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SURVIVAL ANALYSIS ON PEDIGREES: 
A MARKED POINT PROCESS MODEL

BY
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ABSTRACT

Regulation of insurers’ use of genetic information means actuaries are interested 
in age-at-onset of genetic disorders. Arjas & Haara (1984) suggested marked point 
processes (MPPs) as useful models for life history data with complex covariates. 
Age-at-onset distributions (or equivalently, hazard rates) in respect of inherited 
disorders are often estimated from pedigrees, which are life histories with unusu-
ally complex covariates, as well as strong dependencies induced by shared genes. 
Since Elston (1973) parametric models have often been used, conditioning the 
likelihood on known genotypes. However, a genotype identifi ed by a presympto-
matic genetic test is a form of internal covariate (Kalbfl eisch & Prentice, 2002). 
We propose a very general MPP model of a pedigree, including presymptomatic 
genetic testing, (‘the full model’) and show under what circumstances the partial 
model leading to Elston’s likelihood is valid. In practice, pedigrees are often ascer-
tained retrospectively. Many such events can be modelled by augmenting the 
natural fi ltration of the MPP. We show that, except in simple special cases, the 
partial model is no longer valid, and the resulting likelihoods appear to be intrac-
table. In particular, ascertainment interacts even with independent censoring so 
that likelihoods no longer factorize. For one simple special case — studies of 
sibships — we generalise a classical result to age-at-onset data. We conclude that 
the study of genetic conditions with variable age at onset gains insights from the 
underlying principles of survival analysis in their modern form, but that great 
care is needed in translating epidemiological studies into actuarial models.
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1. INTRODUCTION

1.1. Survival Analysis on Pedigrees

Medical underwriting of long-term insurance contracts often must be based on 
the epidemiological literature. The typical study seeks to estimate onset rates 
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of  disease, and mortality rates after onset. The actuary’s premium rates,
based on these estimates, are then themselves point estimates, which must 
inherit sampling distributions depending on the data and the study design. 
This aspect of  medical underwriting is rarely considered, in contrast to its 
non-life equivalent.

Genetics has forced the pace, because the furore over insurers possibly 
using presymptomatic genetic test results has led to this kind of information 
being regulated. In particular, in the U.K., the government has charged the 
Genetics and Insurance Committee (GAIC) with deciding when a genetic test 
result is so relevant to the insurance risk that it may be used in underwriting 
(for large risks only). The criteria adopted by GAIC, although not explicitly 
statistical, suggest that its decisions might be aided by understanding the 
 sampling properties of  premium rate estimates. We would expect GAIC to 
require, as a minimum, that premium rate estimates should be unbiased, and 
be reliably distinct for different genotypes.

Lu, Macdonald & Waters (2008) and Lu, Macdonald & Wekwete (2008) 
studied the dispersion of critical illness (CI) insurance premium rate estimates. 
They used rates of disease onset derived from survival analyses of family his-
tories, assuming these rates to be unbiased estimates. However, Espinosa & 
Macdonald (2007) showed that one of the usual assumptions made in survival 
analysis — that truly independent censoring does not introduce bias — does 
not hold if  the pedigrees were sampled retrospectively, as is often the case. 
They considered non-parametric (Nelson-Aalen) estimation, whereas many 
pedigree studies use parametric (likelihood) models. Our motivation here, with 
actuarial applications in mind, is the question of bias in parametric survival 
analysis based on pedigrees.

To see why problems might arise, contrast the features of a ‘normal’ sur-
vival study — prospective design, independent subjects, random censoring and 
fi xed covariates — with a typical pedigree study. Following GAIC, we focus 
on the presence or absence of a rare heritable gene variant that leads to disease 
onset in adults, and note that disease onset is the event of interest, and death 
a form of censoring.

(a) Rarity prevents sampling of the general population, so subjects are drawn 
from families in which the disease has been reported.

(b) At least one family member must be affected for the family to be noticed 
by researchers. The latter is an event, not always well defi ned, called ‘ascer-
tainment’. Inference should not be based on the information that led to 
ascertainment. Failure to exclude it leads to ‘ascertainment bias’. There is 
a large literature on ascertainment bias and how to adjust for it (see Hodge 
(2002) and references therein) but little in the specifi c context of onset rates 
and survival analysis. Li (2007) is a useful reference for survival analysis 
in genetic epidemiology. 

(c) Because family members share genes, their lifetimes are dependent. (They 
will share environment too, but that is beyond our scope.) Likelihoods 
must be summed over all possible joint genotypes for the entire pedigree. 
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After allowing for any genotypes that have been observed directly, Mendel’s 
laws and the family structure give the probability distribution for the joint 
pedigree genotype. 

(d) The advent of  DNA sequencing means that a person’s genotype may be 
revealed by a healthy person taking a presymptomatic genetic test. The usual 
reason for doing so is that they have one or more affected relatives, so they 
are members of families more likely to be ascertained anyway. The result 
of any such test is an internal covariate. That is, we learn the test result 
because the person concerned remained free of onset up to the time of the 
test. This is discussed in Section 1.2.

(e) Late onset means that observation of onset may be censored in the usual 
way.

Arjas & Haara (1984) proposed marked point process (MPP) models for sur-
vival data with complicated covariates. Pedigrees with presymptomatic genetic 
testing fi t that description, and have highly structured dependencies between 
lifetimes also. In any survival analysis, we hope that all complicating factors 
(of which the simplest is censoring) can be ignored, in the sense that while they 
may affect the form of the likelihood, we need only estimate those parameters 
related directly to the event of interest. This often amounts to using a partial 
model instead of a full model that includes all complicating factors. However, 
only by specifying the full model can we tell whether or not the use of a partial 
model is justifi ed (Arjas & Haara, 1984). Of particular interest to us is whether 
the method of ascertainment may interact with censoring, so that the latter 
cannot be ignored.

Elston (1973) defi ned pedigree likelihoods for genetic traits with late onset, 
allowing rates of onset to be estimated (see Section 1.4). This work pre-dated 
genetic testing, hence known genotypes as (internal) covariates. It also pre-
ceded the modern point process approach to survival analysis, which is the key 
to testing whether the full model leads to a valid partial model.

Our aim is to formulate a MPP model of a pedigree, to address the follow-
ing questions.

(a) Can we recover Elston’s likelihood from a properly formulated survival 
model?

(b) How are internal covariates generated by presymptomatic genetic tests to 
be included in the model?

(c) How does retrospective ascertainment: (i) interact with censoring; and
(ii) affect estimates of onset rates?

