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SOME REMARKS ON DELAYED RENEWAL RISK MODELS
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ABSTRACT

Some extensions to the delayed renewal risk models are considered. In par-
ticular, the independence assumption between the interclaim time and the sub-
sequent claim size is relaxed, and the classical Gerber-Shiu penalty function 
is generalized by incorporating more variables. As a result, general structures 
regarding various joint densities of ruin related quantities as well as their prob-
abilistic interpretations are provided. The numerical example in case of time-
dependent claim sizes is provided, and also the usual delayed model with time-
independent claim sizes is discussed including a special case with exponential 
claim sizes. Furthermore, asymptotic formulas for the associated compound 
geometric tail for the present model are derived using two alternative methods. 
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1. INTRODUCTION

In risk theory, the ordinary (Sparre Andersen) renewal risk model is often used 
for modelling the insurer’s surplus process (see e.g. Gerber and Shiu (2005), 
Grandell (1991), Li and Garrido (2005), Willmot (2007), and references 
therein). This traditional ordinary renewal risk model has usually assumed 
that claim sizes are independent and identically distributed (iid) random vari-
ables independent of the sequence of iid interclaim times and a claim occurs 
at time 0. However, major diffi culties with these assumptions are raised in some 
cases. First, if  the time elapsed since the last event has an impact on the claim 
size of the subsequent event (e.g. catastrophe insurance), then this assumption 
may be a problem for describing the situation precisely. In recent years, several 
authors such as Albrecher and Boxma (2004), Badescu et al. (2009), Boudreault 
et al. (2006), and Cossette et al. (2008) have considered various dependency 
structures between the claim sizes and the interclaim times. Second, in some cases 
an event occurred some time in the past rather than at time 0 as implicitly 
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assumed in the ordinary renewal risk model. In other words, a business (or a 
system) might have been operating for some time before we start observing the 
process at time 0, and an event does not necessarily occur at time 0. Therefore, 
the delayed (Sparre Andersen) renewal risk model including the stationary 
renewal risk model may be alternative to enhance and improve the model to 
refl ect these circumstances by assuming different distribution of the time until 
the fi rst claim. Certainly, these modifi ed processes revert to the traditional ordi-
nary model upon the occurrence of the fi rst claim. For further details of the 
traditional delayed and stationary renewal processes, see Cox (1968,  Section 2.2), 
Grandell (1991), Rolski et al. (1999), Ross (1996, Section 3.5), and Willmot 
and Lin (2001, Section 11.4). Therefore, the model to be considered here is the 
delayed renewal risk model with time-dependent claim sizes which retains a 
form of general dependency structure. An application of this model, for instance, 
is to earthquake insurance. Since larger earthquakes occur less frequently, and 
also the last observed earthquake may be occurred in the past rather than in 
the present, specifi c time-dependent structure for the claim sizes as well as the 
occurrence of the last main shock before time 0 are necessarily considered for 
modelling. We illustrate an example of this in Section 4.1.

As in the ordinary renewal risk model, in the traditional delayed (stationary) 
renewal risk models, the classical Gerber-Shiu expected discounted penalty 
function introduced by Gerber ad Shiu (1998) has used for a unifi ed study of 
the ruin related quantities involving the time of ruin, the surplus prior to ruin 
and the defi cit at ruin (e.g. Willmot (2004), Willmot and Dickson (2003), Kim 
(2007), Kim and Willmot (2010)). However all these quantities are defi ned at 
the time when ruin occurs, and there is not enough information monitoring 
the process before ruin occurs. Therefore, in the present model (the dependent 
delayed renewal risk model), we study a generalized Gerber-Shiu penalty function 
considered by Cheung et al. (2010b) in the dependent ordinary renewal risk 
model. From this generalization which involves introducing new variables 
defi ned before ruin, namely the minimum surplus level before ruin and the 
surplus level near ruin (precisely after the second last claim), we study further 
ruin related quantities. The motivation for the analysis of quantities defi ned 
in relation to the time of ruin (such as the new variables introduced above) is 
essentially the same as that for the special case considered by Dufresne and 
Gerber (1988), namely the claim causing ruin. In particular, the event of ruin 
necessarily involves adverse fi nancial consequences, and any and all information 
associated with this event is useful for prediction and thus helping to contribute 
to sound risk management.

Here we briefl y review the traditional delayed renewal risk model fi rst. 
Suppose that an insurer’s surplus at time t is defi ned as {Ut;  t  ≥  0} with 
Ut  =  u  +  ct  –  i

t Yi 1= ,N/  and u  ≥  0 is the initial surplus. The number of claims 
process {Nt;  t  ≥  0} is assumed to be a renewal process, with V1 the time of the 
fi rst claim and Vi the time between the ( i  – 1)-th and the i-th claim for 
i  =  2, 3, 4,  …   having probability density function ( pdf  ) k(  t  ), distribution func-
tion ( df  ) K( t )  =  1  –  K(  t  ) and Laplace transform k( s )  =  (st k- t

3
) .e dt

0
#  It is 
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assumed that the distribution of the time ( from 0 ) to the fi rst event V1 is dif-
ferent from that of the others (Vi  ) having pdf k1( t ), df K1( t )  =  1  –  K1( t ) and 
Laplace transform k1( s )  =  (st k- t

3
) .e dt10

#  In the traditional delayed renewal risk 
model, it is assumed that {Vi }3i  =  1 is an iid sequence of positive random vari-
ables, and independent of the sequence of iid positive claim sizes {Yi}3i  =  1 with 
Yi the size of the i th claim. However, such independence assumption between 
{Vi }3i  =  1 and {Yi}3i  =  1 can be relaxed. More specifi cally, we suppose that 
{( Vi ,Yi )}3i  =  1 forms a sequence of iid bivariate random vectors distributed as a 
generic pair ( V,Y  ). In particular, the fi rst pair ( V1,Y1 ) has a different joint 
distribution from the other pairs ( Vi ,Yi ) for i  =  2, 3, 4,  …. Thus, for y  >  0, let 
the conditional distribution of  Y given V be Pt ( y )  =  Pr( Y  ≤  y |V  =  t )  =  1  –
Pt ( y ) with conditional density pt( y )  =  Pt�( y ). Then the joint density of ( V,Y  )
at ( t, y ) is given by pt( y ) k( t ). And the conditional distribution of Y1 |V1 is 
assumed to be P1, t ( y )  =  1  –  P1, t ( y ) and conditional density be p1,t ( y )  =  P�1, t ( y ). 
Premiums are paid continuously of rate c which is assumed to satisfy the posi-
tive security loading condition E [cV  – Y ]  >  0. We shall call such a model a 
dependent delayed renewal risk model, and for the remainder of the paper, the 
word ‘dependent’ is sometimes omitted for brevity. Clearly, when Pt( y ) and 
P1, t ( y ) does not depend on t, then the dependent renewal risk model reduces 
to the traditional delayed renewal risk model. 

