk hiding?” By now, 
unfortunately we know!

7. ALTERNATIVE APPROACHES TO VALUING CDOS

Reading the articles in the Financial Times and Wired Magazine, one would 
think that the Gaussian copula model was the only method used to value 
credit derivatives. This is far from the truth. While this model is widely used, 
there are many alternatives to it which are also used in industry. In fact, there 
are entire books written on models for credit derivatives, such as Bielecki and 
Rutkowski (2004), Bluhm and Overbeck (2007), O’Kane (2008) and Schön-
bucher (2003). 

Broadly, there are two main classes of models used in credit risk modeling: 
structural models and hazard rate models. The structural approach, sometimes 
called the fi rm-value approach, models default via the dynamics of the value of 
the fi rm. This is based on the Merton (1974) approach, which models default 
via the relationship of the value of the fi rm’s assets to its liabilities at the end of 
a given time period. The general idea is that default occurs if  the asset value is 
less than the fi rm’s liabilities. The one-factor Gaussian copula model is an exam-
ple of a structural model. Other examples of structural models used in industry 
are the CreditMetrics model, publicized by JP Morgan in 1997, and the KMV 
model, fi rst developed by the company KMV and now owned by Moody’s.

Hazard rate models, also commonly called reduced-form models, attempt 
to model the infi nitesimal chance of default. In these models, the default is some 
exogenous process which does not depend on the fi rm. An industry example 
of a reduced-form model is CreditRisk+, which was proposed by Credit Suisse 
Financial Products in 1997.
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We do not go into details about these or, indeed, alternative models. Instead, 
as a starting point we direct the interested reader to the books cited at the start 
of this section.

It is fair to say that in the wake of the Crisis, the approaches used by the vari-
ous market participants to value CDOs can be broadly summarized as follows:

– for synthetic (corporate credit) CDOs, the notion of the base correlation 
curve of the Gaussian copula is used. Since the Crisis, there has been an 
evolution to simpler models and simpler structures;

– for cash CDOs and asset-backed securities, a more detailed modeling of the 
cashfl ow waterfall together with Monte Carlo modeling of the underlying 
asset pools is used;

– rating agencies models for structured assets have become much simpler, that 
is concentrating on fewer scenarios with extreme stress shocks, and

– the regulators put a lot of importance on stress-testing and the Holy Grail 
still remains liquidity risk.

Whereas we applaud the consensus on simple, economically relevant products, 
we are less convinced that simple models will be part of the answer to this Crisis. 
Even for fairly straightforward credit products, rather advanced quantitative 
techniques are needed. We need better models and for people to under-
stand the assumptions and limitations of the models they use. The call is not 
for “less mathematics” but rather for “a better understanding of the necessary 
mathematics involved”.

8. A FAILURE OF RISK MANAGEMENT: AIG 

CDSs have also attracted a lot of attention with respect to the fi nancial crisis, 
particularly in association with the insurance company AIG. In September 2008, 
AIG was on the verge of bankruptcy due to cashfl ow problems stemming from 
its CDS portfolio, before being saved by the US government. We explain below 
how AIG came close to bankruptcy and draw some relevant lessons from their 
risk management failures.

8.1. The AIG story

The sad story of AIG, a company of around 100,000 employees brought to its 
knees by a small subsidiary of 400 employees, is an example of a failure of 
risk management, both at the division and the group level. AIG almost went 
bankrupt because it ran out of cash. We do not concern ourselves here with 
regulation, but focus on the risk management side of the AIG story. A sum-
mary of the AIG bailout by Sjostrom (2009) is well-worth reading, and this is 
the basis of what we write below about AIG. We have supplemented this with 
other sources, mainly from AIG regulatory fi lings and statements submitted 
to a US Senate Committee hearing on AIG.
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AIG is a holding company which, through its subsidiaries, is engaged in
a broad range of  insurance and insurance-related activities in more than
130 countries. Half of its revenues come from its US operations. As at Decem-
ber 31 2007, AIG had assets of US$1,000 billion dollars. This is just under half  
the Gross Domestic Product of France.

Despite the insurance business being a heavily regulated business, in Sep-
tember 2008 AIG was on the verge of bankruptcy due to cashfl ow problems. 
These cashfl ow problems came not from its insurance business, but from its CDS 
portfolio. AIG operated its CDS business through subsidiaries called AIG 
Financial Products Corp and AIG Trading Group, Inc and their respective sub-
sidiaries. Collectively, these subsidiaries are referred to as AIGFP. As the parent 
company, AIG fully guaranteed any liabilities arising from AIGFP doing its 
regular business. For the most part, AIGFP sold protection on super-senior 
tranches of CDOs, where the underlying portfolio consisted of loans, debt secu-
rities, asset-backed securities and mortgage-backed securities. Super-senior 
tranches rank above AAA-rated tranches in the CDO tranche hierarchy, so that 
the super-senior tranche of a CDO is less risky than the AAA-rated tranche.