1.2. Genetic Test Results Are Internal Covariates 

Suppose a man had a presymptomatic genetic test at age 40 and was shown 
to carry a disease-causing mutation. In estimating the rate of onset at age 30 
(say) in a survival analysis we ask: ‘‘given that he is healthy at age 30, what is 
the probability that onset occurs before age 31?’’. Knowing the genotype, a 
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sharper question is: ‘‘given that he is healthy at age 30 and carries a causative 
mutation, what is the probability that onset occurs before age 31?’’. But, allow-
ing for how we learned about the genotype, we should really ask: ‘‘given that he 
is healthy at age 30 and a causative mutation was revealed by a presymptomatic 
test at age 40, what is the probability that onset occurs before age 31?’’, to which 
the answer is ‘‘zero’’.

This is the problem of an ‘internal’ covariate (Kalbfl eisch & Prentice, 2002) 
whose value is learned by observing an event which is: (a) of interest only because 
it reveals the covariate; but (b) not independent of the event we are studying. 
Worse, in a pedigree, a presymptomatic test carried out on one person will change 
what we know about other people’s genotypes, because of Mendel’s laws. 

A discrete-time example (based on Arjas & Haara (1984, Section 3))
shows how to fi nesse internal covariates. Denote the ‘events’ in a life history 
A1, A2, …, An in order of their occurrence. They may be events of interest, 
‘nuisance’ events like censoring, or time passing while nothing happens. 
 Suppose a covariate takes values in a set U. If  the observed covariate is
v ! U, and the model parameter is q, the likelihood constructed in the usual 
sequential way is:

 
v

v

,v 1

( ; ) [ , , , ,

[ ] [ | ] [ | , [ | , , ]

L n P A A A

P v P A P A v A P A A A
n

n n

1 2

1 2 1 1

f

g f

q =

= -]

]
 (1)

from which P [v] may be dropped if  the covariate distribution does not depend 
on q. But how did we learn v? Strictly, we did so by observing an event C, 
which must be part of the model. Sometimes C is trivial, for example, if  every-
one is genotyped at the start of  a prospective study. But if  C happens at a 
random time it carries information about some of the Ai. Suppose that Ai is 
the event ‘free of symptoms at age i’ and C is the event ‘had a presymptomatic 
genetic test at random age j with result v’. Since the test precedes onset by 
defi nition, C & Ai for i ≤ j, and the sequential construction is:
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It seems that we should condition on v only after it is known. However, the 
event C has two parts: the random age j, and the result v. Denote the fi rst of 
these Cj , so C = (Cj , v). In MPP terms, v is a mark observed when Cj occurs. 
The likelihoods just before and after the genetic test are:
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j ,C( ; ) ( ; ) [ | , , [ | , , ] .L j L j P A P Aj j j1 1f fq q= -+ ] v AC A  (5)

From Bayes’ Theorem:
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(7)

so, if  P [Cj | A1,  …,  Aj ] does not depend on q, and if  P [ v | Cj ,  A1,  …, Aj ]   = 
P [ v | A1,  …,  Aj ] (so the test result depends only on the same history that may 
have caused the test to be taken at age j ), we have:

 A, ,v v v 1( ; ) [ [ | ] [ | ] [ | , , ]L j P P P P Aj j1 2 1 1g f?q -
+ v A] A AA  (8)

as if  the genotype v was known at outset. Further, for k > j assume that
P [ Ak | C,  Aj + 1,  …,  Ak – 1]   =   P [Ak | v,  A1,  …, Ak – 1]; then we recover the likeli-
hood (1). In terms of Arjas & Haara (1984) these assumptions mean that the 
only innovative part of the genetic test was the result v. Arjas & Haara pointed 
out that only by investigating the full model (including the event C   =   (Cj , v) 
as above) can we tell whether or not we may use a partially specifi ed model, 
such as one that just conditions on v. However, the example above does not 
immediately suggest how to introduce internal covariates when we have depend-
ent life histories linked by shared genes.

1.3. The Elements of a Genetic Model of Inherited Disease 

Rates of onset, the focus of actuarial interest, are just one part of a genetic 
model of  inherited disease. We assume the whole model has a parameter 
denoted q.

FIGURE 1: A three-generation pedigree in respect of a dominantly inherited disorder.
Squares are males, circles are females, and a filled-in symbol denotes onset of the disease.
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(a) The frequencies with which different versions of  a gene (called alleles) 
occur are parts of the model. 

(b) The physical characteristics conferred by an allele, called the phenotype, 
depend on how it acts on processes in the body. If  one deleterious allele 
is suffi cient to cause a disease, the disease is dominantly inherited, and can
be passed on by just one parent. If  two deleterious alleles are necessary, 
the disease is recessively inherited, and must be passed on by both parents.

(c) Some diseases are purely genetic in origin, for example Huntington’s 
 disease has no known cause except mutations in the huntingtin gene.
But many common diseases, such as breast or colorectal cancer, have 
inherited variants.

(d) Even the presence of a proven ‘causative’ genotype does not guarantee 
that disease will be observed. The probability of onset by age x, given the 
genotype and assuming all other decrements to be absent, is called the 
age-related penetrance of the genotype. Penetrance at high ages may be 
less than 100%, and in practice other decrements introduce censoring.

1.4. Pedigree Likelihoods

Let q be the parameter of a genetic model, defi ning rates of onset and mode 
of  transmission. Let there be M genotypes, labelled from 1 to M, and N 
 pedigree members, labelled from 1 to N. The possible joint genotypes of the 
pedigree are the N-tuples in the set U  =  {1, 2,  …,  M }N. The probability, under 
q, that the pedigree genotype is u is denoted Pq  [u]. Let mg ( x, q) be the hazard 
of onset at age x, given genotype g. The hazard is interpreted as follows: the 
probability that a healthy person of genotype g and age x will suffer onset by 
age x  + dx is mg(x, q) dx, for small dx. Suppose the highest age at which the jth 
person was observed is x*

j , and give the indicator Ij the value 1 if  x*
j  was the 

age at onset or the value 0 if  x*
j  was the age at censoring (we assume that 

observation ceases at onset). Then from Elston (1973) the likelihood is:
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(Elston (1973) parameterized the likelihood in terms of the lifetime penetrance, 
and the distribution of age at onset conditional on onset occurring. In (9), 
penetrance is incomplete (less than 100%) if  

3

g0
m# (x, q) dx  <  3, defi ning an 

improper distribution for the age at onset. Here, it will be clearer if  the hazard 
is explicit.)

