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ABSTRACT

In this paper, we consider various specifi cations of the general discrete-time 
risk model in which a serial dependence structure is introduced between the 
claim numbers for each period. We consider risk models based on compound 
distributions assuming several examples of discrete variate time series as spe-
cifi c temporal dependence structures: Poisson MA(1) process, Poisson AR(1) 
process, Markov Bernoulli process and Markov regime-switching process. 
In these models, we derive expressions for a function that allow us to fi nd the 
Lundberg coeffi cient. Specifi c cases for which an explicit expression can be 
found for the Lundberg coeffi cient are also presented. Numerical examples are 
provided to illustrate different topics discussed in the paper.
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1. INTRODUCTION

We consider the portfolio of an insurance company in the context of a discrete 
time risk model allowing different possible temporal dependence structures. 
We defi ne a sequence of identically distributed but not necessarily independent 
random variables (r.v.’s) W   =  {Wk,  k  !  �+} where the r.v. Wk represents the 
aggregate claim amount in period k, k  =  1,  2,  .... The r.v. Wk is distributed as 
W with cumulative distribution function (c.d.f.) FW and moment generating 
function (m.g.f.) MW. Let N   =  {Nk,  k  !  �+} be defi ned as a discrete time 
claim number process. In an insurance context, Nk corresponds to the number 
of claims in period k. The aggregate claim amount r.v. Wk is defi ned as

 B ,k

k
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k
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=

=

N

j ,W /  (1)
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assuming that j 1= 0j =
0 a/ . The claim amounts in period k, denoted Bk, 1, 

Bk, 2,  ..., form a sequence of i.i.d. r.v.’s with c.d.f. FB and independent of Nk.
It implies that Wk follows a compound distribution with E [W ]  =  E [N ]  E [B ] 
and MW (r)  =  PN (MB (r)), where PN(s) is the probability generating function 
(p.g.f.) of N. We assume that the m.g.f. of B, denoted MB (r), exists. The pre-
mium income per period is designated by p and satisfi es the usual solvency 
condition p  >  E [W ]. The strictly positive relative risk margin is E .1[j = -p

W ]

Let U   =  {Uk,  k  !  �} be the surplus process of  the insurance portfolio 
where Uk corresponds to the surplus level at time k  !  �. The dynamic of the 
surplus process is given by 

 ,k S kp p+ = +u -Wk k kU k
j

k

k1
1

p= + - =-
=

U W u - /

for k  !  �+ and initial surplus U0  =  u. We defi ne S   =  {Sk,  k  !  �} as the accu-
mulated aggregate claim amount process with Sk  =  W1  +  ...  + Wk and S0  =  0. 
We denote by the r.v. T the time of ruin where

 
0<{ , },

,

inf
T

k U U

U

if goes below 0 at least once

if never goes below 0
{ , , , ...}k k k

k

1 2 3

3
= !

*

or

 
W W

W

k u k

k

>p p

p

- -

-

, ,

, .
.

inf
T

k u

u

if exceeds at least once

if never goes above

{ , , , ...}k k
j

k

k
j

k

k
j

k

1 2 3 1 1

1
3

=
! = =

=

J

L

K
K
K
KK

* 4/ /

/

The infi nite time ruin probability is given by c(u)  =  Pr(T  <  3  | U0  =  u) and, 
when certain conditions are satisfi ed, we have the asymptotic Lundberg-type 
result 

 
( ( ))

,lim
ln

u
u

r
c

- =
u"3

where r is the Lundberg adjustment coeffi cient. Based on this asymptotic result 
and for large values of u, c(u) can be approximated by 

 c(u)   -   e–ru. (2)

Defi ne the convex function 

 E np( ) .lnr n e1 ( )
n

r n=
-c S

` j7 A  (3)
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Using different approaches, Nyrhinen (1998) and Müller and Pfl ug (2001) have 
shown that the Lundberg adjustment coeffi cient r is the solution to 

 ( ) ( ) 0.limr r
n n= =
"3

c c  (4)

We recall that the adjustment coeffi cient is a measure of dangerousness of an 
insurance portfolio. Nyrhinen (1999b) has shown how to use the adjustment 
coeffi cient r in Monte Carlo approximations of ruin probabilities. The expres-
sion of  cn(r) defi ned in (3) depends on the temporal dependence structure 
for W .

