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ABSTRACT

The primary objective of the paper is to explore using reinsurance as a risk 
management tool for an insurance company. We consider an insurance com-
pany whose surplus can be modeled by a Brownian motion with drift and 
that the surplus can be invested in a risky or riskless asset. Under the above 
Black-Scholes type framework and using the objective of minimizing the ruin 
probability of the insurer, we formally establish that the excess-of-loss reinsur-
ance treaty is optimal among the class of plausible reinsurance treaties. We also 
obtain the optimal level of retention as well as provide an explicit expression 
of the minimal probability of ruin.
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1. INTRODUCTION

It is well known that reinsurance can be an effective tool for insurance com-
panies to manage and control their exposure to risk. An appropriate use of 
reinsurance protects the insurer against any undesirable potential large losses 
and hence reduces the insurer’s earnings’ volatilities. In practice, there exists a 
wide variety of reinsurance strategies. Among them, the proportional reinsur-
ance and the excess-of-loss reinsurance are two of  the most widely studied 
reinsurance strategies. For example, Schmidli [15], [16] considered the propor-
tional reinsurance and determined the optimal proportional reinsurance strat-
egy by minimizing the probability of ruin. Taksar and Markussen [19] extended 
the analysis by proposing a diffusion model with investment and proportional 
reinsurance. Schmidt [17] dealt with optimal proportional reinsurance for depend-
ent lines of business. See Promislow and Young [14], Taksar [18], Højgaard and 
Taksar [8], Asmussen and Taksar [1], and references therein for related studies 
on proportional reinsurance.
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Similar to the proportional reinsurance, the excess-of-loss reinsurance has 
attracted a signifi cant amount of interests among practitioners and researchers. 
For example, Asmussen et al. [2] explored the excess-of-loss reinsurance and 
the dividend distribution policy in the context of maximizing the expected present 
value of  the dividends in a diffusion model. Choulli, Taksar and Zhou [5] 
investigated the case of excess-of-loss reinsurance for an insurance company 
and solved the problem of risk control and dividend optimization for a fi nan-
cial institution facing a constant liability payment. Centeno [4] dealt with the 
optimal excess of loss retention limits for two dependent risks. See also Paulsen 
and Gjessing [13], Irgens and Paulsen [10], Mnif and Sulem [12], Zhang, Zhou 
and Guo [20], Hürlimann [9] for other related researches on excess-of-loss 
reinsurance. Motivated by these recent results, the key contribution of this paper 
is to provide additional analysis on the effective use of excess-of-loss reinsurance 
strategy as a risk management tool. In particular, we assume that surplus can 
be invested in a fi nancial market with risky asset or risk-free asset and the 
excess-of-loss reinsurance is optimally determined by minimizing the ruin 
probability of the resulting diffusion model.

Let (W, F, P) be a probability space with fi ltration{Ft }. For the classical 
Cramér-Lundberg model, the reserve (or surplus) at time t, denoted by Pt, 
evolves according to

 i,x pt Z
1

(

t
i

N

= +
=

t)

-P /

where x  ≥  0 represents the initial level of reserve, {N(t)} is a Poisson process 
with intensity b  >  0, Zi, i  =  1, 2,  ···, independent of  {N(t)}, are i.i.d. loss 
 random variables with common continuous distribution F having fi nite fi rst 
moment m3 and fi nite second moment s2

3, and p  >  0 is the premium rate. 
Typically, the premium rate p is determined using the expected value principle; 
i.e.

 p  =  (1  +  j) bm3, (1.1)

where j  >  0 is the relative safety loading of the insurer.
We now consider a modifi cation of the above classical Cramér-Lundberg 

model that takes into account the reinsurance. Recall that Zi is the loss (or 
claim) random variable insured by a insurer in the absence of  reinsurance. 
When reinsurance exists, we use the notation H (Zi) to capture the portion of 
the claims retained by the insurer for a given Zi. This implies that Zi  –  H (Zi) 
is the residual part of Zi that is covered by the reinsurer. It is reasonable to assume 
that H (x) is an increasing function in x and that H (0)  =  0,  0  ≤  H (x)  ≤  x. 
By D we defi ne as the set of all H satisfying the above conditions.