Under the above-mentioned dependent delayed model ( or simply delayed 
model ), we are interested in some generalizations of the classical Gerber-Shiu 
function by incorporating additional variables into the penalty function as in 
Cheung et al. ( 2010b ) for the dependent ordinary model. To begin, let Td be 
the time to ruin defi ned by Td  =  inf{t  ≥  0   :  Ut  <  0} with Td  =  3 if  Ut  ≥  0 for all 
t  ≥  0, and d  ≥  0 is a discount factor. The classical Gerber-Shiu discounted pen-
alty function in the delayed model is defi ned by ( e.g. Gerber and Shiu ( 1998 ), 
Willmot ( 2004 ) )

 T Td
U,d d( ) ,m E e U T uI <,

T
12 12 0

d
d

3=d
d-

-u w =U ,` _j i9 C  (1)

where w12( x, y ) is a nonnegative function ( so-called penalty function ) for x  >  0, 
y  >  0, UTd

 – is the surplus prior to ruin, UTd
 is the defi cit at ruin, and I( . ) is the 

indicator function. Let us defi ne the minimum surplus before ruin occurs as
XTd

  =  inf0  ≤  s  < T Us, and the surplus immediately after the second last claim before
ruin as Y1T

T 1-

i= ( )R uN i i1
d

d= + --

N
cV/  to be occurs if  NTd

  >  1 and R0  =  u if  
NTd

  =  1. Corresponding to Equations 2 and 3 in Cheung et al. ( 2010b ), including 
these two variables in ( 1 ) respectively results in the generalized penalty func-
tions for the current model given by 

 T Td 1-T
U,d d

d( ) ,m E e w U T uI <T N 0d d d
3= =d -

Td- *u U* , R,X ,` _j i9 C  (2)

and 
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 T Td 1-T
U,d d

d( ) , .m E e w U T uI <T
N 0d d

3= =d
d-

-u U, R` _j i9 C  (3)

Using ( 2) and ( 3) we can analyze the last ladder height before ruin YNTd
   = 

XTd
  +  |UTd  

| and the last interclaim time N Td 1-T
RN( ) .V cTd d

= -U /-  See Cheung 
et al. ( 2010b ) for the ordinary model. If  w*  /  1 or w  /  1 in (2 ) or ( 3 ) respec-
tively, the Gerber-Shiu funtion is reduced to 

 ,dG ( ) ( ) |E e U uI <T
d 0

d 3= =d
d-u T ,8 B  (4)

and again ( 4 ) with d  =  0 is equivalent to the ruin probability in the delayed 
model denoted by cd( u )  =  Pr( Td  <  3 | U0  =  u )  =  Gd, 0( u ). In what follows, the 
notations without superscript or subscript ‘d ’ indicate the same quantities but 
defi ned in the ordinary renewal risk model.

This paper is organized as follows. In Section 2, it is demonstrated that the 
Gerber-Shiu functions in ( 2 ), ( 3 ) and ( 4 ) may be expressed in terms of  the 
same quantities in the ordinary renewal risk model. Given these results, in 
Section 3, the discounted joint densities of  four variables in the penalty func-
tion defi ned in (2) are derived using the results in the ordinary risk model. 
Interestingly, examination of  the discounted joint densities of  the three vari-
ables except for XTd

 from the previous one with U0  =  0 is suffi cient to obtain 
any other quantities of  interest involving those four variables. Therefore, the 
general form of these joint densities are studied subsequently. In Section 4, 
we consider some examples assuming specifi c claim sizes. For the case of 
time-dependent claims we assume earthquake insurance and compare the last 
ladder height under the present model to the ordinary renewal risk model. 
In addition, we also consider the usual delayed model with time-independent 
claim sizes including exponentially distributed claim sizes with arbitrary inter-
claim times. Finally, some asymptotic results with regard to ( 4 ) are the subject 
matter of  Section 5.

2. GENERAL STRUCTURES

To begin the analysis, we fi rst defi ne the joint density of the time of ruin ( t ), 
the surplus prior to ruin ( x ), the defi cit at ruin ( y ), and the surplus immedi-
ately after the second last claim before ruin occurs ( v ) in the delayed model, 
given U0  =  u. If  ruin occurs on the fi rst claim, then the surplus ( x ) and the 
time ( t ) are related by x  =  u  +  ct, or equivalently t  =  ( x  –  u ) / c. Therefore, the 
joint defective pdf of the surplus ( x ) and the defi cit ( y ) is given by 

 yu( , | ) ), , 0,h x y u c c
x u p x x u y1 > >,

d

c1 1 1=
-

+-k x (d n  (5)
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and in this case 1-TN d
R  equals u. If  ruin occurs on the second or subsequent 

claims, there is no such linear relationship between the time of ruin and the 
surplus prior to ruin, and we simply let h2

d( t, x, y, v | u ) be the joint defective 
pdf of  T 1Td

,d -T
U( ,T U Nd d

- ), R  for ruin on subsequent claims. From Cheung
et al. ( 2010b ), these joint defective densities in the ordinary renewal risk
model with dependent structure are respectively defi ned by h1( x, y | u )  =
c  –1k( )c

x u-   p( x  –  u ) / c ( x  +  y ) for x  >  u, y  >  0, and h2( t, x, y, v | u ). Also, ‘‘discounted” 
joint densities of h1

d  and h2
d  are respectively defi ned as 

 u
ud

u ( | ),h e h,

)
d c
1 1=

-
-(

d( | )
x

d ,x y ,x y  (6)

and 

 u d- t3
( | ) ( |h e h u,

d d
2 0 2=d ,tv , , ) .x y v dt, ,x y #  (7)

Then the discounted joint density of the surplus and the defi cit is given by 

 uu u
x

( , | ) | ) |h x h h, ,
d d d

1 20
=d (y +d y d (, ) .x dv, ,x y v#  (8)

We now employ the arguments of Gerber and Shiu ( 1998 ) to obtain an expres-
sion for m*

d, d ( u ) in ( 2 ) as below ( e.g. Gerber and Shiu ( 1998, 2005 ), Li and 
Garrido ( 2005 ), Kim ( 2007 ), Kim and Willmot ( 2010 ), Willmot ( 2007 ) ).