As an example, consider the pedigree in Figure 1, in respect of  a rare 
dominantly inherited disorder such that: (a) there are only two genotypes, 
‘normal’ labelled 1 and ‘mutation’ labelled 2; and (b) the mutation is the sole 
cause of the disease. Let f be the population prevalence of mutation carriers. 
The pedigree genotype is u  =  ( u1, u2, u3, u4 ), the indices referring to the labels 
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in the fi gure. Table 1 shows the contributions to the likelihood (9) just before 
and just after person 4 suffers onset at age x4. Because the mutation is rare, 
we ignore the possibility that it is introduced to the pedigree by more than
one person, so (for example) pedigree genotype (2, 1, 2, 1) is considered infea-
sible. For brevity we drop q and defi ne the survivor functions and densities, 
respectively as:

 (ym .)
x

( ) ( ) ( ) ( )exp dy fandg g g0
m= - =x x x xg gS Sb l#  (10)

Implicit in Elston’s likelihood is the assumption that pedigree members’ life 
histories are independent, conditional on the pedigree genotype. Then the like-
lihoods before and after the onset at age x4 are found by summing the columns 
in Table 1; for example the likelihood just after the onset at age x4 is propor-
tional to:
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Impossible genotypes (sufferers cannot have genotype 1) vanish whenever onset 
occurs because m1(x, q)   =   0 for all q, which is not the same as conditioning 
upon known genotypes, although it looks like it.

If, instead of suffering onset, person 4 had taken a genetic test at age x4, 
we would hope to proceed by defi ning U* 1  U to be the set of pedigree geno-
types consistent with known genotypes as revealed by genetic tests, then using 
a likelihood proportional to:

 m qj
j
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TABLE 1

TERMS IN THE LIKELIHOOD IN RESPECT OF THE PEDIGREE IN FIGURE 1, BEFORE AND AFTER THE

PERSON LABELLED ‘4’ SUFFERS ONSET AT AGE x4. WILD-TYPE ALLELES ARE LABELLED 1, 
AND MUTATIONS ARE LABELLED 2.

Genotype Before Onset After Onset

(2,1,1,1) f 0.5 f2 (x1) S1 (x2) S1 (x3) S1 (x4) f 0.5 f2 (x1) S1 (x2) S1 (x3) f1 (x4) = 0

(2,2,1,1) f 0.125 f2 (x1) S2 (x2) S1 (x3) S1 (x4) f 0.125 f2 (x1) S2 (x2) S1 (x3) f1 (x4) = 0

(2,2,2,1) f 0.125 f2 (x1) S2 (x2) S2 (x3) S1 (x4) f 0.125 f2 (x1) S2 (x2) S2 (x3) f1 (x4) = 0

(2,2,1,2) f 0.125 f2 (x1) S2 (x2) S1 (x3) S2 (x4) f 0.125 f2 (x1) S2 (x2) S1 (x3) f2 (x4) ! 0

(2,2,2,2) f 0.125 f2 (x1) S2 (x2) S2 (x3) S2 (x4) f 0.125 f2 (x1) S2 (x2) S2 (x3) f2 (x4) ! 0
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However, test results are internal covariates and, as in Section 1.2, we cannot 
just sum over U* instead of U, without including genetic testing in a fully 
specifi ed model. Moreover, unlike most covariates in a survival model, a 
genetic test result can ripple through the whole pedigree, for example altering 
what was previously known about deceased ancestors. Our approach, in 
 Sections 3 and 4, is to defi ne U*(t) to be the set of pedigree genotypes consist-
ent with all genetic test results known at time t. We show that a new member 
joining at time t expands U*(t–) (just before time t) to a larger set U*(t)  2  U*(t–); 
that a genetic test taken at time t shrinks U*(t–) to a smaller set U*(t)  1  U*(t–); 
and that the likelihood based on the history at time t is the sum (12) over 
U*(t).

2. SURVIVAL ANALYSIS BASED ON MARKED POINT PROCESSES

2.1. Marked Point Processes and Hazards

As references for this section, Andersen et al. (1993) is a standard text on 
survival analysis based on counting processes, while Arjas & Haara (1984) and 
Arjas (1989) introduce the MPP approach.

The idea of a MPP is that events happen at a sequence of random times 
t1,  t2,  …, and at each time tr information called a ‘mark’ may be obtained, for 
now denoted er. Marks may convey almost any kind of  information, three 
important examples being the following:

(a) The mark er may indicate that a specifi c type of event has occurred, for 
example a transition between two distinct states of health. Thus a multi-
state or staging model is a MPP.

(b) The mark er may indicate that an event happened to a particular person. 
That is, we can model the joint life histories of several people as a single 
MPP. This is merely cosmetic if  they have mutually independent life his-
tories, but not in the case of pedigree data.

(c) The mark er may be the value of a covariate observed at time tr, for exam-
ple, the result of a presymptomatic genetic test

We work in continuous time, and suppose that: (a) we observe persons, labelled 
i   =  1, 2,  …, whose life histories need not be mutually independent; and (b) any 
one person’s life history is modelled by transitions between a fi nite set of states 
S. Then an event h is defi ned by the triple (i, k, l ), meaning that the ith person 
made a transition between states k and l of  S. Let H be the set of all such 
possible events.

Event h can happen at time t only if  the ith person is in state k just before 
time t, which time we denote t–. Then we say the MPP is ‘at risk of event h at 
time t–’. Defi ne the following processes:

h ( )
h t

h t

1 if at risk of event at time

0 if not at risk of event at time
=

-

-
Y t '   (13)
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 ( ) h tthe number of occurrences of event by timeNh =t  (14)

  ( ) h tthe hazard rate of event at timehl =t  (15)

 
t

s s( ) ( ) ( ) .dsAh h h0
lY=t #  (16)

Let Ft (Ft–) denote the information obtained by observing the MPP up to and 
including (not including) time t. Interpret hazard rates as in Section 1.4, but 
allowing for Ft–: 

[ | ]
( ) .

h t dt h t
t dt

P Event occurs before time and at risk of event at timeFt

h. l
+ -

-

 (17)

To refer to events h   =   (i, k, l ), we will use the compact notation lh(t)   =   l i
kl (t) 

instead of l (i, k, l ) (t) (and similarly for Yh(t), Nh(t) and Ah(t)).