Corresponding to a chosen reinsurance policy H (Zi), we denote Pt
H as the 

reserve at time t of  a generalized Cramér-Lundberg model in the presence of 
reinsurance. Then we have
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where pH is the net premium rate refl ecting the reinsurance premium that is 
payable by the insurer to the reinsurer. Under the assumption that the reinsurer 
also relies on the expected value principle with a positive constant safety loading 
q to determine the reinsurance premium, the net premium rate is given by 
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Note that typically we have q  >  j.
Without any loss of generality, we assume b  =  1. Then according to Gran-

dell [7], the reserve process can be approximated by a diffusion process {Rt} 
of the following form:

 j( )= ( ( ( (dR E EH Ht tq q m- - +3 (2)) )dt ,Z dBZ ))  (1.3)

where {Bt,  t  ≥  0} is a standard Brownian motion.
Let us now consider two special cases of the above generalized Cramér-Lund-

berg model by making additional assumption on the structure of the reinsurance 
strategy H (Z). In particular we consider the proportional reinsurance and the 
excess-of-loss reinsurance. For the proportional reinsurance with a proportional 
constant 0  <  a  <  1, we have H (Zi )  =  aZi so that E(H (Z))  =  am3 and E(H 

2(Z))  = 
a2s2

3. Under this specifi cation, the diffusion process (1.3) simplifi es to 

 aj( ( ) .dR dtt tq m s= - - +3 3 3am ) dBq  (1.4)

For the excess-of-loss reinsurance with retention level a; i.e. H (Zi )  =  min (Zi , a)  = 
Zi  /  a, we have 
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where F(x)  =  P(Z  >  x). Furthermore, the diffusion process (1.3) becomes 

 dRt   =   (qm(a)  –  (q  –  j) m3) dt  +  s(a) dBt . (1.7)

We also assume that the reserve is invested in a fi nancial (risky) asset with the 
price process {St} governed by 

 dSt   =   rSt dt  +  lSt dWt, (1.8)
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where r  ≥  0 is the constant mean rate of return generated by the underlying fi nan-
cial asset, l  ≥  0 is its volatility, and {Wt,  t  ≥  0} is a standard Brownian motion 
which is independent of {Bt,  t  ≥  0}. Under the special case l  =  0, there is no ran-
domness on the return of the asset and hence the underlying fi nancial asset cor-
responds to the risk-free bond or bank account earning risk-free rate of return r.

An admissible control policy p is described by a Ft -adapted stochastic 
process Ht

p(Z), where Ht
p(x) is increasing in x satisfying Ht

p(0)  =  0, 0  ≤  Ht
p(x)  ≤  x. 

Here, we clarify that E(Ht
p(Z))  =  E(H (Z))|H=Ht

p  and E(Ht
p(Z))2  =  E(H (Z))2|H=Ht

p. 
Also, we denote by Rt

p the resulting reserve process given an admissible policy 
p and by R0

p the initial reserve which is assumed to be F0-measurable. Without 
any loss of generality, we assume that it is equal to a deterministic value x. 
Consequently, the dynamics of the surplus process can be written as 

 (1.9)j) +t t t t t( ( ( )) ( ( ( ))

.

dR E Z E Z rR dt R

R x

H H t t
2

0

q m l= - - + +

=

3
p p p)

p

qp pdt dB dW

 (1.10)

Let us now defi ne A as the set of all admissible policies. Then for any p  ! A, 
the time of ruin and the probability of ruin are defi ned, respectively, as 

 Tp   =   inf{t  >  0   :   Rt
p  ≤  0},

 cp(x)   =   P{Tp  <  3 | Rt
p  =  x}. (1.11)

Under the above model formulation, our objective is to fi nd an optimal policy 
p* which is the solution to the following value function:

 ( ) .xinf
A

c
!p

p  (1.12)

Let cp*(x) or simply, c(x), be the corresponding optimal value function with 
optimal policy p*; i.e.

 ( ) .x( ) ( ) infx x*

A
cc= =

!p
pc p  (1.13)

We also denote c(x) as the minimal probability of ruin.
It is easy to show that (see P121-123 Klebaner [11]) the solution to the SDE 

(1.9) is given by 

)j ts st
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f p# #  (1.14)

where U(t)   =   exp{(r  –  2
1  l2) t  +  lWt}. In our paper, we are interested in the 

non-cheap reinsurance, i.e. q  >  j. Otherwise, we can choose Ht
p(Z)  /  0 so that 

(1.14) reduces
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This in turn implies that ruin can never occur.
The remaining of the paper is organized as follows. In Section 2, we show 

that the optimal excess-of-loss reinsurance is always better than any other 
reinsurance. In Section 3, we state the equation which the optimal probability 
of ruin as a function of the initial reserve x should satisfy. The verifi cation 
theorem and some analysis on the equation that satisfi ed by the optimal probabil-
ity of ruin are also given in this section. In Sections 4 and 5, we give the optimal 
excess-of-loss reinsurance strategy and the explicit expression of optimal value 
function for the riskless and risky investment, respectively. We give the conclu-
sion of this paper in Section 6.

