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ABSTRACT

This paper aims to provide accurate approximations for the quantiles of  the 
 conditional expected present value of the payments made by the annuity provider, 
given the future path of the Lee-Carter time index. Conditional cohort and period 
life expectancies are also considered. The paper also addresses some associated 
simulation issues, which, hitherto, have been unresolved.
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1. LEE-CARTER STOCHASTIC MODELLING FOR DYNAMIC MORTALITY

1.1. Motivation

In this paper, we consider present values of life annuity benefi ts as functions 
of the unknown life table applying in the future to the policyholders of a port-
folio when death rates are described by the Lee-Carter model. Deriving the exact 
distribution for this random variable requires extensive simulations or numeri-
cal evaluations. Therefore, we take the comonotonic approximations proposed 
by Denuit & Dhaene (2007) and Denuit (2007) in the random walk with drift 
case and extend these to general ARIMA models. This helps avoid the require-
ment to conduct simulations within simulations in, for instance, Solvency 2 
reserving calculations. Numerical illustrations show that the comonotonic 
approximations perform well, which suggests that they can be used in practice 
to evaluate the consequences of the uncertainty in future death rates.
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1.2. Log-bilinear model for mortality projection

We recall the basic features of the classical Lee-Carter approach. In this frame-
work, the population central death rate at age x in year t, denoted as mx(t), is 
of the form

 +a(ln mx x x tb=)t .k  (1.1)

Interpretation of the parameters involved in model (1.1) is quite simple. The 
value of ax is an average of ln mx(t) over time t so that exp ax represents the 
general shape of the age-specifi c mortality profi le. The actual forces of mortal-
ity change according to an overall mortality index kt which is modulated by 
an age response variable bx. bx indicates the sensitivity of different ages to the 
time trend so that the shape of the bx profi le tells which rates decline rapidly 
and which slowly over time in response to changes in kt.

An appropriate error structure has to be specifi ed in order to estimate
the parameters involved in (1.1). Lee & Carter (1992) opted for Normal distur-
bances and an estimation procedure based on Singular Value Decomposition 
whereas the Authors propose Binomial, Poisson or Negative Binomial regres-
sion models. Note that the results derived in this paper apply whatever the 
statistical model used for estimation purposes. In the empirical illustrations, a 
Poisson regression model will be used.

1.3. Stochastic modelling of the time index

In order to make forecasts, Lee & Carter (1992) assume that the ax and bx 
remain constant over time and forecast future values of kt using a standard 
univariate time series model. After testing several specifi cations, they found 
that a random walk with drift was the most appropriate model for their data. 
They also make clear that other ARIMA models might be preferable for dif-
ferent data sets.

Here, we assume that the kt obey an ARIMA(p, 1, q) model, with arbitrary 
values of p and q, which are to be determined. Furthermore, we assume that 
the kt are positively dependent, in the sense that the covariance between any pair 
(kt1

,  kt2 
) of  time indices is non-negative. Since the kt are multivariate normal, 

this ensures that the kt are positively associated, that is, the inequality

 C , , , , , ,... ...Cov 0t t t t t t1 2n n1 2 1 2
$k kk k k kC` `j j9 C

is valid for all values t1  <  t2  <  …  <  tn and for all choices of the non-decreasing 
functions C1 and C2 such that the covariance exists.
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2. LIFE ANNUITY AND LIFE EXPECTANCY

2.1. Life annuity conditional expected present value

Let us denote as dPx (t0 | k) the random d-year survival probability for an indi-
vidual aged x in year t0, that is, the conditional probability that this individual 
reaches age x + d in year t0  +  d, given the vector k of  the kt. It is formally 
defi ned as

 k +a( ) .exp expx x j x j t j
j

0
0

1

0
; b= - + + +

=

ktd

d-
P _ i* 4/

Let us consider a basic life annuity contract paying 1 unit of currency at the 
end of each year, as long as the annuitant survives. The random life annuity 
single premium, that is, the conditional expectation of the payments made to 
an annuitant aged x in the year t0 given the time index, is 

 k k( ) ( ) ( , )da 0x x
d

0 0
1

; ; n= ,
$

t td P/

where v (., .) is the discount factor (precisely, v(s, t) is the present value at
time s of  a unit payment made at time t). Note that ax(t0 | k) corresponds to 
the generation aged x in calendar year t0, and accounts for future mortality 
improvements experienced by this particular cohort. Clearly, ax(t0 | k) is a ran-
dom variable that depends on the future trajectory of the time index (that is, 
on kt0