2.2. Likelihoods

Heuristically, given the history at time t –, the event h happens at time t with 
probability Yh(t)  lh(t) dt   =   dAh(t), or does not happen with probability 1 – 
dAh(t). These give the Bernoulli likelihood:

 d d- .d dAA1 ( ) ( )t t NN1 ( ) ( )
h

t
h

th h-^ ^h h  (18)

Multiplying all these terms over the interval [ 0, T ], in the limit, the likelihood 
is the product integral:
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,
h

t
h

t

T0

h h- A A
]
^ ^h h%  (19)

The simplest example is h   =   (i, 1, 2), where state 1 is ‘alive’ and state 2 is
‘dead’, and supposing the ith person was observed until time t*; (19) is:
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Each event h  !  H contributes a factor like (19) to the likelihood, so:

 d1- d
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2.3. Marks

Information, called a ‘mark’, may be acquired when an event h  !  H occurs at 
time t. It is denoted eh(t), taking values in a suitable mark space, denoted 
Eh(t). Let Ft now include the information obtained by observing marks. Then 
the likelihood (21) becomes:

,1 d d-

[
h- F( , ) ( ( )) ( ) ( ) ( ) .L T d t d t P e t d t 1

H

N N( ) ( )

,
h

t
h t

t

Th 0

h h= =
!

-q 1 A A h
]

N^ h6 @%%  
(22)

For brevity, we will usually write P [eh(t)] instead of P [eh(t) | Ft–,  d Nh(t)   =   1], 
the conditioning on the event occurring being understood. 

3. A MARKED POINT PROCESS MODEL OF A PEDIGREE

3.1. Aims

We model a pedigree as a MPP with the following observable events: new 
members joining, disease onset, predictive (presymptomatic) genetic tests and 
censoring. We leave aside obvious extensions, for example to diagnostic testing 
after onset. We need a lot of notation, so we list the main defi nitions at the 
end of the paper.

3.2. Timescales

We need to track all pedigree members simultaneously in calendar time, so
we index all processes by calendar time t, only introducing age x as needed 
(see Andersen et al. (1993), Section X.1.9). Observation takes place in the 

FIGURE 2: A model of the life history of the ith member of a pedigree, in State 1 from birth,
with genotype being then unobserved. Each possible transition from State j to State k is governed by a 

hazard rate (intensity) li
jk(t) depending on calendar time t.
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interval [ 0, T ] of  calendar time. Suppose the i th person is born at calendar 
time bi ; then defi ne:

 xi (t)   =   t  –  bi   =   the age of the ith person at calendar time t.

3.3. The Genetic Model: Genotypes and Penetrances

Let there be M genotypes, labelled 1, 2,  …,  M, and let the population fre-
quency of genotype g be fg. For genotype g defi ne the hazard or intensity of 
onset, a function of age x, denoted as mg(x):

 ( )x x gRate of onset at age given genotype .gm =  (23)

Thus, if  the ith pedigree member has (or is assumed to have) genotype g, 
the rate of onset to which they are subject at calendar time t, if  then at risk, 
is mg(xi (t)). Knowing mg(x) is equivalent to knowing the penetrance of geno-
type g. Denote the parameter of the genetic model q (so fg and mg(x) are part 
of q), and denote the resulting probability distribution Pq.

3.4. Life Histories

The ith pedigree member’s life history is represented by the states and transi-
tions shown in Figure 2, that is, the set of events:

 ( , , ), ( , , ), ( , , ), ( , , ), ( , , )i i i i i1 2 1 3 1 4 2 3 2 4i =H " , (24)

and the set of events in the pedigree model is H   =   'i Hi. Note that the hazards 
(intensities) lh (t)   =   li

kl  (t) are functions of calendar time, and they are not in 
general identical for different pedigree members (so the ‘i ’ superscript in li

kl  (t)
is not superfl uous).

(a) ‘Unobserved genotype’ (state 1) indicates that the ith member has not had 
a genetic test or suffered onset, so all knowledge about his/her genotype 
probabilities comes from his/her relatives.

(b) State 4 accounts for all censoring, except observation ceasing at time T. 
We treat death as a form of censoring.

(c) A genetic test at time t is accompanied by a mark, the genotype. The mark 
space is Ei

12(t)   =   {1, 2,  …,  M }.
(d) The intensities li

kl (t) are conditioned on what is known at time t –, so 
li

13(t)   !   li
23(t). 

3.5. The Pedigree History

We need to add structure to express the dependencies in a pedigree. To do this, 
defi ne a new event, not represented in Figure 2, namely new members joining. 
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This is the essential difference between modelling the pedigree and modelling 
the trivial collection of its members. The idea is as follows:

(a) At calendar time t, the pedigree has N(t) members (alive or dead; having 
joined, no-one leaves).

(b) Events happen at a sequence of random times t1, t2,  ….
(c) Events may be of two kinds: (i) one of the events h  !  H defi ned above

(an existing pedigree member experiences a transition); or (ii) one or more 
new members join the pedigree, either by birth or by marriage. More than 
one new member may join only in the case of a multiple birth.

Augment H with a new event labelled ‘0’, which is ‘one or more persons join 
the pedigree’: defi ne H*   =   {0}  �  H. Joiners may be ‘founders’, meaning orig-
inal members or spouses of members, or ‘births’, meaning children born to 
existing members. Let N0(t) be the number of joining events by time t (note 
that N0(t)  ≤  N(t)) and let l0(t) be the associated intensity. With each joining 
event, associate a mark e0(t) that carries all the information that may be 
needed. For births, this must identify the parents, and siblings in the case of 
multiple births. For marriages, it should include sex, the age t  –  bi on joining 
the pedigree, and which state in Figure 2 was entered upon joining. The inten-
sity l0(t) will be a function of the numbers and ages of all potential child-
bearing couples in the pedigree, and possibly extra information known at time 
t– as well. Any likelihood from which l0(t) cannot be dropped will almost 
certainly be intractable, but we need to specify a full model before seeing what 
can be omitted in a partial model.

For simplicity, we suppose that joiners enter State 1 in Figure 2. This is 
realistic in the case of births, and can easily be relaxed for spouses joining the 
pedigree.

3.6. Pedigree Genotypes

We invent a ‘null’ genotype labelled 0 to which members not yet in the pedigree 
are assigned.

(a) Let U(t) be the set of all possible pedigree genotypes at time t. That is, 
the set of all u   =   ( u1,  u2,  …,  uN(t),  0,  0,  …), where each ui  ! {1,  2, …, M } 
for i   ≤   N(t).

(b) Also, let U*(t) be the set of all possible pedigree genotypes allowing for 
any members whose genotype is known because of a genetic test taken not 
later than time t. For example, if  the 1st pedigree member has been tested 
before time t and has genotype v1, then U*(t)  3  { u  !  U(t)  :   u1   =   v1}.

