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ABSTRACT

In this paper, we consider the dual of the classical Cramér-Lundberg model 
when gains follow a phase-type distribution. By using the property of phase-type 
distribution, two pairs of upcrossing and downcrossing barrier probabilities 
are derived. Explicit formulas for the expected total discounted dividends until 
ruin and the Laplace transform of the time of ruin under a variety of dividend 
strategies can then be obtained without the use of Laplace transforms. 
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1. INTRODUCTION

In insurance mathematics, the surplus in the classical Cramér-Lundberg model 
at time t can be expressed as

 U(t)   =   u  +  ct  –  S(t),

where u is the initial surplus, c is the premium rate, and S(t) is the aggregate 
claims by time t, usually modeled by a compound Poisson process. Avanzi et 
al. (2007), Avanzi and Gerber (2008), Gerber and Smith (2008) and Ng (2009) 
considered the dual to the classical model

 U(t)   =   u  –  ct  +  S(t).

In this model, the premium rate is negative, causing the surplus to decrease. 
Claims, on the other hand, cause the surplus to increase. Thus the premium 
rate should be viewed as an expense rate and claims should be viewed as
profi ts or gains. While not very popular in insurance mathematics, this model 
has appeared in various literature (see Cramér, 1955, Section 5.13; Seal, 1969, 
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pp. 116-119; and Takács, 1967, pp. 152-154). There are many possible inter-
pretations for this model. For example, we can treat the surplus as the amount 
of capital of a business engaged in research and development. The company 
pays expenses for research, and occasional profi t of random amounts (such as 
the award of a patent) arises according to a Poisson process. A similar model 
is used by Bayraktar and Egami (2008) to model the capital of  a venture 
capital investment. Another model is an annuity business. The company issues 
payments continuously to annuitants, while the gross reserve of an annuitant 
is released as emerging profi t when he dies. Yang and Zhu (2008) generalized 
the dual model in a regime-switching setting. 

One of the current topics of interest in insurance mathematics is the calcula-
tion of expected total discounted dividends until ruin, which goes back to Bruno 
de Finetti (1957), and has also been studied by Bühlmann (1970, Section 6.4) 
and Gerber (1969, 1972, Sections 7 and 8, 1979, Section 10.1). In Avanzi et al. 
(2007), the authors considered the dual model under a barrier strategy.
They derived the Laplace transform of the total discounted dividends until 
ruin, and gave explicit formulas for the expected total discounted dividends 
until ruin when gains follow an exponential or a mixture or exponential dis-
tributions by solving integro-differential equations. Ng (2009) studied the dual 
model under a threshold strategy and derived the corresponding quantities. 
For more information on dividend problems in ruin models, see, for example, 
Avanzi (2009) and Albrecher and Thonhauser (2009). 

We consider the dual model under a barrier strategy or a threshold strategy, 
and a combination of both, when gains follow a phase-type distribution. We shall 
derive explicit formulas for the expected total discounted dividends and the 
Laplace transform of  the time of  ruin based on two pairs of  discounted 
upcrossing and downcrossing probabilities. This alternative method, while only 
works for the phase-type case, has the advantage of avoiding numerical inver-
sion of Laplace transforms as in the case of barrier strategy in Avanzi et al. 
(2007) and threshold strategy in Ng (2009). Optimal barrier or threshold can 
also be obtained easily in the presence of explicit formulas. Finally, since the 
class of phase-type distribution is dense in the set of continuous distributions 
with positive support, the phase-type distribution can be used to approximate 
an arbitrary distribution. For details of how this can be implemented, see, for 
example, Asmussen et al. (1996). 

We fi rst begin with the dynamics of the surplus process {U(t)}. Before a 
dividend strategy is imposed, the surplus process is 

 X( ) ,U t u ct
(

i

N

1
= -

t

+
i=

)

/  ( 1 )

where u is the initial surplus, c is the rate of expense, {N( t)} is a Poisson process 
with rate l and Xi’s are independently and identically distributed gains. The 
distribution, density, and moment generating function of the gains are denoted 
by F, f, and MX, respectively. The mean of gains is denoted by m. We do not 
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assume the usual condition of positive loading: the expected drift of the process, 
�U( 1 ), can be positive, zero, or negative. That is, 

 c < lm (2)

may or may not hold. We let T  =  inf{t  :  U ( t )  =  0} be the time of ruin, and when 
no dividend strategy is imposed, we let 

 c( u )   =   �[e– dTI ( T  <  3 )  |  U( 0 )   =   u ] 

be the Laplace transform of T. In actuarial literature, c( u ) is known as the 
discounted infi nite-horizon ruin probability. When d  =  0, it reduces to the ruin 
probability. When d  >  0, we can treat c( u ) as the present value, evaluated 
under a given valuation force of interest d, of  a contingent claim of 1 payable 
as soon as ruin occurs. More generally, starting with any initial surplus x, c( u ) 
is the expected present value of a contingent claim of 1 payable as soon as the 
surplus reaches x  –  u. By using the relation between life insurance and annuity, 
the expected present value of a continuous annuity that pays 1 until the sur-
plus process drops from an initial level of x to x  –  u is independent of x and 
is given by 

 
(1 c-

d .
u)

 (3)

The above can be treated as a special case of the Gerber-Shiu function with 
penalty function sd TT.

Before we discuss the notation for phase-type distribution, we give the con-
vention for vectors and matrices in this paper. All vectors are column vectors. 
We let ei   =  ( 0,  0,  …,  1,  …,  0 )� be the ith unit vector and e  =  ( 1,  1,  …,  1 ) the 
vector of 1. With the exception of ei, ki is the ith element of the vector k. 
Similarly, [A]ij is the ij-element of matrix A. We let I be the identity matrix. 
We use A  7  B and A  5  B to denote the Kronecker product and sum of two 
matrices A and B. Readers interested in the properties of these two operations 
may refer to Graham ( 1981 ).

