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ABSTRACT

It is common for professional associations and regulators to combine the 
claims experience of several insurers into a database known as an “intercom-
pany” experience data set. In this paper, we analyze data on claim counts 
provided by the General Insurance Association of Singapore, an organization 
consisting of most of the general insurers in Singapore. Our data comes from 
the fi nancial records of automobile insurance policies followed over a period of 
nine years. Because the source contains a pooled experience of several insurers, 
we are able to study company effects on claim behavior, an area that has not been 
systematically addressed in either the insurance or the actuarial literatures.

We analyze this intercompany experience using multilevel models. The multi-
level nature of the data is due to: a vehicle is observed over a period of years 
and is insured by an insurance company under a “fl eet” policy. Fleet policies 
are umbrella-type policies issued to customers whose insurance covers more 
than a single vehicle. We investigate vehicle, fl eet and company effects using 
various count distribution models (Poisson, negative binomial, zero-infl ated 
and hurdle Poisson). The performance of these various models is compared; 
we demonstrate how our model can be used to update a priori premiums to
a posteriori premiums, a common practice of experience-rated premium cal-
culations. Through this formal model structure, we provide insights into effects 
that company-specifi c practice has on claims experience, even after controlling 
for vehicle and fl eet effects.
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1. INTRODUCTION

In many countries and for several lines of business, the insurance market is mature 
and highly competitive. This strong competition induces insurers to classify risks 
they underwrite in order to mitigate problems of  adverse selection, resulting 
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from an asymmetric information available between the insurer and the policy-
holder. To illustrate the nature of adverse selection in automobile insurance, 
a policyholder’s prior driving history is commonly used as a risk rating factor. 
A person with a poor driving history may look for a company that does not 
use this rating factor for pricing; use of the rating factor penalizes him or her 
for past mistakes in the form of higher premiums. Conversely, a person with 
a good driving history may seek companies that use this rating factor; these 
companies reward previous good experience with lower premiums. Companies 
that use a less refi ned classifi cation system than their competitors tend to 
attract less desirable risks, which can have a spiraling effect on future claims. 
Risk classifi cation systems allow insurers to price their products in a fair and 
equitable manner, and on a sound statistical basis.

Strong competition encourages insurers to utilize detailed classifi cation 
systems, so refi ned that they may not have suffi cient exposure to produce reli-
able claims predictions for all risks in the portfolio. To understand their claims 
distributions, it is common for several insurers to pool their experience, form-
ing a database known as ‘intercompany’ data. With a database large enough 
to produce a refi ned classifi cation system, fair and equitable premiums can be 
determined more reliably across all risks.

Although insurance companies compete for the same business, economic 
forces dictate that the loss experience of insurers can differ. During the sales 
process, insurers use different underwriting standards and pricing structures 
to attract different mixes of business. After an accident, insurers differ in their 
procedures to settle a claim, including legal, and the calculations of claims 
adjustments, thereby realizing different loss experience across companies. More-
over, there are issues of moral hazard, a term used to refer to the tendency of 
the insured to alter its behavior in the presence of an insurance coverage. Thus, 
it is possible that an insured with a policy from a particular company may have 
a different claims experience than if  the insured were contracted with another 
company. For example, some insurers establish premium rating systems that 
encourage policyholders to avoid reporting minor losses, even if  they are con-
tractually covered under the insurance policy.

1.1. Multilevel Modeling

This paper examines an intercompany database using multilevel modeling. 
Specifi cally, we consider policy exposure and claims experience data derived 
from automobile insurance portfolios of  a randomly selected sample of  ten 
general (property and casualty) insurance companies in Singapore. Our data 
comes from the fi nancial records of automobile insurance policies over a period 
of nine years, 1993-2001.

Multilevel modeling allows us to readily handle individual claims experience 
and account for clustering at the company level. This paper examines com-
mercial insurance policies by restricting considerations to ‘fl eet’ policies. These 
are policies issued to customers whose insurance covers at least one vehicle. 
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A typical situation of ‘fl eet’ policies is automobile insurance coverage provided 
to a taxicab company, where several taxicabs are insured under the same policy. 
Multilevel models allow us to capture the possible dependence of claims of 
automobiles within a fl eet, a peculiar characteristic of these types of policies. 
The unit of observation in our analysis is therefore a registered vehicle insured 
under a fl eet policy. Our multilevel model accommodates clustering at four 
levels: vehicles (v) observed over time (t) that are nested within fl eets ( f ), with 
policies issued by insurance companies (c).

Ideas of multilevel modeling and inference are now well-developed in the 
statistics literature (Kreft and deLeeuw (1998), Snijders and Bosker (1999), 
Raudenbush and Bryk (2002), Goldstein (2003) and Gelman and Hill (2007)). 
Linear multilevel modeling also has a long history in the actuarial literature, 
as summarized in Norberg (1986). Norberg credits the idea to Jewell (1975), 
with early contributions by Taylor (1979) and Sundt (1980). As an example of 
classic multilevel insurance applications, Sundt briefl y mentions (i) insurance 
claims from a person, with (ii) several people living in a household, (iii) where 
several houses are in a town, (iv) and many towns in a county and (v) several 
counties with a country. Norberg (1986) and Frees et al. (1999) discuss the 
connections between the statistical linear modeling and traditional actuarial 
literatures.

1.2. Count Data

This paper examines nonlinear models using insurance claim counts. The loss 
to the insurer usually consists of the frequency component, which refers to the 
claim count, and the severity component, which refers to the claim amount, 
given a claim. This paper focuses on the frequency component as historically, 
it has been believed that most of the variability in the loss comes from this 
component. The frequency component has been well analyzed in the actuarial 
literature, at least when cross-sectional and panel data structures are considered. 
For instance, the modern approach of fi tting claims count distribution to lon-
gitudinal data can be attributed to the work of Dionne and Vanasse (1989) 
who applied a random effects Poisson count model to automobile insurance 
claims. Pinquet (1997) and Pinquet (1998) extended this work, considering sever-
ity as well as frequency distributions. Pinquet et al. (2001) and Bolancé et al. 
(2003) introduced a dynamic element into the latent variable, again using Pois-
son regression.

Poisson regression is probably the most popular technique for regression 
with count data. However, recent research in actuarial science (see e.g. Yip and 
Yau (2005) and Boucher et al. (2007)) has highlighted the use of parametric 
distributions other than Poisson to accommodate features of insurance count 
data that are inconsistent with the Poisson distribution. These authors inves-
tigated the use of the negative binomial, zero-infl ated and hurdle distributions 
for the analysis of  cross-sectional and longitudinal claim counts. Cameron 
and Trivedi (1998), Winkelmann (2003), Yau et al. (2003) and Lee et al. (2006) 
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discuss similar research in econometrics and biostatistics. Further on, we 
extend these distributions towards the analysis of multilevel data with more than 
two levels. In the sequel, we will use the term ‘generalized count distributions’ 
to denote the collection of Poisson, negative binomial, zero-infl ated and hurdle 
Poisson distributions.