3.7. Observation and Information

(a) The information known at time t from observing the pedigree history is 
denoted Ft. 
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(b) The information known at time t solely from knowing the pedigree struc-
ture (that part of the ‘joining’ marks e0 (t) identifying parents and identical 
siblings) is denoted At.

3.8. Genotype Probabilities

We defi ne two sets of genotype probabilities: those conditioned on the pedi-
gree structure alone (At) and those conditioned on all observations (Ft ).

(a) Defi ne the genotype probability at time t conditional on the pedigree 
structure at time t to be:

 A ( )t .( ) [ | ] ( )t uP Uu t != q up  (25)

 To defi ne genotype transmission probabilities, suppose the ith member 
joins at time t, and let u� be elements of U(t– ). The transmission probabil-
ity, denoted pi

u, is as follows:

 ,u q [ | ( )]p u u e tP i 0=i �  (26)

 where u   =   (u�1,  …,  u�i –1, ui,  0,  0,  …). If the ith member is a founder, pi
u   =   fui. 

Otherwise, if  e0( t ) identifi es the fth member as his/her father and the mth 
member as his/her mother, pi

u is the probability that a father with genotype 
uf and a mother with genotype um have a child with genotype ui .

( b ) Defi ne the pedigree genotype probability at time t conditional on all that 
is known then to be:

 t ( )tFq( ) [ | ] ( ) .t uP Uu !=m u  (27)

 The corresponding probability that the ith member has genotype g  !  {1, 2, 
…, M } we defi ne as:

 .( )m t
(

( )m t
)

g u

u g
u tU

i

=
!
=

i /  (28)

3.9. Rates of Onset in Calendar Time

It is clear that li
23( t )   =   mg( xi( t ) ), where g is the known genotype, and it is  easily 

shown that the li
13( t ) are averages of the mg( xi ( t ) ), weighted by the genotype 

probabilities just defi ned:

 l vi
( ) ( ) ( ( )) .t m t x t

1

i

v

v M

v i13
i

i

i
m=

=

=
-i/  (29)
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3.10. Likelihoods

Our problem can now be stated. Elston’s likelihood ( 9 ) is defi ned in terms of 
age-related onset rates and genotype probabilities as in Section 3.8( a ) above, 
conditioned on AT, the ultimate pedigree structure at time T. Also, it does not 
allow for genetic testing as an internal covariate. The likelihood obtained from 
the survival model, set out in (30) below, is stated in terms of intensities in 
calendar time, and genotype probabilities must be conditioned on Ft, all his-
tory up to time t, as in Section 3.8( b ) above. We need to show that they are 
equivalent.

4. ELSTON’S LIKELIHOOD

4.1. Defi nitions and Notation

The likelihood, in terms of the calendar-time intensities li
jk( t ), is:

 -1 d d

[
-

Hh!
( ) ( ( )) ( ) ( ) .L T d s d s sPN N( (

h h
h hq =

0,T*

s
h; 1 e)A A )s

]
^ h6 @%%  (30)

assuming random sampling of  the fi rst member. We now show that this is 
proportional to the likelihood ( 12), extending Elston’s likelihood (9 ) allowing 
for genetic tests.

In this section, we suppose that li
13( t ) and li

23( t ) are the only intensities 
depending on genotype or q, and drop other intensities from the likelihood 
whenever they appear as factors. Defi ne:

 13 23{ ( ) 1 ( ) 1}i t torR
i

= = =
iY Yt :

to indicate all those at risk of onset just before time t.
We will often use sums over all feasible pedigree genotypes, such that

the ith person’s genotype vi is fi xed, (u tU!
,

i i
* ) : u v=

/  so for brevity let 
i iu v=/  

represent this sum.

4.2. Sequential Construction of L ( q ; T  )

We will construct L( q;T  ) sequentially, conditioning the probabilities of events 
in each time increment on the past. Heuristically:

 tq( ; ( ; ) [ | ] .L t L t tP Events observed at time F#q q= -
-)  (31)

The key point is that:

 t t , u
u

q
*

( ; ) [ ] [ ]L t P P FF
( )t

q = =
! -

q- -
-

U

/  (32)
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so:

 
, ,

,
F F

q
q

q q( ) [ | ]
[ ]

[ ]
( ; )
[ ]

m
P u

P v
L t

P v
P

F
Fv t

t

t t

q
= = =-

--

-

- -

*
-

( )t

t v
u! U

/  (33)

and:

 
,

( )tm
Fq

v
vi

( )
( ; )

[ ]
.m t

L t

P v
u

u

tu v

i i

i i

q
=-

=

-
-

-=
=i /

/
 (34)

We must show that whatever is observed at time t — joining the pedigree, cases 
of onset, genetic tests, deaths or censored observations — and during periods 
between events, this happens in such a way that (30) always has the form of 
Elston’s likelihood.

We suppose the pedigree genotype at time 0– is ( 0, 0, 0, …), the only ele-
ment of U*( 0– ), so:

 ( ; ) ( ) .L m0 1
)

v
v *

q = =
- -

-! U

0
(0

/  (35)

4.3. Contributions From New Members Joining

Next, suppose the ith member joins at time t ( so N( t )   =   i ) and assume, in 
inductive fashion, that L ( q; t – ) is as in (32 ), the sum being over u� !  U*( t – ). 
We have:

, u�F[ ] [ ( )] .tP P( )tl ed

( )t*

( ; ) ( ; ) ( ( ) [ ( )]L t L t d t tP N ( )
q

t

u
t0 0 0 0

0q q= =
! -

-
- )

�

A
U

e /  (36)

The ith member may be a founder ( a spouse marrying into the pedigree ) 
assumed to join at some age xi ( t ) > 0 or a non-founder ( an offspring of 
pedigree members ) who joins at age 0. If  the ith member is a non-founder we 
assume that P [ e0( t ) ] does not involve q and:

 
(37)

 

,

u
t

u

u

(

u

( )

( )

t

t

q q

q

q
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)
t

*

*

*

( ; ) [ , ] | ( )

[ , ]
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L t P u u t
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P
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u

t
u

u M

i

u

u M

u
t

u

1
0

1

i

i

i

i

?q

=

=

!

!