Proposition 1. In the delayed renewal risk model with time-dependent claim 
sizes, the Gerber-Shiu function m*

d, d ( u ) defi ned by ( 2 ) may be expressed as 

 y), ,d d, ,d d
u

f ( ( ,m m f dy v
0

= - +d d d
) ) )

d d( ) ) ( )u u y u#  (9)

where 

 
( , ,

, ,

u u u

u u v u+

,d

x

33
, ) | )

( , ) | )

v w x u h

w x u h dv dxdy

0

0

,

,

d

u

d

10

20

= + -

+ + -

d

d

)

)

d (

(

( ) ,u x y)

, ,

y

y x y v

$

0

##

#
 (10)

interpreting as the contribution due to ruin on the fi rst drop.

Proof: By conditioning on the fi rst drop in surplus below u, we get the follow-
ing equation for m*

d, d ( u )

 
y),

,

d

d

3

3

u

x

(

.

m m h

h dy v

,

,

d

d

0 10

200

= -

+ +

d
) )

)

d d

d

( )

( , , | ) ( )

u u

x y v dvdx u0d

( | )dx0,x y&

0#

# #

#
 (11)
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Let us defi ne 

 0,d

33
f | ) ,h dxdyd

00
=d d ( y,x##  (12)

and 

 0,d
3

d
d

f( ( | ) ,f h dx1
,d 0

=d
d

)y y,x#  (13)

which allows m*
d, d ( u ) in ( 11 ) to be expressed as (9 ). ¡

As is evident in what follows, the expression ( 9) is simplifi ed in some special 
cases. See Cheung et al. ( 2010b ) in the ordinary Sparre Andersen models with 
dependency. If  w*( x, y, z, v )  =  w( x, y, v ), ( 9 ) becomes 

 y) ,d
u

f ( ,m m f v, , ,d d d0
= +d d(d ( ) ) ( )u y dy u-d du#  (14)

where 

 
,u

( ,u u

v u+

wd ,

,

1

2

,

h
x

33
, ) | )

( , ) | ) .

v x u h

w x u dv dxdy

0

0

d

u

d

0

0

= + -

+ + -

d

d

d (

(

( ) ,u x y

, ,

y

y x y v

$

0

##

#
 (15)

Also, if  w*( x, y, z, v )  =  w23( y, z ), then from ( 8 ), ( 12 ) and (13 ), ( 9 ) and ( 10 ) 
respectively simplify to the form which is only dependent on the ladder height 
density, and therefore the distribution of the last ladder height XTd

  +  |UTd  
| is 

obtainable from the generic ladder height distribution ( e.g. Cheung et al. 
( 2010b, Equation 31 ) ). Further, if  w*( x, y, z, v )  =  1, ( 4 ) satisfi es 

 y,d ,d ,d
u

G Gf f( ) ( ) (u f, ,d d0
= - +d d dud d)y dy ( ),uF#  (16)

where f, ,d d
3

( ) ( ) .u y dy
u

=d dF #

3. ASSOCIATED DEFECTIVE DENSITIES

In this section, we study, using the integral relationship result of  m*
d, d ( u )

given by ( 9 ), the discounted joint densities of various variables in the penalty 
function. We begin with a discussion of  the discounted joint density of

T 1Td
, -T

U( U T Nd d d
- , ,X .)R

Corollary 1. In the delayed renewal risk model, the discounted joint density of 
T 1Td

, -T
U( U T Nd d d

- , ,X )R  at ( x, y, z, v ) is defi ned as follows:
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(1) If ruin occurs on the fi rst drop caused by

(a) the fi rst claim:
  hd

1, d  ( x  –  u,  y  +  u | 0 ) for x  >  u,   y  >  0,   z  =  u, v  =  u, and 

(b) claims other than the fi rst:
 hd

2, d  ( x  –  u,  y  +  u, v  –  u | 0 ) for x  >  u,  y  >  0,  z  =  u, u  <  v  <  x.

(2) If ruin occurs on the second drop caused by

 (a) the next claim after the fi rst drop:
  ƒd, d fd, d ( u  –  z ) h1, d ( x  –  z, y  +  z|0 ) for x  >  z, y  >  0,  0  <  z  <  u, v  =  z, and

  (b) subsequent claims after the fi rst drop: 
  ƒd, d fd, d ( u  –  z ) h2, d ( x  –  z,  y  +  z,  v  –  z |0 ) for x  >  z,   y  >  0,   0  <  z  <  u,
  z  <  v  <  x.

(3) If ruin occurs on drops (other than the fi rst two drops) caused by

 (a) the next claim after the drop: 
  { Òz

uƒd, d fd, d ( u  –  l )gd( l  –  z ) / ( 1  –  ƒd ) dl} h1, d ( x  –  z,  y  +  z |0 ) for x  >  z,
  y  >  0, 0  <  z  <  u,  v  =  z, and 

  (b) subsequent claims after the drop: 
  { Òz

uƒd, d fd, d ( u  –  l )gd( l  –  z ) / ( 1  –  ƒd ) dl}h2, d ( x  –  z,  y  +  z,  v  –  z|0 ) for x  >  z,
  y  >  0,  0  <  z  <  u,  z  <  v  <  x.

