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OPTIMAL REINSURANCE REVISITED – A GEOMETRIC APPROACH

BY

KA CHUN CHEUNG

ABSTRACT

In this paper, we reexamine the two optimal reinsurance problems studied in 
Cai et al. ( 2008 ), in which the objectives are to fi nd the optimal reinsurance 
contracts that minimize the value-at-risk ( VaR ) and the conditional tail expecta-
tion ( CTE ) of the total risk exposure under the expectation premium principle. 
We provide a simpler and more transparent approach to solve these problems 
by using intuitive geometric arguments. The usefulness of this approach is fur-
ther demonstrated by solving the VaR-minimization problem when the expecta-
tion premium principle is replaced by Wang’s premium principle.
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1. INTRODUCTION

The problem of designing optimal ( re )insurance contracts has a long history, 
starting from Borch ( 1960 ), Arrow ( 1963 ), Mossin ( 1968 ), Smith ( 1968 ), etc. 
Most of the early analysis was based on the assumption that decision makers 
are expected-utility maximizers. In more recent research, other optimization 
criteria have been proposed. Combined with different premium principles, 
various optimality results of optimal ( re )insurance have been obtained. See 
for example Gerber ( 1979 ), Waters ( 1983 ), Goovaerts et al. ( 1989 ), Bowers et 
al. ( 1997 ), Young ( 1999 ), Schmitter ( 2001 ), Verlaak and Beirlant ( 2003 ), 
Kaluszka, ( 2001, 2004a, 2004b, 2005 ), Guerra and Centeno ( 2008 ), Balbás et 
al. ( 2008 ), amongst others.

In a recent paper by Cai et al. ( 2008 ), the authors studied the problems of 
minimizing the value-at-risk ( VaR ) and the conditional tail expectation ( CTE ) 
of the total retained loss under the expectation premium principle. The fi rst 
objective of this paper is to give an alternative way to analyze and solve these 
problems. A detailed description of the model is as follows. Fix an integrable 
non-negative random variable X which represents the loss initially assumed by 
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222 K.C. CHEUNG

the insurer. Its survival function is denoted as SX. Following Cai et al. ( 2008 ), 
we assume that SX is strictly decreasing and continuous on ( 0, 3 ), with a pos-
sible jump at 0. Let f  :  �+ "  �+ denote the reinsurance policy in which the 
reinsurer pays f ( x ) to the insurer if  the insurer suffers a loss of size x. The 
function f is called the ceded loss function. It is assumed that f is increasing 
and convex and satisfi es 0  ≤  f ( x )  ≤  x for x  ≥  0. The restriction that f ( x )  ≤  x is 
often referred to as an indemnity constraint. In Cai et al. ( 2008 ), the possibility 
that f  /  0 is excluded from consideration. However, we do admit this null 
function, which corresponds to the case that no reinsurance protection is pur-
chased, as a legitimate ceded loss function in the present analysis. The collection 
of all possible ceded loss functions is denoted as F.

Let df ( X ) be the reinsurance premium when f  ! F  is chosen. The total cost 
or the total retained loss Tf ( X ) of the insurer is the sum of the retained loss 
If ( X )  =  X  –  f ( X ) and the reinsurance premium df ( X ), that is, Tf ( X )  =  If ( X )  +  
df ( X ). In Cai et al. ( 2008 ), the reinsurance premium is determined by the 
expectation premium principle, so that df ( X ) =  ( 1  +  r ) �[ f ( X )]. Here, r is a 
positive constant known as the safety loading. A higher r means that reinsur-
ance is more expensive. The VaR and the CTE of a random variable Y at a 
confi dence level 1  –  a  !  ( 0, 1 ) are defi ned as

 y{ �a a a( ) : ( ) : ; ( )infS y >Y Y
1 #= = Y },-VaR

and

 Ya a( ) : ( ( ))� YY Y;= $CTE VaR

respectively. The optimal reinsurance problems studied by Cai et al. ( 2008 ) can 
now be formally stated as 

 (Xff
a( )min )

!
,

F
TVaR  (1)

and 

 
f (Xf

a( ) .min )
!

CTET
F

 (2)

Functions in F that minimize the above objective functions are called opti-
mal ceded loss functions. As in Cai et al. ( 2008 ), we henceforth assume that 
a  !  ( 0, SX( 0 ) ) to avoid trivial cases.