For the distribution of the gains, we denote by PH( A, Q ) the phase-type dis-
tribution with initial probability vector A and generator Q. Then t  =  –  Qe is the 
exit rate vector. If  A�e  <  1, then the distribution is defective. A good reference 
for properties of phase-type distributions is Chapter VIII of Asmussen ( 2000 ). 

The structure of this paper is as follows. In Section 2, we derive two pairs 
of  upcrossing and downcrossing probabilities and other related auxiliary 
quantities. In Sections 3, 4 and 5, we apply the two pairs of upcrossing and 
downcrossing probabilities to obtain the quantities of interest under a barrier 
and a threshold strategy, and a combination of  a barrier and a threshold 
strategy. Finally, in Section 6, we discuss how our results can be used to cal-
culate the optimal barrier or threshold for the two pure strategies. 
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2. TWO PAIRS OF UPCROSSING AND DOWNCROSSING PROBABILITIES

In this section we derive two pairs of upcrossing and downcrossing probabili-
ties, which are the key quantities in deriving the expected dividends and many 
ruin-related quantities when gains follow a phase-type distribuion. Firstly, we 
need a general result from Ng ( 2009 ) which applies to any distribution for the 
gains. Let 

 k(q )   =   l [MX (q )  –  1]  –  cq (4)

and Rd be the unique non-positive root of k(q )  =  d. By considering the slope 
of k(q), it can be observed that Rd  <  0 unless both d  =  0 and c  ≥  lm. Ng ( 2009 ) 
proved that 

 c( u )   =   eRd u. (5)

For u  =  0, let T0  =  inf{t  :  U( t )  >  0} be the time of  recovery. For y  >  0, the 
distribution of the ascending ladder height of {U( t )  :  t  ≥  0} is 

 �( T0 < 3, U( T0 )   ≤   y )  | U( 0 )  =  0 )   =   �[I ( T0 < 3, U( T0 )   ≤   y )  | U( 0 )  =  0].

Analogously, we defi ne the distribution of  the discounted ascending ladder 
height by 

 L( y )   =   �[e– dT0  I ( T0 < 3, U( T0 )   ≤   y )  | U( 0 )  =  0]. (6)

Theorem 1. When gains follow PH( A, Q ), the discounted ascending ladder height 
follows PH( A+,  Q ) where

 A+�   =   c
l

-   A�( Rd  I  +  Q )– 1.

When d  >  0, the ascending ladder height is defective.

Proof: Equation ( 3.3 ) of Gerber and Shiu ( 1998 ) states that in the classical 
Cramér-Lundberg model, the joint ( discounted ) distribution

 F( x, y | 0 ) = �[e – dT I (U( T– )  ≤  x, |U( T ) |  ≤  y )  | U( 0 )  =  0]

has density ( noting that Rd is the negative of  r defi ned in Gerber and Shiu 
( 1998 ) )

 F( x, y | 0 ) = c
l   eRd x f ( x  +  y ) = c

l   A�e( Rd I + Q )x eQyt.

To obtain L�( y ), which is the same as the discounted descending ladder height 
for the Cramér-Lundberg model, we need to integrate x out. Since Rd  ≤  0,
Rd I  +  Q is a subintensity matrix and is invertible, and the rule 
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 (1d
z
e eA IA Ax z

0
= -

-x )#

applies for A  =  Rd  I  +  Q. Moreover, since e( Rd I + Q )x "  0 as x " 3,

 L�( y )   =   c
l

-   A�( Rd  I  +  Q )– 1eQyt   =   A+�  e
Qyt.  (7)

Again, since Rd  ≤  0, every element in A+  is non-negative. By integrating ( 7 ) 
from 0 to 3, we get L( 3 )  =  A+� e. But since

 L( 3 ) = �[e– dT0  I ( T0 < 3)  | U( 0 )  =  0]   ≤  1,

A+� e  ≤  1. In particular, if  d  >  0, then A+� e  <  1. ¡

We assume that d  >  0. Since L follows a defective phase-type distribution, the 
convolution of L can be thought of as connecting the phases of all ladder 
heights together to form a terminating “continuous-time” Markov chain along 
the vertical direction of the graph of {U( t )}. To fi nd the generator of this process, 
we consider the transition from phase i to phase j. There are two possibilities: 
if  transition occurs within a ladder height, then the rate is the ij-th element of 
Q, i.e., [Q ]ij ; if  the transition occurs by terminating the current ladder height 
( with exit rate ti ) and then entering another one, the new ladder height has to 
start at j ( which occurs with probability [A+] j ) and the rate is ti [A+] j. As a 
result, the generator is  
 Q+   =   Q   +   tA+� .  (8)

The maximum of {U( t )  :  t  ≥  0} given that U( 0 )  =  0 then follows PH( A+, Q+). 
Since {U( t )} is skip-free downwards, there are two ways for the process to 

pass through a particular level x: the surplus may be decreasing, in which case 
the surplus would hit x exactly, or it may be jumping, in which case the surplus 
would shoot through x and end up at a level that may be above x immediately 
after the jump. We use “downcrossing” and “upcrossing” to distinguish the 
two ways for the surplus to pass through x. 

Let mx be the phase of  the gain that causes the surplus process to fi rst 
upcross level x, given that the initial surplus is 0. Futher denote by T– b the fi rst 
time when {U( t )} downcrosses level  – b, and defi ne

p– ( b )   =   �[e– dT– b I ( T– b  <  T0, T– b  <  3)  | U( 0 )  =  0],

pi
+( b )   =   �[e– dT0  I ( T– b  >  T0, m0  =  i, T0  <  3)  | U( 0 )  =  0].