A data analytic discussion of ratemaking for fl eet data has received limited 
attention in the actuarial literature, Desjardins et al. (2001) and Angers et al. 
(2006) being the exceptions. They discuss the calculation of bonus-malus factors 
(‘BMF’) for a three level data set of claim counts on insured trucks in Québec. 
They use Poisson regression models with random effects for vehicles and fl eets. 
BMFs are common measures used in the insurance industry to either penalize 
or reward customers according to their historical claims experience.

1.3. Benefi ts of Intercompany Data

A multilevel model of intercompany data is of interest to insurance companies, 
regulators and reinsurers. Insurance companies can use the results of this paper 
to predict the number of claims not only for each vehicle but also for each fl eet. 
Predictions at the fl eet level are particularly important because contracts are writ-
ten and hence premiums are exchanged for coverage at this level. Further, an 
insurance company can use a model of several companies to understand and pos-
sibly compare their experience with their competitors. To illustrate, given a specifi c 
risk class (such as female, aged 20-24 with poor driving experience), is the loss 
experience for the company high or low compared to the competition? This 
type of information is extremely useful in a competitive pricing environment.

Regulators and reinsurers typically deal with several companies and so would 
also benefi t from a single model representing the experience of many companies. 
Regulators are concerned with establishing fair pricing of insurance policies 
and ensuring that insurers have suffi cient assets to meet contractual obligations. 
A single model can help regulators examine loss experiences of several com-
panies, using covariate information to comparably account for the risks under-
written by these companies. Moreover, regulators can use these comparisons for 
detecting fraud and further inspecting unusually high or low frequency of losses 
(that may be suspect as indicated by the risk rating factors as covariates).

Reinsurers are the ‘insurers of insurance companies’ and they take on layers 
of  risks so that insurers are able to diversify their loss exposure. Naturally, 
reinsurers are interested in the loss distributions that they are accepting. Pre-
dictions at the company level are important to prices charged by reinsurers.

In the United States, the Society of Actuaries (‘SOA’) collects intercompany 
data through experience studies. As noted in Iverson et al. (2007), “one of the 
key elements that led to the creation of the Actuarial Society of America in 
1889 was the need for an independent body to collect and report upon experi-
ence.” The SOA publishes descriptive statistics based on the data collected 
from participating insurers and these “intercompany reports of experience are 
considered a proxy for the state of the industry with companies using these 
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results to benchmark their own experience” (Iverson et al. (2007)). This practice 
of collecting intercompany data extends to several parts of the globe including 
Australia through its main professional body, the Institute of  Actuaries of 
Australia. In Europe, for instance, the Dutch Center for Insurance Statistics 
(‘Centrum voor Verzekeringsstatistiek’) collects intercompany data from vari-
ous insurance branches and publishes summary statistics on a regular basis.

Despite several parties (insurers, reinsurers, regulators and actuarial organ-
izations like the SOA) interested in the analysis of intercompany data on claim 
statistics, sound statistical research in this area is still lacking.

The primary contributions of this research paper are therefore threefold. 
Firstly, we develop the connection between hierarchical credibility and multi-
level statistics, a discipline that is generally unknown in actuarial science.
We go beyond the two level structures often found in panel data. Credibility 
is a classical actuarial approach for experience rating (and Hickman and Heacox 
(1999) claimed it to be one of  the cornerstones of  actuarial mathematics). 
Secondly, with the growing popularity of the generalized count distributions 
in actuarial science, we extend their applications towards more than two level 
data sets. Bayesian statistics and MCMC sampling are used for estimation in 
our model specifi cations. Deb et al. (2006) is an example of a Bayesian analysis 
in the econometric literature that is related to this article. Thirdly, we provide 
modeling and a detailed analysis of intercompany data on fl eets, which, as alluded 
earlier, has been rather scarce in the actuarial literature. We include goodness-
of-fi t statistics for the various models and illustrate their predictive capability.

The paper has been structured as follows. Section 2 gives background on 
the data used in the analysis. Model specifi cation, results and prediction for 
claim counts is covered in Section 3, 4 and 5. Section 6 concludes.

2. INTERCOMPANY INSURANCE CLAIMS DATA

2.1. Background

We investigate a dataset with policy exposure information, covariates and 
claim counts for vehicle insurance portfolios of general insurance companies 
in Singapore. With ‘exposure’ defi ned as the fraction of a year during which 
the policyholder pays for insurance. The source of this intercompany dataset is 
the General Insurance Association (‘GIA’) of Singapore (see the organization’s 
webpage http://www.gia.org.sg), an organization with membership consisting 
of general insurers in Singapore. In Singapore, just as in many parts of the 
world, motor insurance is compulsory and it is not surprising to fi nd it to be 
one of the most important general insurance lines of business.

Two fi les were examined: the policy and the claims fi les. The policy fi le 
consists of records of policyholders with vehicle insurance coverage purchased 
from a general insurer during the period 1993-2001. Each vehicle is identifi ed 
with a unique code. For fl eet policies, no information on the driver of  the 
vehicle is available, since a vehicle may be used by several drivers. Thus, the 
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unit of observation in our analysis is a registered vehicle insured, broken down 
according to their exposure in each calendar year 1993 to 2001. The claims fi le 
provides a record of each accident claim that has been fi led with the insurer 
during the observation period and is linked to the policyholder fi le.

All policies in the sample have a comprehensive coverage that includes 
coverage for third party injury and property damage as well as damage to one’s 
own vehicle. Each vehicle is followed over a period of (maximum) nine years: 
January 1993 until December 2001. However, vehicles, as well as fl eets, enter 
and exit the sample. Vehicles with questionable information on some variables 
such as the vehicle capacity or the year the car was manufactured were removed 
from the sample and therefore ignored in the analysis.

The hierarchical structure of the data lends itself  naturally to multilevel 
modeling with four different levels for this data set. At the highest level, we 
analyze ten insurance companies (using c to denote a company). To keep the 
amount of analysis and exposition manageable, ten companies, labeled 1 to 
10, were randomly drawn from 27 companies available in the GIA’s entire 
database. At the next level, from these 10 companies, we consider 6,763 fl eets 
( f ). Level two consists of 16,437 vehicles (v) that we observe over time (t), for 
a total of 39,120 level one observations.

2.2. Data Characteristics

The empirical distribution of the observed claim counts is in Table 1. The table 
(2nd column) illustrates that about 88% percent of the observations are zeros. 