, kt0 + 1, kt0 + 2, …). An analytical computation of the distribution function 
of ax(t0 | k) seems to be out of reach.

 The random variable ax(t0 | k) can be regarded as the residual risk per annu-
ity contract in a suffi ciently large portfolio. Indeed, let us consider a group of 
annuitants who are all aged x in year t0, with respective remaining life times 
T1, T2, T3, …. Given the time index, these random variables are assumed to be 
independent and identically distributed, with common conditional d-year sur-
vival probability dPx (t0 | k). Formally,

 dP Pn >[ , ] ( ) .T d T T d> >n i i
i

n

x
i

n

1 1
1

0
1

; ;k k= =
= =

...,
i

td P7> >AH H% %

Let us denote as [ z ] the integer part of z, and as

 a T

i

( ,v 0
[

d 1
i
=

T ]

=

)d/

the present value of the payments made to annuitant i (with the convention 
that the empty sum is zero). Now, since the a Ti

 are exchangeable, we have 
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from Proposition 1.1 in Denuit & Vermandele (1998) that the stochastic ine-
quality

 CX CX CX CX CX

a a
a

i i

i

T T

Tk a Ti
k( ) ... ... ,E n n1x

i

n

i

n

0
1

1

1; ; # # # # #=
+

=

+

=a t 8 B
/ /

is valid for any n, where ≤CX denotes the convex order, defi ned for random 
variables X and Y as X ≤CX Y if E [ g(X )]  ≤  E [ g(Y )] for all the convex functions 
g for which the expectations exist. In words, X ≤CX Y means that X is less 
variable, or less dangerous than Y. Increasing the size of the portfolio makes 
the average payment per annuity less variable (in the ≤CX -sense), but this
average remains random whatever the number of policies comprising the port-
folio, being bounded from below by ax(t0 | k) in the ≤CX -sense. It is interesting 
to note that, even if  T1, T2, T3, … are positively dependent, some diversifi cation 
remains as long as the economic capital is computed from a risk measure 
agreeing with ≤CX.

2.2. Period life expectancies

Demographic indicators can be calculated in two ways. Period indicators are 
worked out using age-specifi c mortality rates for a given year, with no allow-
ance for any later actual or projected changes in mortality. Cohort indicators 
are worked out using age-specifi c mortality rates which allow for known or 
projected changes in mortality in later years. In this section, we consider the 
period life expectancy, computed from the set of death rates corresponding to 
a given calendar year.
 Let us denote as x t k+( )e t k0 0

; k+-  the period conditional life expectancy at 
age x in year t0  +  k, given kt0 + k. Assuming that the deaths are uniformly dis-
tributed over the calendar year, this demographic indicator is given by

 +x t k+ ja( ) .exp expe k 2
1

x x j t
jd

k0
0

1

1
0 0

; k b+ = + - + + +
=

t k
$

d-
-

_ i* 4//

The superscript - is used to indicate that we work along a vertical band in
the Lexis diagram. Henceforth, we denote the distribution function of 

x t k+( )e t k0 0
; k+-  by 

x t k+( )e t k ; k+F
0 0

- . Note that computation of life annuity values 
in a period setting cannot be justifi ed when computation in the cohort setting 
is possible, since this approach underestimates the liabilities of  the annuity 
provider when mortality declines.