Cai et al. ( 2008 ) provided complete solutions to the above problems by 
complicated approximation and convergence arguments. They fi rst proved that 
every function in F can be approximated by the subclass F * of piecewise-linear 
increasing and convex functions of the form f ( x )  =  +d(j 1= )j j-c xn/  where 
cj  >  0, dj   ≥  0 with jc/   ≤  1. Then by utilizing some convergence properties of 
VaR and CTE, they proved that the optimal functions in the subclass F * also 
optimally minimize the VaR and CTE of the total cost in F. As a result, they 
can deduce optimal cede loss functions by confi ning attention to F *.
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In this paper, we present an alternative approach to solve the above optimal 
reinsurance problems. In the fi rst step, we use a simple geometric argument to 
show that optimal ceded loss functions must take the form f ( x )  =  c ( x  –  d )+. 
Since every such function is specifi ed by only two parameters ( the slope c and 
the deductible d ), the infi nite-dimensional optimization problems ( 1 ) and (2) 
are reduced to two-dimensional problems, which can be solved explicitly by 
standard calculus method. Using this approach, we can not only avoid com-
plicated convergence and approximation arguments but also gain geometric 
insight about the nature of  the optimal ceded loss functions. In Sections 2 
and 3 we study the VaR-minimization problem and the CTE-minimization 
problem respectively using this alternative approach. It is interesting to note 
that our approach remains applicable when the expectation premium princi-
ple is replaced by Wang’s premium principle. The problem of minimizing the 
VaR of the total cost under Wang’s premium principle is studied in Section 4. 
Concluding remarks are given in Section 5.

2. OPTIMAL REINSURANCE UNDER VAR RISK MEASURE

In this section, we solve ( 1 ), the VaR-minimization problem. Denote the objec-
tive function as H(  f  )   :=   VaRTf ( X )( a ). We rewrite H(  f  ) as follows:

 

(X r

r

rX X

(

f
�

�

a

a

a a

( ) ( ) ( ) [ )

( )) ( ) [ )

( ) ( ( )) ( ) [ )�

H f f

I f

S f f

f X

1 1

= + +

= + +

= - + +
- -

1

1

1S

VaR

)I ( ]

( ]

( ],

X

X

X

VaR

 (3)

in which the fi rst equality follows from the translation invariance property of 
VaR and the second equality follows from the fact that If is increasing and 
continuous ( c.f. Lemma A.1 of Cai et al. ( 2008 ) ). To simplify our notation, 
we write SX

– 1( a ) as a throughout this paper. Thus problem ( 1 ) can be rewritten 
as 

 
f f

r �( ) ( ) ( ) [ ) .min minf a f a f= - + +
! !

H 1
F F

( ]X" ,  (4)

The following lemma excludes the possibility that f is non-null but is identically 
zero on the interval [0, a].

Lemma 1. A ceded loss function f  !  F that is not null but identically zero on 
[0, a] is not optimal for problem ( 4 ).

Proof: Let f be such a function. Consider h   : =   2
1   f  !  F. Since H(  f  )  =  a  +

( 1  +  r ) �[ f ( X  )]  >  a  +  ( 1  +  r ) �[h( X )]  =  H( h ), f is not optimal. ¡
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224 K.C. CHEUNG

The situation depicted in Lemma 1 is described in Figure 1:

FIGURE 1: Geometric meaning of Lemma 1.

a 

f 

h=f/2

Because of this result, we assume in the remainder of this section that F does 
not contain non-null ceded loss functions that are identically zero on [0, a]. 
The next result shows that optimal ceded loss functions that minimize H must 
take the form fc,d ( x )  =  c( x  –  d )+  for some ( c, d )  !  [0, 1]   ≈   [0, a ). The collection of 
all such functions is denoted as G. Note that G  1  F, and G contains the linear 
function fc,0( x )  =  cx, x  ≥  0, c  !  ( 0,1], as well as the null function f0, d ( x )  /  0.

Lemma 2. Let f  !  F be a non-null ceded loss function. There always exists a 
function h  ! G such that H( h )  ≤  H(  f  ).

Proof: Let f+�( a ) and f–�( a ) be the right-hand derivative and left-hand deriva-
tive of f at a respectively. Let c be an arbitrary number in ∂f ( a ), the subdif-
ferential of  f at a, which is defi ned as the interval [  f–�( a ),   f+�( a )]. Then the 
straight line passing through ( a,  f( a ) ) with slope c constitutes a supporting line 
of  the convex function f, and hence always lies below the graph of  f. For 
details, see Section 23 of Rockafellar ( 1970 ). Since 0  ≤  f( x )  ≤  x for all x  ≥  0 and 
f is not identically zero on [0, a], we have c  !  ( 0,1]. Let d be the unique inter-
section of this straight line and the x-axis. Then d  =  a  –  f( a ) / c  !  [0, a ). Defi ne 
h( x )  =  c( x  –  d )+, x  ≥  0. Then h  !  G and f ( a )  =  h( a ). Hence

 H( h )   =   a  –  h( a )  +  ( 1  +  r ) �[h( X )]   ≤   a  –  f ( a )  +  ( 1  +  r ) �[  f ( X )]  =  H(  f  ).