TABLE 1

CLAIMS BY COMPANY

Percentage of Claims by Company

Count All 1 2 3 4 5 6 7 8 9 10

0 87.82 88.27 81.68 94.68 87.71 89.43 88.83 87.44 86.86 88.78 87.28

1 10.49 10.23 15.11 4.96 10.55 9.30 9.74 11.09 11.13 9.57 10.85

2 1.41 1.30 2.73 0.30 1.43 0.96 1.10 1.26 1.62 1.37 1.71

3 0.22 0.18 0.36 0.06 0.29 0.19 0.20 0.19 0.34 0.24 0.17

4 0.04 0.03 0.12 0.00 0.00 0.06 0.10 0.02 0.05 0.04 0.00

5 0.01 0.00 0.00 0.00 0.02 0.06 0.04 0.00 0.00 0.00 0.00

Claims 5,557 528 1,096 191 603 398 669 891 318 328 535 

Observations 39,120 3,920 4,951 3,327 4,191 3,225 5,105 6,251 2,040 2,487 3,623

Exposure 30,560 3,106 4,440 2,480 3,240 2,497 3,978 5,023 1,635 1,505 2,656 

Mean Claim 0.14 0.17 0.25 0.08 0.19 0.16 0.17 0.18 0.19 0.22 0.20

Fleets 6,763 841 270 1,229 270 1,279 646 1,286 335 268 339 

Notes:  ‘Exposure’ is the total exposure time per company (in policy years).
‘Mean’ is the sum of claim counts divided by the total exposure.
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FIGURE 1: Boxplots of a fl eet’s average number of claims, by company. This fi gure shows that the 
distribution of claim behavior differs by company.

At most 5 claims during one time period have been observed. Table 1 also 
describes the claim distribution by company. The number of observations and 
exposures show that the companies are roughly the same size, with no one 
company dominating the market. Table 1 suggests substantial differences among 
companies; the mean claim count for company 3 is quite small compared to 
companies 2, 9 and 10.

Figure 1 shows the distribution of claim counts at the fl eet level. Specifi cally, 
for each fl eet, the average claim count (per unit of exposure) was computed and 
the distribution of these averages appears in Figure 1, by company. One can 
observe company effects, as in Table 1, in the sense that the average number 
of claims reported by company 3 is very low, whereas the averages from com-
panies 2 and 10 are rather high. Company 9 is special in that it has the lowest 
exposure and yet one of the largest claims per unit of exposure. However, at 
fl eet level (see Figure 1), 81% of the fl eets in this company reported zero claims 
in total (compare this with e.g. company 10 where only 51% of the fl eets stayed 
claim-free during the observation period).

As we can see from Table 1, our sample is unbalanced. Vehicles are bought 
and sold by fl eets periodically; fl eets themselves merge, go out of business and 
start up new. For our data, most of the imbalance is due to fl eet movement; 
the mean time that the fl eet was in the data was only 1.4 years. To capture this 
movement, we examine the growth in the size of the fl eet (‘FleetChange’, see 
Table 3) as well as the length of the time period that a vehicle stays within the 
same fl eet (‘TLInFleet’, see Table 2).

Measurable characteristics at the level of  the vehicle are summarized in 
Table 2. Because the data are from an intercompany study, no specifi c information 
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was available to identify the fl eet nor the insuring company (such as the branch 
where the fl eet is operating, details on the fi nancial structure of the company, 
et cetera). To see how this information might be useful, Angers et al. (2006) uses 
the sector of activity of the carrier as an explanatory variable in their regression 
analysis. To compensate for this defi ciency, averages at the level of the fl eet and 
company are created which are listed in Table 3. The averages in the upper part 
of the table are computed at fl eet level, e.g. ‘AvPrem’ is the total premium paid 
by all vehicles in the fl eet, divided by the total period (in years) for which insur-
ance is guaranteed by the fl eet. At the company level, for informative purposes, 
we give descriptive statistics of  number of  fl eets and vehicles, together with 
each type of  vehicle (cars, trucks, and motorcycles). Neither of  these were 
explicitly considered as explanatory variables because the mean parameters in 
the count models later considered already account for the level of exposure as 
explained in Section 3.2.

TABLE 2

VEHICLE LEVEL EXPLANATORY VARIABLES

Categorical 
Covariates

Description Percentage

Vehicle Type Car 54%
Motor 41%
Truck 5%

Private Use Vehicle is used for private purposes 31% 
Vehicle is used for other than private purposes 69%

NCD ‘No Claims Discount’ at entry in fl eet: based on previous 
accident record of policyholder. The higher the discount,
the better the prior accident record.
NCD  =  0 83%
NCD  >  0 17%

Continuous 
Covariates

Minimum Mean Maximum 

Vehicle Age The age of the vehicle in years,
at entry in fl eet

0 4.22 33

Cubic Capacity Vehicle capacity for cars and motors 124 1,615 6,750

Tonnage Vehicle capacity for trucks 1 7.6 61

TLengthEntry Time (in years) vehicle was in the 
sample, before entering the fl eet

0 0.35 6.75

TLInFleet Time (in years) vehicle was in same 
fl eet prior to the current observation 
period

0 0.13 5

TLength (Exposure) Fraction of calendar year 
for which insurance coverage is 
purchased

0.006 0.78 1
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Categorized versions of the covariates are used in our multilevel specifi ca-
tions (see Appendix Tables 11 and 12). Using categorizations is consistent with 
insurance company practice and with the literature on non-life insurance (see 
e.g. Desjardins et al. (2001), Angers et al. (2006) and Denuit et al. (2007)).

3. MULTILEVEL COUNT MODELS

We use multilevel modeling for this four-level data set (vehicles followed over 
time, grouped in a fl eet policy issued by a company). Multilevel models allow 
us to incorporate the hierarchical structure of the data by specifying random 
effects at the vehicle, fl eet and company levels. These random effects represent 
unobservable characteristics at each level. At the vehicle level, the missions 
assigned to a vehicle or unobserved driver behavior may infl uence the riskiness 
of a vehicle. At the fl eet level, guidelines on driving hours, mechanical check-ups, 
loading instructions and so on, may infl uence the number of accidents reported. 
As described in Section 1, at the insurance company level, underwriting and 
claim settlement practices may affect claims.