In many applications of the Lee-Carter model, we fi nd that all of the bx + j 

typically have the same sign. It is then easy to see that x t k+( )e t k0 0
; k+-  appears 

as a 1-1 monotone function of t k+0
k  (and only depends on a single time index).
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Let us assume that all of the bx + j are positive. Then, x t k+( )e t k0 0
; k+-  is a decreas-

ing function of the time index t k+0
k . The quantile function of x t k+( )e t k0 0

; k+-  
is then given by

 (2.1)

[VarE ( z1

( )e t k

1
-

; k+x

t k t k

t k

+ +

+

)a

( )

[ .exp exp

F z

2
1

x j x j
j

d

d

1

0

1

1

0

0 0

0

b k k F

=

+ - + ++ +
-

=

-

]
$

]

-

-

` j> H% ///
 

 

where the expectation and variance are conditional to past values of the time 
index and F–1 is the quantile function of N(0,1).

2.3. Cohort life expectancies

Cohort life expectancies forecast the expected remaining lifetime taking into 
account future changes in mortality. They are usually computed at the end
of the observation period (at time t0). Specifi cally, ex

3(t | k) is the expected 
remaining lifetime of an individual aged x in year t. Keeping the assumption 
that deaths are uniformly distributed over each calendar year, this demographic 
indicator is given by

 k kx ( ) ( ) .e 2
1

x
d

0 0
1

; ;=
$

t td
3 + P/

We use the 3 superscript to indicate that we work along a diagonal band in 
the Lexis diagram. Note that ex

3(t0 | k) is a random variable that depends on 
the future trajectory of the kt’s (and not on a single time index, as period life 
expectancies). Except for the additive constant 1/2, ex

3(t0 | k) coincides with 
ax(t0 | k) if  we let the interest rate tend to zero. As was the case for ax(t0 | k), 
an analytic computation of the distribution function of ex

3(t | k) thus seems to 
be out of reach.

3. COMONOTONIC APPROXIMATIONS

3.1. Comonotonic approximations to life annuity conditional expected present 
value

Assuming a random walk with drift model for the kt’s, Denuit & Dhaene (2007) 
have proposed comonotonic approximations for the quantiles of the random 
survival probabilities dPx (t0 | k). Since the expression for ax(t0 | k) involves the 
weighted sum of the dPx (t0 | k)’s, Denuit (2007) supplemented this fi rst como-
notonic approximation with a second one. Here, we extend these results to 
general ARIMA dynamics for the kt’s.
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Let us defi ne

 jjdt +a ( )exp exp Zx j x j
j

d

j

d

jd
0

1

0

1

0
b k= + =+ +

=

-

=

-

S ,_ i/ /

where j a( 0exp >x jd += )  and j t + j .x j 0
b k= +Z  Clearly Sk( ) ( ) .expx d0 ; = -td P  

Conditional on t0
k , it follows that jj( ,Nj s+Z m 2) with

 jt t+ +[ ] [ ]E Varandj x j j x j j
2

0 0
b s b= =+ +k km 2

_ i

subject to the convention that a Normally distributed random variable with 
zero variance is constantly equal to its mean (note that the mean and variance 
are taken conditionally on past values of the time index).

Approximating Sd by a sum of perfectly dependent random variables, with 
the same marginal distributions, gives the approximation

 Zjdd ( ), ( 1) .expS Z Nwithd
j

d

j j
0

1
+. s=

=

0,+
-

uS m/

Since Sd
u is a sum of comonotonic random variables, its quantile function is 

additive. The quantile function Sd
F 1

u
-  of  Sd

u is given by

 Sd

1
jd j( ) ( )expF j

j

d
1

0

1
= +

=

-
-z zs Fu m- ,` j/  (3.1)

where, as above, F–1 is the quantile function of N(0,1).
Another approximation of Sd is Sl

d   =  E[Sd | Ld ], where Ld is taken as the

fi rst-order approximation of Sd, that is, Ld   =   j 0= (expj j j
1 dd- )Zm/ . It is expected 

that Sd and Sl
d  are “close” to each other. A straightforward computation gives

 j jd j jjd ( ( ( ( ))expS d Z r d2
1 1

j

d

j
0

1
2 s= + + -

=

-

)rm s 2l
c m/

where ri (d ), i  =  0, 1, …, d  – 1, is the correlation coeffi cient between Ld and Zi , 
that is