In the classical discrete time risk model due to De Finetti (1957), it is 
assumed that W   =  {Wk,  k  !  �+} forms a sequence of i.i.d. r.v.’s (see e.g. Bühl-
mann (1970), Gerber (1979) and Dickson (2005)). Some papers consider various 
models with temporal dependence. Gerber (1982) examines the estimation of 
ruin probabilities in a linear (Gaussian) risk model. Promislow (1991) derives 
upper bounds for a similar risk model. Christ and Steinebach (1995) propose an 
empirical-moment generating function type estimator of the adjustment coeffi -
cient in the risk model introduced by Gerber (1982). Yang and Zhang (2003) 
derive both exponential and non-exponential upper bounds for the infi nite-
time ruin probability in an extension to the model of  Gerber (1982) with 
interest. In a multivariate extension to Yang and Zhang (2003), Zhang et al. 
(2007) obtain a Lundberg-type inequality for the ruin probability in a discrete-
time model with dependent classes of business based on a multivariate fi rst-
order autoregressive time-series model and assuming a constant interest rate. 
Nyrhinen (1998, 1999a,b) derive Lundberg-type asymptotic results for the case 
of dependent claims with light tails using results from large deviation theory. 
Müller and Pfl ug (2001) obtain the same result using Markov inequalities. 
A special case of the classical discrete time risk model is the compound bino-
mial risk model which was fi rst proposed by Gerber (1988a, b) and further 
examined e.g. by Shiu (1989), Willmot (1993) and Dickson (1994). In the last 
decade, contributions such as Yuen and Guo (2001) and Cossette et al. (2003, 
2004a, b, c) have considered temporal dependence within the compound bino-
mial risk model.

In their paper, Müller and Pfl ug (2001) apply the result in (2) with (3) and 
(4) within notably the classical discrete time risk model and linear risk models 
considered by Gerber (1982) and Promislow (1991). However, the linear risk 
models such as the Gaussian AR(1) and ARMA( p, q) may be less applicable in 
the context of risk theory. As stated in almost all actuarial textbooks,  compound 
distributions are the corner stones of several risk models in risk theory.

In this paper, we examine risk models based on compound distributions 
assuming time series models for count data as specifi c temporal dependence 
structures for N   =  {Nk,  k  !  �+}. Time series of counts arise in many different 
contexts such as counts of cases of a certain disease, counts of price changes, 
counts of  injuries in a workplace, etc. In our paper, the following types of 
model for time series of counts will be considered:
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– Models based on thinning. This category of models includes the integer value 
moving average (INMA), integer value autoregressive (INAR), integer moving 
average autogressive models (INARMA). These models are based on appropriate 
thinning operations which replace the scalar multiplications by a fraction in 
the Gaussian ARMA framework of time series with continuous data (see e.g. 
Al-Osh and Alzaid (1987, 1988), Mckenzie (1986, 1988, 2003), and Joe (1997)). 
Quddus (2008) and Gourieroux and Jasiak (2004) apply the class of INAR 
models for the time series analysis of car accident count data. Freeland (1998) 
and Freeland and McCabe (2004) analyze a collection of time series of claim 
counts at the Worker’s Compensation Board of British Columbia. Empirical 
studies of the INMA model include notably the one of Brannas, Hellström 
and Nordström (2002) on the tourism demand and the one of Brannas and 
Quoreshi (2004) on the number of transactions in stocks. Kremer (1995) 
adapts the theory of INAR processes to the context of IBNR-predictions.

– Models based on Markov chains. The discrete time process N  is itself a Markov 
chain of  order 1 or more (see Mackenzie (2003) and references therein). 
Markov chains can be used to deal with count data in time series. This approach 
is reasonable when there are very few possible values for N . When the state 
space of  N  becomes too large, these models loose tractability. A good 
example is the Markov Bernoulli process on which is based the compound 
Markov binomial model proposed by Cossette et al. (2003, 2004a). Arvidsson 
and Francke (2007) fi t the compound Markov binomial model to all risk 
insurance data from the insurance company Folksam.

– Models based on a specifi c conditional distribution with stochastic parameters. 
The dependence structure is based on an underlying process such as an 
ARMA time series or a hidden discrete time Markov chain defi ned on a 
fi nite time space (see e.g. Zeger (1988), Heinen (2003), and Jung et al. (2006) 
and references therein). When the underlying process is a hidden discrete time 
Markov chain, these models may be also called Markov regime switching 
models or risk models defi ned in a Markovian environment. Examples of the 
conditional distributions are the Poisson, the binomial or the negative bino-
mial distributions. Malyshkina, Mannering and Tarko (2009) explore two-
state Markov switching count data models to study accident frequencies.

Other models such as models based on copulas, where the marginals are fi xed 
and the dependence structure is based on a copula (see e.g. Joe (1997) and 
Frees and Wang (2006)), could have been considered. A review on time series 
models for count data can be found in the survey of McKenzie (2003), the 
monographs of Cameron and Trivedi (1998) and Kedem and Fokianos (2002). 
All examples considered for N  in this paper satisfy the constraints on the pro-
cess  {Wk  –  p,  k  !  �+} given in Müller and Pfl ug (2001).