We denote the discounted upcrossing probability vector ( p1
+( b ),  …, pd

+ ( b ))� by 
p+( b ). 
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Theorem 2. When gains follow PH( A, Q ),

p+�( b )   =   A+� [I  –  e( Rd  I +Q+)b ]  [ I  +  ( Rd I  + Q )– 1 tA+�e( Rd  I +Q+)b  ] – 1,

p– ( b )   =   eRd b [1 +  A+� ( Rd I  + Q )– 1t ]  [1 +  A+�e( Rd  I +Q+)b ( Rd I  + Q )– 1t ] – 1.

Proof: The idea is essentially the same as that in Asmussen and Perry ( 1992 ). 
See also Ng and Yang ( 2006 ). Firstly, consider 

 [A+] i   =   �[e– dT0  I ( T0  <  3, m0  =  i )  | U( 0 )  =  0].

Partition the event {T0  <  3, m0  =  i} into 

 b b- -0 , , , .T T T i T T i< < < <0 0 0 03 3 =m=m# #- -'  (9)

Given that {U( t )} downcrosses level  – b, the discounted probability that it fi rst 
upcrosses level  – b again with phase j is [A +] j. Given that the phase at level  – b 
is j, the discounted ladder height of  the phase process follows PH( ej, Q+). 
Thus the probability that it hits 0 again with phase i is ej�eQ+bei, and 

 [A+] i  = pi
+( b )  +  p–( b )  A+�  eQ+bei. (10)

Secondly, consider c( b )  =  �[e – dT– b I ( T– b  <  3)  | U( 0 )  =  0]. Partition the event 
{T– b  <  3} into 

 b b- -T< i
i

, .T T T< <<0 0 03 3 =m: D# #- -''  (11)

The probability of the fi rst event is p–( b ). For the event {T0  <  T– b  <  3, m0  =  i}, 
note that {T0  <  T– b, m( 0 )  =  i} happens with probability pi

+( b ) and we still need 
to evaluate �( T– b  <  3 | T0  <  T– b  <  3, m0  =  i ). To this end, given that {U( t )} 
fi rst upcrosses 0 with phase i, the fi rst discounted ascending ladder height fol-
lows PH( ei, Q ). If  it terminates at level x, then the discounted probability that 
it will ever downcross  – b is c( b  +  x ). Thus,

 
( ,R Q t

�

� I + )

x,< 3 i e dt ( ) xb b +- -<

1

3 c

i

i

itx

b

e
3

3

�

� ( | )T T e

e e

<

e)

Q

Q

x

R x R b

i

0 0 0

0

= =

= = - d
+ -d dxd(

m

b

T

e /

#

#
 (12)

where the second equality follows from ( 5). Gathering all the results above, we 
get 

 (R Q t� I + .)( 1+( i
i

( ) )b e b eR b
ic = - d-

-d)u pp /  (13)
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Rewrite ( 10) and ( 13 ) in matrix form as follows: 

   A+�    =   p+�( b )  +  p– ( b )  A+�  eQ+b; (14) 

eRd b   =   p– ( b )   –   eRd b p+�( b )  ( Rd I  + Q )– 1t. (15)

Substituting ( 15 ) into ( 14 ), the fi rst asserted result follows. The second asserted 
result follows by substituting ( 14) into ( 15) and solving for p– ( b ). ¡
 
Remarks:

( 1 ) After calculating p– ( b ), we can also use (14 ) to obtain p+( b ) from 

  p+�( b )   =   A+�  [ I  –  p– ( b ) eQ+b ]. (16)

( 2 ) Owing to its frequent appearance, we shall defi ne 

  j( b )   =   [1 +  A+�  e( Rd  I +Q+)b ( Rd I  + Q )– 1t ] – 1.

We can now rewrite the expressions for p – and p+ as

  
+

( )( +

( ( (Ra) (0)
)

) ( )
)

.b
b

e b I
b

e0and I QR b b

j j
jj

= = --
d d +p +� �p < F

¡

Finally, for x, y  ≥  0, let Tx be the fi rst time that {U( t )} upcrosses x. Analogous 
to the defi nition of A( a, b | u )  =  �[e – dTa  I( Ta  <  Tb ) | U( 0 )  =  u ] and B( a, b | u )  =  
�[e – dTb  I( Tb  <  Ta ) | U( 0 )  =  u ] in Gerber and Shiu ( 1998 ) in the Cramér-Lundberg 
model ( where Tx is the fi rst time that {U( t )} reaches level x because the process 
is skip-free upward in this case ), we defi ne the double-barrier discounted 
downcrossing and upcrossing probabilities

 q–( x, y )   =   �[e – dT–x  I ( T–x  <  Ty, T–x  <  3 )  | U( 0 )  =  0]

and

 qi
+( x, y )   =   �[e – dTx  I ( Tx  <  T–y, mx  =  i, Tx  <  3 )  | U( 0 )  =  0].

Here, q – ( x, y ) is the expected present value of a contingent claim of 1 that is 
made when the surplus downcrosses  – x for the fi rst time, provided that it has 
not upcrossed y in the meantime. Similarly, qi

+( x, y ) is the expected present 
value of a contingent claim of 1 that is made when the suplus upcrosses x for 
the fi rst time, provided that that it has not downcrossed  – y in the meantime, 
and when the surplus upcrosses x, the phase of the gain is i. 

As in the case of p+, we let q+  ( x, y )  =  (q1
+( x, y ), q2

+( x, y ),  …, qd
+( x, y ) )�. 

93216_Astin40_1_13.indd   28793216_Astin40_1_13.indd   287 11-05-2010   09:42:0111-05-2010   09:42:01



288 A.C.Y. NG

Theorem 3. The double-barrier discounted probabilities are given by 

 q+�( x, y )   =   A+�  eQ+x  [I  –  p– ( x + y ) eQ+y / p– ( x )] and q–( x, y )   =   p– ( x + y ) / p– ( y ). 