TABLE 3

FLEET AND COMPANY LEVEL EXPLANATORY VARIABLES

Covariate Description Minimum Mean Maximum

Fleet Level

AvNCD Average of No Claims Discount
at entry in the fl eet

0 6.3 50

AvTLengthEntry Average of TLengthEntry 0 0.59 6.75

AvTLength Average of cumulative time period 
spent in fl eet

0 1 3.64

AvVAge Average of vehicle age at entry in
the fl eet

0 4.75 27.33 

AvPrem Average of premium paid
(per unit of exposure)

0.01 1.3 59.56

FleetCap Number of vehicles in the fl eet 1 4.56 1,092 

FleetChange Size of fl eet in current year divided
by size in previous year
(when observed in both periods)

0.015 3.1 31

Company Level 

NumFleets Number of fl eets in the company 268 942 1,286

NumVeh Number of vehicles in the company 1,319 3,084 5,394

NumCars, 
 NumTrucks,
 NumMotors

Number of cars, trucks and 
motorcycles in the company

391
224
0

1,652
1,259
170

4,453 
3,019
888
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We employ the standard nested structure of multilevel models. As described 
in Section 2.2, there is considerable movement of fl eets and vehicles in and out 
of the sample. We capture this in part through explanatory variables such as 
the growth of the fl eet (‘Fleetchange’) and the time that vehicles have been in 
the same fl eet (‘TLInFleet’). We follow industry practice and assume that the 
residual reasons for movement are not related to the response variable. In prin-
ciple, our assumptions of  nested random effects may be violated when fl eets 
switch insurance companies or when vehicles switch fl eets. For the former, 
below we examine alternative models that use fi xed insurance company effects 
(as a robustness check). For the latter, when a vehicle switches fl eets, we assume 
that (1) differences in management practices between the two fl eets as well as 
(2) vehicle inspection by new fl eet owners dominate any unobserved (unac-
counted for) vehicle effects. Thus, the vehicle is treated as a new entrant in the 
fl eet and prior claims are not taken into account when estimating the random 
effect of the current fl eet.

3.1. Count Models

We will not only investigate Poisson regression, but also negative binomial, zero-
infl ated Poisson and hurdle Poisson models. Both the Poisson and the negative 
binomial are commonly used for count data. The zero-infl ated Poisson distri-
bution with parameters p and l, ZIP( p, l), is given by 
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Here, the term PrPoi (Y  = y | l) denotes a Poisson distribution with mean l. The 
zero-infl ated model provides a mixture of a point mass at zero together with 
a Poisson random variable. This representation is well-suited to handle the “excess” 
number of zeros reported in Table 1, where “excess” is relative to a known 
distribution. For example, with the Poisson distribution a single parameter 
determines both the mean and the probability of zero claims. For many empir-
ical count distributions, the frequency of zeros exceeds that suggested by the 
mean number of claims. Another way of handling the many zeros is through 
the “hurdle” Poisson distribution with parameters p and l, herewith denoted 
as HUR( p, l), given by 
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Hurdle models are generally motivated with sequential decision-making 
processes. In the case of  insurance claims, the decision to leave the zero state 
and report a claim involves one probability model (with probability 1  –  p) 
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whereas subsequent claims follow another model (a truncated Poisson in 
equation (2)).

In the absence of covariate information, these count distribution models are 
each fi tted to the ‘rough’ dataset, without covariates. A comparison of their 
performance is illustrated in Table 4, using the Pearson chi-square ( x2) statis-
tic and deviance information criterion (DIC, see Spiegelhalter et al. (2002)) to 
summarize the fi t. WinBUGS is used for the Bayesian estimation of all models 
reported in this paper. Table 4 suggests that the negative binomial is the best 
candidate model.

Section 3.2 is a summary of the multilevel models that we investigated for 
our data. The corresponding results are presented and discussed in Section 4.

3.2. Model Specifi cations

3.2.1. Hierarchical Poisson Models

The starting point is a hierarchical Poisson model with random intercepts for 
the vehicle, fl eet and company. Specifi cally, we begin with a Bayesian imple-
mentation of Jewell’s hierarchical model for counts. Jewell’s scheme (see Kaas 
et al. (2008) and Antonio and Beirlant (2007)) is the traditional actuarial approach 
for experience rating with hierarchical data structure. It is distribution-free in 
its original specifi cation, but can be interpreted as a random effects model 
under normality assumptions (see Frees et al. (1999)). Our specifi cation is 

      Yc, f, v, t  +  Poi(lc, f, v, t )  with  lc, f, v, t   =   ec, f, v, t  exp(g  +  ec  +  ec, f   +  ec, f, v  ). (3)

Here, Yc, f, v, t  denotes the claims observed in year t for vehicle v, which is insured 
under fl eet f in company c. The term ec, f, v, t is an exposure variable that gives 

TABLE 4

OBSERVED AND EXPECTED CLAIM COUNTS FOR THE VARIOUS COUNT DISTRIBUTIONS

Number of 
Claims

Observed 
Frequency

Poisson Negative 
Binomial

ZIP Hurdle Poisson 

0 34,357 33,940 34,362 34,357 34,357
1 4,104 4,821 4,079 4,048 4,048
2 551 342 577 641 641
3 86 16 86 68 68
4 17 1 13 5 5

≥  5 5 0.016 2 0.34 0.34

Pearson x2 566 7.1 70.15 70.15 
DIC 34,034 31,020 33,586 33,586

Note: No covariates are included in these model specifi cations
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the length of time during calendar year t for which the vehicle has insurance 
coverage. Further, g is the intercept, ec is a random company effect, ec, f is a 
random effect for the fl eet within the company and ec, f, v is a random effect for 
the vehicle within the fl eet.

The hierarchical Poisson model extends Jewell’s scheme by incorporating 
risk factors in terms of explanatory variables. We consider 

Yc, f, v, t  +  Poi(lc, f, v, t ) with  lc, f, v, t   =   ec, f, v, t  exp(jc, f, v, t  +  ec  +  ec, f   +  ec, f, v )

 and jc, f, v, t  :=   g  +  Xc  b4  +  Xc, f  b3  +  Xc, f, v b2  +  Xc, f, v, t  b1.
 (4)

The explanatory variables used in the systematic component jc, f, v, t are:

– Xc, f, v, t : TLInFleet, FleetChange;

– Xc,  f, v : VehicleType, Capacity Cubic, Tonnage, VAgeEntry, TLengthEntry, 
Private;

– Xc, f : AvPrem, AvTLength, AvTLengthEntry, AvNCD; and

– Xc : none.

However, for fl eets with only one vehicle (there are 6,245 of such fl eets in the 
sample) the general specifi cation of the linear predictor is slightly modifi ed. 
With only one vehicle per fl eet, the vehicle and fl eet level coincide. Therefore, 
no fl eet random effect is included for such fl eets, neither are averages at the 
level of the fl eet used. Apart from the model in (4), we also consider a Poisson 
hierarchical model with a random effect for the company and fl eet but without 
a random effect for the vehicle.

Our distributional assumptions for the random effects in the Poisson hierar-
chical models (as in (4)) slightly differ from those traditionally used by Jewell 
and in multilevel modelling:
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This specifi cation is now common in the actuarial literature because means are 
unchanged with the introduction of random effects. For example, basic calcu-
lations show that E[exp(ec)] =1, and similarly for ec, f and ec, f, v .