The paper is structured as follows. In the next three sections, we present 
risk models based on compound distributions assuming for N  a Poisson MA(1) 
process, Poisson AR(1) process, Markov Bernoulli process, and a Markov 
switching regime process. For each model, we examine its properties and derive 
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explicit expressions for cn(r) and c(r). Specifi c cases for which an explicit expres-
sion can be found for r are also presented. Numerical examples are provided 
to illustrate different topics discussed in the paper.

2. MODELS BASED ON THINNING

We begin this section by introducing the operator “5” used in models based 
on thinning. Let M be a non-negative integer-valued random variable and 
a  !  [0, 1]. The 5-operation of a on M is referred to as the binomial thinning 
of M and is defi ned as

 Yia ,M
i

M

1
=

=

& /

where  {Yi,  i  =  1,  2,  ...} is a sequence of i.i.d Bernoulli r.v’s with mean a and 
independent of M.

2.1. Risk Model – Poisson MA(1)

2.1.1. Defi nitions and properties

Now let us consider a Poisson MA(1) process for N   =  {Nk,  k  !  �+} whose 
dynamic is defi ned as

 a , , ...,k 1 2k ke e= + =& ,k 1-N  (5)

where e  =  {ek,  k  !  �} is a sequence of i.i.d. r.v.’s following a Poisson distribu-
tion with mean a1

l
+  and a  !  [0, 1] . Also, 
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k 1

e d= =
e

- -
=

-

& k ,2j ...,,/  (6)

where  {dk – 1,  j} is a sequence of  i.i.d. Bernoulli r.v.’s with mean a. The 
sequences  {dk, j , j  =  1,  2,  ...} (for k  =  1, 2,  ...) are assumed independent for 
 different periods k. Given these distribution assumptions, the r.v. a  5  ek – 1 is 
Poisson with mean l

a
a

1+ . From (5) and (6), we have
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As stated in Al-Osh and Alzaid (1987), the marginal distribution of the model 
(5) is uniquely determined by the distribution of ek. Hence, Nk is Poisson dis-
tributed with mean

 

k

a
a

a

[ [

1 1

E E k1 e

l l

l

= +

=
+

+
+

=

] & ke -aN ]

and (5) generates a stationary process with a Poisson(l) marginal distribution. 
If  a  =  0, the behavior of Nk is solely explained by ek, which means that the 
claim number r.v.’s are independent from one period to the other. If  a  =  1, the 
r.v. Nk is equally affected in its behavior by the r.v.’s ek and ek – 1. The number 
of claims Nk in period k is therefore mainly due to the new arrivals between 
k  –  1 and k, and a proportion of  the new arrivals between k  –  2 and k  –  1 
defi ned by the thinning procedure. 

One can also use the p.g.f. to identify the distribution of Nk
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The autocorrelation function of N  is 

 (N

1h =a
a

1
0, 1

h
h >

g = +)
,

Z

[

\

]]

]

(see McKenzie (1988)) which implies that gN(1)  !  [0,0.5]. Therefore, 
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Also from McKenzie (1988), the expression for the joint mass probability func-
tion of (Nk,  Nk – 1) is given by 
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for nk,  nk – 1  !  �. See e.g. McKenzie (1988, 2003) for other properties of the 
Poisson MA(1) model.
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2.1.2. Expression for c(r)

We derive the expression of the function c(r) in a risk model which considers 
a Poisson MA(1) process for the dependence structure of  the number of 
claims. As previously mentioned, the solution to c(r)  =  0 is the adjustment 
coeffi cient which enables us to examine the riskiness of the surplus process.

Proposition 1. The expression for c(r) is given by

 B(Ba
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a
a

a( ) 1
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Proof. The m.g.f. of Sn is expressed as 
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Let the joint p.g.f. of (N1,  ..., Nn ) be given by
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The expression for the multivariate m.g.f. MW1,  ...,Wn  (r1,  ...,  rn) of (W1,  ...,Wn ) is 
defi ned in terms of PN1,  ..., Nn (t1,  ...,  tn) and the m.g.f. of B 
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and 
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Substituting (11), (12), and (13) into (10), we obtain
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Combining (14), (9) and (8), we have
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After inserting (15) in (3), we obtain
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Remark 2. Given (15), Sn  =   kk 1=
n W/    follows a compound Poisson distribution 

i.e. we can express Sn as
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where Mn has a Poisson distribution with mean a1
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sequence of i.i.d. r.v.’s distributed as C (n) with

 B
C

a a a
(

( (1 ) 2 ) ( ( 1) (
.F

n n FB=
- + + -

an +
( x

x x
)

) )F 2

)n

)

Note that FB
*n denotes the n-fold convolution of FB   for n  !  �+. If a  =  0, then 
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which corresponds to the m.g.f of the aggregate claim amount in the classical 
discrete time risk model.