In particular, for 0  <  u  <  b,

 q+�( b  –  u, u ) = A+�
 eQ+( b – u )  –   

u(
(

)
)b eR u

j
j

-

d

b
    A+�  eQ+b  and  q–( u, b  –  u )   =   u(

(
)

)
.

b eR u

j
j

-

d

b

Proof: Let x, y  ≥  0. It is obvious that p– ( x  +  y )  =  p– ( y )  q– ( x, y ) because {U( t )} 
is skip-free downwards. By considering whether {U( t )} will upcross 0 before 
downcrossing  – x, we obtain

 pi
+(x  +  y )   =   pi

+(x )  +  p–( x )  qi
+( x, y ).

Writing in matrix form and using ( 16), we get the expression for q+( x, y ). The 
remaining assertions follow from direct substitution. ¡

3. BARRIER STRATEGY

We begin with the dynamics of the surplus process ( modifi ed due to dividend 
payments ) {W( t )} under a barrier strategy with barrier level b. Whenever the 
surplus upcrosses b due to the arrival of a gain, the excess is paid out imme-
diately as dividends. Let D( t; b ) denote the aggregate ( undiscounted ) dividends 
by time t. Mathematically, 

 ( X (t t) ;W u ct D
(

i

N t

1
= - + -

)

i=
),b/

where

 c(
+

; ) .maxD t b u X b
0

( )

t i
i 1

t= - + -
# #t

t

=

N

f p/

Let T  =  inf{t  :  W(t )  =  0} be the time of ruin. The Laplace transfom of T is
c( u; b )  =  � [e – dT | W( 0 )  =  u ], while the expected total discounted dividends 
until ruin is 

 e (� d
T td-( ) ; ) (0) .V u b D t b W u

0
= =; ; E#

3.1. Explicit Formulas for V( u; b ) and c( u; b )

Theorem 4. The expected total discounted dividends until ruin under a barrier 
strategy is given by
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(+ ,b u-

(+

+

u

(
eb

1

1

)b1 e-
( )

) [ ( ; ) ]

)

( ; )

.V u

b b for u b

for u b

u b b b for u b

<

>

I Q e

Q
=

-

- =

- +

-

-

V

V

p
p

�

�
; b

�qZ

[

\

]
]]

]
]]

Proof: The case for u  >  b is immediate. For u  ≤  b, D( T; b )  >  0 only if  the sur-
plus upcrosses b, and if  this ever happens, the excess of the surplus is paid out 
and the surplus is brought back to level b. By conditioning on the phase of 
the gain when the surplus process upcrosses b and noting that PH( ei, Q ) has 
mean  – ei�Q  – 1 e, we have 

 u �,( u-+( ) ) ( ; ) ,V u q b b be Q e
i

i
1

= - +
-

i V; b 8 B/  (17)

which gives the result for u  <  b. By putting u  =  b and noting that q+ ( 0, b )  = 
p+( b ), we can solve for V( b; b ). ¡ 

Similarly, we have an explicit expression for c( u; b ) under the barrier strategy:

Theorem 5. The Laplace transform of the time of ruin under a barrier strategy 
is given by

 
,u�

�

( )u e-b+

+ (
(

b
( )

( , ) ( ; )

)
)u

q u b u b b for u b

b
for u b1

<

e $
c

c
=

- +

-

-

-
; b

q
p
p

Z

[

\

]]

]]
 .

Proof: First we consider the case u  =  b. The ( discounted ) probability that ruin 
occurs before upcrossing b is p–( b ). The Laplace transform of the fi rst time for 
the surplus process to reach b before ruin is p+�( b ) e. Thus, we obtain

 c( b; b )   =  p–( b )  +  c( b; b )  p+�( b ) e,

which gives the expression for c( b; b ). For u  <  b, we replace p–( b ) by q– ( u,  b  –  u ) 
and p+ ( b ) by q + ( b  –  u,  u ) and repeat the same argument. ¡

Now we shall consider the particular case when gains are exponentially dis-
tributed.

3.2. Exponentially Distributed Gains

Suppose that gains are exponential with mean 1 / b. We fi rst determine Rd, 
which is the unique negative root of 

93216_Astin40_1_13.indd   28993216_Astin40_1_13.indd   289 11-05-2010   09:42:0111-05-2010   09:42:01



290 A.C.Y. NG

 cq2  +  ( l  –  cb  +  d ) q  –  bd   =   0. (18)

For notational convenience, we denote the negative and positive root of (18 ) 
by r and s, respectively. Then

 a ( ( 1c c r cr
1l b l d

= - = = ++
-

)r - ) ,b -

which is less than 1, and

 .ss
d

ba ( )
( )Q cr cr

c c r
rb

b b
= - + = =

+ - +
= - + = -+ +

d 2r l
r

By using the expressions for a+, Q+  and ( 18 ), j( u ) and the various discounted 
upcrossing and downcrossing probabilities are found to be

 

j (

(

(+

s

s

s
s

s

s

( ,

u

u

u

u
( )

ru

ru

ru su

ru

ru

s b u

-

-

- -

-

-

- -

r
r

r

r

r
r

r

)
( ) ( )

( )
,

)
( ) ( )

,

)
( ) ( )

,

)
( ) ( )

( ) ( )
,

( , )
( ) ( )

.

e e
e

p
e e

s r

p c e e
e e

q b u
e e

e e

q b u u c e e
e e

( )

( )

su

su

su

rb sb

r b u

rb sb

sb b u r

l

l

=
- - -

-

=
- - -

-

=
- - -

-

- =
- - -

- - -

- =
- - -

-

-

-

-

-

- - -

- -

+ - -

- - -( )rb b u s- - -

b b
b

b b

b b

b b
b b

b b

Thus, 

 ( cr
(

) csb rb

rb sb

-

- -

( ; ) [ ]
)

( ) ( )
b b

b
e
e e

sbb b
l

=
-

=
+ - +

-

+

+
-

V
ep d d

p
1

and it follows that for 0  <  u  <  b, 
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d d
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which is the same as ( 3.5 ) of Avanzi et al. ( 2007 ). 
For c( u; b ), we fi rst evaluate

 (
(

cs cr
r

( ; ) )
)

( ) ( )
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b b b
b

e e
c
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=
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ddp
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and then obtain

 re
ssb sb- -cs cr r

cs r cr srb ru2- +

rb rb

sb su s2

- -

- +

( )
[( ) ( ) ] [( ) ( ) ]

( ) ( ) ( ) ( ) ( )
u

e e e e
e e eru su

c
l

=
+ - + - - -

+ - + + - - + ( )r b- +d
; b

d d
se

b b
b d b

for 0  <  u  <  b.