Now, using the specifi cations in (4) and (5), the a priori mean, E[Yc, f, v, t ], is 
given by 

 E[Yc, f, v, t ]   :=   prior
,cl , ,f v t    =   ec, f, v, t  exp(jc, f, v, t). (6)

The a posteriori premium,  E[Yc, f, v, t | ec,  ec, f ,  ec, f, v ], then becomes 

 E[Yc, f, v, t | ec,  ec, f ,  ec, f, v ]   =   prior
,cl , ,f v t   exp(ec  +  ec, f  +  ec, f, v ). (7)
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In our Bayesian analysis, the posterior distributions of (6) and (7) are used for 
ratemaking. Examples follow in Section 5. Specifi cation (7) explicitly shows 
how a posteriori corrections are made to the a priori premium.

The prior distributions used in the Bayesian analysis are selected as follows 
(similar specifi cations are used for the other models discussed in this Section):

(i) for the regression coeffi cients in b1,  …, b4: a normal prior with a variance 
of 106;

(ii) for the inverse of the variance components: gamma priors G(0.001, 0.001).

We also investigate a “fi xed company effects” version of the hierarchical Poisson 
model. In this version, the company effects ec are (fi xed) unknown parameters 
to be estimated. For our data, there are only 9 parameters (for 10 companies, 
including an intercept term) that need be estimated.

3.2.2. Hierarchical Negative Binomial Model

Because the negative binomial provides a good fi t to the ‘raw’ count data in 
Table 4, a negative binomial multilevel regression model is considered as well. 
This regression model uses the same covariate information as in Section 3.2.1. 
Thus, we assume that  Yc, f, v, t  has a negative binomial distribution with scale 
parameter t and location parameter 

 mc, f, v, t   =   ec, f, v, t   exp(jc, f, v, t  +  ec +  ec, f ), (8)

where random effects for the company and fl eet are used. For jc, f, v, t the same 
set of covariates is used as in the hierarchical Poisson model (given right below 
equation (4)). The prior distribution for t was t  =  exp(t*) with t* + N (0, 106). 
From a predictive point of view, we illustrate in Section 5 that models without 
a random vehicle effect (as in (8)) rely on the history of  the whole fl eet to 
which the vehicle belongs (and on the history of the company), but do not use 
the history of a vehicle separately. This is in contrast with (4).

3.2.3. Hierarchical Zero-Infl ated Poisson Models

Two types of zero-infl ated Poisson models were investigated. For the fi rst spec-
ifi cation, we have:

Yc, f, v, t  +  ZIP( p,  lc, f, v, t ) 

 where  lc, f, v, t   =   ec, f, v, t  exp(jc, f, v, t  +  ec  +  ec, f ). (9)

The specifi cation of jc, f, v, t is the same as in the previous models. Prior speci-
fi cations are similar as before, completed with p + Beta (1, 1) as the prior for 
the additional proportion of zeros.
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In a second hierarchical ZIP model, we let the extra proportion of zeros be 
fl eet-specifi c and use pc, f  +  Beta (1, b). The prior for b is log(b) + N(0, 106). 
Thus,

Yc, f, v, t  +  ZIP( pc, f ,  lc, f, v, t ) 

 where  lc, f, v, t   =   ec, f, v, t  exp(jc, f, v, t  +  ec  +  ec, f ), (10)

(with jc, f, v, t as before). We illustrate in Section 5 that predictive premiums 
obtained with (10) do not only depend on the number of past claims, but also 
on the claim-free period of a fl eet (through pc, f ).

3.2.4. Hierarchical Hurdle Poisson Model

For the hurdle Poisson model with level specifi c explanatory variables and 
random effects, the following specifi cation is used:

 Yc, f, v, t  +  HUR( pc, f, v, t , lc, f, v, t )

 where logit  ( pc, f, v, t )   =   jc, f, v, t, Bin  +  ec, Bin  +  ec, f, Bin,

 and lc, f, v, t   =   ec, f, v, t  exp(jc, f, v, t  +  ec  +  ec, f ). (11)

The risk factors in the systematic component jc, f, v, t, Bin are 

– intercept, TLInFleet, FleetChange;
– VehicleType, Private, VehicleAge, Capacity Cubic, Tonnage;
– AvTLength, AvTLengthEntry, AvPrem, AvNCD.

For the other systematic component, jc, f, v, t, the explanatory variables VehicleType, 
Capacity Cubic, Tonnage, Private and VehicleAge are included, as well as 
random fl eet and company effects. Note that this second part of the model 
(over the hurdle) is fi tted to only 12% of the original data set. Distribution 
specifi cations for the random effects are those in (5). The random effects in 
the zero and non-zero part are independent of each other. These specifi cations 
however do not lead to an explicit expression for the a priori mean. We will 
illustrate in Section 5 that, as model (10) does, the hurdle model takes the 
claim-free period of a fl eet, as well as the number of past claims, into account 
when future premiums are set.

4. MODEL ESTIMATION RESULTS

4.1. Hierarchical Poisson Models

Estimated claim frequencies are in Table 5. In the table we compare the results 
obtained with Jewell’s hierarchical model (full version), Jewell’s hierarchical 
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model with just fl eet and company specifi c intercepts (no covariates), a Poisson 
regression without random effects, the Poisson regression model with random 
intercepts for vehicles, fl eets and companies, and the Poisson regression model 
with random vehicle and fl eet effects, but fi xed company effects. The table 
reports estimated claim counts obtained from hierarchical Poisson analysis, as 
well as the Pearson x2 statistic and DIC. For every count model, two parallel 
chains were run; 15,000 iterations each with burn-in of 500 observations. We 
conclude that the Poisson multilevel model in (4), as well as the fi xed effects 
version, outperform the other specifi cations. The parameter estimates from a 
Poisson model with fi xed company effects (not shown) are very similar to those 
obtained with model (4), and so are the estimated claim counts in Table 5. 
Because of the proximity of these two models, we henceforth restrict consid-
erations to the random effects version of the multilevel Poisson model in (4).

4.2. Hierarchical Negative Binomial, Zero-Infl ated and Hurdle Poisson Models

Table 6 compares estimated claim amounts for the preferred hierarchical Pois-
son model (4) and alternatives described in Sections 3.2.1-3.2.4. This table 
indicates that the Poisson and negative binomial outperform the other models. 
We also remark that, among the negative binomial, zero-infl ated Poisson and 
hurdle Poisson, the hurdle Poisson regression models have the advantage of allow-
ing for the fastest MCMC sampling. In Section 5 we compare these models based 
on how they use information from the past to construct future premiums.