AIGFP believed that the money it earned from the CDSs were a free lunch 
because their risk models indicated that the underlying securities would never go 
into default. AIG (2006) states that “the likelihood of any payment obligation 
by AIGFP under each transaction is remote, even in severe recessionary mar-
ket scenarios”. The New York Times quotes the head of AIGFP as saying in 
August 2007 that “it is hard for us, without being fl ippant, to even see a scenario 
within any kind of realm of reason that would see us losing one dollar in any 
of  those transactions.”; see Morgenson (2008). Indeed, as at March 5 2009, 
according to AIG’s primary regulator, there had been no credit losses on the 
CDSs sold on super-senior tranches of CDOs; see Polakoff (2009). By credit 
losses, we mean the losses caused by defaults on the super-senior tranches that 
the CDSs were written on. Despite this, by writing the CDSs, AIGFP and 
hence also AIG, exposed themselves to other risks which entailed potentially 
large fi nancial obligations.

The buyer of a CDS is exposed to the credit risk of the seller. If  the reference 
asset defaults then there is no guarantee that the seller can make the agreed 
payoff. Similarly, the seller is exposed to the credit risk of the buyer: the buyer 
may fail to make the regular premium payments. To reduce this risk, the coun-
terparties to the CDS contract may be required to post collateral. The industry 
standard documentation which governs CDSs is produced by the International 
Swaps and Derivatives Association (“ISDA”). There are four parts to each ISDA 
contract, the main part being the ISDA Master Agreement. Another of these 
parts is the Credit Support Annex, which regulates the collateral payments. 
 Collateral payments may be required due to changes in the market value of the 
reference asset or changes in the credit rating of the counterparties. Further, the 
Credit Support Annex is an optional part of the ISDA contract.

As at December 31 2007, the net notional amount of CDSs sold by AIGFP 
was US$527 billion. The majority of these CDSs were sold before 2006. Some 
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US$379 billion of these CDSs were sold to provide mostly European banks with 
regulatory capital relief, rather than for risk transfer. We call these “regulatory 
capital CDSs”. These CDSs were written on assets like corporate loans and 
prime residential mortgages, which were held by European banks. By buying a 
CDS from AIGFP, the banks transferred the credit risk of the loans to AIGFP. 
Up to 2005, as AIG was AAA-rated and fully guaranteed its subsidiary AIGFP, 
the European banks were permitted under their banking regulations to reduce 
the amount of  regulatory capital to be set aside for their loans. Meanwhile 
AIG, being subject to different regulations and despite being exposed to the 
losses on the loans, did not have to hold the full value of the European regula-
tory capital.

The remaining notional amount of CDSs sold by AIGFP was split almost 
evenly between those written on portfolios of corporate debt and collaterized 
loan obligations (US$70 billion), which we call “corporate loan CDSs”, and 
those written on portfolios of multi-sector CDOs (US$78 billion), which we call 
“multi-sector CDO CDSs”. A multi-sector CDO is a CDO with an underlying 
portfolio consisting of  loans, asset-backed securities and mortgage-backed 
securities. This means that a multi-sector CDO is exposed to portfolios of assets 
from multiple sectors, such as residential mortgage loans, commercial mort-
gages, loans, auto loans and credit card receivables. AIG wrote protection on 
mostly the super-senior tranches of these multi-sector CDOs. Unfortunately 
for AIG, many of the multi-sector CDOs on which it sold CDSs were based 
on residential mortgage-backed securities, whose assets included subprime 
mortgage loans. Typically about 50% of the multi-sector CDOs on which AIG 
wrote CDSs was exposed to subprime mortgages; see AIG (2007b, page 28). 
By 2005, according to another presentation by AIG, they made the decision 
to stop committing to any new multi-sector CDOs which had subprime mort-
gages in their underlying portfolios; see AIG (2007a, Slide 16). They also saw 
evidence that underwriting standards in subprime mortgages were beginning to 
decline in a material way.

For several of  its counterparties, AIGFP had collateral arrangements 
nearly all of which were written under a Credit Support Annex to an ISDA 
Master Agreement. The intent of  these arrangements was to hedge against 
counterparty credit risk exposures. The amount of  collateral was primarily 
based either on the replacement value of the derivative or the market value of 
the reference asset. It was also affected by AIG’s credit rating and that of the 
reference assets.