4. THRESHOLD STRATEGY

We begin with the dynamics of the surplus process {W( t )} under a threshold 
strategy with a threshold level b. When W( t )  <  b, no dividends are paid and 
the surplus decreases at rate c1. But when W( t )  ≥  b, the surplus would decrease 
at a different rate c2  >  c1 and dividends are paid continuously at rate c2  –  c1. 
Mathematically, 

 dW( t )   =   –  c (W( t ) ) dt  +  dS( t ),

where 

 X(
(

( ) ., )c x
c x b

c x b
S t

when

when >
and

)

i
i

N t
1

12

#
= =

=

* /

The expected total discounted dividends until ruin is 

 ( ( ,�( ) ) )( ( )V u t b tc c e I U u0> d
T

2 1 0
= - =td-) W; b ; E#

while the Laplace transfom of T is c( u; b )  =  � [e – dT  | W( 0 )  =  u ]. 

4.1. Explicit Formulas for V( u; b ) and c( u; b )

First we derive an explicit formula for V( u; b ) when gains follow PH( A, Q ). 
Since p+ , p– , q+ and q– are all functions of the rate of expense and the unique 
non-positive root of k( q )  =  d ( where k depends on the rate of expense ), we 
shall distinguish the two sets of probabilities and other quantities of interest 
by the superscripts (1) and ( 2 ). When ( i ) appears, the quantity of interest is 
evaluated using rate of expense ci . 

Theorem 6. The expected total discounted dividends until ruin under a threshold 
strategy is given by
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]
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where
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+
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Proof: Consider the calculation of V when u  ≤  b. Continuous dividends will 
be paid as soon as the surplus upcrosses b, provided that ruin does not occur 
in the meantime. The discounted probability of such event, provided that the 
upcrossing occurs at phase i, is the i-th element of q+

( 1 )�( b  –  u, u ). 
If  we let gi ( b ) be the expected value of total discounted dividends, provided 

that at time 0, a gain arrives and causes the surplus to upcross b at phase i,
and denote by g( b ) the vector formed by gi ( b )’s, then we have V( u; b )  = 
q+

( 1 )�( b  –  u, u ) g( b ). Substitution of  u  =  b then gives V(b; b )  =  p+
( 1 )�( b ) g( b ). 

Moreover, since it follows from ( 3 ) and ( 5 ) that for x  ≥  0,

 x x; x( ( ; ),V
c c

e e b bR R2 1
( ) ( )2 2

d+ =
-

- +d d V)b 1b ` j  (19)

we only need to solve for g( b ) in order to obtain V( u; b ). 
By conditioning on the amount of overshoot upon the upcrossing of b, we 

have 

 b
3

( ( ; ) .e V x dg tQx

0
+b x=b) #  (20)

By substituting ( 19 ) into ( 20 ), we get

 1 1Q Q- - (1
+( ( �( ) ) ) ) ( ) .b

c c
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Finally, by noting that
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-
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8 B

we get the expression for g( b ), and the expression for V( u; b ) can then be 
obtained readily. ¡

Theorem 7. The Laplace transform of the time of ruin under a threshold strategy 
is given by
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Proof: We separate the proof into two cases. First, we assume that u  >  b.
For ruin to occur, the surplus must fi rst downcross b. If  this ever happens at
time b u- ,T ( )2  the ( discounted ) ruin probability is simply b u-d ( ; ) .e b bT c-

( )2

 Taking 
expectation,

 b (( ; ) ( ) ( ; ) ( ; .u b u b b e b b( ) )R u b2 ( )2

c c c c= - =
-d )

Then, we assume that u  ≤  b. In this case, if  ruin happens, it may happen before 
or after {W( t )} fi rst upcrosses b. For the latter event, we can further condition 
on the state of the phase of gain that causes {W( t )} to upcross b. Gathering 
all these together, we have
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Qx1 1

0
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; b x

b R

b

b

c#

Substituting b  =  u into the above, we obtain the expression for c( b; b ). ¡
 
It is interesting to note the similarity between the formulas for c( u; b ) under 
barrier strategy and those under threshold strategy. Replacing e by ( Rd

( 2 ) I  + 
Q ) – 1t in Theorem 5 gives the corresponding discounted ruin probability when 
0  ≤  u  ≤  b.

Now we shall consider the particular case when gains are exponential.

4.2. Exponentially Distributed Gains

We assume that gains are exponentially distributed with mean 1/b. We let the 
positive and negative root of k( q )  =  d when the expense rate is ci be si and ri 
for i  =  1 and 2. Since there is only one phase for the gains,
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Then it follows from some simple algebra that
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d
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for u  ≤  b. This result is identical to that obtained from solving integro-differential 
equations as in Section 2.1 of Ng ( 2009 ).
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For the calculation of c( u; b ), we obtain from Theorem 7 that for u  ≥  b,
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and for 0  ≤  u  <  b,
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5. A HYBRID STRATEGY WITH A DIVIDEND THRESHOLD

AND A DIVIDEND BARRIER

As a further application of the usefulness of the two pairs of upcrossing and 
downcrossing probabilities, we consider a dividend strategy that can be treated as 
a hybrid of the models discussed in Sections 3 and 4. Let b1 be a threshold and 
b3  =  b1  +  b2 be a barrier. Here b1 and b3 function as a refracting and refl ecting 
barrier, respectively. When the surplus is less than b1, it decreases at rate c1 and 
no dividends are paid. When the surplus is in between b1 and b3, dividends are 
paid at a constant rate c2  –  c1  >  0 so that it decreases at rate c2. When a gain causes 
the surplus to upcross b3, dividends are paid to bring the surplus down to b3. 