Proof: First, with a choice of w*( x, y, z, v )  =  e– s1x  –  s2y  –  s3z  –  s4v as in ( 2 ), from (9 ) 
and ( 10 ) the Gerber-Shiu function satisfi es 

 s u-)y,d d

u
f ( ( ),m m f e v u, , ,d d d0

3= +) )
d ( )y dyd d( )u du -#  (17)

where vd, d ( u ) from ( 15 ) is given by 

 
h

h,d
33

x

, | 0)

, , | 0) .

v e e

e u dv dxdy

u u

u u

,

,

s x s y

u

d

s u

u

d

0 1

2

1 2 4

4

= +

+ - + -

- -

- (

d

vd

s u-( )u (

x y

-d yx$

0

##

#
 (18)

Using the expression for m*
d ( u ) given by Cheung et al. ( 2010b, Section 3 ) leads 

the integral on the right-hand side in (17 ) to 

,l | )e h y l dxdy0- +
x l (

s x s y s l s v- - - -

s s y s s l- - - -y x)

,

m

zh ,1

2 3
33

33

33

u u

x

f

f

( ( )

, , | )

( | )
( )

f y dy

e h l l l dvdxdy

e y z
g l z

dxdydz

0

0 1

, , ,

,

d d l

ll

s x s y s z s z

z

l

0 100

20

00

1 4

1 2 3 4

1 2 3 4

=

+ +

+ - +
-
-

d
d

d- - - -

)
d - d d

d

x

(

ud

y v- -x

:

( 2

#

#

#

# ##

##

##
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l

, ,z zh ,2

33

f

f

( | )
( )

( ) .

e v z
g l z

dvdxdydz

dl

0 1

, ,

s x s y s z s v

z

x

z

l

d d

00
1 2 3 4+ - + -

-
-

-

d
d

d

d

- - - - y

d

x

uf

G( 2####

 
(19)

Combining the above and (18 ) with a multiplication of e–s3u yields the Laplace-
Stieltjes transform of T 1Td

,d -T
U( , .U T Nd d d

-T , ),RX  With an interchange of the 
order of  integration followed by Laplace Stieltjes transform inversion with 
respect to ( s1,  s2,  s3,  s4 ), Corollary 1 is proved. We distinguish between the three 
cases according to the number of drops causing ruin. If  ruin occurs on the 
fi rst drop in surplus below an initial level u, then there are two possibilities; 
ruin occurs on the fi rst claim or the subsequent claims. The second term on the 
right-hand side in ( 17 ), namely e–s3u vd, d ( u ) represents these two cases. Hence 
from ( 15) with w( x, y, v )  =  e – s1x  –  s2y  –  s4v, it follows that 1( a ) and 1( b ) are 
obtained respectively. If  ruin occurs not on the fi rst drop, then these cases are 
explained by the integral terms on the right-hand side in (17 ). Thus from ( 19 ), 
we can obtain four different situations corresponding to ruin on the drop 
( second or subsequent to this ) caused by the ( next or not next ) claim after the 
drop. And the joint densities in these four cases are given by 2( a ),  2( b ) and 
3( a ),  3( b ) respectively. See Figure 1 for graphs depicting the six different cases 
contributing to this discounted joint densities. ¡

Note that probabilistic interpretations for the above cases are also available. 
For example, in cases 3(a ) and 3( b ), ƒd, d  fd, d ( u  –  l ) appears in common which 
can be interpreted as the size of the fi rst drop being ( u  –  l ) not causing ruin. 
After this fi rst drop, the surplus process is same as the ordinary process with 
an initial surplus l. This is followed by an arbitrary number of  drops (≥  1) 
which brings the surplus process from l to z, as explained by the term gd ( l  –  z ) /
( 1  –  ƒd ). Here, l is arbitrary for z  <  l  <  u and with a level of surplus z, ruin 
immediately occurs on the next claim represented by h1, d for 3( a ) or on the 
subsequent claim represented by h2, d for 3( b ).

Furthermore, we know that fd, d in (12 ) and fd, d ( y ) in ( 13 ) can be obtained 
by hd

2, d ( x, y, v | 0 ) since hd
1, d ( x, y | u ) is readily known by using ( 5 ) and (6 ). There-

fore, from Corollary 1, note that hd
2, d ( x, y, v | 0 ) is suffi cient to obtain the joint 

densities of four variables in the penalty function under the delayed risk model 
as in the ordinary risk model ( see Cheung et al. ( 2010b ) ). Thus, we derive this 
discounted joint density in the following corollary.

Corollary 2. In the delayed renewal risk model, the discounted joint density of 
T 1Td

, -T
U( U Nd d

- , )R  at ( x, y, v ) is defi ned as:

 hd
2, d ( x, y, v | u )   =   h1, d ( x, y | v )  zd ( u, v ),  0  <  v  <  x,   y  >  0, (20)

where 
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 (A , )u z
3

( , ) ( , ) ( , ) ,u v A u v z v dz
0

tz = +d d d d#  (21)

and 

 
(

(

z t

z t

,

,( u

d

d

3

3( , )
( ) ), 0

( ) ),
.A u z

e p u ct dK z u

e p u ct dK z u

<

>

<

)

t
t

t
tz

1 1

1 1

0
=

+ -

+ -
d

-

-

- /c

Z

[

\

]]

]]

#

#
 (22)

FIGURE 1.
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Proof: By conditioning on the time and the amount of the fi rst claim in order 
to identify the components in ( 14 ), we have 

 ,d,d
3

( ) ( ) ( ),m u e u ct dK t,d
t

t 10
b s= + +d

d-( )ud #  (23)

where y)( ) ( ( )x m dP y, ,t t
x

10
s = -d d x# , and 

 ,ct(w u -td-3 3
, ) ( ) ( ) .u ct u dP y dK te, ,d tu ct0 1 1b = + -

+
( )ud y# #  (24)

In other words, by using ( 6 ), (24 ) may be rewritten as 

 
d-

u,d
33

( , , ) ( , | ) ,e w x y u h x y dydxc
x u

d

u 10
b =

-

d ( )u
d n##  (25)

or equivalently u,d
33

( , , ) ( , | ) .w x y u h x y dydx,
d

u 10
b = dd ( )u ##  Note that bd, d ( u ) 

may be interpreted as the contribution to the penalty function due to ruin on 
the fi rst claim. Since md, d ( u ) in (3 ) is an expectation, it follows directly that it 
may be represented as 

 x

33

33

( ) ( , , ) ( , | )

( , , ) ( , , | ) .

m u w x y u h x y u dxdy

w x y v h x y v u dvdydx

, ,

,

d
d

u

d
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0 200
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+

d d

d

#

#

#

##
 (26)

then using (25 ) it may be reexpressed as 

 
33 x

( ) ( ) ( , , ) ( , , | ) .m u u w x y v h x y v u dvdydx, , ,d d
d

0 200
b= +d d d# ##  (27)

Then, comparing ( 23) and (27 ) followed by a change of integration leads us to

ct,

,

t

1

d (

(

sd

d

333

33

x
( , , ) ( , , | ) ( )