For the case of the hierarchical negative binomial model from Section 3.3.2 
the 95% interval estimates of the parameters are visually displayed in Figure 2. 
In addition, for the same model, Figure 5 provides a graphical display of the 

TABLE 5

ESTIMATED CLAIM COUNTS OBTAINED FROM BAYESIAN POISSON HIERARCHICAL ANALYSES

Number
of Claims

Observed 
Frequency

Poisson 
Regression 

No RE

Poisson
Jewell

No Vehicle RE

Poisson 
Jewell

(3)

Poisson 
Multilevel

(4)

Poisson
Multilevel 

Fixed Effects

0 34,357 34,030 34,180 34,300 34,316 34,318 

1 4,104 4,647 4,395 4,204 4,170 4,167 

2 551 410 490 529 538 538 

3 86 28 52 76 79 79

4 17 2 6 13 14 14

≥  5 5 0.19 0.69 2 3 3

Pearson x2 468.2 97.1 10.4 4 3.9

DIC 32,480 31,331 31,040 30,642 30,638 

Notes:  ‘RE’ stands for random effects. The Poisson regression and multilevel models include covariates; 
the ‘Jewell’ models do not.
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mixing and convergence of the chains used to produce the interval estimates. 
Figure 5 also displays the resulting numerical values of  these interval esti-
mates. Similar interval estimates of the parameters for the other models have 
been produced. We do not include them in this paper because interpretations 
of the parameter estimates would be indeed quite similar. However, there may 
have been slight differences in the selection of explanatory variables for differ-
ent model specifi cations.

The selection of the explanatory variables (or covariates) was partly moti-
vated by what was available in our dataset. See Tables 2 and 3 for a description 
of these variables. Insurers are typically restricted with the type of information 
they can retain in their databases. In addition, because only fl eet policies are 
considered in this paper, it adds the complexity of  recording information 
regarding driver characteristics, because several drivers may use a single vehicle. 
Therefore, at vehicle level, none of our covariates contain driver characteris-
tics. Studying the movements of vehicles in preliminary data analysis inspired 
us to investigate the effect of the time varying covariates ‘FleetChange’ and 
‘TLInFleet’ (see Section 2.2).

At the fl eet level, we examined the effects of premium (‘AvPrem’), the level 
of NCD (‘AvNCD’), the average time period during which a vehicle has been 
insured before entering the fl eet (‘AvTLengthEntry’), the time it stays on average 
in the same fl eet (‘AvTLength’), and the changes in the size of the fl eet from 
period to period (‘FleetChange’). According to Figure 2, the average level of 
premium paid by the fl eet policy has a signifi cant positive effect on the average 

TABLE 6

ESTIMATED CLAIM COUNTS OBTAINED FROM BAYESIAN HIERARCHICAL ANALYSES

Number of 
Claims

Observed 
Frequency

Poisson
(4)

Negative 
Binomial

ZIP
(9)

Hurdle Poisson 
(11)

0 34,357 34,316 34,357 34,336 34,360 
(34,200; 34,430) (34,240; 34,480) (34,210; 34,460) (34,240; 34,480) 

1 4,104 4,170 4,100 4,123 4,140 
(4,073; 4,266) (3,991; 4,209) (4,013; 4,238) (4,030; 4,252) 

2 551 538 556 571 536 
(514; 562) (529; 584) (539; 605) (504; 570) 

3 86 79 86 76 72 
(72; 87) (76; 97) (67; 85) (64; 82) 

4 17 14 16 11 10
(11; 16) (12; 19) (9; 13) (8; 13) 

≥  5 5 3 3 2 1.5
(2;4) (2; 4.4) (1; 2) (0.9; 2.3)

Pearson x2 4 1.4 9.9 16.6 

DIC 30,642 30,961 30,982 31,645 

Note: 95% interval estimates are given in parens
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claim counts; not surprisingly, since it is usually actuarially fair to say that the 
level of premium is directly related to the level of claims. Changes in the level 
of premium could motivate fl eet owners to better manage its vehicles by either 
discarding problematic vehicles or maintaining them to avoid further claims. 
As shown in Table 12, the variable ‘FleetChange’ has four categories with the 
“Not Defi ned” category as the level of reference. Because ‘FleetChange’ refers 
to the ratio of the size of the fl eet in the current year relative to the previous 
year, the fl eet has to be observed in both periods for this to be defi ned. This 
led us to the indicator variables in Figure 2 (‘FLCh2’, ‘FlCh3’, and ‘FlCh4’) 
with each of them respectively referring to a reduction, no change, or an increase 
in the fl eet size. Figure 2 shows that our model estimates provide an indication 
of the signifi cance of these changes in the fl eet size from period to period: each 
change in fl eet size has a negative effect. When a vehicle in year t is in the same 
fl eet as it was in year t  –  1, the variable ‘TLInFleet’ is strictly positive (and the 
corresponding indicator in Table 11 takes the value 1). At the same time, one 
of the ‘FleetChange’ indicator variables equals one, since the fl eet necessarily 
is observed in the current and past year. In Figure 2 we see that their combined 
effect is always negative and signifi cant. This implies that staying in the same 
fl eet reduces the expected number of claims.

At the vehicle level, few risk factors have a statistically signifi cant effect on 
the average number of  claims. This appears to be in agreement with the fi nd-
ings by Frees and Valdez (2008) who even investigated datasets that involved 

 FIGURE 2: 95% interval estimates. Each interval estimate corresponds to a parameter of the negative 
binomial model (8). The dashed line emphasizes whether the interval includes zero.
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non-fl eet policies where more driver and vehicle characteristics are more read-
ily available. In our model estimates, a few of the risk factors that intuitively 
makes sense provided an impact on the average number of claims included. For 
instance, motorcycles (‘motor’) report signifi cantly fewer claims than the refer-
ence class (i.e. trucks) although cars (‘car’) does not appear to have signifi -
cantly different number of claims to trucks, and heavy trucks (‘Tonnage’ > 8) 
report more claims.

5. A PRIORI PREMIUMS AND A POSTERIORI UPDATES

Two applications of the hierarchical models are now considered. Section 5.1 
establishes differences among insurance companies and among fl eets by showing 
the posterior distribution for each level. Section 5.2 uses these distributions to 
update insurance premiums, an important exercise for insurance companies 
and regulators who monitor their behavior.

5.1. Posterior distributions for the random effects

With the hierarchical models, we can also “summarize” the random effects. 
We focus on the hierarchical negative binomial model (see (8)). Figure 3 illus-
trates the posterior distributions for the company effects as well as for a random 
selection of fl eet effects.

Are there any important insurance company effects? The left-hand panel 
of Figure 3 helps the analyst respond to this question through a summary of 
the distribution of each company effect. This panel shows, even after controlling 
for covariates and fl eet level effects, that company 3 is lower than competitors, 
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FIGURE 3: Illustration of a posteriori distributions of company effects and a random selection of fl eet 
effects for the negative binomial model. A horizontal line is plotted at the mean of the random effects 

distribution (as in (5)).
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especially compared to companies 2 and 10. Unlike the raw counts in Table 1, 
company 4 appears to have a high effect whereas company 9 is more typical 
of other companies.