2.1.3. Impact of the parameter a

To analyze the impact of the dependence parameter a, we take the derivative 
of c(r) with respect to a and we obtain
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If  a  <  a�, it follows from above that the solutions r and r� to (7) are such that 
r  >  r�. This implies that the degree of dangerousness represented by the adjust-
ment coeffi cient increases with the dependence parameter a. Given the struc-
ture of the model, when the dependence parameter increases, it becomes more 
likely that claims in period k  –  1 also lead to claims in period k, which increases 
the dangerousness of the portfolio.
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The impact of the dependence parameter a on the Lundberg coeffi cient could 
have been studied using the supermodular order. However, after investigation, 
the proof of this inequality based on supermodular ordering remains an open 
problem.

2.1.4. An explicit expression for the adjustment coeffi cient

In the following proposition, we derive an explicit expression for the adjustment 
coeffi cient r in the case where the claim amount B is exponentially distributed.

Proposition 3. Assume that B + Exp(b) with mean 1
b  and m.g.f. MB(r)  =  rb

b
- . 

Then, we have 

        a a
a

a( ) 2(1 ) 1 1
(1 )

(1 )
.2 1

1 4 1
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b
j j
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+ +
+

+
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Proof. Here, the function c(r) is 
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which is equivalent to 

 r r
a a(1 )

( )
(r

2

2

3b
h

b
bh-

-
+

-
- 1 j+b =

b
),h  (17)

with a1
1
+   =  h. Multiplying (17) by (b  –  r)2, we obtain

 (1  –  a)  hb2 (b  –  r)  +  ahb3  –  bh(b  –  r)2   =   r(1  +  j) (b  –  r)2

leading to the equality 

 r((1  +  j) r2  +  (bh  –  2b (1  +  j)) r  +  jb2)   =   0. (18)

Solution to (18) leads to the desired result. ¡ 

Note that, when a  =  0 in (16), the adjustment coeffi cient becomes

 
b

,1r j=
+
j

which corresponds to the adjustment coeffi cient when claim number r.v.’s are 
assumed to be independent.
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To take a look at the impact of  a on r, we differentiate the expression 
derived for r in terms of a. We fi nd 

22a a a
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Since
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m

for a  !  [0, 1], we have ad
dr   <  0. Hence, the adjustment coeffi cient r decreases 

(as shown in Section 2.1.3) as the dependence parameter a increases.

Example 4. We consider an insurance portfolio where the claim amount r.v. B has 
an exponential distribution with mean 1

b   =  1. The premium income p includes a 
relative risk margin j equal to 20%. In Table 1, we provide values of r computed 
with (16) for different values of a. Using (2), we approximate the infi nite time 
ruin probability c(u) by e –ru and, based on this approximation, we fi nd the amount 
of initial surplus required to have an infi nite time ruin probability of 1%. 

TABLE 1

VALUES OF THE LUNDBERG COEFFICIENT IN THE POISSON MA(1) RISK MODEL

a 0 0.25 0.5 0.75 1

r 0.1667 0.1396 0.1265 0.1186 0.1134 

u   =   – r–1  ln (0.01) 27.6310 32.9835 36.4174 38.8272 40.6162

Results in Table 1 clearly confi rm that the adjustment coeffi cient r decreases as 
the dependence parameter a increases. The adjustment coeffi cient is a measure 
of dangerousness of the risk portfolio. As the adjustment coeffi cient decreases, 
the risk process becomes more dangerous. Based on the approximation of c(u) 
by e –ru, it means that the initial surplus which is required to have an infi nite time 
ruin probability of 1% increases as the dependence parameter a increases. There-
fore, we may conclude that if the dependence between the claim number r.v.’s is 
at a high (low) level then it requires a large (small) amount of initial surplus to 
satisfy an infi nite time ruin probability of 1%. ¡ 
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2.2. Risk Model – Poisson AR(1)

2.2.1. Defi nitions and properties

We suppose here that N   =  {Nk,  k  !  �+} is a Poisson AR(1) process where the 
r.v. N1 has a Poisson distribution with mean l and the autoregressive dynamic 
for N2,  N3 , ... is given by

 e ak k k 1= + ,-&N N  (20)

for k  =  2,  3,  .... We assume that e  =  {ek,  k  !  �+} is a sequence of i.i.d. r.v.’s 
following a Poisson distribution with mean (1  –  a) l where a  !  [0, 1]. Follow-
ing Joe (1997), the dependence structure of  the Poisson AR(1) process can 
be represented as follows
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The r.v.’s e2,  e3 , ... are i.i.d. and follow a Poisson distribution with mean ((1  –  a) l) 
and d21,  d31,  d32,  ...,  dk1,  ...,  dk, k – 1 are i.i.d. Bernoulli r.v’s with mean a. Hence, 
given a sequence of i.i.d. Poisson r.v’s e  with mean (1  –  a) l, the model given 
in (20) yields a stationary sequence of Poisson r.v.’s with mean l. The model 
given by (20) may be interpreted in the context of the evolution of a popula-
tion as the number of people at time k, Nk, being the sum of those who arrive 
in the interval (k  –  1,  k) and survive until time k, i.e. ek, and those who survive 
from time (k  –  1) to k, i.e. a  5  Nk – 1. In an insurance context, the number of 
claims in period k, meaning Nk, can be viewed as the sum of the new claims 
during period k, and the claims of period k  –  1 leading to claims in period k.