( ) ( ) ( ) ( , ) ,

w x y v h x y v u dvdxdy e u dK t

e m z p u ct z dz dK t m z A u z dz
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d t

t
t

u ct

0 2 1000

0 1 00
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d

d d d

-

- +

)

)' 1

# # ##

# ##
 (28)

where Ad ( u, z ) given by ( 22 ). Similar to ( 26), md ( u ) is also be expressed in 
terms of the joint defective densities and thus we get

 
x

3 333
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When w ( x, y, v )  =  e – s1x  –  s2y  –  s3v on the left-hand side of (28 ) and on the above 
equation, equating coeffi cients of e – s1x  –  s2y  –  s3v results in 

 
v

z|

u
3

( , , | ) ( , | ) ( , )

( , , ) ( , ) , 0 , 0.

h x y v h x y A u v

h x y v A u z dz v x y< < >

, ,

,

d
2 1

20

=

+

d d d

d d#
 (29)

But h2, d ( x, y, v| z )  =  h1, d ( x, y | v ) td ( z, v ) for 0  <  v  <  x ( explicit forms for td ( z, v ) 
under certain assumptions on the interclaim time and its probabilistic inter-
pretations are provided by Cheung et al. ( 2010a ), and Willmot and Woo ( 2010 ) ), 
we may express ( 29) as ( 20 ). ¡

As with td ( u, z ), the function zd ( u, v ) in (21) can also be probabilistically inter-
preted in the following manner. If  

T
,R vN 1

d
=-  the delayed process starting 

with an initial level u should reach the surplus level v, just after the second last 
claim before ruin. This transition from u to v in the current process is repre-
sented by the function zd ( u, v ) as seen from ( 20 ). However, since the fi rst pair 
( V1,Y1 ) is assumed different from the other pairs, zd ( u, v ) may also be obtained 
by conditioning on the time and amount of the fi rst claim which is expressible 
in terms of Ad ( u, z ) in ( 22 ). By the defi nition of hd

2, d, ruin occurs at NTd
  ≥  2 and 

thus if  NTd
  =  2 then the process would be at level v after the fi rst claim explain-

ing the term Ad ( u, v ). Otherwise, for NTd
  >  2, the process would be at some 

arbitrary level z after the fi rst claim and then moves from z to v like in the 
ordinary process with Ad ( u, z ) td ( z, v ).

Moreover, using Corollary 2 results in an alternative representation for 
md, d ( u ) as follows.

Corollary 3. In the delayed renewal risk model, the Gerber-Shiu function md, d ( u ) 
defi ned by (3 ) satisfi es 

 
3

( ) ( ) ( ) ( , ) ,m u u v u v dv, ,d d 0
b b z= +d d d d#  (30)

where bd, d ( u ) given by (25 ), bd ( u ) is defi ned as bd, d ( u ) but with hd
1 ( x, y | u ) replaced 

by h1( x, y | u ), and zd ( u, v ) given by ( 21 ).

Proof: Substitution of ( 20 ) into ( 27 ) directly yields the above result. ¡

We point out that Corollary 3 also makes sense intuitively based on the num-
bers of the claims which causes ruin. If  ruin occurs on the fi rst claim with an 
initial level u, this case may be represented by bd, d ( u ). Or if  the process fi rst 
moves from u to v after an arbitrary number of claims (≥  1) followed by ruin 
on the subsequent claim from an initial level v, this case may be represented 
by zd ( u, v ) bd ( v ). In particular, for the ordinary model we know that there is no 
difference between zd ( u, v ) and td ( u, v ) while bd, d ( u ) is equivalent to bd ( u ), so 
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that ( 30 ) is reduced to md ( u )  =  bd ( u )  + ( )vb
3

d0
# td ( u, v ) dv ( e.g. Cheung et al. 

( 2010a ) for the classical Poisson risk model, Willmot and Woo ( 2010 ) for the 
traditional ordinary renewal risk model with a Coxian class of the interclaim 
time distributions ).

In particular, we may readily fi nd some ruin related quantities with appro-
priate choices of  the penalty functions in ( 30 ) since only bd, d ( u ) and bd ( u ) 
contain the penalty function. For example, if  w ( x, y, v )  =  e  –  s( x  –  v ) / c, we have 
the Laplace transform of NT

V
d
 given by md, 0 ( u ) in ( 3 ). In this case, with ( 24 ) 

and b0 ( u )  =  e st3 -

0
# k( t ) Pt( u  +  ct )dt, inverting with respect to s followed by 

dividing by the ruin probability cd ( u ) yields the proper density of NT
V

d
 |Td  <  3 

( denoted by hd
V ) given by

 hd
V  ( t | u )  =  a1, u ( t ) k1( t )  +  a2, u ( t ) k( t ),  t  >  0,

where a1, u ( t )  =  P1,t ( u  +  ct ) / cd ( u ) and a2, u ( t )  =  { z
3

d0
# ( u, v ) Pt( v  +  ct ) dv} / cd ( u ).

In addition, we may obtain bounds for the last interclaim time when P1,t ( y )  =  
Pt( y )  =  P( y ) as follows. First, defi ne Hd

V  ( t | u)  =  Vhd3

t
# ( y | u ) dy and introduce 

two reliability classes, a new worse ( better ) than used or NWU ( NBU ) ( i.e. 
K1( x  +  y )  ≥  (≤) K1( x )  K1( y ) for x, y  ≥  0 ). See Barlow and Proschan ( 1981 ). From 
Cheung et al. ( 2010, Theorem 7 ), if  K1( t ) is NWU ( NBU ), K1( t )  ≥  (≤) K( t ) for 
t  >  0, and there exists a function F( y ) on [0, 3) such that P( x  +  y )  ≤  (≥) P( x )
F( y ) for x, y  ≥  0, then the survival function of NT

V
d
|Td  <  3 satisfi es Hd

V  ( t | u )  ≤  (≥) 
F( ct ) K1( t ). Depending on the properties of P( y ), Cheung et al. ( 2010 ) pro-
vided three possible choices of F( y ).