The right-hand panel of Figure 3 shows fl eet effects for a random selection 
of fl eets. This panel shows the heterogeneity in the distribution of fl eet effects. 
Note also the different scales in the two panels; the vertical scale on the com-
pany effects is much more narrow than the fl eet effects. This indicates that 
fl eets effects are more variable than company effects.

5.2. A posteriori updates to a priori premiums

The purpose of the data analysis is a sound statistical approach to premium 
rating for intercompany data. How should a reinsurer or regulator translate 
the company effects that became apparent in the descriptive Table 1 into an 
accurate prediction for the expected number of claims? The posterior distribution 
of the random company effects is used for this purpose.

The different distributions used in Section 3.2 represent different styles of 
penalizing for past claims. For instance, the zero-infl ated model with fl eet-
specifi c pc, f (see (10)) and the hurdle Poisson model in (11) not only use the 
number of past claims, but also the claim-free period of a fl eet. The various 
distribution models considered in this paper give the user the choice of which 
style is suitably adoptable to his philosophy.

We illustrate how the reported claims history a posteriori updates the a priori 
premium. In Section 5.2.1 we follow three vehicles and illustrate how the 
 various models from Section 3 update the a priori premiums. Section 5.2.2 
summarizes a posteriori updates for a specifi c model and all fl eets. Recall from 
Section 3 that E[Yc, f, v, t ] is used for the a priori premium and E[Yc, f, v, t| ec, ec, f, ec, f, v] 
is used for the a posteriori premium. For the reader’s convenience, Table 7 is a 
summary of  the expressions for both premiums and resulting bonus-malus 

TABLE 7

A PRIORI AND A POSTERIORI PREMIUMS, WITH BONUS MALUS FACTORS, FOR SEVERAL DISTRIBUTIONS

Distribution A Priori Premium
E[Yc, f, v, t ]

A Posteriori Premium
E[Yc, f, v, t | ec,  ec, f,  ec, f, v ]

Bonus Malus Factor 
BMF

Poisson
,c

priorl ,v,f t
  =  ec, f, v, t  exp (jc, f, v, t) lprior

,c ,v,f t
  exp (ec  +  ec, f  +  ec, f, v) exp (ec  +  ec, f  +  ec, f, v) 

Negative 
 Binomial ,cm ,v,f t

prior   =  ec, f, v, t  exp (jc, f, v, t) m ,c
prior

,v,f t
  exp (ec  +  ec, f ) exp (ec  +  ec, f ) 

ZIP – type 1
(1  –  p) 

,c
priorl ,v,f t

, where

,c
priorl ,v,f t

  =  ec, f, v, t  exp (jc, f, v, t)
(1  –  p) lprior

,c ,v,f t
  exp (ec  +  ec, f ) exp (ec  +  ec, f )

ZIP – type 2
1 b1

1- + lprior
,c ,v,f t` j

(1  –  pc, f ) priorl ,c ,v,f t
  exp (ec  +  ec, f )

1
,c

- / b

p

1

1 f

+

-

)(1
 exp (ec  +  ec, f )

Hurdle No explicit expressions
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factors for the model specifi cations investigated in this paper (when explicit 
expressions exist). Hereby the bonus-malus factor (‘BMF’) is the ratio (a pos-
teriori premium/a priori premium). These BMFs are standards used in the 
insurance industry for penalizing or rewarding customers according to their 
historical claims experience. A BMF  >  1 indicates some penalty required, while 
a BMF  <  1 indicates the opposite. See Lemaire (1995) for more details. Since 
we rely on Bayesian statistics for our estimations, the illustrations below use the 
posterior mean of the expressions displayed in the BMF column of Table 7.

5.2.1. Numerical illustrations

Let us start from the model in (4). To update the a priori premium, this model 
uses the history of the vehicle, the history of the fl eet to which it belongs and 
the history of the company. In Tables 8 and 9 we follow three vehicles to illus-
trate the mechanism of experience rating with each of the model specifi cations 
investigated in this paper. In the fi rst illustration from Table 8, for fl eet number 
2,814, the BMFs for all vehicles are above 1, but the BMF for the vehicle that 
reports 1 claim is much higher (2.05) than the BMF for the claim-free vehicles 
(1.56 and 1.58). Checking the corresponding results for the hierarchical negative 
binomial model and the ZIP with fi xed p, the BMF for all vehicles is >1 and 
in between those reported in the fi rst illustration in Table 8. The latter models 
calculate BMFs at the fl eet level, a natural point in the hierarchy because it is at 
this level where an insurance contract between a fl eet and insurance company is 

TABLE 8

EFFECTS OF DIFFERENT MODELS ON PREMIUMS FOR SELECTED VEHICLES.
RESULTS FOR HIERARCHICAL POISSON, NB AND ZIP WITH FIXED p REGRESSION MODELS.

Vehicle 
Number

A Priori (Exp.) A Posteriori BMF Acc. Cl. Fleet 
(Exp.)

Acc. Cl. Veh. 
(Exp.) 

Hierarchical Poisson with random effects for vehicle, fl eet and company
6,645 0.08435 (0.5038) 0.1725 2.05 6 (18.5) 1 (1) 
7,006 0.08435 (0.5038) 0.1316 1.56 0 (1) 
6,500 0.08435 (0.5038) 0.1329 1.58 0 (1) 

Hierarchical NB with random effects for fl eet and company
6,645 0.08383 (0.5038) 0.1435 1.71 6 (18.5) 1 (1) 
7,006 0.08383 (0.5038) 0.1435 0 (1)
6,500 0.08383 (0.5038) 0.1435 0 (1)

Hierarchical ZIP with random effects for fl eet and company, fi xed p
6,645 0.08241 (0.5038) 0.1484 1.8 6 (18.5) 1 (1) 
7,006 0.08241 (0.5038) 0.1484 0 (1)
6,500 0.08241 (0.5038) 0.1484 0 (1)

Note:  ‘Acc. Cl. Fleet’ and ‘Acc. Cl. Veh.’ are accumulated number of claims at fl eet and vehicle levels, 
respectively. ‘Exp.’ is exposure at year level, in parenthesis.
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written. Hence, fl eet level BMFs can be used for premium renewals. The fi rst 
illustration in Table 8 shows BMFs calculated at the vehicle level. This infor-
mation could also be used for contracts written at the fl eet level; as the fl eet 
composition changes through the retirement or sale of vehicles, the total fl eet 
premium should refl ect the changing composition of vehicles. Vehicle level BMFs 
will allow prices to depend on the vehicle composition of fl eets. We anticipate 
that pricing actuaries will fi nd both set of fi ndings useful.