2. THE GAIN OF EXCESS-OF-LOSS REINSURANCE

In this section, we formally establish that the optimal excess-of-loss reinsurance 
is always better than any other reinsurance, as asserted in Theorem 11. We fi rst 
provide the following lemma that will facilitate us in proving Theorem 1.

Lemma 1. For any fi xed function H  ! D, let a1 be a constant satisfying

 E(Z / a1)2  –  E [H 
2 (Z)]   =   0,

then
 E(Z / a1)  –  E [H (Z)]   ≥   0.

Proof: Let us begin the proof by introducing functions '(a) and  ,  (a) as

 '(a)   =   E(Z / a)2  –  E [H 
2 (Z)],

  ,  (a)   =   E(Z / a)  –  E [H (Z)].

Obviously, both '(a) and ,  (a) are increasing functions in a. Let a2 be the root 
of  ,  (a)  =  0. We can easily prove that

 '(a1)   =   0,  ,  (a1)  ≥  0    +    ,  (a2)   =   0,'(a2)  ≤  0.

Consequently, to complete the proof it is suffi cient to establish '(a2)  ≤  0. Noting 
that

 Z  /  a2  –  H (Z)  ≥   0,  for  Z  ≤  H 
–1(a2),

 Z  /  a2  –  H (Z)  ≤   0,  for  Z  ≥  H 
–1(a2),

1 The authors are grateful to the anonymous referee for encouraging us to address the more general 
result as stated in Theorem 1. We point out a similar problem is also investigated by Zhou and Cai [21]. 
The proof given in this paper, however, is different from that in Zhou and Cai [21].
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we have

'(a2)   =   E(Z / a2)2  –  E [H 
2(Z)]

        =   E [(Z / a2  –  H (Z)) (Z / a2  +  H (Z))IZ  ≤  H –1(a2) ]

                +  E [(Z / a2  –  H (Z)) (Z / a2  +  H (Z))IZ  ≥  H –1(a2) ]

        ≤   2a2 E [(Z / a2  –  H (Z))IZ  ≤  H –1(a2) ]  +  2a2 E [(Z / a2  –  H (Z))IZ  ≥  H –1(a2) ]

        =   2a2 E [(Z / a2  –  H (Z))]

        =   0,

as required. ¡

Theorem 1. For all x

 c(x)   ≤   c
H  

(x), (2.1)

where c
H  

(x) is the ruin probability in any reinsurance function H.

Proof. Let Ht
p(Z) ! D be any fi xed reinsurance function. We have 0  ≤  E [Ht

p(Z)]2  ≤
s2
3. We can choose a feedback control ap1

(t) in the excess-of-loss model in such 
a way that 

 s2(ap1
(t))   =   E [Z  /  ap1

(t)]2   =   E [Ht
p(Z)]2. (2.2)

From above lemma, we have

 m(ap1
(t))   =   E [Z  /  ap1

(t)]   ≥  E [Ht
p(Z)],

and hence

 qm(ap1
(t))  –  (q  –  j) m3   ≥   qE [Ht

p(Z)]  – (q  –  j) m3.

Finally, by the expression (1.14) of Rt
p, we conclude that c(x)   ≥   c

H  
(x).

 ¡

Thus, in the following sections we only focus on the Cramér-Lundberg model 
with the excess-of-loss reinsurance.

3. THE HJB EQUATION AND THE VERIFICATION THEOREM

In this section, we demonstrate that the dynamic programming approach as 
described in Fleming and Soner [6] can be used to obtain the solution to 
minimizing the ruin probability. We begin our analysis by fi rst stating the fol-
lowing lemma and theorem. Lemma 2 formally gives an obvious property 
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associated with c(x). The proof of this lemma is trivial and hence is omitted. 
Theorem 2 can be found in Fleming and Soner [6].

Lemma 2. The function c(x) defi ned by (1.13) is nonincreasing.

Theorem 2. Assume that c(x) defi ned by (1.13) is twice continuous differentiable 
on (0, 3). Then c(x) satisfi es the following Hamilton-Jacobi-Bellman (HJB) 
equation:

    ( )x x
[

l
!

(( ) ( ) [ ( ( ] 0inf a x rx2
1

0,a N

2 2 2 c j+ + - - + =3) )q� )a �qm m cs
]
& 0  (3.1)

with boundary conditions 

 c(0)   =   1, (3.2)

 c(3)   =   0, (3.3)

and N  =  sup{y  :  F(y)  <  1}  ≤  3.

We emphasize that in general, the value function may not be smooth enough 
to satisfy the HJB equation (3.1). It, however, still satisfi es (3.1) in a viscosity 
sense (see Fleming and Soner [6]).