 

mj

j ( j

d d

d

t t

t t

+ +

+ +
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/  (3.2)
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In the applications we have in mind, bx + i and bx + j typically have the same sign 
so that all of the ri ’s are non-negative. This means that the S l

d  ’s are sums of 
comonotonic random variables and allows us to take advantage of the quan-
tile additivity. Specifi cally, the quantile function of S l

d is given by

 S (d j j) ( )r zjd
m s+ +j jjd( ) (1 ( ( )) .expF z r d2

1
j

d
1

0

1
1 2 s= -

=

-

F
- 2

l
-

c m/  (3.3)

From the approximations Sd
u and S l

d derived for Sd, we get the following 
approximations for the random survival probabilities

 USk
d

( ) ( )exp Fx 0
1; . - -1utd

-P ` j  and  USk
d

( ) ( )exp Fx 0
1

; . - -l 1td
-P a k

where U is uniformly distributed on the interval (0,1). Note that the same ran-
dom variable U is used for all of the values of d, making the approximations to 
the conditional survival probabilities comonotonic. Hence, we obtain the fol-
lowing approximations for ax(t0 | k)

 Sk
d

a ( ) ( ) (0,exp F U v dx
d

0
1

1
; . - -

$

ut 1- )` j/

and

 Sk
d

a ( ) ( ) ( , .exp F U v d0x
d

0
1

1
; . - -

$

t l 1- )a k/

 
Since these approximations are sums of comonotonic random variables, their 
quantile functions are additive. We then get the following approximations for 
the quantile function k( )a ;tx

F 1
0

-  of  ax(t0 | k)

 Sk d( )a ; z
x t ( ) ( ( ,expF z F v d0

d

1 1

1
0

. - - )1
$

u
- - )` j/

where Sd
F 1

u
-  is given in (3.1), and

 Sk da ( ); z
x t ( ) ( ( ,expF F v d0

d

1 1

1
0

. - -z )1
$

l
- - )a k/

where Sd
F 1

l
-  is given in (3.3).

3.2. Comonotonic approximation for the cohort conditional life expectancy

From the approximations Sd
u and Sd

l derived for Sd, we get the approximations 
for ex

3(t0 | k)
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 kx d( ) (expe S2
1

d
0

1
; c -

$

u3 t + )/   or  k dx ( ) (expe S2
1

d
0

1
; c -

$

3 t l+ )/ .

Since the Sd
u ’s are sums of comonotonic random variables, their quantile func-

tions are additive. Moreover, the zth quantile of exp(–Sd
u ) is Sd

z( ( )) .exp F 11
- -u

-  

This provides the following approximations for the quantile function k( )e ;x t ( )F 1
0

z3
-  

of  ex
3(t0 | k)

 Sk d
z

x ( )e ; ( ) ( ( ))expF z F2
1 1

d

1 1

1
0

c - -t3

$

u
- -

+ /

where Sd
F 1

u
-  is given by (3.1). Now, assuming that the Sd

l  ’s are comonotonic, we 
get

 Sk d
z( )e ;x

( ) ( ( ))expF z F2
1 1

d

1 1

1
0

c - -t3

$

l
- -

+ /

where Sd
F 1

l
-  is given by (3.3).

4. ASSOCIATED SIMULATION METHODS

4.1. Background

Consider a rectangular mortality data array (dxt,  ext), comprising the numbers of 
deaths, dxt, with matching (central) exposures to the risk of death ext. We model 
the numbers of deaths as independent Poisson responses in combination with 
the log-bilinear structure (1.1), to target the central death rate (or force of 
mortality). Let dxt  =  ext  exp(a 5x  +  bx  kt) and rxt denote the respective fi tted 
 values and deviance residuals. Model extrapolation is subsequently achieved 
by applying the most appropriate ARIMA (p, 1, q) model to {kt} and then the 
indices of interest are computed. These include life expectancy and fi xed rate 
annuities, computed either by the cohort or period approach, involving future 
predicted central rates of mortality.