Therefore, h is the desired function. ¡

The construction used in the proof of Lemma 2 is illustrated in Figure 2.
The geometric meaning of this lemma is clear. When minimizing H(  f  )  =  

a  –  f( a )  +  ( 1  +  r ) �[ f( X )], there are two opposing forces to consider. While the 
term  –  f ( a ) requires that f be as large as possible at a, the term ( 1  +  r ) �[ f ( X )] 
requires that the whole f be as small as possible. If  the value of f ( a ) is fi xed, 
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then f is forced to be a straight line passing through the point ( a,  f ( a ) ). Thus 
it suffi ces to consider the subclass G  1  F when solving problem (4 ). As every 
ceded loss function fc,d  !  G is completely specifi ed by parameters c and d, the 
problem can be solved by straightforward applications of calculus.

To state the main result of this section, we follow Cai et al. ( 2008 ) by defi n-
ing the following notation: r*  =  ,1

1
r+  d*  =  SX

– 1( r* ), and

 
* *

( (t tX Xx (xX
X

3 3
( ) ) , ( ) ( ) ) .g x x S dt u x S x S dt1 1

)S

1
1= + = +

-
-r r# #

Note that g( d*)  =  u( r*), and g( 0 )  =  ( 1  +  r ) �[X ].

The following theorem gives the solution to the VaR-minimization problem 
( 4 ). It is slightly different from the one presented in Cai et al. ( 2008 ) in that 
the null function is also included for consideration.

Theorem 1. For a given a ! ( 0, SX ( 0 ) ), the following statements hold true.

(a ) If r*  <  SX ( 0 ) and a  >  u( r* ), then the minimum value of H over F is g( d*), 
and the optimal ceded loss function is f *( x )  =  ( x  –  d*)+.

( b ) If r*  <  SX ( 0 ) and a  =  u( r* ), then the minimum value of H over F is g( d*), 
and the optimal ceded loss function is f *(x )  =  c( x  –  d* )+ for any constant 
c  !  [0, 1].

( c ) If r*  ≥  SX ( 0 ) and a  >  g( 0 ), then the minimum value of H over F is g( 0 ), 
and the optimal ceded loss function is f *( x )  =  x.

( d ) If r*  ≥  SX ( 0 ) and a  =  g( 0 ), then the minimum value of H over F is g( 0 ), and 
the optimal ceded loss function is f *( x )  =  cx for any constant c  !  [0, 1].

( e ) For all other cases, the minimum value of H over F is a, and the optimal 
ceded loss function is f *( x )  /  0.

FIGURE 2: Geometric meaning of Lemma 2.
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226 K.C. CHEUNG

Proof: We only prove ( a ) here. The proofs of the other parts are similar and 
are omitted. Let fc,d ( x )  =  c( x  –  d )+ with ( c, d )  !  [0, 1]   ≈   [0, a ) be a ceded loss 
function in G. Then 

 d (r tX,c
3

( ( ) ( ) ) .H f a c c S dtd d
- - + +1= a) #  (5)

To minimize H(  fc,d ) over all possible ( c, d ) in the region [0, 1]   ≈   [0, a ), we fi rst 
consider c  >  0. Taking partial derivative of H(  fc,d ) with respect to d on ( 0, a ) 
yields

 (c d,c r
(

1 ( )d
H f d

X2

2
= - +1 )

)
S ,7 A

which is increasing in d. So H(  fc,d ) is convex in d. Moreover, ,c(
d

H f d

2

2 )
  =  0 at

d  =  d*. Under the assumptions that r*  <  SX ( 0 ) and a  >  u( r* ), d*  =  SX
– 1( r* )  <  a. 

Thus H(  fc,d ) attains its minimum value at d  =  d* no matter what c is. So our 
two-dimensional minimization problem is equivalent to a repeated one-dimen-
sional minimization problem. Next we consider the derivative of H(  fc,d ) with 
respect to c:

 * () *t
*

*
Xr *+

,c 3

d

( )
( ( ) ) ( ) ( ) .c

H f
d S dt g a u a 0<d

2

2
= - - + = - = -da 1 r#

Thus the optimal value of c is 1, and hence the optimal ceded loss function is 
given by f1,d*. From ( 5 ), the corresponding value of H is

 *) (tr *
* Xd1,

3
( ( ( ) ) ( ) .H f a d S dt g= - - + + =*d 1a) d#

Now the result follows from the fi nal observation that if  c  =  0, then H(  f0,d )  =  
a  >  u( r* )  =  g( d* )  =  H(  f1,d* ) for every d  !  [0, a ). ¡

We illustrate the above result using a simple numerical example. Suppose that 
X is exponentially distributed with mean 1000, so that SX ( t )  =  e – 0.001t for t  ≥  0, 
SX

– 1( a )  =  – 1000  ln  a for 0  <  a  <  1, and SX (0 )  =  1. We consider the following 
cases:

Case 1. r  =  0: In this case, r*  =  1 and g( 0 )  =  �[X ]  =  1000. By Theorem 1, the 
optimal reinsurance plan depends on whether the risk tolerance level a is 
higher or lower than a certain threshold level:

( 1 ) If  a  >  g( 0 ), that is, a  <  0.3679, then f *( x )  =  x. [This is Case ( c ) of Theo-
rem 1.]
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( 2 ) If  a  =  g( 0 ), that is, a  =  0.3679, then f *( x )  =  cx for any c  !  [0, 1]. [This is 
Case ( d ) of Theorem 1.]