The remaining of this paper is devoted to solving the HJB equation (3.1) 
subject to the boundary conditions (3.2) and (3.3). To do this, the following 
lemma is essential to the proof of the verifi cation theorem:

Lemma 3. For any policy p, M  >  0, and by defi ning

 TM
p   =   inf{t  >  0  :  Rt

p  "  [0, M ]},

then TM
p   <  3 a.s.

Proof: The above lemma can be proved by making some modifi cations to the 
proof of Lemma 6.1 of Taksar and Markussen [19]. The necessary steps are 
as follows: fi rst, replace q(a) and c(a, x) in the proof of Lemma 6.1 of Taksar
and Markussen [19] by q(a)  =  qm(a)  –  (q  –  j) m3 and c(a, x)  =  ( ,a x2s l+ 2 2)
respectively. Here m(a) and s2(a) are defi ned in (1.5) and (1.6), respectively. 
Second, set s*  =  c(a*, 0) and choose a* such that q(a*)  =  0. Third, the above 
defi nition of q(a) implies q(a)  ≤  jm3 and hence by substitution, equation (6.2) 
of Taksar and Markussen [19] leads to 

 Q(jk + 1)  –  Q(jk)   ≤   jm3 / (s*)2. (3.4)

Finally, the remaining of the proof is identical to the proof of Lemma 6.1 of 
Taksar and Markussen [19]. ¡
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Remark: The above lemma leads to the following results: for any arbitrary 
strategy p with probability one either ruin occurs or Rt

p diverges to infi nity as 
t  "  3.

We now present a verifi cation theorem which establishes that the classic 
solution to the HJB equation yields the solution to the optimization problem.

Theorem 3. Assume that f (x)  !  C2 satisfi es (3.1)-(3.3). Then the value function 
c(x) given by (1.12) coincides with f (x). Furthermore, if a*(x) is such that 

   2
1   (s2(a*(x))  +  l2x2 ) c�(x)  +  [qm(a*(x))  –  (q  –  j)m3  +  rx] c�(x)  =  0 (3.5)

for all x. Then the feedback form policy ap* (s)  =  a*(Rs
p* ), where Rs

p* is the cor-
responding solution to (1.9)-(1.10), is optimal, i.e. f(x)  =  c(x)  =  cp*(x).

Proof. Let ap(t) be any admissible strategy. By Ito formula, we have 
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T t
T t
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/
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+
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C C
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#

#  (3.6)

since f (x) solves (3.1).

Note that

 E [ f (Rp
Tp / t)]   =   E [ f (Rp

Tp / t) I (Tp  <  t)]  +  E [ f (Rp
Tp / t) I (Tp  ≥  t)]  "  cp(x)

as t  "  3. This implies that together with (3.6), we have cp(x)  ≥  f (x). If  we 
were to use the strategy ap* (x), we attain the equality in (3.6) and therefore 
c(x)  =  f(x). ¡

In what follows we will analyze the HJB equation (3.1) and give two lemmas 
that will be used to construct the decreasing convex smooth function c(x).
By differentiating (3.1) with respect to a, we obtain the following infi mum 
function:

 
( )x
(

�
( ) ) .a x xq c

c
= -

�
 (3.7)

Furthermore, substituting the above result into (3.1) yields

 g(a, x) c�(x)   =   0,

93216_Astin40_1_07.indd   18693216_Astin40_1_07.indd   186 11-05-2010   09:39:0211-05-2010   09:39:02



 OPTIMAL RISK CONTROL FOR THE EXCESS OF LOSS REINSURANCE POLICIES 187

where 

 ( , ) ( ) ( ) .g a x a a a rax a x1 2
1 2 2 2

q
j

q s l= - - - + +3 mmc m 8 B  (3.8)

This implies that solving HJB equation (3.1) boils down to solving g(a, x)  =  0. 
The following lemma states some conditions for which g(a, x)  =  0 yields a 
unique positive solution a(x).

Lemma 4. Fix x  >  0. If one of the following conditions is satisfi ed

  (i) l  =  0,  r  >  0, x  <  ( )
r

q j m- 3

(ii) l  !  0

then g(a, x)  =  0 admits a unique positive solution a(x).

Proof. Note that for x  >  0, we have g�(a, x)  =  – F(a)  ≤  0 and lima"3 g(a, x)  =  –3. 

(i) Under the prescribed conditions l  =  0, r  >  0, and x  <  ( )
r

q j m- 3 , it is easy to 
verify that g(0, x)  =  0, and g�(0, x)  =  (1  –  j/q)m3  –  rx / q  >  0. Hence there exists 
a unique positive solution a(x) such that g(a(x), x)  =  0.