In mid-2007, the defaults by borrowers of subprime mortgages started to 
ripple down the chain of fi nancial contracts based on them. This led to mas-
sive write-downs in AIGFP’s portfolio, totalling US$11.2 billion in 2007 and 
US$19.9 billion for the fi rst nine months of 2008. More importantly, the effects 
of the defaults were collateral posting requirements. As the values of the CDOs 
on which AIGPF had sold CDSs declined, AIGFP was required to post more 
and more collateral. Between July 1 2008 and August 31 2008, AIGFP either 
posted or agreed to post US$6 billion in collateral. This represented 34% of 
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the US$17.6 billion that AIG had in cash and cash equivalents available on 
July 1 2008. In Table 1, we show the collateral postings on AIGFP’s super-senior 
tranche CDS porfolio; see AIG (2009, page 144) and AIG (2008, page 122).
The fi rst column of fi gures in Table 1 relates to the nominal amounts of the CDS 
at December 31 2007, which we discussed above. These are shown to provide 
the reader with a sense of the magnitude of the multi-sector CDO CDS port-
folio relative to the other two CDS portfolios. Moving from left to right across 
the table, we see that the amount of collateral postings on the multi-sector 
CDO CDSs increases dramatically and comprises 96% of the total amount of 
collateral postings of US$32.8 billion as at September 30 2008.

Adding to AIG’s cash woes was its Securities Lending Program, which was 
a centrally managed program facilitated by AIG Investments. Through this 
program, certain of AIG’s insurance companies lent securities to other fi nancial 
institutions, primarily banks and brokerage fi rms. In exchange, AIG received 
partially cash collateral equal to 102% of the fair value of the loaned securities 
from the borrowers. In 2008, as the borrowers learned of AIG’s cashfl ow prob-
lems, they asked for their collateral back in exchange for the return of  the 
securities. From September 12 2008 to September 30 2008, borrowers demanded 
the return of around US$24 billion in cash; see Dinallo (2009).

A typical securities lending program reinvests the collateral in short duration 
instruments such as treasuries and commercial paper. AIG’s Securities Lend-
ing Program did not do this. Instead, they invested most of the collateral in 
longer duration, AAA-rated residential mortgage-backed securities; see AIG 
(2008, page 108) and Dinallo (2008). As the effects of the defaults of subprime 
mortgage holders continued to ripple through the fi nancial markets, these 
mortgage-backed securities declined substantially in value and became illiquid. 
As a result, the Securities Lending Program had insuffi cient funds to pay back 
the collateral it had taken in exchange for lending AIG’s securities. AIG was 
forced to transfer billions in cash to the Securities Lending Program to pay 
back the collateral.

TABLE 1

COLLATERAL POSTINGS BY AIG TO ITS COUNTERPARTIES IN RESPECT OF THE THREE TYPES OF

CDSS IT WROTE.

Type of CDS
Notional 

amount at
Collateral posting at

Dec 31 2007 Dec 31 2007 Mar 31 2008 Jun 30 2008 Sep 30 2008

US$ million US$ million

Regulatory capital 379,000 0 212 319 443 

Corporate loans 70,000 161 368 259 902 

Multi-sector CDO 78,000 2,718 7,590 13,241 31,469 

Total 527,000 2,879 8,170 13,819 32,814 
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By early September 2008, AIG’s cash situation was dire. It was unable to 
raise additional capital due to the seizing up of liquidity in the markets. As a 
result of  all these events, AIG was downgraded. The downgrade triggered 
additional collateral postings in excess of US$20 billion on the CDSs sold by 
AIGFP.

On September 16 2008, the Federal Reserve Board, with the support of the 
U.S. Department of the Treasury, announced that it had authorized the Federal 
Reserve Bank of New York to lend up to US$85 billion to AIG. This was to allow 
AIG to sell certain of its businesses in an orderly manner, with the least pos-
sible disruption to the overall economy. According to a Federal Reserve Board 
press release, it had determined that, in the current circumstances, a disorderly 
failure of AIG could add to already signifi cant levels of fi nancial market fragil-
ity and lead to substantially higher borrowing costs, reduced household wealth, 
and materially weaker economic performance; see Federal Reserve Board (2008a). 
By October 1 2008, AIG had drawn down approximately US$61 billion from 
the credit facility; see Kohn (2009).