We next turn our attention to the last ladder height =
T TX +YN Td dd

U . As 
mentioned previously, if  w*( x, y, z, v )  =  w23 ( y, z )  =  e – s( y  +  z ) in ( 9 ) and ( 10 ), with 
the aid of  the Laplace transform of the last ladder height in the ordinary 
model given by Cheung et al. ( 2010b ), inverting with respect to s yields the 
defective discounted density of NY

Td
 ( denoted by fd, d ( u,y ) ) given by 
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f
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d
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=
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- +

d
d

d
d d d

d

d
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B
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[

\

]
]

]
]

 (31)

Then the proper survival function NY
Td

 given that ruin occurs denoted by 
F*

d, u  ( y ) can be obtained as fy ( , )u x,d 0
3# dx / cd

 ( u ). Clearly, in the ordinary model 
( 31 ) reduces to Equation 31 in Cheung et al. ( 2010b ).

In the following section, we illustrate a numerical example in case of the 
time-dependent claims in the delayed model which contains a comparison of 
the last ladder height with the ordinary model. And the usual delayed model 
with the time-independent claims is also presented.
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FIGURE 2.

4. EXAMPLES

4.1. Time-dependent claims: Earthquake insurance

Let us consider the dependency model in Boudreault et al. ( 2006 ), namely the 
conditional density pt ( y )  =  e – bt f1(y )  +  ( 1  –  e – bt ) f2 ( y ) for y  >  0 where f1 and f2 
are proper densities. Suppose that f1( y )  =  2.5e  –  2.5y, f2 ( y )  =  0.5e  –  0.5y, b  =  1/3, 
and k( t )  =  te – t ( i.e. Erlang ( 2 ) interclaim times ) with c  =  2 and d  =  0. In this 
example, if  the interclaim time t is large then the time-dependent claim size 
distribution pt ( y ) is more likely to be determined by f2 than f1. Here, if  the last 
earthquake before time 0 has occurred 5 years ago, we simply let k1( t )  = 
k( t  +  5 ) / K( 5 ) be the residual lifetime distribution corresponding to k( t ) and 
p1,t ( y )  =  pt  +  5 ( y ). Then from Woo ( 2010 ) f0, F0( y ) and c( u ) can be computed, 
and in turn an application of Equation 32 and Box I in Cheung et al. ( 2010b ) 
gives F*

u   (y ) ( the proper survival function of  the last ladder height in the 
 ordinary model ). For the present model, if  w( x, y, v )  =  w2 ( y ) and u  =  0 in ( 23) 
and (24 ), we may obtain the defective density of the defi cit as hd

0 ( y | 0 )  =  c
1   k1

z( ( ( ) ( ) ( )h p ct z k t dzdt, ,c
x u ct

t1 000 1 1c
x u ; -

3-
-P) )y + y##  where h0 ( y | z ) is the same

as hd
0 ( y | u ) but defi ned in the ordinary model. With this hd

0 ( y | 0 ), from ( 12 ) and 
(13 ) we get fd, 0 and Fd,0 ( y ), and hence cd

 ( u ) from ( 16 ). Then with the aid of 
( 31 ) one ultimately fi nds F*

d, u ( y ). When u  =  0.5, the comparison of F*
d, u ( y ) with 

F*
u    ( y ), and also with the generic ladder heights Fd,0 ( y ) and F0( y ) is summa-

rized in Figure 2. In the graph, ‘D’ and ‘O’ indicates the delayed model and 
the ordinary model respectively.
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From Figure 2, there is a distinctive difference among the four ladder
heights of our interest. In particular, they can be ordered as F*

d, u ( y )  ≥  F*
u    ( y )  ≥  

Fd,0 ( y )  ≥  F0( y ). We remark that the stochastic ordering F*
u    ( y )  ≥  F0( y ) has

been proved by Cheung et al. ( 2010b ) in the ordinary model. More interestingly, 
under this dependent structure, we may conclude that the insurer is more likely 
to face the larger severity ( drop under the minimum surplus level ) in the delayed 
model compared to the ordinary model. In other words, with the model having 
no adjustment for the pair of the fi rst event ( i.e. ordinary model ), the insurer 
may suffer bigger loss than expected. In addition, we can also check that 
cd ( u )  ≥  c( u ) for u  ≥  0, and the difference between these ruin probabilities may 
not be signifi cant for a large u. The details are omitted here.

4.2. Time-independent claims

As in Cheung et al. ( 2010b, Section 5 ), the results in Section 2 and 3 may be 
simplifi ed in case of the usual delayed Sparre Andersen model without depend-
ency. The details are given in the Appendix. Here, we may obtain the joint 
Laplace transform of the fi ve variables T 1Tdd , -T

U( , U T Nd d d
-T , ,X )R , namely 

m*d, d ( u ) in ( 2 ) with a proper choice of  the penalty function, if  claim sizes
are exponentially distributed. Under the ordinary renewal risk model, this quan-
tity was studied by Cheung et al. ( 2010b, Section 5 ). By using the results 
therein, the joint Laplace transform of those fi ve variables under the delayed 
renewal risk model is revisited. Suppose p1( y )  =  p( y )  =  be – by, with w*( x, y, z, v )  =  
e – s1x  –  s2y  –  s3z  –  s4v, we may fi nd 

m*d, d ( u )   =   Cd, d ( s1, s2, s3, s4 ) ( s1  +  s3  +  s4 )  e
– ( b  +  s1  +  s3  +  s4 ) u

 (32)
                +  Cd ( s1, s2, s3, s4 ) fd, d   be–b ( 1 –  fd ) u,

where

 (33)

b

(

f

,d

b

f

(

(,d d

f k

k

( , , , )

) ( ) ( ) )

) ( ) ( ) ( , )
.

C s s s s

s s s s s s s s s c cs cs

c cs s s s s s c cs k s s

1 2 3 4

2 1 3 4 1 3 4 1 4 1 4

3 1 1 3 4 1 4 1 1 1 4

b b d b

b d b b d b b
=

+ + + + + + + + + + +

+ + + + + + + + + +

d

d

d ds k _ i8 B

#

#

-

-

See the Appendix for the details of deriving ( 32 ) and ( 33 ). For example, we 
may readily obtain the Laplace transform of T 1dN /= -T

(V cNTd d
- -U R )  with the 

choice of s1  =  s/c, s4  =  – s/c, and d  =  0 from ( 51 ) with (47 ), ( 52) and (58 ) as 

    
ub b

N u

f(1- s-s s -

sV

) )

-

f
k

k
k

k k k

[ ( ) | ]

(
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(
( ( ( ) (

,
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c
e
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c

e

I <

,

d

d
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0

0
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 (34)
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and inversion (34 ) with respect to s followed by dividing by cd ( u )  =
 fd, 0  e

– b (1 –  f0 )u yields the proper density of  TVN d
 in the delayed renewal risk 

model as a mixture of Esscher transformed distributions of K1( t ) and K( t ), 
namely hd

V  ( t | u )  =  ( 1  –  au  ) ke( t )  +  au k1, e( t ) with au  =  k1( cb ) e  – bu / cd ( u ), ke( t )  =
e – cbt k( t ) / k( cb ), and k1, e ( t )  =  e – cbt k1( t ) / k1( cb ). Since k1( t )  =  k( t ) and fd, 0  =  f0 
for the ordinary renewal risk model, the second term on the right-hand side of 
( 34 ) is cancelled out and thus the result agrees with Cheung et al. ( 2010b ).