( 3 ) If  a  <  g( 0 ), that is, a  >  0.3679, then f *( x )  /  0. [This is Case ( e ) of Theo-
rem 1.]

The threshold level of  a is 0.3679. If  the risk tolerance level is high ( so that 
a is higher than the threshold level ), there is no need to purchase any rein-
surance; otherwise, it is optimal to purchase full reinsurance for the whole 
loss X.

Case 2. r  =  0.2: In this case, r*  =  0.833, d*  =  SX
– 1(r* )  =  182.32, and u( r* )  =

g( d*)  = 1182.32. By Theorem 1, there are several possibilities:

( 1 ) If a  >  u( r* ), that is, a  <  0.3066, then f *( x )  =  ( x  –  182.32 )+. [This is Case ( a ) 
of Theorem 1.]

( 2 ) If  a  =  u( r* ), that is, a  =  0.3066, then f *( x )  =  c( x  –  182.32 )+ for any c  ! 
[0, 1]. [This is Case ( b ) of Theorem 1.]

( 3 ) If  a  <  u( r* ), that is, a  >  0.3066, then f *( x )  /  0. [This is Case ( e ) of Theo-
rem 1.]

When the reinsurance premium is higher ( r increases from 0 to 0.2 ), the 
threshold level of a decreases from 0.3679 to 0.3066. When the risk tolerance 
level is high so that a is higher than 0.3066, it is optimal not to purchase any 
reinsurance. However, if  a is smaller than 0.3066, it is no longer optimal to 
purchase full reinsurance. Instead, one should buy a stop-loss reinsurance with 
deductible 182.32.

3. OPTIMAL REINSURANCE UNDER CTE RISK MEASURE

In this section, we solve ( 2 ), the CTE-minimization problem. Denote the 
objective function as K(  f  )   :=   CTETf ( X )( a ). We rewrite K(  f  ) as follows:
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 (6) 

in which the fi rst equality follows from ( 3.2 ) of Cai and Tan ( 2007 ).
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3.1. General Considerations

Before deriving optimal ceded loss functions f  !  F that minimize K(  f  ) in ( 6 ), 
which will be done in the next three subsections, we fi rst study some qualitative 
properties that optimal ceded loss functions should possess. This enables us to 
confi ne to a very small class of ceded loss functions when solving the minimi-
zation problem.

Notice that the denominator of the last term in ( 6 ) may not equal a. In 
Cai et al. ( 2008 ), it was proved that the distribution function of If ( X ) has at 
most one point of discontinuity on [0, 3 ). If  such a discontinuity exists, then 
If must take the form

 ( )
( ) 0

( )
x

v x x e

v e x e>f
0

0 0

# #
=

,

,

,

,
I *

for some strictly increasing and continuous function v and constant e0  !  [0, 3 ). 
In this case, v( e0 ) is the only point of discontinuity of the distribution function 
of If ( X ), and the corresponding ceded loss function f is a straight line with 
slope one from e0 onward. If a  ≥  �( X  ≥  e0 ), or equivalently a  ≤  e0, then �( If ( X )  ≥ 
VaRIf ( X )( a ) )  =  a and hence ( 6 ) becomes

 
(X (X +fr(f a �

�

a
a

( ) ) ( ) [ )
( ( ))

.K f a f
VaR )f

= - + + +
-)I I

1 ( ]X

Of course, this equation also holds true if  the distribution function of If ( X ) 
is always continuous. On the other hand, if  a  <  �( X  ≥  e0 ), or equivalently 
a  >  e0, then

 (X (Xf
-X(� �a a( )) ( ) ( )X eVaR >)f 0 0$)I I$ = ,S= e

and hence

 
(X (X

-
fr

+
f ( �

� a
( ) ( ) [ ) ( )

( ( ))
.K f a a f S

VaR )

X

f

0
= - + + +

-)I
) 1

I
( ]X e

We remark that SX( e0 –) in the denominator of the last term equals 1 if  e0  =  0 
( i.e. if  f ( x )  =  x ) and SX( e0 ) if  e0  !  ( 0, a ).

Furthermore, observe that the pair ( f ( X ), If ( X ) ) is comonotonic because 
both f and If are increasing. Recall that for any fi xed a  !  ( 0,1 ) the function 
Y  7  �( Y  –  SY

– 1( a ) )+, which is commonly called the expected shortfall of the 
random variable Y, is comonotonic additive ( cf. Theorem 4.2.1 of Dhaene et 
al. ( 2006 ) ). Thus we have

 .( (X X +( (X X +f
� � �a a a( ( )) ( ( )) ( ( ))fVaR VaR) )f f X- + -+) )I I = X VaR-
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Moreover, we know from Theorem 2.1 of Dhaene et al. ( 2006 ) that
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The following lemma summarizes all the above considerations. The collection 
of all ceded loss functions that are straight line with slope one from e0 onward 
for some e0  !  [0, a ) is denoted as Ft .