In November 2008, it appeared that another downgrade of AIG’s credit 
rating was looming. This would have triggered additional collateral calls, and 
would probably have led to the collapse of AIG. Wishing to avoid this, the 
Federal Reserve Board and the U.S. Department of the Treasury announced 
a series of mitigating actions on November 10 2008; see Kohn (2009). In the 
press release, the Federal Reserve Board stated that these new measures were 
to establish a more durable capital structure, resolve liquidity issues, facilitate 
AIG’s execution of its plan to sell certain of its businesses in an orderly man-
ner, promote market stability, and protect the interests of the US government 
and taxpayers; see Federal Reserve Board (2008b). 

AIG’s net losses for 2008 were about US$99 billion, of which approximately 
US$62 billion was in the last quarter of 2008. By August 2009, according to 
the magazine The Economist, the total value of US government help that was 
distributed to AIG was around US$145 billion, which is equivalent to about 1% 
of the GDP of the US.

8.2. Risk management issues

The risk management failings at AIG were seen at other global fi rms. For many 
fi rms, the shortcomings of the risk management practices were translated into 
huge fi nancial losses. In AIG’s case, they almost bankrupted the fi rm.

The biggest failure of risk management at AIG was in not appreciating the 
risk inherent in the super-senior tranches of the multi-sector CDOs. Indeed, 
Rutledge (2008) points to exposure to the US subprime market as driving the 
losses at some major global fi nancial organizations, with the key driver being 
exposure to the super-senior tranches of CDOs. Firms thought that the super-
senior tranches were practically risk-free. According to Rutledge (2008), prior 
to the third quarter of 2007, few fi rms used valuation models to model their 
exposure to super-senior tranches related to subprime mortgages. It seems that 

93216_Astin40_1_01.indd   2793216_Astin40_1_01.indd   27 11-05-2010   09:34:5911-05-2010   09:34:59



28 C. DONNELLY AND P. EMBRECHTS

AIG was also guilty of this to some degree. Until 2007, it did not model the 
liquidity risk that it was exposed to from writing CDSs with collateral posting 
provisions; see Mollenkamp et al. (2008) and St Denis (2008).

Inadequate mathematical modeling meant that AIG were not able to 
quantify properly the risks in their CDS portfolio. Moreover, by ignoring the 
liquidity risk they were exposed to until after the Crisis had begun, AIG could 
not take early action to reduce their exposure to potential collateral postings. 
By the end of 2007, when substantial declines in the subprime mortgage market 
were already occurring, it would have been very expensive to do this.

Some fi rms survived the Crisis better than others. Based on a sample of 
eleven global banking organizations and securities fi rms, Rutledge (2008) iden-
tifi ed the key risk management practices which differentiated the performance 
of fi rms during the Crisis. From them, we take some relevant lessons.

One is the need for fi rms to embrace quantitative risk management. This 
provides them with a means of quantifying and aggregating risks on a fi rm-wide 
basis. Relying on human judgment, while still essential, is not enough, especially 
in huge fi rms like AIG. 

The mathematics to measure many of  the risks that fi rms face are well-
developed. For example, while the Crisis is considered an extreme event, there 
does exist a mathematical framework to assess the risk of such events. As men-
tioned before, Extreme Value Theory has been an active area of mathematical 
research since the 1950s, with early publications going back to the 1920s, and 
has been applied to the fi eld of fi nance for over 50 years. There has been much 
research on the quantifi cation of the interdependence and concentration of risks, 
and the aggregation of risks. A starting place for learning about the concepts 
and techniques of quantitative risk management is McNeil et al. (2005).

9. SUMMARY

The prime aim of this paper is not to give a detailed overview of all that went 
wrong leading up to and during the Crisis, but instead a rather personal 
account of  the important issues of  which an actuarial audience should be 
aware. The pessimist may say “The only thing we learn from history is that 
we learn nothing from history”, a quote attributed to Friedrich Hegel, among 
others. However, we hope that future generations of actuarial students will 
read this paper even after the Crisis has become part of economic history and 
avoid the errors of the current generation. As a consequence, we have left out 
numerous important aspects of the Crisis, but hopefully we have compensated 
that oversight with some general references which we found useful. By now, 
new publications appear every day which makes choosing “what to read” very 
diffi cult indeed.

We have concentrated on two aspects of  the Crisis which are relevant 
from an actuarial viewpoint: the use of an actuarial formula (that is, the Gaus-
sian copula model) far beyond the level it was originally created for and the 
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near-bankruptcy of an insurance giant, AIG, in part because of the failure of 
internal risk management practices.