In a comparative study of  various proposed simulation approaches for 
constructing prediction intervals of future life expectancy using the log-bilin-
ear structure (1.1) in combination with an ARIMA (0, 1, 0) time series

 + t1 ( , . . .,N i i d0t t t +k q z z s= +-k , 2),

Renshaw & Haberman (2008) include a report of their fi ndings on applying 
the following algorithm to the UK male pensioners’ mortality experience 
 (collected by the Continuous Mortality Investigation Bureau):
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ALGORITHM

For m  =  1, 2, 3, …, M

1. simulate responses d*xt, m, (preserving any empty data cells), either

(a) by sampling Poi (dxt), or

(b) by randomly sampling {r*xt, m} from {rxt} with replacement and mapping 
r*xt, m 7 d*xt, m

2. obtain estimates a5*x,  b*
x  ,  k*t  by fi tting the log-bilinear structure to d*xt, m

3. obtain estimates q *m,  (sm
2*

 ) by fi tting the ARIMA (0,1,0) time series {k*t  }

4. for k  =  0, 1, …,  K

 set k*t0 + k, m   =   E [k*t0 + k, m] (=  kt0
  +  kq *m)

5. compute the statistics of interest.

Such simulation algorithms were originally proposed in the belief  that both 
the log-bilinear model fi tting error and time series forecast error were captured 
in Step 2 and Step 3 respectively (Brouhns et al. (2002)). However, two key 
inter-related unresolved issues arising from the Renshaw & Haberman (2008) 
study concern (i) the general narrowness of the prediction intervals for future 
life expectancies and therefore annuity values, and (ii) the failure of  these 
algorithms to capture the full magnitude of  the forecast error in the time 
series. We address this issue next. 

4.2. Bootstrapping the forecast error in the ARIMA time series

Bootstrapping is possible either by ignoring the error in the log-bilinear model 
and formulating:

ALGORITHM A1

For m  =  1, 2, 3, …, M

1. for k  =  0, 1, …,  K

(i) randomly sample z*m from N(0, 1)

(ii) set k*t0 + k, m   =   E [kt0 + k, m]  + k,t +[ ] .Var m0
k  z*m, for the same ARIMA model

2. compute the statistics of interest.

or, by additionally allowing for the error in the log-bilinear model and formu-
lating: 

ALGORITHM A2

For m  =  1, 2, 3, …, M

1. simulate responses d*xt, m either

a. by sampling Poi (dxt), or
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b. by randomly sampling {r*xt, m} from {rxt} with replacement and mapping 
r*xt, m 7 d*xt, m

2. obtain estimates a5*x,  b*
x  ,  k*t  by fi tting the log-bilinear structure to d*xt, m

3. obtain the same ARIMA parameter estimates by fi tting the time series {k*t  }

For n  =  1, 2, …,  N

4. for k  =  0, 1, …,  K

(i) randomly sample z*mn from N(0, 1)

(ii) set k*t0 + k, mn   =   E [k*t0 + k, m]  + k,Var t + m[ ] .
0

k*  z*mn 

5. compute the statistics of interest.

We stress the difference between these two approaches, with A1 merely repli-
cating the prediction (forecast) error in the time series while conditioning on 
the fi tted log-bilinear structure and associated parameter estimates throughout 
the simulation process. This contrasts with A2, which additionally includes 
provision for the error in the log-bilinear model.