As for a classical Gaussian AR(1) model, the autocorrelation function for  
N  is equal to gN (h)  =  ah, for h  ≥  1 (see McKenzie (1988)) with gN (1)  !  [0, 1). 
The expression for the covariance between Wk and Wk + h corresponds to

 k a( , ) [ ,Cov E Bk h
h 2l=+W W ]

for h  ≥  1. The joint p.m.f. of (Nk,  Nk – 1) is given by 
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(see, e.g. McKenzie (1988)).
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2.2.2. Expression for c(r)

The expression for c(r) is provided in the following proposition.

Proposition 5. Assuming that aMB(r)  <  1, the expression for c(r) is given by
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where g  =  1  –  a.

Proof. We have 
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where 

 Ln   =   N1  +  N2  +  ...  +  Nn

and C1, C2, ... form a sequence of i.i.d. r.v.’s distributed as B.
Also, we have 
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We need to fi nd the expression for PLn
(t).

Let us develop the expressions for PLn
(t) for periods n  =  1,  2,  3,  4. We have 
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For n  =  3, we fi nd 
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Given (22), we need to fi nd the expression for 
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Further manipulations lead to 

 

1

1

1

2

2

1

1

2a a a a a a(( 2 ) ( ) 1)t t t tl g g g g g g+ + + + + + -

a a a

a a a a a a a

a a a a a a a

( ( ( (

( ) ( ) ( ) (

.

E t E t t t t N

E t t t t t

E t t t t t

e

N

i

N

i

N

2 2 2 3

1
1

2 2

1

2 2

i i i21 21 21

2 2 3 3

g g g

g g g g g g g

g g g g g g g

+ + +

= + + + + + + +

= + + + + + + +

=

d d

2 2 2 4

3

3

N

N

1

=

=

) )

i21

3

d

)

N

d

)

)

_

`

`

i

j

j

>>

>

:

HH

H

D

%

%

 (24)

Finally, combining (24) and (22), we obtain 
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Consequently, we deduce the following general form for MSn
 for n  =  2,  3,  ...
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From (26), we fi nd this expression for cn(r)
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Assuming that aMB(r)  <  1 and taking the limit of (27), we obtain the desired 
result
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Note that, given (26), Sn follows a compound Poisson distribution.
Combining (4) and (21), r is the strictly positive solution to 

 ( )
( )

r
r

a1 ( ) (1 ) [ ] 0,r E
B

B
2

g q
-

- - + =BM
Mg

in which the parameter l does not appear.
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2.2.3. Impact of the parameter a

To have an idea of the infl uence of the dependence parameter a on the Lund berg 
coeffi cient, we take the derivative of c(r) defi ned by (21) with respect to a

 ( )
( )

( )
( )

( )
r

r
r

r
r

a a
a a( )

( )
2(1 )

( ( ))
( )

0.d
dc r

1 1
1

B

B
B

B

B
2

2

$
l l

l=
-
-

+
-

-
+

aM
M

M
M

M

If a  <  a�, then the solutions r and r�  to (21) are such that r  >  r�  since da
(dc r)   ≥  0. 

It means that the degree of dangerousness represented by the adjustment coef-
fi cient increases with the dependence parameter a.

2.2.4. An explicit expression for the adjustment coeffi cient

A nice expression for the Lundberg coeffi cient is provided in the next proposition 
when the claim amount r.v. B follows an exponential distribution.

Proposition 6. Assume that B  + Exp(b) with mean 1
b  and m.g.f. MB(r)  =  rb

b
- . 

Then, we have 

 
g a

1 1
(1 )

r j
b

j
b

=
+

=
+

-
,

jj
 (28)

where a  !  [0, 1).