5. ASYMPTOTIC RESULTS

In this section, we consider asymptotic results regarding the compound geo-
metric tail in the delayed renewal process, consequently ruin probabilities are 
also obtained. First, suppose that kd  >  0 is the adjustment coeffi cient satisfying

e y3 kd

0
# fd ( y ) dy  =  1/fd, then we know that the asymptotic result for the com-

pound geometric tail for the ordinary model is given by ( e.g. Willmot and Lin 
( 2001, p. 158 ) )

 lim e Cu

u
=

"3

k
d d

d ( )uG

where (y dFf e y
3

f( ) ) ,C y

0

1
-d d d d

k
d

d= 1 k
-

: D#  and that 

 ,k( )u e u 0u# $d
- dG  (35)

by a Lundberg inequality. Here, suppose that p1,t (– kd )  =  ek y3 d

0
# dP1, t ( y )  <  3, 

implying that limx " 3  e kd xP1, t ( x )  =  0. Also, as ( 35 ) holds, by dominated con-
vergence it follows that
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Namely,

 C,td ( ) (lim We u ,u
u

1 k= -
"3

k
d d

d
tp ,)  (36)

where ,td ,1y, ,1 1W P( ) ( ) ( ) ) ( ) .u G P u u dP yt t
u

t0
)= = + -d d (uG#

Now, from ( 23 ) with w( x, y, v )  =  1, ( 4 ) has an integral expression as 

 ,tde cttd-3
W( ) ( ) ( .u u d,d 10

= +d tG K )#  (37)
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Since ( 36 ) holds which implies that ekd u  Wd, t ( u ) is a bounded function of u on 
( 0, 3 ). Thus, again by dominated convergence one fi nds from ( 37 )
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k( pV)d+ ) K7 A #
Hence,

 C k( ) , .u E e e u,
(

d
Y u1 1 " 3+d d

k - -d d dc Vd k+G )
7 A  (38)

In particular, for interclaim-independent claim sizes, i.e. p1, t ( y )  =  p(y ), we 
know that 

 ckk
c
c
k
k(

k
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11 1 = + =
+

+k d k
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- k)V d

d
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since kd satisfi es p( – kd )  k ( d  +  ckd )  =  1 ( see Cheung et al. ( 2010b, Section 4 ) ). 
Therefore, in this case ( 38 ) reduces to 

 
c
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k

k kd

k
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, .u e u,d
u1
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+
d

d

d - d
kG

d
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Further for d  =  0 we know that Gd, 0 ( u )  =  cd ( u ), and the asymptotic result for 
cd ( u ) from the above agrees with Theorem 11.4.3 in Willmot and Lin ( 2001 ).

Alternatively, we may directly obtain the asymptotic form in ( 36 ) by using 
the result for the tail of a compound geometric convolution Wd, t ( u ) which satis-
fi es the defective renewal equation ( see Willmot and Cai ( 2004 ) and references 
therein )

 y, ,d dt t f)
xW Wf f( ) ( ( ( ) (1 ) ( ) .x x dF x x,0 1= - + + -d d d d d tP)y F#

It is shown 
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k
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#
 (39)

Furthermore, from (16 ) it is clear that Gd, d ( u ) / fd, d is also the tail of a com-
pound geometric convolution, and thus if  fd, d (– kd )  =  ek y3 d

0
# dFd, d ( y )  <  3, the 

same argument used to drive ( 39 ) results in 
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 k uk-ff( ) ( ) ,u e u, , ,d d d " 3+d d d d d
d .CG -  (40)

Curiously, comparison of ( 38 ) with ( 40) results in the identity 

 k (f f ) E e, ,d d
Y c1 1=d d d

k d k- +d d V( )
- ,7 A  (41)

and obviously both sides of (41 ) equal 1 in the nondelayed case.
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APPENDIX

Here we demonstrate how to obtain m*d, d ( u ) in ( 2) in case of interclaim-inde-
pendent claim sizes. Suppose that p1,t ( y )  =  p1( y ), P1,t ( y )  =  P1( y ), and pt ( y )  = 
p( y ), Pt ( y )  =  P( y ). Then as in Gerber and Shiu ( 1998 ), the conditional density of 

TU
d

 given T 1d -T
U, ,t x vd N d

= =-T =R  for T ≥ 2N
d

 is given by p( x  + y ) / P( x ). 
By using this, one fi nds that the joint defective density of Td 1Td -T

,,T( U U Nd d
- , )R  

ad its discounted density as in Equation 53 and Equation 54 in Cheung et al. 
( 2010b ) ( for the ordinary model ). Thus in this case ( 7 ) may be expressed as
{ p ( x  +  y ) / P( x )} hd

( 2 ), d ( x, v | u ) where hd
( 2 ), d ( x, v | u ) is the discounted defective 

density of T 1d -,
T

U( N d
- )R  for T ≥ 2N

d
. Then, by substituting this expression for 

hd
2, d ( x, y, v | u ) into the integral on the right-hand side of ( 8 ) one may write 

 
( ) ( )

u
x

y
u

x
y

u
P P

( | )
( )

| )
( )

| ),h h h, ,
d d

1

1
1

1
2=

+
+

+
d d d

pd ( (
p

,x y
x x

x x  (42)

where 

 du (- ( )xP( | )h c e c
x u1

,
d c

x u

1 1 1=
-

d

-

x ) k d n  (43)

and  u uh
x

( | ) | ) .h dv, (2),
d d
2 0

=d d ( ,x vx #
Therefore, using ( 42 ), fd, d in (12) may be expressed as 

 0 0h h
33 3

f ( | ) ( | ) ,dydx dx,d
d d

000
= =d d d,x y x# ##  (44)

where hd
d  ( x | 0 )  =   hd

1, d ( x | 0 )  +  hd
2, d ( x | 0 ), and also fd, d ( y ) in ( 13 ) may be expressed 

as the mixed density ( e.g Willmot ( 2007 ), Kim ( 2007 ) )