(ii) The condition l  !  0 implies that g(0, x)  =  x
2

2 2l   >  0. Consequently, there 
exists a unique positive solution a(x) such that g(a(x), x)  =  0. ¡

Recall that N was defi ned earlier as the maximum claim amount. Then the 
relationship between a*(x), a(x) and N can be summarized as follows:

 *( )
( (

.

a a
a x

N

N

if

otherwise

#
=

)x)x
)

Note that when a(x)  >  N, the optimal retention level a*(x) is set to N. This is 
to be expected since the insurer cannot reinsure claim that is larger than the 
actual claim. The following lemma gives an equivalent condition for a(x)  >  N.

Lemma 5. Assume either condition (i) or condition (ii) of Lemma 4 is satisfi ed,

then N  <  a(x) if and only if N  <  h(x) where (2

2
3( )

(
.h x rx

x
m j

q s l
=

+
+

3 )
)2

Proof: It follows from the proof  of  Lemma 4 that N  <  a(x) if  and only if
g(N, x)  >  0. The latter inequality becomes 

 3( , ) / / 0g N x N rNx x2
1

2
1 >s m j q q l= - - +3

2 22

which in turn is equivalent to 2(< 3 ,N (
rx
x2 2

m j
q l

+3 )
)2s +  as required. ¡
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4. THE CASE OF l  =  0

In this section, we continue with our analysis by assuming that the reserve is 
invested in a risk-free asset such as a bond or a bank account. This corresponds 
to the case l  =  0 so that the HJB equation (3.1) simplifi es to 

 (rx x
[

+j
!

( ( ) [ ( ) ( ) ) 0.inf a x a2
1

a

2 m+ - - =3 ]
0,N

q)c qm� �c
]

s& 0  (4.1)

We are primarily interested in the solution to the above HJB equation for the 
non-trivial case r  >  0. The special case with r  =  0 was studied by Zhang, Zhou 
and Guo [20].

Suppose the following inequality 

 
(

,x r x1$ _
q j- 3)m

 (4.2)

holds and that we choose ap(t)  /  0, then by (1.14) we obtain

 
rt( )q j- (

x -t
)

.R e r
e1rt m

=
-3p

-

d n

Thus ruin can never occur, i.e. c(x)  /  0 for x  ≥  x1. The above observation 
suggests that we only need to construct a decreasing convex function c(x) 
which solves the HJB equation (4.1) for 0  <  x  ≤  x1. Furthermore, Lemma 5

asserts that N  <  a(x) if  and only if  N  <  h(x) where in this case 2(
q 3( )h x rx= m j+3 )

2s  

is nonincreasing in x. This implies that it is suffi cient to consider the following 
two subcases: N  <  h(0) and N  ≥  h(0). These two subcases are discussed in 
details in the following two subsections.

4.1. The case of N  <  h(0)

In this special case since N  <  h(0)  =  2
q 3

m3j
s ,

2

 the equation h(x)  =  N admits a 
unique positive root, say x0,

 33 .x Nr r20
q m

= -
js2

 (4.3)

Also F( )x dxN2xN
3 N2

0
s m= = 30

( )x dx N2<F2 # #  so that we easily obtain x0  <  x1.
For x  ≤  x0, we have a(x)  ≥  N and so we choose N as the optimal retention 

level. Thus in this case the HJB equation (4.1) becomes 

 rx+3 ( ( ) ( ) 0.x2
1 s =3+x jm �)c c2 �  (4.4)
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Solving the above equation for x  ≤  x0 we obtain

 exp
( rs

(x
x

3

)
)

.K ds K
2y

1 0 0 2c
s

= - -
+

+3m j
dy2) 3# #

for appropriately chosen constants K1 and K2.
For x0  <  x  <  x1, a(x)  ≤  N and so we choose a*(x)  =  a(x) as the optimal

retention level. Using the relation a(x)  =  (
(q- c�

)
x
xc ,)

�  we get

 (x K
x y

) ( )aexpK s ds dy
x3 4

0 0
c q

= - - +
x

,( 2# #

for constants K3 and K4. Thus the solution to (4.1) can be represented in the 
following form 

    
(s

x

3

x

x x

( )

( )

)
,

a

exp

expx

rs
ds

K ds dy K x x x

2

< <

y

y

1 0 0 2 0

3 4 0 1

1

0 0

c
s

m j

q=

-
+

- - +

3 ,

, .