Proof. When B follows an exponential distribution, (21) becomes

 
a

l

-1
0,r

r

r
g

gl- - =b

b

-

- p
b

b
2

which can be rewritten as follows

 (1 ) [ ] 0,r r r r E
2

g
l b

gl g
g b

g j
-

- - =
-

- - + =Bb p
2g

b

or

 b b (1 ) (1 ) [ ] 0.r r r E B2 2g g g gj j- - + + + + =2

After some rearrangements, we fi nd the desired result. ¡ 

As expected, if  a  =  0 (i.e. the independence case), the expression (28) for the 
Lundberg coeffi cient is reduced to

 .1r j
b

=
+
j
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Example 7. For an insurance portfolio, we assume that the claim amount r.v. B 
has an exponential distribution with mean 1

b   =  1 and that the premium income 
p includes a relative risk margin j of 20%. In Table 2, we apply (28) to compute 
values of r assuming different values of dependence parameter a. Using (2), we 
approximate the infi nite time ruin probability c(u) by e–ru and, based on this 
approximation, we fi nd the amount of initial surplus required to have an infi nite 
time ruin probability of 1%. 

TABLE 2

VALUES OF THE LUNDBERG COEFFICIENT IN THE POISSON AR(1) RISK MODEL.

a 0 0.25 0.5 0.75 0.995

r 0.1667 0.125 0.0833 0.04167 0.00083

u   =   – r–1  ln (0.01) 27.6310 36.8414 55.2620 110.5241 5526.2042

Results in Table 2 illustrate the dramatic impact of the dependence parameter a 
on the adjustment coeffi cient r. The risk process becomes more dangerous as the 
dependence (represented by the parameter a) between the claim number r.v.’s 
become more signifi cant. Therefore, it requires a larger (smaller) amount of initial 
surplus to satisfy an infi nite time ruin probability of 1% as the dependence 
parameter increases (decreases). ¡ 

2.3. Comments

One can carry a similar analysis for a Poisson moving average or a Poisson 
autoregressive model of  order greater than 1, and also for a Poisson auto-
regressive moving average process. Other marginals such as the negative bino-
mial distribution could be considered.

3. MARKOV BERNOULLI PROCESS

3.1. Defi nitions and properties

We assume that the claim number process N  is a Markov Bernoulli process i.e. 
N  is a Markov chain with state space {0, 1} and with transition probability 
matrix 

 
a

a
a

a
( )

( ) ( )
( )

( )
,P

q
q

q
q

p
p

p
p

1 1
1 1

1
1

00

10

01

11
=

- -

- -

-

-
=

+ae fo p  (29)

where a can be seen as the dependence parameter, introducing a positive 
dependence relation between the claim numbers r.v.’s. In this risk model, at 
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most one claim can occur over a period. The initial probabilities associated to  
P  are

 Pr(N0  =  1)  =  q  =  1  –  Pr(N0  =  0),

where 0  ≤  a  <  1 and 0  <  q  <  1. When a tends to 1, a period with a (no) claim 
will be likely followed by a period with a (no) claim. If a  =  0, the claim number 
process N  becomes a sequence of i.i.d. r.v.’s.

The covariance between Nk and Nk + h is given by 

 

1, 1h = =+ 1=k

a

( , ) ( 1) ( ) ( )

( 1 1)

(1 ) ,

Pr Pr Pr

Pr
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= = = -
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+ +

+

h

NN N N

N N

N

for k  =  1,  2,  ... and h  =  0,  1,  2,  .... Also, we know that Cov(Wk,  Wk + h)  =  E [B ]2 

Cov(Nk,  Nk + h ) for k  =  1,  2,  ... and h  =  1,  2,  ... which implies that
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a
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E B q q

Var B E B q
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h

h

2

2

2

2

g =
+ -

-

=
+ -

-

for h  =  1,  2,  .... Hence, the autocorrelation function g(h) decreases exponentially. 
A special case of this model is examined in Cossette et al. (2003, 2004a, b). 
In the latter model, it is assumed that the premium rate is equal to 1 and the 
claim amount distribution is defi ned over �+. Here, the claim amount distribu-
tion is defi ned over �+.

3.2. Expression for c(r)

The next proposition gives the function c(r) when N  is a Markov Bernoulli 
process.

Proposition 8. The expression for c(r) is given by 

 p p-( ( (-B B B+
2 )r r rr( ) ( )) ( )) 4 )(

,

ln

ln

c p p p p p p

r2

00 11 00 11 00 11 10 01

p

= + +

- -

M M M$ .

where ( p00  p11   –   p10  p01)  =  a.

Proof. According to Example 2 of Nyrhinen (1998), c(r) is the natural loga-
rithm of the maximal real eigenvalue of the matrix (M r)
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for i  !  {0, 1} and some r  ≥  0. The eigenvalues of M (r) are the solution to 

 det (M  (r)  –  h  ≈  J  )   =   0,

where J  is the identity matrix. Therefore, 
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Taking the natural logarithm on both sides of (30) leads to the desired result.
 ¡

Example 9. In the context of this particular risk model, we assume that the 
probability of occurrence of a claim q is equal to 0.1 and that the claim amount 
r.v. B has an exponential distribution with mean b –1  =  1. The relative security 
margin j is equal to 20%. In the following table, we provide values of the Lund-
berg coeffi cient for the dependence parameter a  =  0, 0.25, 0.5, 0.75, 0.995. 
Approximating c(u) by e–ru, we fi nd the amount of surplus such that c(u)  =  1%. 