If  we consider the concepts behind the numerous acroynms like RM, IRM, 
ERM, QRM,..., the message is screaming out to us: we need to learn from these 
recent events. As stated on several occasions in our paper, it is totally prepos-
terous to blame one man or one model for all or part of the Crisis. In reaction 
to the Financial Times article Jones (2009) we wrote the following letter:

Dear Sir 

The article “Of couples and copulas”, published on 24 April 2009, suggests 
that David Li’s formula is to blame for the current fi nancial crisis. For me, this 
is akin to blaming Einstein’s E  =  mc2 formula for the destruction wreaked by 
the atomic bomb. Feeling like a risk manager whose protestations of imminent 
danger were ignored, I wish to make clear that many well-respected academics 
have pointed out the limitations of the mathematical tools used in the fi nance 
industry, including Li’s formula. However, these warnings were either ignored 
or dismissed with a desultory response: “It’s academic”.

We hope that we are listened to in the future, rather than being made a con-
venient scapegoat.

Yours, etc

It was unfortunately not published!
As actuaries, both in practice and in academia, we must think more care-

fully on how to communicate the use and potential misuse of the concepts, 
techniques and tools in use in the risk management world. Two things are clear 
from the Crisis: “we were not listened to”, but also “we did not know”. First on 
the latter: as academics, we have to become much more involved with macro-
economic reality. The prime example is the astronomical nominal value invested 
in credit derivatives and why our risk management technology did not have
all the red warning lights fl ashing much earlier. Second, as a fi nal remark, we 
want to say something on the former “we were not listened to”. This leads us 
to the problem of communication, a stage on which actuaries are not considered 
the best actors. Too many papers are currently written, post-event, on “why 
we got into this mess”. We need to learn why certain warnings were not heeded. 
Below we give some personal recollections on this matter.

In 2001, the second author contributed to the 17 page document Daníels-
son et al. (2001) which was mailed in the same year as an offi cial reply to the 
Basel Committee in the wake of the new Basel II guidelines. The academic 
authors were a mixture of microeconomists, macroeconomists, econometricians 
and actuaries. Due to its relevance to the Crisis, we quote from the Executive 
Summary:

It is our view that the Basel Committee for Banking Supervision, in its Basel II 
proposals, has failed to address many of  the key defi ciencies of  the global 
fi nancial regulatory system and even created the potential for new sources of 
instability.  …  
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– The proposed regulations fail to consider the fact that risk is endogenous. 
Value-at-Risk can destabilise an economy and induce crashes when they 
would not otherwise occur.

– Statistical models used for forecasting risk have been proven to give incon-
sistent and biased forecasts, notably under-estimating the joint downside risk 
of different assets.  …  

– Heavy reliance on credit rating agencies for the standard approach to credit 
risk is misguided as they have been shown to provide confl icting and incon-
sistent forecasts of individual clients’ creditworthiness.  …  

– Financial regulation is inherently procyclical. Our view is that this set of pro-
posals will, overall, exacerbate this tendency signifi cantly. In so far as the 
 purpose of fi nancial regulation is to reduce the likelihood of systemic crisis, 
these proposals will actually tend to negate, not promote this useful purpose.

The introduction of Daníelsson et al. (2001) concludes with

Perhaps our most serious concern is that these proposals, taken altogether, 
will enhance both the procyclicality of regulation and the susceptibility of the 
fi nancial system to systemic crises, thus negating the central purpose of the 
whole exercise. Reconsider before it is too late.

The authors of  Daníelsson et al. (2001) could not have been more forceful 
and explicit, and yet the reaction from the Basel Committee was basically 
nil. Along these lines, every beginning actuary should read Markopolos 
(2005). In this 2005 document addressed to the SEC, one of  several by 
Markopolos over the period 2000-2008, Markopolos proves that Madoff 
Investment Securities is a Ponzi scheme, and yet the SEC did nothing. We do 
not enter into the reasons why this happened, but simply note that every 
quantitatively trained fi nance expert would have immediately reacted upon 
reading the very detailed and point-by-point accusation made in Markopolos 
(2005).

Though the above example is somewhat discouraging, we have to keep 
vigilant and communicate in a forceful way those actuarial, technical fi ndings 
which are of societal importance. We can do this through our publications, 
societies and conferences. A key research theme that we have to address more 
explicitly going forward is that of model uncertainty. From a technical per-
spective, this means explaining the precise conditions under which a particular 
model can be used. But at the same time, we have to be aware, or become aware, 
where and how these models are used in a non-trivial way. 

It always pays to be be humble in the face of  real application. Shake-
speare’s Hamlet formulated this as follows: “There are more things in heaven 
and earth, Horatio, than are dreamt of in your philosophy.” New generations 
of actuarial students will have to use the tools and techniques of quantitative 
risk management wisely in a world where the rules of the game will constantly 
change. A message we would like to give them on this path is to be always 
scientifi cally critical, socially honest and to adhere to the highest ethical prin-
ciples, especially in the face of temptation...which will come!
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