K dy K x x

x x0

#

$

- +2

Z

[

\

]
]
]

]
]]

)

(

3

2

# #

# #  (4.5)

From the boundary condition (3.2), it is easy to verify that 

 K2  =  1. (4.6)

Let 

 

(

(

(s

x

3

3

y

x

x

x

y

x

,

) .a

exp

exp

exp

h
rs

ds dy

h
rs

ds

h ds dy

2

2

1 0 0

2 0

3

0

0

0

1

0

s

s

q

= -
+

= -
+

= -

3

3

,
)

)

m j

m j

2

2

)

)

(

3

3

2

# #

#

# #

Then the continuity of c(x) at x0, x1 and the continuity of c�(x) at x0 give 
the following equations 

 K4   =   1  –  K1 h1, K3  =  K1 h2, K4  –  h3 K3  =  0.

Solving for K1, K3, K4, we obtain 

 h hh , , .K h h K h h
h

K h h
h h1

1
1 2 3

3
1 2 3

2
4

1 2 3

2 3=
+

=
+

=
+

 (4.7)
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We now summarize the key result of this subsection in the following theorem.

Theorem 4. Suppose that N  <  h(0). Then c(x) defi ned by (4.5) with Ki , given 
by (4.6)-(4.7) and x0, x1 defi ned by (4.3), (4.2) respectively is a decreasing twice 
continuously differentiable convex solution of (3.1)-(3.3). The optimal feedback 
control function a*(x) in this case is given by 

 (x)

,

( ),

,

,aa

N x x

x x x x

x x0

< <
0

0 1

1

#

$

=*

Z

[

\

]]

]]

 (4.8)

where a(x) is the unique positive solution of g(a, x) defi ned by (3.8).

4.2. The case of N  ≥  h(0)

In this case a(x)  ≤  N for x  <  x1 and so we choose a(x) as the optimal retention 
level. Using the same argument as in the preceding subsection yields

 ( Kx
x

) ( ,aexpK ds dy
y

5 0 0 6
qc = - - +s)( 2# #

where K5 and K6 are appropriately chosen constants that satisfy boundary 
conditions (3.2) and (3.3). More precisely, we have 

 yx

(aexp
K

ds dy

1
5

0 0

1 q
=

- )s( 2# #
 (4.9)

and K6  =  1. These calculations yield the following theorem.

Theorem 5. Supposed that N  ≥  h(0)  =  3

2
q

3

s
m

2

j , then

 (
-

x
x

)
1

0,

K e x x

x x

<( )a s5 0 1

1

y
0

$
c =

-
q ds ,dy

*
# #

with K5 defi ned by (4.9) is the solution to the HJB equation (4.1) with boundary 
conditions (3.2) and (3.3). In this case the optimal feedback control function 
a*(x) is given by

 (x)
( ),

0,
.

a
a

x x x

x x

< 1

1$
=* *
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5. THE CASE OF l  !  0

In the last section, we assume that the reserve is invested in asset that is risk-free. 
This section relaxes this restriction by assuming that the underlying investment 
asset in the fi nancial market is risky. This is equivalent to enforcing l  !  0 in 
(1.8). Under this special case, it is easy to see that the function h(x) is a strictly

convex function and attains its minimum at x2  =  s33

r
r2j j m- + +3

22 2m 2 /l . To tackle 
the solution to the HJB equation (3.1), it is useful to divide our analysis into 
the following three cases, depending on the relative magnitude of N and h(x): 
(i) N  <  h(x2), (ii) h(x2)  ≤  N  ≤  h(0), and (iii) N  >  h(0). These cases are discussed 
in the subsequent subsections.

5.1. The case of N  <  h(x2)

This subsection deals with the special case N  <  h(x2). Since h(x) attains its 
minimum at x2 for this particular case, Lemma 5 asserts that a(x)  >  N for all 
x  >  0 and hence the optimal level of retention is N. Furthermore, it follows 
from Theorem 2 that c(x) is the solution to 

 3( ( ( ( ) 0x rx x2
1 2s l jm+ + + =3

2 x)2 �)c �)c  (5.1)

subject to the boundary conditions (3.2) and (3.3). Solving the above equation 
gives 

 (x
2jx

3 3

3

) exp arctanK
y y

dy K1 0 2

r

2

2

2

c l
l

= - -
+

+
3

3

l

s
l

s -
l2

m
2

2

ss

J

L

K
K
K

dd

N

P

O
O
O

nn#  (5.2)

where in this case, K2  =  1 and 

 exp
2

1

j3

3 3

3

arctanK
y y

dy1 0

r

2

2

2

l
l

= -
+

3

l

s
l

s - -
l2

3

m
2

2

ss

J

L

K
K
K

J

L

K
K
KK

dd

N

P

O
O
O

N

P

O
O
OO

nn#  (5.3)

in order to satisfy the boundary conditions (3.2) and (3.3). It should be empha-
sized that the boundary conditions (3.2) and (3.3) cannot be satisfi ed unless 
integral (5.3) converges. Since arctan(x)  "  p/2 as x " 3, this implies that the 
integral in the right hand side of  (5.3) converges if  and only if  1>r2

2l
, or 

equivalently,

 .r 2>
2l  (5.4)
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Summarizing these results yields the theorem below.