As the dependence parameter a becomes larger, the positive dependence rela-
tion between the claim numbers r.v.’s increases. It implies that the risk process 

93216_Astin40_1_05.indd   14293216_Astin40_1_05.indd   142 11-05-2010   09:37:5811-05-2010   09:37:58



 DISCRETE-TIME RISK MODELS BASED ON TIME SERIES 143

for the portfolio becomes riskier which requires a higher initial reserve to main-
tain an infi nite-time ruin probability of 1%.  ¡

4. RISK MODEL DEFINED IN A MARKOVIAN ENVIRONMENT

4.1. Defi nitions and properties

We assume that the claim number process N   =  {Nk,  k  !  �+} is infl uenced by an 
underlying Marvovian environment represented by the time homogeneous Markov 
chain Q  defi ned over the 2-state space  {q1, q2} with transition probabilities 

 qji ( | ),Prj k k i1 q= = =+ Qp Q

for k  !  �+. We assume that the conditional p.m.f. of (Nk | Qk  =  qj) (k  !  �+) is 
fN | Q  =  qj, the conditional c.d.f. is FN | Q  =  qj and the corresponding conditional 
m.g.f. is MN

( j )(r). Assume that the conditional distribution of (Nk | Qk  =  qj) is 
Poisson with mean lj  ( j  = 1,  2) with l1  ≤  l2. The frequencies in the two different 
states are generated by separate counting processes. For example in Malysh-
kina, Mannering and Tarko (2009) they consider two different states of road-
way safety to model vehicle accident frequencies. Other discrete distributions 
for (Nk | Qk  =  qj) (e.g. negative binomial, binomial, etc.) could be considered.

We suppose that the transition probability matrix P  of  Q  is 
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-a k  <  n  <  1. The stationary probabilities 
associated to P  are
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TABLE 3

VALUES OF THE LUNDBERG COEFFICIENT IN THE MARKOV BERNOULLI RISK MODEL

a 0 0.25 0.5 0.75 0.995

r 0.175383924 0.133977918 0.091008226 0.046379157 0.000948

u   =   – r–1  ln (0.01) 26.2576528 34.37260609 50.60169187 99.29396004 4857.774458
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Note that the claim amounts are assumed not to be affected by the Markovian 
process.

The expression for the conditional m.g.f. of Wk given Qk  =  qj is given by
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4.2. Expression for c(r)

The function c(r) is provided in the following proposition.

Proposition 10. The expression for c(r) is given by
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where ( p11   p22   –   p12   p21)  =  n .

Proof. We defi ne the matrix rM ( )  where the entries are

 W
pr r( ) ( )m p Mij ij

r= -ej( )

for i,  j  !  {1, 2} and some r  ≥  0. We fi nd c(r) in a similar way as in the previous 
section based on the eigenvalues of rM ( ) . They are the solution to 

 det  (M   –   l   ≈   J  )   =   0,

where J  is the identity matrix. Therefore, 

 W

W

W

W

p

p

p

p

r

r

r

r
M J

p

p

p

p

r

r

r

r

11

21

12

22

#h
h

h
=

-

-
-

-

-

-

-

( )

( )

( )

( )

M

M

e

e

e

e
M

M

( )

( )

2

2

( )

( )

1

1f p

and its determinant is 

 
W W

W W

p

2p

r r

r r

( ) ( ( ) ( ))

( ) ( ) ( ) .

h p M p M

e M M p p p p

r

r

2
11 22

11 22 12 21

h h h= - +

+ -

-

-

( )

( )

1

1

e ( )

( )

2

2

93216_Astin40_1_05.indd   14493216_Astin40_1_05.indd   144 11-05-2010   09:37:5811-05-2010   09:37:58



 DISCRETE-TIME RISK MODELS BASED ON TIME SERIES 145

The maximal solution to h(h)  =  0 is 

 (31) 
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The desired result is obtained by taking the natural logarithm on both sides 
of (31). ¡ 

Remark 11. We could have assumed Q  to be defi ned over a m-state space {q1,  ...,  qm}. 
However, the expression for c(r) would no longer be analytic.

Example 12. We assume that l1  =  1, l2  =  2, x  =  4
3 , and that the claim amount 

follows an exponential distribution with mean b –1  =  1. The relative security mar-
gin j is equal to 50%. In Table 4, we compute the Lundberg coeffi cient for dif-
ferent values of the dependence parameter n  =  – 0.25, 0, 0.25, 0.5, 0.75. Using 
the approximation c(u)  +  e–ru we compute the amount of surplus required to 
have an infi nite time ruin probability of 1%.