=

=

=

=

-

-

-

-

e

U!

i

�
�

�

U

U

,

F

F

F

6 @/ /

//

/

 (38)

 
(39)

where: ( a ) the sum over ui in ( 37 ) is identically 1; ( b ) we note that
Pq [ui  |  u�, e0( t )]   =   pi

u ; and ( c ) u   =   ( u�1,  …,  u�i – 1,  ui,  0,  0,  … ). If  the ith member 
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is a founder ( recall that they enter state 1 ) then the mark e0( t ) is their life his-
tory so far, so:

 
i

i M

uf[ ( )] ( )expt x dxP
(

u

x t

u
0 01

i i
i

? m-
)

e
u

=

=

b l/ #  (40)

which is the probability that onset has not occurred by age xi ( t ), so pi
u in ( 38 ) 

is replaced by: 

 u( )xf ) ( ) .exp expp x dx
( (

u u

t

u

t

0 0i i

i

i

i
m m- = -dx

) )x x
ib bl l# #  (41)

The fi rst member joining at time t  =  0 is a special case. Also, the above is eas-
ily extended to multiple births, with N( t )  –  N( t– )  >  1.

4.4. Contributions From Periods With No Events

Suppose there is an event at time t*, and then no event between time t* and t. 
Noting that Rs  =  Rt for t*  <  s   ≤   t, the relevant factors of the likelihood during 
( t*,  t ] can be written:

      
,

l l
(t t

k3

t
( ) .exps ds1

! !

Y Y( )
k
i s

ki ki
3

3 3R R

k
i

t t

k
i

3 3

( )s ds
t

- = - i

*
*

(

]! !

t)
^ `h j%%% %% #  (42)

For t*  <  s   ≤   t the genotype probabilities evolve as follows ( Bayes’ Theorem ):
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Substitute this and ( 29) into ( 42 ), and the contribution is:
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( Note that if  the ith member has had a genetic test by time t*, their genotype 
is known, fi xed as gi, say; all genotype probabilities mu( t* ) inconsistent with 
this vanish, so the numerators and denominators in the integrals above are 
equal; and the integrand reduces to mgi

( xi ( s ) ).) Therefore, from ( 33 ), and mak-
ing age instead of calendar time the variable of integration:

 ,t uq F
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? c m%/ #  (46)

That is, between jumps, each member currently at risk of onset survives free 
of onset and contributes the probability of that event to the likelihood.

4.5. Contributions From Cases of Onset

If  the ith member suffers onset at time t, L ( q; t ) is:
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Applying ( 34 ), and noting that U*( t )   =   U*( t– ), this is:
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93216_Astin40_1_02.indd   5193216_Astin40_1_02.indd   51 11-05-2010   09:35:3411-05-2010   09:35:34



52 A.S. MACDONALD

( This is where the defi nition of U*( t ) in terms only of information gained from 
genetic tests matters. ) Note that if  either: ( a ) the ith member had previously 
had a genetic test; or ( b ) the disease has no cause except a single gene muta-
tion; then the sum in ( 47) has only one non-zero term.

4.6. Contributions From Genetic Tests

If  the ith member has a genetic test at time t, revealing their genotype to be 
vi, then:

v ]d di
12 .i= 12

i
( ; ) ( ; ) ( ( ) [ ( ) ) ( ; ) ( ) ( )L t L t L t m tP N ( )i t

v12 12

i

?q q q l= - - -A t e t ti i  (49)

Dropping li
12( t ) ( compare with Section 1.2, just after ( 7 ), where we assumed 

that the probability of being tested does not depend on q ) and applying (34 ):

 uu [ ]P .qq ,P [ ]
( t(t

,

u
) )

t t
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( ; )L t F
u u
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?q =-

- UU
v=

! !

F/ /  (50)

4.7. Contributions From Deaths and Censored Observations

Following death or loss to observation at time t, no further contributions are 
made to the likelihood.

4.8. Constructing the Likelihood

Let xi*( T ) represent the highest age at which the ith member has been observed 
alive and asymptomatic up to and including calendar time T. Starting with 
( 35 ), applying ( 46 ) between events, and (38 ), ( 48 ) or (50 ) when an event other 
than censoring occurs, L ( q, T ) is:
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To within factors not depending on q, this is the likelihood ( 12). It extends 
Elston’s likelihood ( 9 ) allowing for genetic tests, and, despite appearances, we 
have not conditioned upon genotypes known at time T, as indeed we may not 
within the framework of survival analysis. 

5. RETROSPECTIVE STUDIES

5.1. Retrospective Studies, and Distorted Intensities and Probabilities

The model does not refl ect the way in which real pedigrees are observed. Usually, 
‘interesting’ families are identifi ed ( ascertained ) through one or more affected 
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members, often called probands, and the pedigree is extended from them using 
medical records and/or examinations. In other words, pedigrees are not ran-
domly sampled, they are selected because certain events have occurred. For 
the large literature on ascertainment bias see Cannings & Thompson ( 1977 ) 
and Hodge ( 2002 ). Elston (1973) did consider ascertainment bias, but not in 
a survival analysis framework.

There is not much literature on ascertainment bias in the context of sur-
vival models, see Li ( 2007 ). The construction of the likelihood ( 51 ) showed 
the essential rôle of time, and the need to work with a fully specifi ed model. 
We now show that the fully specifi ed model gives insight into the problem of 
ascertainment ‘after the event’.

In Sections 3 and 4, it was clear what ‘the’ pedigree meant, namely that 
pedigree evolving forwards in time from a founding member. When ascertain-
ment is retrospective, it is less clear what ‘the’ pedigree means, unless there are 
uniform rules about who is to be included in the pedigree, starting with those 
persons who directly caused ‘it’ to be ascertained. One simple rule, which we 
shall use for an example, is to limit each pedigree sampled to a single nuclear 
family, or to a sibship ( all the children in a nuclear family ). Cannings & Thomp-
son ( 1977 ) gave more fl exible rules in the form of sequential procedures.

Suppose the MPP representing a given pedigree is observed if  and only if  
an event W occurs. Then the observed pedigree history is Gt  =  Ft  0  W, and 
the observed process is the MPP with ‘distorted’ intensities denoted as lh( t, e ) 
( h  !  H* ), ( note that this is the only point at which we have needed to include 
the mark e in the intensity ) and genotype probabilities denoted as mu( t )  =  
Pq [ u | Gt], satisfying respectively:

 (52)
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( This is along the same lines as Hoem ( 1969 ) and Aalen et al. ( 1980 ), who con-
sidered Markov processes, and also the distortion of counting process intensities 
in retrospective studies in Langholz et al. ( 1999 ). ) Denote the fraction in ( 52 ) 
Dh( t ). If Dh( t )  >  1 ( Dh( t )  <  1 ) then the event h makes W more ( less ) likely, hence 
the pedigree more ( less ) likely to be observed. Only if Dh( t )  =  1 does the event 
h not matter. This could happen if  W occurred before time t, in which case, 
omitting all observations before W occurred would give a partial likelihood.