Theorem 6. Assume that N  <  h(x2) and (5.4) is true. Then the function c(x) 
given by (5.2) with K1 given by (5.3) and K2  =  1 is a convex decreasing solution 
to (3.1) to (3.3). The optimal feedback control function a*(x) in this case is equal 
to N.

When (5.4) is not satisfi ed, then we have the following theorem, which is similar 
to the result established in Taksar and Markussen [19].

Theorem 7. If r  ≤  l2 / 2 then c(x)  =  1.

Proof: For any strategy p, let us defi ne

 
MM T(x) ( 0) .P Rc = =

p
p

p

where T pM was defi ned in Lemma 3. It is easy to verify that c pM (x)  "  cp(x) as 
M  "  3 and c pM (x) satisfi es (we write below a(t) instead of ap

M (t))

  �� rxM M( (x( ( ( (xx( )) ) ) [ )) ( ) ] ) 0a x a x2
1 2 2l qm q j m cc+ + - - + =3

2s p p  (5.5)

with boundary conditions c pM (0)  =  1 and c pM (M )  =  0. Solving the above equa-
tion yields

 M (
rs

( (
(

( (
( ( ( rs

M j

j

x
y

x y

) 1

))
2( ( )) ( ) )

))
2 )) ( ) )

.
exp

exp

a s s
a s

ds dy

a s s
a s

ds dy

0 20

0 20

s l
qm m

s l
qm m

c = -

-
+

- - +

-
+

- - +

3

3

2

2

q

q
2

p

2)

)

3

3

# #

# #

Note that a(s) !  [0, N ]. This implies that for any y  >  y1, we have

 

rs

rs

rs
1

+

+

+

1

rs+
y y

( (

( (

( (

( (

( (

( (1
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( )) ( ) ) ( )

.

exp

exp

exp exp

s s
a s

ds dy

s s
a s

ds dy

s s
a s

ds
s

ds dy

2

2

2 2

y

y
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0 2 2 20
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1
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3
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q

q

q
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m jm
2$

)
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3
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3 3
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# # #

Since the last integral can be expressed as 
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(5.6)
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32
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1 1
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y y
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3 3
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ds dy

y y
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+

=
-

-
+

+

3

3

3 l
-

2
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2 2

2

,

m
2

s ss d df fn n p p= G

) 3# #

#

 

this suggests that when r  ≤  l2 / 2, the integral in (5.6) diverges so that cp
M(x) " 1 

as M " 3. Consequently for any strategy p, cp(x)  =  1, and hence c(x)  =  1.
 ¡

5.2. The case of h(x2)   ≤   N   ≤   h(0)

In this case h(x)  =  N has two different positive solutions, say x3 and x4, such 
that 

 3( 2 )
,x

Nr N r N
3

2

ql
ql m j

=
- - - 3

2
q2 2 2s

 (5.7)

 3( )
.x

Nr N r N22

4 ql
ql m j

=
- -+ 3

2
q2 2 2s

 (5.8)

For x  <  x3 or x  >  x4, we have a(x)  >  N and so we choose N as the optimal 
retention level. As in the previous subsection, one can show that the function 
c(x) satisfi es equation (5.1). Solving this equation, we obtain for x  <  x3,

 (g
x

( ) )x K y dy K1 0 2c = - + ,#

and for x  >  x4,

 �,� ((x g
x

) )y dy K
x1 2

4
c = - +K #

where 

 (
2j

3 3

3

.exp arctang y
y y

r

2

2

2

l
l

= -
+

3

l

s
l

s -
l2

3

m
) 2

2

ss

J

L

K
K
K

dd

N

P

O
O
O

nn  (5.9)

For x3  ≤  x  ≤  x4 we have a(x)  ≤  N. This implies that the optimal retention level 
a*(x) is equal to a(x). In this case the function c(x) satisfi es the following 
equation 

 (
(

x
x

)
)

.a q c
c

= -
�
�
(x)  (5.10)
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Solving above equation we get for x3  ≤  x  ≤  x4,

 (
y

x (
x

x
) .aexpK ds dy K

x3 4
3 3

qc = - - +s)d n# #  (5.11)

Thus the solution to (3.1) can be represented in the following form 
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( ,aexp

K y dy K x x
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1 0 2 3

3 4 3 4
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#

 (5.12)

where g(y) is given by (5.9). From the boundary condition (3.2), we have 

 K2  =  1. (5.13)

Now let
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)

)
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d

n

n

# # #

#
#

then the continuity of c(x) and c�(x) at x3, x4 and the boundary condition 
(3.3) give the following equations 

 K4  =  1  –  K1 h1, K3  =  K1 h2, K�2  =  K4  –  h3 K3, K�1  =  h4 K3, K�2  =  h5 K�1.