The hybrid dividend strategy introduced above is a generalization of a pure 
barrier strategy and a pure threshold strategy. It is more realistic than a pure 
barrier strategy because it may not be desirable for companies to use a switching 
mechanism of either paying nothing or paying all excess surplus as dividends. 
The hybrid strategy gives a smooth transition between the two states. At the 
same time, it is more realistic than a pure threshold strategy because it is 
unnatural for the surplus of a company or a line of business to be allowed to 
grow infi nitely. When the surplus exceeds a certain level, they will be allocated 
to other lines of business or paid out to shareholders. 

 We denote the expected total discounted dividends until ruin by V( u; b1, b2 ) 
and the Laplace transform of the time of ruin by c( u; b1, b2 ). We shall separate 
V( u; b1, b2 ) into two parts: the discrete part Vd ( u; b1, b2 ) denotes the expected 
total discounted dividends paid out due to upcrossing b3, and the continuous 
part Vc ( u; b1, b2 ) denotes the expected total discounted dividends paid out 
when the surplus is in between b1 and b3. Obviously, for u  >  b3,

 

d d b
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Thus, we only consider 0  <  u  ≤  b3 in the following. 
Before discussing how V ( u; b1, b2 ) and c( u; b1, b2 ) can be obtained, we tem-

porarily go back to the case of a dual model without any dividend strategy 
imposed and establish two auxiliary results. 

Lemma 8. For x, y  >  0, � ( ,y )x e0 (y Ud- x (� [ | 0 ] ,e q x y q(T = = +/
- +

- ) ))T .

Proof: By noting whether T– x is less than Ty or not, we get
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Lemma 9. Let p and k be two column vectors. If Q and Q+ have no common 
eigenvalues, then
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Proof: The assumption on Q and Q+ guarantees that Q  5  (– Q+ ) is invertible. 
The lemma can be proven by using the integration rule

 � �be ( 1z
�A A A ( ( ) (bb ed A I(A A A Ax x

10 1 2 1 2 1 2 1 2
1 1 227 7 5 7= -

5-e x2 ) A )z) )bA#

and the relation q �+ ( b  –  u,  u )  =  A�+  e
Q+( b  –  u )  –  q– ( u, b  –  u ) A�+  e

Q+ b, which is a direct 
consequence of Theorem 3. ¡
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5.1. Explicit formula for V( u;  b1,  b2 )

In this section we shall derive set of  equations to calculate V( u; b1, b2 ). We 
shall fi rst treat the discrete part Vd ( u; b1, b2 ) and derive two equations from 
which Vd ( b1;  b1, b2 ) and Vd ( b3;  b1, b2 ) can be evaluated using Lemma 9. With 
the two pivoting values, Vd ( u; b1, b2 ) can be obtained for any u. This will be 
followed by a parallel treatment for the continuous part Vc ( u; b1, b2 ). 

In the following, we assume the technical condition that Q   5   (–Q+
( 2 ) ) is 

invertible. 

The discrete part Vd ( u;  b1,  b2 ):

We shall consider two cases, namely, b1  <  u  ≤  b3, and 0  <  u  ≤  b1. 
For b1  <  u  ≤  b3, no discrete dividends are paid until the surplus fi rst 

upcrosses b3. If  the surplus downcrosses b1 before upcrossing b3, then the 
expected total future discounted discrete dividends at the time of down crossing 
is Vd  ( b1;  b1, b2 ). If  the surplus upcrosses b3 before downcrossing b1, a dividend 
is paid at the time of the upcrossing to bring the surplus back to b3 and the 
expected total future discounted discrete dividends at that time is Vd  ( b3;  b1, b2 ). 
By using a similar argument as in Theorem 4, we obtain 
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for 0  <  y  ≤  b2. Putting y  =  b2, we obtain the fi rst relation between Vd ( b1;  b1, b2 ) 
and Vd ( b3;  b1, b2 ):
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For 0  <  u  ≤  b1, we consider if  the surplus downcrosses 0 before upcrossing the 
threshold b1. In the former case, the total discouted discrete dividends is 0.
In the latter case, we further consider if  the overshoot above b1 is greater than 
b2 so that the surplus upcrosses the barrier b3 and a dividend is paid at the 
time of the upcrossing. Since the amount of the overshoot above b1 follows 
PH( q+

( 1 )( b1  –  u, u ), Q ), we have 
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In particular, if  u  =  b1, 
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Substituting ( 22) into ( 25 ), we get
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Upon rearrangement, we get another relation between Vd ( b1;  b1,  b2 ) and 
Vd ( b3;  b1,  b2 ):
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By Lemma 9, all three integrals in ( 26 ) can be evaluated. Together with ( 23 ), 
Vd ( b1;  b1, b2 ) and Vd ( b3;  b1, b2 ) can be solved. An explicit expression for Vd for 
b1  <  u  <  b3 is then obtained from ( 22 ). For 0  <  u  <  b1, we substitute ( 22 ) into 
( 24 ) and get
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The continuous part Vc ( u;  b1,  b2 ):

We again look at the case of b1  <  u  ≤  b3 fi rst. Continuous dividends are paid 
before the fi rst time the surplus downcrosses b1 or upcrosses b3. If  the surplus 
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upcrosses b3 before downcrossing b1, continuous dividends would not stop 
and the total expected future discounted dividends at that time is Vc ( b3;  b1,  b2 ). 
If  the surplus downcrosses b1 before upcrossing b3, the dividend payment
stops and the total expected future discounted continuous dividends at that 
time is Vc ( b1;  b1,  b2 ). For 0  <  y  ≤  b2, by combining the arguments in ( 19 ) and 
Lemma 8, we have 
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 (27)