5. AN APPLICATION

5.1. UK male pensioner 1983-2004 experience: ARIMA (1,1,0)

We consider the UK male pensioner 1983-2004 mortality experience (ages 
60-99): this is an updated version of  the 1983-2003 experience which was 
reported in Renshaw & Haberman (2008). For these data, we depict the results 
on fi tting the Poisson log-bilinear model structure (1.1) in Fig. 1. In addition 
to plotting the parameter estimates (Fig. 1 (a), (c), (d)), the deviance residual 
plots (Fig. 1 (e)) show that the log-bilinear structure adequately captures the 
main age-period effects, while confi rming the absence of any residual system-
atic cohort effect. We remark that the appearance of the discontinuity in the 
residual plot against year of birth (lower right frame) coincides with the 1919 
infl uenza pandemic. The irregularities in the a5x and bx   plots, in particular at 
the extremities of the age range, are due to the paucity of exposure at these 
extreme ages. For the purpose of this study, we choose not to apply smooth-
ing, (illustrated in Fig. 1), since it does not contribute anything additional
to the comparative aspects of the prediction intervals reported in this study. 
We note that the diagnostic plot (Fig 1. (b)), displaying the annual differences 
in the actual and fi tted total deaths, is also pattern free.

The time index {kt} is modelled as an ARIMA (1,1,0) process, for which

 1 1f, ; (0, ) . . .y N i i dt t t t t t t
2k k q z s= - = + +- - zy +y

with forecasts kt0 + k :   k  =  1, 2, 3,…, where
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(e.g. Section 15.3, pp. 438-444, Hamilton 1994). As noted by Lee and Carter 
(1992), it is necessary to impose 2 constraints on the parameters in order to 
ensure that the model is identifi able. We use the standard pair of constraints, 
as advocated by Lee and Carter (1992), viz. 

 
x

1x =b/   and  
t

0tk =/

when fi tting the model. Through an adjustment of {ax} by a linear transfor-
mation, those constraints are then modifi ed to the following: 

 
x

1x =b/   and  t 0
0

k =

before modelling the time index as on ARIMA (1,1,0) process. This procedure 
is consistent with that adopted by Renshaw and Haberman (2008). 

In the application, we have used t0  =  2004 so that the last calendar year for 
which the mortality data are available, 2004, is also the year that we use as 
the starting point of the forecasts. Thus, for example, the cohort expectations 
of life in Figures 2a and 3a refer to an individual aged x at the start of the 
calendar year 2004. We acknowledge that this approach is expedient rather 
than ideal. The calculations that follow are intended to illustrate and elucidate 
the earlier discussion and it would be straightforward to amend them so that 
t0  =  2005 and so that the cohort expectations of life refer to an individual at 
age x at the start of 2005 or indeed at the start of year t0 + t for t = 1, 2, 3…

Details of the parameter estimates (with standard errors in brackets) are 
as follows:

 
q sg
.

( . )
.

( . )
.1 2785

0 3180
0 4702

0 2084
1 3397

2

- -

with

 m  =  – 0.8696    kt0
  =  0    yt0

  =  – 0.5384

for fi tting by least squares: applied consistently throughout the subsequent
application of simulation algorithm A2. Again, the use of more sophisticated 
methods of fi tting is not essential, given the comparative nature of the study. 

Prediction intervals based on the comonotonic approximations to the 
quantile function derived in Section 3 (called henceforth theoretical prediction 
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FIGURE 2A: (b) computations by period, age 65, various periods (t  >  2004).
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FIGURE 2A: (a) computations by cohort, period 2004, various ages (x).
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FIGURE 2A: UK male pensioner 1983-2004 mortality experience: predicted life expectancies using a 
log-bilinear structured Poisson model with ARIMA(1,1,0) times series. Comparison 2.5, 50, 97.5 quantiles: 

(i) By theory. (ii) By bootstrapping the time series prediction error only (A1). (iii) By bootstrapping the 
time series prediction error and the log-bilinear Poisson model error (A2(a) or A2(b)).