Lemma 3. If f  !  Ft  such that it is a straight line with slope one from e0 onward 
for some e0  !  [0, a ), then

 a+X

)-

(f a r-

X
a

�

� a

( ) ) ( ) [ )

( ( )) ( ( )) ( )

K f a f

f S p dp f aVaR

X 0

0

1

= + +

+
- +

(

1

-

( ]X

-

S

X

e
;

#  (7)

otherwise, we have for f  !  F  5  Ft  that 
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Because of the discrepancy between ( 7 ) and ( 8 ), functions from Ft  require 

separate treatment. Let us remark that in ( 8 ), the term  X
a

( ( ))f dpp1
0

- S-#  is 
decreasing in f and depends only on the “tail” part of f, i.e. the value of f ( x ) 
for x  ≥  a. On the other hand, the term ( 1  +  r ) �[ f ( X )] is increasing in f. Thus 
the argument used in Lemma 2 implies that if  the optimal ceded loss function 
belongs to F  5  Ft , it must take the form f ( x )  =  c( x  –  d  )+ for some ( c, d )  !
[0,1)  ≈   [0, a] when x is restricted to the interval [0, a]. Observe that non-null 
ceded loss functions that are identically zero on [0, a], which correspond to the 
case where c  >  0 and d  =  a, cannot be excluded here because Lemma 1 is no 
longer valid. Observe also that c  =  1 but d  <  a is not allowed here because in 
this case f  !  Ft .

Now we investigate the optimal “tail” behavior of  ceded loss functions in 
F  5 Ft .
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Lemma 4. If f,  h are two ceded loss functions in F  5  Ft  such that f  =  h on [0, a], 
then

 (tr -
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a X- = + -)h Fb l 7 A#

Proof: By ( 8 ),
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as desired. ¡

We infer from this lemma that if  r*  >  a, the tail of the ceded loss function 
should be as large as possible in order to minimize K; if  r*  <  a, the tail of the 
ceded loss function should be as small as possible; if  r*  =  a, then K(  f  )  =  K( h ) 
and so the tail of the ceded loss function has no effect on K. Together with 
the remark immediately after Lemma 3 which specifi cs the shape of the opti-
mal ceded loss function on [0, a], we already have a very detailed qualitative 
description of the optimal ceded loss function if  it is lying in F  5  Ft .

Now we turn our focus to Ft . The following result reveals that if  the opti-
mal ceded loss function belongs to Ft , it must be a stop-loss function.

Lemma 5. For every f  !  Ft , there exists a stop-loss function f �  in Ft  of the 
form f �(x )  =  (x  –  d )+ for some d  !  [0, a ) such that K(  f �)  ≤  K(  f  ).

Proof: If  f ( x )  =  x, there is nothing to prove. So we assume that f has slope 
one from e onward for some e  !  ( 0, a ). Construct another ceded loss function 

FIGURE 3: Construction of f �.
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f �( x )  =  ( x  –  ( e  –  f ( e ) ) )+  !  Ft , which is the stop-loss function that coincides 
with f from e onward. See Figure 3.

By construction, we have f( a )  =  f �( a ),  f fX X
a a

( ( )) ( ( )) .p dp p dp1
0

1
0

=S S- -�# #  
Moreover, the convexity of f implies that f � ≤  f on [0, e] and hence �[ f �( X )]  ≤ 
� [ f ( X  )]. By Lemma 3,
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in which the inequality follows from SX( e )  ≤  SX( e  –  f ( e ) ) and the positivity of 
the numerator. Hence f � is the desired function. ¡

Motivated by Lemma 5 and to prepare for future analysis, we fi rst consider 
the problem of  minimizing K over the class Fu  of  all stop-loss functions 
fd  ( x )  =  ( x  –  d )+, with deductible d  !  [0, a]. Note that fd  ! Ft  if  d  !  [0, a ), but 
fa  "  Ft .

Lemma 6. For a given a  !  ( 0, SX ( 0 ) ), the following statements hold true.

( a ) If SX ( 0 )  ≤  r*, then the minimum value of K over Fu  is g( 0 ), and the optimal 
ceded loss function is f *( x )  =  x.

( b ) If r*  <  SX ( 0 ), then the minimum value of K over Fu  is g( d* / a ), and the 
optimal ceded loss function is f *( x )  =  ( x  –  d* / a )+.