Putting y  =  b2 and rearranging terms, we get the fi rst relation between Vc ( b1;  b1,  b2 ) 
and Vc ( b3;  b1,  b2 ):
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Then, we consider the case of 0  <  u  ≤  b1. Similar to the discrete case, 
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By using ( 27 ), 
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Substituting (30 ) into ( 29) gives 
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Putting u  =  b1 and rearranging terms, we get
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 (32)

Since all integrals in ( 32 ) can be evaluated by Lemma 9, we can solve for 
Vc ( b1;  b1,  b2 ) and Vc ( b3;  b1,  b2 ) using ( 28 ) and ( 32). Equations ( 31 ) and ( 27 ) 
then give the expressions for Vc for 0  <  u  <  b1 and b1  <  u  <  b3.

5.2. Calculation of discounted ruin probability

Again, we start with the case of b1  <  u  ≤  b3. By using the same argument as in 
Theorem 5, we get 
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for 0  <  y  ≤  b2. In particular, by putting y  =  b2, 

 - +( (( (( )2
2( , ; , ) ; , .b b p b b b bp e3 1 2 2 1 1 3 1 22c c c= + �) b b ( )2; )b b b) )  (34)

Then, we consider the case of 0  <  u  ≤  b1. By using the argument as in the cal-
culation of Vd and ( 33 ), we get 
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In particular, when u  =  b1,
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Since the integrals in (36) can be evaluated using Lemma 9, we can solve for 
c( b1; b1, b2 ) and c( b3; b1, b2 ) using (34 ) and ( 36 ). Equations ( 33) and (35 ) then 
give the expressions for c for b1  <  u  <  b3 and 0  <  u  <  b1.

5.3. Numerical illustration

To illustrate the formulas presented in Section 5.1, we consider a dual model 
with gains following PH ( A, Q ) where

 A   =   ( 0.5,  0,  0.25,  0.25 )�,

and 
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The mean of the distribtuion is 1.67262. We assume that l  =  c2  =  1, c1  =  0.75 
and d  =  6%. The drift of the modifi ed surplus process in the lower and upper 
regime are 0.92262 and 0.67262, respectively. By solving the equation k( q )  =  d, 
we get Rd

(1)  =  – 0.893124 and Rd
(2)  =  – 0.548103. By Theorem 1,

 A+
(1)   =   ( 0.352152,  0.186016,  0.277652,  0.094607 )�
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and

 A+
(2)   =   ( 0.322976,  0.208627,  0.271489,  0.087439 )�.

It can be verifi ed that Q and Q+
( 2 ) have no common eigenvalues.

Now we compute V for different values of u, b1 and b2 and compare that 
with the barrier strategy. We look at the effect of inserting a refracting layer 
under the barrier: for a fi xed barrier b3, we consider V( u; ( 1  –  e ) b3, eb3 ), where 
e  =  0, 1/4, 1/2, 3/4 and 1. The width of the transition region is of length eb3. 
When e  =  0, the hybrid strategy reduces to a barrier strategy. The results
for b3  =  2 and b3  =  5.57089 ( 5.57089 is the optimal barrier when c  =  1, see 
Section 6 for the determination of the optimal barrier ) for various values of u 
are shown in Tables 1 and 2. For u  >  b3, the corresponding V can be obtained 
from u  –  b3  +  V( b3; ( 1  –  e ) b3, eb3 ).

TABLE 1

VALUES OF V ( u; 2( 1  –  e ), 2e ) FOR DIFFERENT u AND e

( u, e ) 0 1/4 1/2 3/4 1

0.4 2.473 2.334 2.170 1.988 1.517

0.8 4.260 4.021 3.704 3.272 2.757

1.2 5.569 5.258 4.817 4.264 3.775

1.6 6.547 6.157 5.618 5.086 4.616 

2.0 7.295 6.815 6.291 5.774 5.317

TABLE 2

VALUES OF V ( u; 5.57089( 1  –  e ), 5.57089e ) FOR DIFFERENT u AND e

( u, e ) 0 1/4 1/2 3/4 1

1  7.604  7.613  7.466  7.035  5.420 

2 11.151 11.164 10.951 10.138  8.815 

3 13.063 13.079 12.806 12.020 11.058

4 14.332 14.349 14.048 13.421 12.655 

5 15.364 15.380 15.114 14.568 13.899

For the cases in Table 1, where b3 is small, the barrier strategy results in the 
greatest expected total discounted dividends. Expanding the width of the tran-
sition region causes V to decrease. While it seems that more dividends would 
be paid, the effect of ruin causes payments to stop earlier and the overall effect 
is that V would decrease. It can also be observed that the rate of decrease of 
V increases with e. On the contrary, for the cases in Table 2, the barrier strat-
egy does not give the greatest expected total discounted dividends. A hybrid 
strategy can work better than the two pure strategies. 
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6. THE OPTIMAL DIVIDEND PROBLEM

The optimal dividend problem dates back to Bruno de Finetti ( 1957 ). For a 
particular value of initial surplus u, we want a dividend strategy that maximizes 
the expected total discounted dividends until ruin. In the Cramér-Lundberg 
model, such a strategy is a band strategy. In certain cases ( e.g. exponential 
claims ) the optimal strategy reduces to a barrier strategy, and in this case, the 
problem becomes the determination of an optimal barrier b*( u ) given an ini-
tial surplus u. For more information on the optimality of the barrier strategy 
on more general processes, see Loeffen ( 2007 ). For the Cramér-Lundberg 
model, Gerber et al. ( 2006 ) proved that b*( u ) does not depend on u using the 
property that the surplus process is skip-free upwards. 