   
( ) ( )x

y
x

y
,

,
d

1 00 33

P Pf f( )
( | ) ( ) ( | ) ( )

.f y
h

dx
h p

dx
, ,

,

d

d

d

d

0
1

1 2

0
=

+
+

+
d

d

d

d

dp x xx x
* *4 4# #  (45)

Furthermore, we illustrate how to derive (32) and ( 33 ). First, from Equation 66 
and Equation 67 in Cheung et al. ( 2010b ), we have 

   s( s f(1
+

b- -( )u
d f( ) ( , , , ) )u C s s s s s e s s s

1 2 3 4 1 3 4
1 3 4= + +d

b
d

- + + + d* ,m )u eb$ .  (46)

where 

s
s s

b
+

s f
f

k
k

( , , , )
( ) ( ) ( )

( ) ( )
.C s s s s

s s s s c cs cs
c cs

1 2 3 4
2 1 3 4 1 4 1 4

1 4 1

b d b
b b d b

=
+ + + + + + + + +

+ + +
d

d

d

b # -

 (47)
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In this case, v*d, d ( u ) in ( 10 ) can be obtained, by some simple algebra, as 

 ,d d
( 3( )

( , )
,v u s

s s
e,d s s s

2

1 4 1 4

b
bg

=
+

d b- + + +) )u  (48)

where 

 vs x s- 0cs -3 x
k( , ) ( ) ( | ) .s s c e h dvdx, ( ),d 1 4 1 1 200

1 4g b= + + +d d
d ,x vd ##   (49)

Then, combining (46 ) and fd, d ( y )  =  p( y )  =  be – by from (45), m*d, d ( u ) in ( 9 ) becomes 

   f (b ( )1- - )s s s ub- + + +f( ) ( , , , ) ( ),u s s s s e e v u, , ,d d
u

d1 2 3 4
1 3 4b= - +d d d d

d )* Cm # -  (50)

where v*d, d ( u ) is given by ( 48 ).
Next, gd, d  ( s1, s4 ) ( or the Laplace transform of hd

( 2 ), d ( x, v | 0 ) ) may be expressed 
in terms of the Laplace transform of the interclaim times as follows. We simply 
consider ( 50 ) and ( 48 ) with s2  =  s3  =  0,

   (f(1b- -b -f( ) ( , 0, 0, ) ( )m u C s s e e v u, , ,
)

, ,d d
s s u

d14 1 4 14
1 4= - +d d d

b
d

+ +d )u
# -  (51)

where 

 (-( ) ( , )u s s e, ,14 ,
)

d d
s s

1 4
1 4g=d d

b+ +v u  (52)

Then, from (23) and (24) with w( x, y, v )  =  e – s1x  –  s4v we get md, d, 14 ( u ) as 

 ct
3

( ) ( ) ( ) ( ),m u u e d t, ,14 , ,14 ,d d t0 1b s= + +d d d
td- u K#  (53)

where bd, d, 14 ( u )  =  k1( d  +  cb  +  cs1 ) e
– ( b  +  s1  +  s4 )u and sd, t ( x )  =  

x

0
m ,14d# ( x  –  y )

be – by dy. With substitution of (46 ) with s2  =  s3  =  0 into the above equation, the 
integral on the right-hand side of (53 ) becomes 

 (54) 
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Thus, combining the expression for bd, d, 14 ( u ) and (54 ) leads (53 ) to 
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But, with s1  =  s4  =  0, one fi nds Cd ( 0, 0, 0, 0 )  =  b  –1 from ( 47), and ( 49 ) reduces 
to gd, d ( 0, 0 )  =   k1( d  +  cb )  +  ,2 dh

0

3 d#  ( x | 0 ) dx  =  fd, d from (43 ) and ( 44 ). Conse-
quently, from ( 51 ) and ( 52 ) with s1  =  s4  =  0 we obtain ( 4 ) as 

 f(1b --f( ) ,u e, ,
)

d d
u

=d d
dG

where 

 (f fk c c,d 1 d b= +d db - ), (56)

from ( 55 ) with s1  =  s4  =  0 and u  =  0 ( e.g. Kim ( 2007 ) ). Evidently, in the ordinary 
model, Gd ( u )  =  fd  e

 – b(1 – fd )u with fd  =  k ( d  +  cb  –  fd cb ) ( e.g. Willmot ( 2007 ) ).
Now, equating ( 51 ) and ( 55 ) followed by rearranging yields 

 (57)

(

(

f(1b- - (
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(f f f
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.
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d
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1 4 1 1 1 4

1 1 1 4

1 4 1 4
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g d b b

d b b d b
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+ - + - + + +d

d
b b

d

d d
b

- + + - + +

- + +d

e e

e

) )

)

u u

u)-)9 C$ $. . 

Then, application of (56 ) to ( 57 ) followed by division by e – ( b  +  s1  +  s4)u leads to 

 c cs csb + +(c csb +( -fk k( , ) ) ( , , , ) ) .s s C s s0 0, ,d d1 4 1 1 1 4 1 1 4g b d= + + +d d dd $ .

In other words, using ( 47),

c csb+

c cs csb+ +

f ( c csb+ +

b

b

k

k
( , )

( )

( ) ( ) ) ( , )
,s s

s s

s s k s s
,

,
d

d
1 4

1 4 1 4

1 1 4 1 1 1 4g
b d

=
+ + +

+ + + +
d

d dk

d

d
 (58)

where kd ( s1, s4 )  =  k1(d + cb + cs1) k(d + cb + cs1 + cs4)  –  k(d + cb + cs1)  k1( d  + cb + 
cs1 + cs4 ). Finally, substitution of (48 ) into ( 50 ) together with the use of ( 58 ) 
yields ( 32 ). But above kd ( s1, s4 ) equals 0 in the ordinary model, ( 58) and ( 33 ) 
are equivalent respectively to Equation 65 and Equation 67 in Cheung et al. 
( 2010b ).
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