Solving for K1, K3, K4, K�1, K�2, we get 

 

,

,

, .

K h h h h h h K h h h h h h
h

K h h h h h h
h h h h h

K h h h h h h
h h

K h h h h h h
h h h

1
1

1 2 3 2 4 5
3

1 2 4 2 4 5

2

4
1 2 3 2 4 5

2 3 2 4 5

1
1 2 3 2 4 5

2 4

1 2 3 2 4 5

2 4 5
2

=
+ +

=
+ +

=
+ +

+

=
+ +

=
+ +

� �

,

 (5.14)

Note that h1, h2, h3, h4 are always fi nite. The constant h5 is fi nite if  and only if  
(5.4) holds.
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Theorem 8. Suppose that h(x2)  ≤  N  ≤  h(0) and (5.4) is true. Then c(x) defi ned 
by (5.12) with Ki, Ki� given by (5.13)-(5.14) and x3, x4 defi ned by (5.7)-(5.8) is 
a decreasing twice continuously differentiable convex solution of (3.1)-(3.3). The 
optimal feedback control function a*(x) in this case is given by 

 (x)

,

( ),

,

,aa

N x x

x x x x

x xN

<

>
4

3

3

4

##=*

Z

[

\

]]

]]

 (5.15)

where a(x) is the unique positive root of g(a, x) defi ned by (3.8).

If (5.4) does not hold, then we can apply the same arguments as in the previous 
subsection and conclude that Theorem 7 holds.

5.3. The case of N  >  h(0)

In this case the function h(x)  =  N admits a unique positive root, say x5 ,

 3( 2 )
.x

Nr N r N
5

2

q
ql q m j

=
+ - - 3

l2

2 2 s2

By the property of h(x), we have a(x)  ≤  N for x  ≤  x5 and a(x)  >  N for x  >  x5. 
Therefore we choose the optimal retention level as a*(x)  =  N for x  >  x5 and 
a*(x)  =  a(x) for x  ≤  x5. Using the same arguments as in the previous subsec-
tion we can write c(x) as 

 (
(

x

5

x

x y

x

) ( 0 ,

) ,
,aexpK ds dy K x x

K g y dy K x x
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3 0 0 4 5
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#
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=
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- +

s)d n
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\

]]

]]

# #

#
 (5.16)

where g is defi ned by (5.9). The continuity of c(x) and c�(x) and the boundary 
conditions (3.2), (3.3) yield 

 K4  =  1 (5.17)

and

 K2  =  1  –  h1 K3, K1  =  K3 h2, K2  =  K1 h3 ,

where
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Solving for Ki, i  =  1,  2,  3, we have 

 , , .K h h h
h

K h h h
h h

K h h h
1

1
1 2 3

2
2

1 2 3

2 3
3

1 2 3
=

+
=

+
=

+
 (5.18)

We remark that h3 is fi nite if  and only if  (5.4) holds.

Theorem 9. Supposed that N  >  h(0) and (5.4) holds. The function c(x) defi ned 
by (5.16) with Ki, i  =  1,  ···, 4 given by (5.17)-(5.18). Then c(x) is a convex 
decreasing twice differentiable solution to (3.1) to (3.3). The optimal feedback 
control function a*(x) in this case is given by 

 (x)
( ) 0

,
,

a
a

x x x

N x x

<

>
5

5

#
=* *  (5.19)

where a(x) is the unique positive root of g(a, x) defi ned by (3.8).

When (5.4) fails, the same arguments as in Section 5.1 can be used to demon-
strate that Theorem 7 holds.

6. CONCLUSION

The quest for optimal reinsurance strategies has remained an active area of 
research among academics and practitioners in the last few decades. The profound 
interest in the design of reinsurance lies in its potential as a risk management 
and risk mitigating tool. This paper contributes to the literature by providing 
additional analysis on the use of reinsurance. In particular, we consider the 
optimal control problem of the insurance company with investment and rein-
surance. By minimizing the probability of ruin of an insurer, we formally show 
that the optimal excess-of-loss reinsurance is always better than any other 
reinsurance. More importantly, we also give derive the optimal retention in the 
excess-of-loss reinsurance strategy and the explicit expression of optimal value 
function for the riskless and risky investment, respectively.
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