For the dual risk model, Avanzi et al. ( 2007 ) pointed out that the optimal 
dividend strategy is a barrier strategy and that the optimal dividend barrier b* 
is independent of u if  ( 2 ) holds. Moreover, they showed that the left derivative 
of V( u; b ) with respect to u, evaluated at u  =  b  =  b*, is V�( b*;  b* )  =  1 and 

 V( b*;  b* )   =   
c

d
l -

.
m

 (37)

If  we restrict ourselves to threshold strategies, Ng ( 2009 ) showed that under 
mild conditions, the optimal threshold that maximizes V( u; b ) is independent 
of u. Moreover, V�( b*;  b* )  =  1 and 

 V( b*;  b* )   =   1c
R

1
( )

2
2

-
+

d
d

c
. (38)

To determine b* under the barrier strategy, Avanzi et al. ( 2007 ) proposed using 
the inversion of  Laplace transform of  a function associated with V( u; b ).
Ng ( 2009 ) illustrated how this can be adapted to the threshold strategy. 

In view of the results in Section 3 and 4, we have the following variation 
of the method mentioned in Avanzi et al. ( 2007 ) and Ng ( 2009 ) to obtain the 
optimal barrier or threshold for phase-type gains. This variation makes use of 
the explicit formulas in Theorems 4 and 6 to calculuate V(b; b ) directly and 
does not involve numerical inversion of Laplace transform. Since V(b; b ) is 
increasing, there is a unique b* such that ( 37 ) or ( 38 ) holds and this value can 
be obtained by simple numerical methods. For example, one can plot a graph 
of V(b; b ) and locate the value of b such that ( 37 ) or ( 38 ) holds. See Figure 1 
below for a graphical representation.

In the illustrations below, we use the parameters used in Avanzi et al. ( 2007 ) 
in their Table 4. We assume that gains are Erlang( 2 ) distributed with scale 
parameter 0.5. That is, f ( x )  =  4xe – 2x for x  >  0 ( which corresponds to b  =  2 ), 
l  =  1 and d  =  4%. 
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6.1. Barrier Strategy

Let c  =  0.8. The roots of ( 4 ) are r0  =  2
1

- , r1  =  5
8 3 6-  and r2  =  6

5
8 3+ .

By using the results in Section 2,
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FIGURE 1. The determination of optimal barrier or threshold.
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Then, we arrive at
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The mean of the Erlang( 2 ) distribution is 1 and V( b*;  b* )  =  5 by ( 37 ). The value 
of b* that satisfi es V( b*;  b* )  =  5 is found to be 3.65329. 

6.2. Threshold Strategy

Let c1  =  134/225   .  0.6 and c2  =  0.8. The various discounted upcrossing and 
downcrossing probabilities with subscript ( 2 ) are given in the barrier strategy.

The roots of ( 4 ) are  – 1,  67
109 5 427-   and  .67

109 5 427+  To summarize, we 
have
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from which p+
( 1 ) and V(b; b ) can be computed. From ( 38 ), V( b*;  b* )  =  28/9 and 

the value of b* for this to hold is found to be 1.58089. 

6.3. A Comparsion of Barrier Strategy and Threshold Strategy

In this subsection we compare the two dividend strategies. For c1  =  0.2 and 
0.75 ( which correspond to m  =  0.8 and 0.25 in Table 4 of Avanzi et al. ( 2007 ) ), 
we calculate b* and V( b*;  b* ) for two values of c2. The results are shown in 
Tables 3 and 4. In the tables, for each value of c2 and d, the value of b* is given 
fi rst, followed by the value of  V( b*;  b* ). The corresponding values under
the barrier strategy ( which is the limiting case c2 " 3 ) are shown in the last 
 column for comparsion. 

Similar to the case of a barrier strategy, b* is decreasing with d. Also, the 
corresponding b* and V( b*;  b* ) are less than that for the barrier strategy, and 
they converge to the corresponding values of the barrier strategy. For an analytic 
proof for this fact in the case of a general distribution for Xi’ s, readers may 
refer to Remark 4.1 of Ng ( 2009 ). 

It is also interesting to compare Tables 2 and 3 in Ng ( 2009 ) with Tables 3 
and 4. The example in Ng ( 2009 ) corresponds to the exponential case with 
mean 1. While they have the same mean, the variance of the Erlang( 2 ) gains 
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in the illustration above is 0.5, and the variance of the exponentially distrib-
uted gains with mean 1 is 1. It can be seen that the optimal threshold for the 
Erlang( 2 ) case is less than that of the exponential case, while the optimal total 
expected discounted dividends for the Erlang( 2 ) case is greater than that of 
the exponential case. That both the barrier strategy and the threshold strategy 
exhibit similar behavior is not surprising. Intuitively speaking, the optimal 
threshold should increase with risk. 
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TABLE 3

VALUES OF b* AND V( b*;  b* ) FOR c1  =  0.2

( d,  c2 ) 0.4 4 50 100 barrier

0.01 1.031 2.181 2.229 2.231 2.233 

19.460 79.751 79.985 79.992 80

0.03 0.763 1.664 1.712 1.714 1.716 

6.148 26.419 26.651 26.659 26.667

0.06 0.584 1.330 1.378 1.379 1.381

2.842 13.088 13.318 13.326 13.333

0.1 0.450 1.084 1.131 1.133 1.134

1.541 7.757 7.985 7.992 8

TABLE 4

VALUES OF b* AND V( b*;  b* ) FOR c1  =  0.75

( d,  c2 ) 1.5 6 25 100 barrier

0.01 8.534 9.341 9.430 9.448 9.454 

23.561 24.850 24.969 24.992 25

0.03 4.037 4.806 4.895 4.913 4.919

6.995 8.184 8.302 8.326 8.333

0.06 2.077 2.801 2.890 2.908 2.914

2.944 4.018 4.135 4.159 4.167

0.1 1.104 1.782 1.870 1.888 1.894

1.393 2.352 2.469 2.492 2.5
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