intervals) and simulated prediction intervals for (a) life expectancy and (b) a 
4% fi xed rate annuity are depicted in Figs 2a&b respectively. For computation 
of the cohort-based values (upper frames), for period 2004 coupled with ages 
65, 70, 75, 80, 85, the l-type theoretical intervals (lower continuous lines) are 
computed using
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FIGURE 2B: (a) computations by cohort, period 2004, various ages (x).
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FIGURE 2B: (b) computations by period, age 65, various periods (t  >  2004).
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FIGURE 2B: UK male pensioner 1983-2004 mortality experience: predicted 4 percent annuities using a 
log-bilinear structured Poisson model with ARIMA(1,1,0) times series. Comparison 2.5, 50, 97.5 quantiles: 

(i) By theory. (ii) By bootstrapping the time series prediction error only (A1). (iii) By bootstrapping the 
time series prediction error and the log-bilinear Poisson model error (A2(a) or A2(b)).

based on Sections 3.1 & 3.2 above, and the u-type intervals computed on set-
ting  rj  (d )  =  1  6  j, d in the above relationships. For the ARIMA(1,1,0) time 
series, the evaluation of  ri  (d ), expression (3.2), requires the d  ≈  d matrix of 
co-variances

 (Cov 1kt t+ + ji �
f

f
,

1
; , 0,1,2, ...,T.A.T i j1 2

2
2

0 0
k s= +

-
= -d) f p8 B  (5.1)

where
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(e.g. using Brockwell and Davis (2002), Section 3.2), and reducing to

 (Cov 1jkt t+ +i j, { , , , , ...,min i j 0 1 22
0 0

k s= = -,i ;} d)8 7B A

when f  =  0 for ARIMA (0,1,0).
For computation of  the period-based values (lower frames), for age 65 

coupled with periods 2008, 2012, 2016, 2020, the life expectancy theoretical 
intervals use (2.1), while, for completeness, we also depict the period-based 
theoretical annuity intervals using:
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The simulated prediction intervals involve a total of M = 5,000 simulations in 
the case of algorithm A1, and M = 75, N = 75, and a total of 5625 simulations 
in the case of algorithms A2 a & b. 
 Although not strictly justifi ed on the basis of the exploratory time series analy-
sis of the period index kt, we repeat the theoretical and simulated prediction 
intervals, computed with the ARIMA (0,1,0) process (random walk) replacing 
the ARIMA (1,1,0) time series, and these results are depicted in Figs 3a&b, for 
which q  =  – 0.8698 (0.2715), s2  =  1.5482.

5.2. Results

First, we acknowledge the relative short time span of this data set, thus com-
promising the full potential of time series methods to some extent. However, 
we justify their use on the basis of our primary aim, which is to conduct a 
comparative study of  the choices involved: while the data are shown to fi t 
adequately the Lee-Carter model structure.

In conclusion, referring to Figs 2a&b and Figs 3a&b, we note the following:

• The close vertical alignment of the medians, for each batch of results (viz. 
fi xed x and t), within each frame.
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FIGURE 3A: (a) computations by cohort, period 2004, various ages (x).
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FIGURE 3A: (b) computations by period, age 65, various periods (t  >  2004).

18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0
0

1

2

3

4

5

6
e(65,t) computed by period

life expectancy

t = 2008

t = 2012

t = 2016

t = 2020

age 65
Theoretical
A1
A2(b)
A2(a)

KEY

FIGURE 3A: UK male pensioner 1983-2004 mortality experience: predicted life expectancies using a 
log-bilinear structured Poisson model with ARIMA(0,1,0) times series. Comparison 2.5, 50, 97.5 quantiles: 

(i) By theory. (ii) By bootstrapping the time series prediction error only (A1). (iii) By bootstrapping the 
time series prediction error and the log-bilinear Poisson model error (A2(a) or A2(b)).

• The close agreement of matching simulated and theoretical u-type prediction 
interval widths, depicted above the theoretical l-type prediction interval in 
the upper frames throughout. In this respect, neither the simulated intervals 
nor the theoretical u-type prediction intervals make use of the co-variance 
terms (5.1).