5.2. Likelihoods

The likelihood is the probability of the process observed, as follows:

     d( ) ( )s s
h

d1-l l( ; ) ( ( ) ) ( ( , )) .Y YL T s ds s e( ) ( )N
h h

s
h h

sh hq = -
[ ,T0!H

1 N

* ]
%%  (54)
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In Section 4, we discarded nuisance parameters whenever an intensity or a 
mark probability not depending on q appeared as a factor. Now, when we 
construct the likelihood sequentially, it is the distorted intensities and proba-
bilities that appear as factors. These can be discarded only if  the relevant Dh( t ) 
are rather simple: for example, if  the ith member has a genetic test at time t, 
we can discard factor li

12( t ) from the likelihood only if  Di
12( t ) does not involve 

the onset intensities l j
13( t ) and l j

23( t ) in respect of any pedigree member. This 
will not often be the case.

The very titles of papers by epidemiologists, such as Elston ( 1995 ) or Vie-
land & Hodge ( 1995 ), tell us that retrospective ascertainment of pedigrees is 
diffi cult. Properly designed studies are strongly advocated, but in their absence 
the data that are to hand will be analysed, often with some approximate adjust-
ment for ascertainment bias. Actuaries have to use caution when applying 
these results to questions of  insurance pricing; for example, Macdonald, 
Waters & Wekwete ( 2003 ) reduced published onset rates of breast and ovarian 
cancer associated with BRCA1 and BRCA2 mutations by 50% and 75%, to 
allow for possible unquantifi ed ascertainment bias.

The discussion above shows that it would be very hard, at best, to estimate 
onset rates when retrospective ascertainment introduced distortions Dh( t ), dif-
ferent for every event in the pedigree history. From ( 52 ), the distortions affect 
anyone who could have led to the ascertainment, not just those who actually 
did. However, we can still gain insight from simple special cases.

5.3. Application to Sibships

Sibships are the classic units of  analysis in genetic studies. Ascertainment 
through probands is allowed for by conditioning on the fact of ascertainment 
( Fisher, 1934; Morton, 1959 ). Adapting the notation from George & Elston 
( 1991 ) slightly, a sibship is characterised by three quantities: the number of 
siblings c, the number of  affected siblings a, and the number of  probands
z ( c   ≥   a   ≥   z ). The simplest ascertainment model is that we include a sibship in 
the study if  it has at least one proband, z   ≥   1. If  P�[c] is the distribution of 
sibship sizes, then:
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If  any sibling is affected with probability h, and any affected sibling becomes 
a proband with probability p ( hence the name ‘p-model’ ), and if  P [ z | c, a ]   = 
P [ z | a ], this has the explicit form:
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Two special cases are often considered: ( a ) ‘complete ascertainment’ when p  =  1, 
so all affected members become probands; and ( b ) ‘single ascertainment’ when 
p  "  0, so the probability of a sibship having more than one proband vanishes.

The corresponding scheme in our model is that the number of members of 
the pedigree at time T is c  +  2 ( c siblings and the parents ). The parents are the 
1st and 2nd members, and the siblings are the 3rd and subsequent members. 
Suppose the disease of interest is rare, dominant and has late onset, so that no 
sibling will suffer onset before the sibship is complete. Then, for sibling i, li

13( t )  =  0 
before the sibship is complete, while afterwards c is known and part of Ft–, so in 
( 52 ) we can condition on known sibship size. The simplest set-up is as follows.

(a) One parent is identifi ed as a mutation carrier before the siblings are at 
risk. 

(b) There is no genetic testing and no censoring ( not even death ).
(c) Any affected member becomes a proband with probability p, and ascer-

tainment depends on there being at least one proband at time T.

Because of ( a ), the siblings’ life histories are ( conditionally ) independent, and 
genotype probabilities are undistorted ( mu( t )  =  mu( t ) ). Because of ( b ), geno-
type will not be revealed before onset. Because of ( c ), the event W is ‘at least 
one proband, alive or dead, at time T ’.

Let Rt   =   {i : Yi
1( t )   =   1} be the set of siblings still at risk of onset at time t, 

and suppose a ( t ) members are affected at time t. If  ascertainment fails to take 
place through these affected members, which has probability, ( 1  –  p )a( t ), it must 
occur through one or more of the siblings in Rt suffering onset in the future 
and then becoming a proband. So for i  !  Rt :

l

l

l

l

ds

ds

( )a t

( )

( )

( )

s

s( )a t 1+

T

p

p

( ( ) ) ( ) ( ) )

( ( ) ) ( ) ( ) )

( ) ( ) ( ) )

( ) ( ) ( ( ) )
.

exp

exp

D t

s ds

s ds

1 1 1

1 1 1 1

1 1 1

1 1 1

( ) ( )

( )

{

( )

{

a t a t

tj

a t

t

T

j

t

T

j

a t

t

T

j

13

13

1
13

13

1
13

R

R

R

R

t

t

t

t

p p p p

p p p

p p

p p p

=

- - + - - - +

- - + - - - +

=

- - - +

- - - + -

+

-

+

-

!

exp

exp

1 1

1
i

i

!

!

(

(

!

j

j

j

j

(

i

-

-
}

}

-

e

e

d

d

o

o

n

n

:

:

:

:

D

D

D

D

(

(

2

2

%

%

%

%

#

#

#

#

 

 (57)

The likelihood ( 54 ) with these distortion factors could be maximised numerically.
Under complete ascertainment ( p   =   1 ) Di

13( t )   =   1 if a( t )  >  0, because ascer-
tainment is guaranteed, and if a( t )   =   0, the limit of ( 57 ) as p  "  1 gives:
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FIGURE 3: The penetrance as a function of age x under the observed process: 1  –  (d[ , ]0 l( s1 i
13- )),x%  with 

single ascertainment. The actual rate of onset m2( x ) is Gompertz: m2( x )  =  0.000814 exp( 0.086178x ).
For sibships of size 2 to 7, the effect of the distorted intensities depends on the number of affected siblings. 

Also shown labelled ‘No Distortion’ is the penetrance based on the undistorted intensity
1  –  (d[ , ]0 l( s1 i

13- ))x% .
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Under single ascertainment ( p " 0 ) both numerator and denominator of ( 57 ) 
become zero, but l’Hopital’s rule gives:
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Under single ascertainment in the classical p-model, the probability that a 
sibship is ascertained is proportional to the number of affected siblings. The 
numerator and denominator of  (59 ) are the expected numbers of  affected 
siblings at time T, if  a ( t )  +  1 or a ( t ), respectively, are affected at time t, which 
we see is the corresponding property for age-at-onset data.