Comparing the results in Tables 8 and 9 we see that a priori premiums 
obtained with the different model specifi cations closely correspond. The zero-
infl ated model with fl eet-specifi c pc, f (see (10)) and the hurdle poisson model 
in (11) take the claim-free period of a fl eet into account. For panel data this 
feature was made explicit in Boucher et al. (2009) and Boucher et al. (2008). 
Compare the results for fl eet 2,814 between the various specifi cations: in the 
Poisson, NB and ZIP with p fi xed, the BMF for this fl eet is 1.76/1.71/1.8. In ZIP 
model (10) this drops to 1.37 and in the hurdle model even to 1. That is because 

TABLE 9

EFFECTS OF DIFFERENT MODELS ON PREMIUMS FOR SELECTED VEHICLES. 
RESULTS FOR ZIP WITH FLEET-SPECIFIC p AND HURDLE POISSON MODEL.

Vehicle A Priori (Exp.) A Posteriori BMF Acc. Cl.
(Exp.)

Claim Free 
Years

Hierarchical ZIP with random effects for fl eet and company, fl eet-specifi c p
6,645 0.09051 (0.5038) 0.1306 1.37 6 (18.5) 17 
7,006 0.09051 (0.5038) 0.1306
6,500 0.09051 (0.5038) 0.1306

Hierarchical hurdle Poisson with random effects for fl eet and company
6,645 0.1098 (0.5038) 0.11 1 6 (18.5) 17
7,006 0.1098 (0.5038) 0.11
6,500 0.1098 (0.5038) 0.11

Note:  ‘Acc. Cl. Fleet’ and ‘Acc. Cl. Veh.’ are accumulated number of claims at fl eet and vehicle levels, 
respectively. ‘Exp.’ is exposure at year level, in parenthesis.

TABLE 10

THE EFFECTS OF SWITCHING COMPANIES FOR A SELECTED FLEET.
RESULTS FOR NEGATIVE BINOMIAL MODEL.

Company

2 3 6 7 10

A Priori 0.08695 0.08762 0.08621 0.08831 0.08648

A Posteriori 0.1153 0.08352 0.1071 0.1121 0.1043 

BMF 1.33 0.95 1.24 1.27 1.21
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these last two model specifi cations not only use the number of registered claims, 
but also the claim-free periods (which is here 17 out of a total of 18.5 years).

In Table 10 some artifi cial scenarios are investigated. Fleet 4,672 originally 
belongs to company 3; this fl eet reported 5 claims over a period of 20.4 exposure 
years. For the scenarios, the observations corresponding with this fl eet were 
switched to different companies (namely company 2, 6, 7 and 10). The Table 10 
results are for the hierarchical negative binomial model. The a priori premiums 
closely correspond, but a posteriori premiums refl ect the company differences 
that are apparent in Figure 3.

5.2.2. Graphical illustrations

Because bonus malus factors are important summary measures of the amount 
that premiums will increase from one year to the next, we summarize graphically 
their overall effects. In Figure 4 we consider one model specifi cation, i.e. the 
negative binomial model from (8). This plot displays per company the BMFs 
of all its fl eets against the average number of claims for the fl eet. The latter is 

MeanFleet
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FIGURE 4: Bonus-malus factor versus mean claim count, by company. Here, the mean claim count is at the 
fl eet level. This fi gure shows positive association, on a company by company level.
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calculated as ‘total number of claims for the fl eet’ divided by ‘total exposure 
period for the fl eet’. When producing Figure 4, we omitted one fl eet with an 
estimated BMF that exceeded 12 and one fl eet with an average claim that was 
greater than 6.

Figure 4 illustrates company effects. For instance, only few BMFs in company 
3 are above 1, whereas company 2 has a majority of fl eets with BMF above 1. 
Plots like the one in Figure 4 are useful tools for pricing actuaries. They are fast 
and easy instruments to identify the overall riskiness of a collection of fl eets as 
well as the performance of one particular fl eet.

Figure 4 can also be used to interpret the size of the BMF. For instance, 
the omitted fl eet with a BMF > 12 was from company 6. Going back to the 
original data set, we see that this fl eet has a capacity of  169 vehicles and 
reported 123 claims over a period of 153 exposure years. Plotting an outcome, 
such as the predicted BMF, versus an “explanatory” variable provides a power-
ful device for interpreting results from a complex model.

6. CONCLUSION

This paper presents an analysis of an intercompany data set on claim counts 
for fl eet policies. The data come from 10 Singaporean general insurers who are 
members of  the General Insurance Association in Singapore. Although 
 company effects are widely acknowledged among industry professionals who 
use such data, our study is the fi rst to formally establish the importance of 
company effects in the context of a probabilistic model structure.

The framework that we use is a four-level (non-linear) multilevel model of 
count data. We do not advocate one count distribution at the expense of others 
but rather use several models that are currently prominent in the literature, includ-
ing the Poisson, negative binomial, hurdle Poisson and zero-infl ated Poisson. 
We calibrate these models using modern Bayesian estimation techniques.

We fi nd that, in all models considered, there is the importance of accounting 
for the effects of the various levels. This is true even after the effects of standard 
rating (explanatory) variables at the different levels in the data set are taken 
into account. The results also indicate possible different styles for penalizing 
or rewarding past claims.

To further demonstrate the usefulness of the models, we illustrate how a 
priori rating (using only a priori available information) and a posteriori updates 
(taking the claims history into account) for intercompany data can be calcu-
lated on a sound statistical basis. A comparison of these calculated premiums 
results in bonus-malus factors which are important in establishing experience-
rated premiums. Insurers, reinsurers and regulators can use the methodology 
recommended in this paper to study the differences in riskiness among fl eets and 
companies. A posteriori predictions for a specifi c fl eet, vehicle or company can 
be readily calculated from the estimated multilevel models. In future research 
we hope to address the modeling of hierarchical data on claim sizes instead 
of frequencies.
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APPENDIX. CATEGORIZATION TABLES

TABLE 11

VEHICLE LEVEL CATEGORIZATIONS

Covariates Categorization

Vehicle Age 0  ≤  VAgeEntry  ≤  4 Reference 
VAgeEntry  >  4

Cubic Capacity 0  <  VehCapCubic  ≤  1500 Reference 
VehCapCubic  >  1500

Tonnage 0  <  Tonnage<=2 Reference 
2  <  Tonnage<=8
8  <  Tonnage

TLengthEntry TLengthEntry  =  0 Reference 
TLengthEntry  >  0

TLInFleet TLInFleet  =  0 Reference 
TLInFleet  >  0

TABLE 12

FLEET LEVEL CATEGORIZATIONS

Covariates Categorizations

AvNCD AvNCD  =  0
AvNCD  >  0 Reference

AvTLengthEntry AvTLengthEntry  =  0 Reference
0  <  AvTLengthEntry

AvTLength AvTLength  ≤  0.7 Reference
AvTLength  >  0.7

AvVAge 0  ≤  AvVAgeEntry  ≤  4
4  <  AvAgeEntry

FleetChange Not defi ned Reference 
0< FlChange  <  1
FlChange  =  1
FlChange  >  1
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