• The impact of  the co-variance terms (5.1) in reducing the width of  the 
theoretical u-type prediction intervals (upper frames).

• The dominance of the (correctly) simulated forecast error in the time index, 
over the log-bilinear simulated model fi tting error. This is implied by the 
close agreement of the widths of simulated prediction intervals using algo-
rithm A1 compared with both versions of  algorithm A2. This fi nding is 
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FIGURE 3B: (b) computations by period, age 65, various periods (t  >  2004).
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FIGURE 3B: (a) computations by cohort, period 2004, various ages (x).
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FIGURE 3B: UK male pensioner 1983-2004 mortality experience: predicted 4 percent annuities using a 
log-bilinear structured Poisson model with ARIMA(0,1,0) times series. Comparison 2.5, 50, 97.5 quantiles: 

(i) By theory. (ii) By bootstrapping the time series prediction error only (A1). (iii) By bootstrapping the 
time series prediction error and the log-bilinear Poisson model error (A2(a) or A2(b)).

consistent with that of  Lee and Carter (1992) (Appendix B), based on a 
different simulation approach, who conclude ‘that for life expectancy fore-
casts, it is reasonable to restrict attention to the errors in forecasting the [time] 
index and to ignore those in fi tting the [bilinear structure], even for short 
run forecasts’. This extends to fi xed rate annuity forecasts on the basis of the 
evidence provided here. We note the relative simplicity of A1 over A2a&b 
which has implications for forecasts using an age-period-cohort parametric 
model (Renshaw and Haberman (2006); Haberman and Renshaw (2009)), 
where model fi tting is slow to converge: this would be compounded by 
repeated application of  simulation algorithm A2 but would be avoided 
under algorithm A1 or by theory.
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• The more focused nature of the prediction intervals under ARIMA (1,1,0) 
time series modelling (Figs 2a&b) compared with ARIMA (0,1,0) time series 
modelling (Figs 3a&b), while the central point predictions are essentially the 
same under the two different time series models.

As expected, the small differences between prediction intervals simulated from 
A1 and A2 shows that the uncertainty is mainly due to the future path of the 
time index. These computations also show that the u-type theoretical predic-
tion intervals based on the comonotonic approximation (3.1) gives a very 
accurate approximation to the simulated prediction intervals. This suggests 
that we could resort to this approximation in actuarial applications. The com-
parison between prediction intervals obtained from ARIMA (1,1,0) and 
ARIMA (0,1,0) dynamics stresses the importance of selecting the appropriate 
order of the ARIMA model. Routinely using a random walk with drift pro-
duces wider prediction intervals compared to the ARIMA (1,1,0) model, which 
is optimal in this case.

6. DISCUSSION

In this paper, we have studied the accuracy of the comonotonic approximations 
to prediction intervals for cohort life expectancies and life annuity premiums 
viewed as functions of future death rates in the Lee-Carter model. Our main fi nd-
ing is that the u-type approximation seems to be effi cient for actuarial purposes.

The comonotonic approximations used in this paper are derived for the single-
factor Lee-Carter model. They could nevertheless be extended to models with 
multiple sources of randomness such as those by Renshaw and Haberman (2003), 
Cairns, Blake & Dowd (2006) or by Plat (2009), for instance. Thinking about sums 
of conditional survival probabilities (i.e. conditional life expectancies) or weighted 
sums of such probabilities (i.e. life annuity premiums as functions of the life 
table), the basic idea of the comonotonic approximation considered in this paper 
is to take the one-year survival conditional probabilities for a given cohort as 
comonotonic random variables. In the Lee-Carter case, this means that the future 
kt are taken to be comonotonic with a marginal distribution that is inherited 
from the ARIMA dynamics. The same idea should provide good results in multi-
factor models, too, providing that the factors are strongly correlated for each 
given calendar year and also strongly correlated over time. Then, taking all the 
random variables to be comonotonic might give a reasonable approximation.
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