Proof: For fd ( x )  =  ( x  –  d )+ for some d  !  [0, a], it is readily verifi ed from ( 7 ) 
and ( 8 ) that 

 r �( ) ( ) ( (K f d d g dd = + + - =+X1 .) )  (9)

Taking partial derivative with respect to d on ( 0, a ) yields 

 (dr
fd( )

1 ( )d
K

X2
2

= - +1 )S ,7 A  (10)

which is increasing in d. Thus K( fd ) is convex in d. Note that df 0( )
d

K
=2

2  when 
d  =  SX

– 1( r* )  =  d*. If  SX ( 0 )  ≤  r*, then )+ $df 0( )
d

K
2

2 (0  and hence K attains its
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minimum value g( 0 ) at d  =  0. If  r*  <  SX ( 0 ), K( fd ) attains its minimum value 
over Fu  either at d  =  a or at d  =  d*, whichever smaller. So the optimal value 
of d is d*/ a, and the corresponding minimum value of K is g( d*/ a ). ¡

In the following subsections, we derive the optimal ceded loss functions and 
the corresponding minimum value of K under different orderings of a, r*, and 
SX ( 0 ).

3.2. Case 1: A  <  r*

Fix f  !  F  5  Ft . From the remark immediately after Lemma 3, we may assume 
that f ( x )  =  c( x  –  d )+ for some ( c, d )  !  [0, 1 )  ≈  [0, a] when restricted to [0, a]. 
Defi ne another ceded loss function f1( x )  =  c( x  –  d  )+  +  ( 1  –  c ) ( x  –  a )+, x  ≥  0. 
See Figure 4 for the geometric meaning of this construction. Since f,  f1  !  F  5  Ft  
and a  <  r*, it follows directly from Lemma 4 that K(  f1 )  ≤  K(  f  ). Hence f1 rep-
resents a better reinsurance contract than f. Defi ne another ceded loss function 
f2( x )  =  ( x  –  e )+  :=  ( x  –  ( a  –  f1( a ) ) )+, x  ≥  0, which is the stop-loss function that 
coincides with f1 on [a, 3]. Note that f2 ! Ft  if  e  <  a ( or equivalently d  <  a ). 
See Figure 4.

FIGURE 4: Construction of f1 and f2.
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We claim that when e  <  a, f2 is better than f1 in the sense that K( f2 )  ≤  K( f1 ). 
To see this, we note that by Lemma 3,
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and

 
+ aX
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Since f1  =  f2 on [a, 3 ), f1( a )  =  f2( a ) and  X X
a a

( ( )) ( ( )) .f dp f p dpp20 0 1
1 1S S=- -# #  

However, �[ f2( X )]  ≤  �[ f1( X )] and SX( e )  ≥  a, thus K(  f2 )  ≤  K( f1 ).

The above consideration, together with Lemma 5, implies that every f  !  F, 
belonging to Ft  or not, is always inferior to some stop-loss function f ( x )  = 
( x  –  d  )+ with d  !  [0, a]. Combined with Lemma 6, we obtain the following 
conclusion:

1. If a  <  SX( 0 )  ≤  r*, then the optimal ceded loss function is given by f *( x )  =  x, 
and the minimum value of K over F is g( 0 ).

2. If  a  <  r*  <  SX ( 0 ), then the optimal ceded loss function is given by 
f *( x )  =  ( x  –  d* )+ , and the minimum value of K over F is g(d* ). Note that 
a  <  r* implies that 0  <  d*  <  a.

3.3. Case 2: A  =  r*

We fi rst consider f  !  F  5  Ft . As in Case 1, we assume that f ( x )  =  c( x  –  d )+ 
for some ( c, d )  !  [0, 1 )  ≈  [0, a] when restricted to [0, a]. When a  =  r*, it is clear 
from Lemma 4 that the value of f ( x ) for x  >  a has no infl uence on the value 
of K(  f  ). Hence we may further assume that f takes the form fc,d  ( x )  =  c( x  –  d )+, 
x  ≥  0 for some ( c, d )  !  [0, 1 )  ≈  [0, a]. By Lemma 3,

 ++d,c -r X
a

� a( ) (1 ) ( ) ( ) .K f c c dp cdp1
d

1

0
= +

-
+X -S#

Differentiating it with respect to d on ( 0, a ) yields 

 
(d (ar

r

r

1

1

a

( )
( ) ) ( ) )

( ) 0.
d

K f
c c

c

,c d
X X2

2
#= - + - +

= - + =

1 1

1

S1 S7 7

7

A A

A

 (11)

Therefore, the optimal value of d is a, and hence optimal ceded loss functions 
in F  5  Ft  should be identically zero on [0, a].

For ceded loss functions in Ft , we only need to consider stop-loss functions 
f ( x )  =  ( x  –  d )+ with deductible d  !  [0, a ) because of  Lemma 5. However, 
Lemma 6 implies that all these stop-loss functions are not as good as f ( x )  = 
( x  –  a )+ , which is identically zero on [0, a]. Combined with the previous paragraph, 
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we conclude that any f  !  F that is identically zero on [0, a] would be optimal 
in the present case where a  =  r*. Substituting f  /  0 into ( 8 ) shows that the 
corresponding minimum value of K is g( a )  =  g( d* ).