TABLE 4

VALUES OF THE LUNDBERG COEFFICIENT IN THE RISK MODEL DEFINED IN

A MARKOVIAN ENVIRONMENT

n –0.25 0 0.25 0.5 0.75

r 0.064595843 0.063320997 0.061352843 0.0578554 0.049905485

u   =   – r–1  ln (0.01) 71.29205177 72.72737976 75.06042046 79.59793168 92.27783595

The dependence parameter n indicates the strength of the dependence relation 
between the claim number r.v.’s. As the parameter n increases, the risk process 
for the portfolio becomes riskier. Therefore, to meet an objective of an infi nite-
time ruin probability of 1%, one requires to set aside a higher initial reserve 
as n increases. ¡ 

5. WEAK DEPENDENCE PROPERTIES OF THE POISSON AR(1) MODEL

In Cossette et al. (2010), we give an estimation procedure for the adjustment 
coeffi cient for processes satisfying some weak dependence properties, such as the 
q-dependence or j-dependence. For completeness, we fi rst recall the defi nition 
of q-dependence (see Dedecker et al. (2007) for a review on weak dependence). 
We then examine the weak dependence properties of the Poisson AR(1) model 
more specifi cally.
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5.1. q-dependence

Let X   =  {Xk,  k  !  �} be a stochastic process. The q-dependence is defi ned in 
terms of the q coeffi cients of the process X  which are defi ned as follows.

Defi nition 14. Let || ||3 denote the sup norm and ||g ||L  =  max(||g ||3,  lip(g)) denote 
the Lipschitz norm of a Lipschitz function g (where lip(g) denotes the Lipschitz 
constant of g). For k  !  �, we defi ne coeffi cient q(k) by

 
Xi jf j

(
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( , ), ( , , ))
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v f g
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i v1 1
f
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3
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X
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where the supremum is taken over multi-indices  i  =  ( i1, …,  iu),   j   =  ( j1, …,  jv) such 
that 
 i1   <   ···   <   iu   ≤   iu   +   k   ≤   j1  <   ···  <   jv

and all functions f   :   �u  $  �,  g   :   �v  $  �  are bounded and satisfy the Lipschitz 
property, with respect to the following distance: 

 p p( , ) ( , ), ( , ) .d x y y x y
1

i i
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p

1 1f= = = y
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x x, f-x y/

A stochastic process X is said to be q-dependent if the sequence {q(k),   k  !  �} 
is summable.

Because a Poisson MA(1) model is 1-dependent, it is easily seen that it is 
q-dependent. For the Poisson AR(1) model some computations are required 
to show that we have the q-dependence.

5.2. q-dependence for the Poisson AR(1) model

Here we show that the process W   =   {Wk,  k  !  �+} as defi ned in (1) is q-depend-
ent. We fi rst need to bound the quantities Cov (  f (W0),  g(Wk)), for bounded 
functions f and g, and k  !  �+. A simple computation gives
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Thus, we are left to bound 
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Following Al-Osh and Alzaid (1987), we know that 
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where ak 5  n denotes the sum of  n i.i.d. Bernoulli r.v.’s with parameter ak 
(a  =  dependence parameter). We have
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Consequently, for any bounded functions f and g, we have that for some con-
stant C  >  0, 

 Cov( f (W0),  g(Wk))  ≤  C || f ||3  ||g ||3  ak.
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A similar computation for 
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for multi-indices i1  <  ···  <  iu   ≤   iu  +  x   ≤   j1  <  ···  <  jv implies that we have, for some 
constant C  > 0, 

 |Cov ( f(Wi1,  …, Wiu ),   g(Wj1,  …, Wjv ))|   ≤  C || f ||3  ||g ||3  ak.

Then, it follows that q(k)  ≤  Cak and the sequence  {q(k),  k  !  �} is summable, 
meaning that the process W    =  {Wk,  k  !  �+} is q-dependent. Consequently, the 
process  {Wk  –  p,  k  !  �+} associated to the risk model based on the Poisson AR(1) 
process is also q-dependent which implies that the estimation procedure proposed 
by Cossette et al. (2009) is applicable in the context of this risk model.

Let us recall the estimation procedure for the adjustment coeffi cient. For 
r  !  �, let 

 j .X
0

r
j

r
p= -

=

Y _ i/

The function �(etSr) may be estimated by its empirical moment version: for 
k  !  �, 

 k
iM ( ) ,t k e1

0

1

i

k
tZ

=
=

- rr /

where ij rj 1 +=i .Z X
r

=
r /  Then we defi ne rr as the positive solution to

kM ( ) .ln t 0r
1 =

r
` j  We have that under the condition of q weak dependence and

on the existence of the adjustment coeffi cient r, rr is a consistent estimator of 
r, provided we take r  =  o ( ln k).
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