3.4. Case 3: A  >  r*

For f  !  Ft , the situation is the same as in Case 2: ceded loss functions in Ft  
are not as good as f ( x )  =  ( x  –  a )+. For f  !  F  5 Ft , we again assume that 
f ( x )  =  c( x  –  d  )+ for some ( c, d )  !  [0, 1)  ≈  [0, a] when restricted to [0, a]. From 
Lemma 4, the tail of f should be as small as possible. Thus we may further 
assume that f ( x )  =  c( x  –  d )+, x  ≥  0 for some ( c, d )  !  [0, 1)  ≈   [0, a], just as in 
Case 2. By ( 11 ), we have

 (d r rc r
( )

1 ( ) ) 1 ( ) ( ) 1 ( ) 0.d
K f

c a c <X X2
2

#= - + - + = - +S1 11 aS7 7 7A A A

Thus the optimal value of d equals a.
As the tail of the optimal ceded loss function should be as small as possible, 

we conclude that the optimal ceded loss function is the null function f  /  0, 
and the corresponding minimum value of K is g( a ).

3.5. Summary and numerical example

Combining all these three cases, we obtain the following theorem, which can 
also be found in Cai et al. ( 2008 ).

Theorem 2. For a given a  !  ( 0, SX ( 0 ) ), the following statements hold true.

( a ) If a  <  SX ( 0 )  ≤  r*, then the minimum value of K over G1 is g( 0 )1, and the 
optimal ceded loss function is f *( x )  =  x.

( b ) If a  <  r*  <  SX ( 0 ), then the minimum value of K over G1 is g( d* ), and the 
optimal ceded loss function is f *( x )  =  ( x  –  d* )+.

( c ) If a  =  r*  <  SX ( 0 ), then the minimum value of K over G2 is g( a ), and the 
optimal ceded loss function can be any function that is identically zero on 
[0, a].

( d ) If a  >  r*, the minimum value of K over G2 is g( a ), and the optimal ceded 
loss function is the null function f ( x )  /  0.

As an illustration, we again consider the example in which X is exponentially 
distributed with mean 1000, so that SX ( 0 )  =  1. If  r  =  0, then r*  =  1 and 
f *( x )  =  x. No matter what the risk tolerance level is, it is always optimal to 

1 The minimum value stated in Theorem 4.1 of Cai et al. ( 2008 ) was mistyped as u( r*). The correct 
value should be g( 0 ).
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purchase full reinsurance in this case. If  reinsurance is getting more expensive, 
( say r  =  0.2 and hence r*  =  0.833 ), then the optimal reinsurance plan depends 
on the value of a. When the risk tolerance level is high so that a is higher than 
r*, it is optimal not to purchase any reinsurance. However, if a is smaller than r*, 
it is optimal to purchase a stop-loss reinsurance with deductible d*  =  182.32.

4. OPTIMAL REINSURANCE UNDER VAR RISK MEASURE

WITH WANG’S PREMIUM PRINCIPLE

In Wang et al. ( 1997 ), several natural axioms for pricing insurance contracts 
that characterize the premium principle of Wang ( 1996 ) were proposed. The 
premium principle is closely related to the dual theory of choice proposed by 
Yaari ( 1987 ). Under these axioms, it was proved that the price to insure a risk 
is given by the expectation of the risk with respect to a distorted probability. 
More precisely, Wang’s premium principle is given by 

 (Xw (
3

( )) ,H w t dtX0
=) S#  (12)

where the function w is a non-decreasing, concave function such that w( 0 )  =  0 
and w( 1 )  =  1. The function w is called a distortion. In this formulation, the 
risk X has to be non-negative, otherwise the formula has to be modifi ed by 
including an extra term. The integral in (12 ) is a special case of the Choquet 
integral for non-additive measures. We refer to Denneberg ( 1994 ) for more 
information on the theory of of non-additive measure, and to Denuit et al. 
( 2005 ) for an overview of the various aspects of the dual theory of choice and 
Wang’s premium principle.

Wang’s premium principle Hw(·) satisfi es many convenient properties. In par-
ticular, the following are relevant to our subsequent analysis:

Lemma 7. Wang’s premium principle Hw is positively homogeneous and mono-
tone, in the sense that

 [ ] [ ], 0H Y c Y cw w $=c H

and

 Y[ ] [ ] .Y Z Zw w(# #H H

In this section, we study the problem of choosing the optimal ceded loss func-
tion that minimizes the VaR of the total cost Tf ( X ) under Wang’s premium 
principle. In this case Tf ( X )  =  If ( X )  +  Hw(  f ( X ) ). Denote the objective function 
as L(  f  )   :=   VaRTf  ( X )( a ), we have

 a( ) - a( )fX X( ) ( ) ( .L f S H fw
1 1

= + ))X(- -S
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Therefore, the minimization problem we want to study is 

 
f f

(f-( ) : ( (min minL f a a fw= +
! !

) )) ,H X
F F

# -  (13)

where a   :=   SX
– 1( a ) as before.

To solve minimization problem ( 13 ), we fi rst observe that the arguments used 
in Lemmas 1 and 2 are still valid in the present situation because Hw is mono-
tone. It follows that we can confi ne our attention to the subclass G  1  F of ceded 
loss functions of the form fc,d ( x )  =  c( x  –  d )+ for some ( c, d )  !  [0,1]  ≈ [0, a ).

Theorem 3. For a given a  !  ( 0, SX ( 0 ) ), the following statements hold true.

( a ) If Hw( X  )  <  a, then the minimum value of L over F is Hw( X ), and the opti-
mal ceded loss function is f *( x )  =  x.

( b ) If Hw( X  )  =  a, then the minimum value of L over F is Hw( X ), and the opti-
mal ceded loss function is f *( x )  =  cx for any constant c  !  ( 0, 1].

( c ) If Hw( X  )  >  a, then the minimum value of L over F is a, and the optimal 
ceded loss function is f *( x )  /  0.

Proof: Let fc,d  ( x )  =  c( x  –  d )+ for some ( c, d )  !  [0, 1]  ≈ [0, a ). Then

d d d d (t-,c +

3
( ) ( ) [ ) ] ( ) ( ))L f a c c a c c w ( )d w X0

= - - + - = - - ++H S( .dta X a #

Since S( X  –  d )+
( t )  =  �( ( X  –  d )+  >  t )  =  �( X  >  t  +  d )  =  SX ( t  +  d ), we rewrite the 

above as

 (td ( ))w dt,c S
3

( ) ( ) .L f a c cd Xd
= - - +a #

If c  =  0, then f  /  0 and the corresponding value of L is a. Now we assume that 
c  >  0. Taking partial derivative of L(  fc,d ) with respect to d on ( 0, a ) yields

 (d,c( )
1 ( .d

L f
c wd

X2

2
= - S ))7 A

This partial derivative is always positive because w  ≤  1. Thus the optimal value 
of d is 0. Thus if  suffi ces to consider ceded loss functions of the form fc,0 ( x )  =
cx for some c  !  ( 0, 1]. In this case,

 (w t(,c
3

( ) )) ( [ ] .L f a ca c S dt a c aX w0 0
= + = + -X- )H#

Now the theorem follows directly from this equation. ¡
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Unfortunately, this approach does not work for the minimization of  CTE 
under Wang’s premium principle. While we are still able to deduce that if  the 
optimal ceded function does not belong to Ft , it must take the form f ( x )  = 
c( x  –  d )+ for some ( c, d )  !  [0,1)  ≈ [0, a ] on the interval [0, a ], we are unable to 
deduce its precise properties on [ a, 3 ) using the method adopted in Section 3. 
Further research is necessary in this direction.

5. CONCLUSION

In this paper, we fi rst examined the two optimal reinsurance problems studied 
in Cai et al. ( 2008 ): to minimize the value-at-risk and the conditional tail expec-
tation of  the total cost under the expectation premium principle. By using 
simple geometric arguments, we were able to restrict the class of all possible ceded 
loss functions to a very small class containing stop-loss functions and linear func-
tions only. Since every such function involves at most two parameters, the 
optimization problems can be solved easily. This technique not only can greatly 
simplify the arguments used in Cai et al. ( 2008 ), but is also applicable when 
the expectation premium principle is replaced by Wang’s premium principle in 
the VaR-minimization problem, as demonstrated in Section 4.

Finally, we note the following general principles that can be observed from 
Sections 2, 3, and 4. These principles are essentially Lemma 2 in a more  general 
setting. Recall that a premium principle � is called monotone if  �[Y1]  ≤  �[Y2] 
when Y1  ≤  Y2. Examples of monotone premium principle include the expecta-
tion premium principle and Wang’s premium principle.

General principle of VaR-minimization: When minimizing the VaR of the total 
cost Tf ( X ) over the class F under a monotone premium principle �, optimal 
ceded loss functions must take the form f ( x )  =  c( x  –  d )+, x  ≥  0 for some 
c  !  [0, 1]  ≈  [0, a ). Therefore, the optimal form of reinsurance is either a full 
reinsurance ( when d  =  0 and c  =  1 ), a stop-loss insurance ( when d  !  ( 0, a ] 
and c  =  1), a quota-share reinsurance ( when d  =  0, c  !  ( 0,1 ) ), a change-loss 
reinsurance ( when d  !  ( 0, a ) and c  !  ( 0,1 ) ), or fi nally no reinsurance should 
be purchased ( when c  =  0 ).

General principle of CTE-minimization: When minimizing the CTE of the 
total cost Tf ( X  ) over the class F under a monotone premium principle �, 
optimal ceded loss functions on the interval [0, a] must take the form f ( x )  = 
c( x  –  d )+ , x  ≥  0 for some ( c, d )  !  [0, 1 )  ≈  [0, a].
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