Figure 3 shows how the sibship size affects the distortion of the age-related 
penetrance under single ascertainment. The true rate of onset is Gompertz, with 
m2( x )  =  0.000814 exp( 0.086178x ). This results in actual penetrance of about 0.5 
at age 50 among mutation carriers. Assuming the disorder to be rare and dom-
inant, the penetrance in respect of siblings who are mutation carriers with prob-
ability 1/2 will approach 0.5 as age x " 3. The true penetrance is shown labelled 
‘No Distortion’ and for comparison, the penetrance 1  –  (d[ , ]0 l( ),s1 i

13- )x%  
assuming that T  =  70 in ( 59 ), for sibships of size 2 to 7 ( all siblings the same age, 
for simplicity ) and for different numbers of affected siblings. The distorted pen-
etrance is always overstated, and by more for smaller sibships. 

If  censoring ( but not genetic testing ) is introduced, with intensity l i
14( t )   = 

l i
14( t ) Di

14( t ), ( 57) to ( 59 ) are changed only by replacing (l s
t

( ) )ds
T

13-
j# , the 

probability of not suffering onset, with the probability of not being observed 
to suffer onset:

 ( exp (
s

( ) ( )) ( ) ( )) ( )exp s s ds r r dr s ds
t

T

t

T

t13 14 13 14 14l l l l l- + + +
j j j j j

-b bl l# # #  (60)

and, since if censoring occurs the person concerned will not be available as a 
proband, Di

14( t ) is the same as Di
13( t ) but with a( t )  +  1 replaced by a( t ) whenever 

it appears in the numerator. Figure 4 shows the effect of adding censoring
at rate l i

14( t )   =   0.01 per year to the previous example. Comparing this with 
Figure 3 it is clear that the results are identical at x  =  70 ( as they must be ) but 
that censoring increases slightly the observed penetrances at younger ages.

If  we introduce genetic testing in the absence of censoring, we must dis-
tinguish between persons in States 1 and 2, : let R1

t   =   {i :  Yi
13( t )   =   1} and R2

t   = 
{i : Yi

23( t )   =   1}. Then for i  !  R1
t , D

i
13( t ) is:
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FIGURE 4: The penetrance as a function of age x in the presence of censoring, under the observed process: 
1  –  (d[ , ]0 l( s1 i

13- )),x%  with single ascertainment. The actual rate of censoring is l j
14( t )  =  0.01 per year,

and all other details are as in Figure 3.
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where:
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  (63)

and Di
12( t ) is:
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Note that if  the mutation is the sole cause of the disease, then for non-mutation 
carriers, G j

2( t )  =  1. For i  ! R2
t, D

i
23( t ) is:
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Under single ascertainment, we obtain expressions for each of the above exactly 
like ( 59 ), of the form:

  
t

t

-

-

.
TExpected number of cases at time given and if transition occurs

TExpected number of cases at time given
F

F
 (66)

It is not diffi cult also to write down expressions for all the Di
kl ( t ) when we 

restore both censoring and genetic testing to the model, but we omit them 
for brevity. Our main point is already clear from the forms of the Di

kl( t ) above, 
namely that censoring and genetic testing cannot now be factored out of the 
likelihood. This is plain, since intensities other than l i

13( t ) and l i
23( t ) now 

depend on q. It is not possible, therefore, to work with the partially specifi ed 
model. Espinosa & Macdonald ( 2007 ) reached an analagous conclusion in a 
non-parametric setting, where even genuinely independent censoring, if  it took 
place before sibships were ascertained, introduced bias.

A popular ‘adjustment’ for ascertainment is to omit the proband( s ) from 
the likelihood ( see, for example, Newcombe ( 1981 ) ). Intuitively, excluding those 
persons whose lifetimes, observed retrospectively, led to the ascertainment, 
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ought to remove the ‘contamination’. However, this is not correct, as it ignores 
the probability of other events that could have led to ascertainment. In a few 
special cases, ‘omitting the proband’ is correct, but as an algebraic quirk in a 
fully specifi ed model ( Cannings & Thompson, 1977; Thompson, 1993 ). That 
is not the case here. There seems to be no obvious way in practice to adjust 
the likelihood ( 54 ) to obtain, even approximately, the same estimates as the 
‘correct’ likelihood ( 51 ).

6. CONCLUSIONS 

Actuarial interest in evidence-based approaches to medical underwriting is 
growing, notably in respect of genetic information. This led us to look more 
closely at Elston’s likelihood ( 9 ) usually used for age-at-onset estimation with 
pedigree data. We asked three questions, reproduced here:

(a) Can we recover Elston’s likelihood from a properly formulated survival 
model?

(b) How are internal covariates generated by presymptomatic genetic tests to 
be included in the model?

(c) How does retrospective ascertainment: ( i ) interact with censoring; and 
( ii) affect estimates of onset rates?

We have answered the fi rst two of these, by specifying a full MPP model of an 
entire pedigree, in the spirit of Arjas & Haara ( 1984 ). By constructing the like-
lihood sequentially in calendar time, we recovered Elston’s likelihood, genetic 
tests included, showing: ( a ) that it is correct to use the partial model upon which 
it is based; and ( b ) the apparent conditioning on known genotypes revealed by 
genetic tests — problematic because they are internal covariates — in fact does 
not occur provided the full model is used. If  sampling is retrospective and 
non-random, the observed process, hence the likelihood, is generated by dis-
torted versions of the ‘true’ transition intensities. We observed the following:

(a) In general, the distorted intensities are functions of time ( hence age ) and 
are different for each member of the pedigree.

(b) The distortion factors are functions of  the transition intensities we are 
trying to estimate.

(c) We gave some examples of distorted onset intensities in the simplest set-
ting ( sibships ), showing that nuisance parameters would not factorise out 
of the likelihood as before. Therefore, the partial model cannot be used 
correctly in this setting.

(d) We found no obvious way to adjust the likelihood to account for this, so 
intimately conjoined were the true rates of onset and the factors distorting 
them.

(e) We found in ( 59) and, more generally, (66 ), the age-at-onset counterparts 
for the well-known result that, under single ascertainment of sibships, the 
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probability of  ascertainment is proportional to the number of  affected 
siblings. This appears to be a new result.

(f) In particular, the popular adjustment of  ‘omit the proband( s )’ had no 
justifi cation here.

This tends to support the views of  those genetic epidemiologists who have 
described the ascertainment problem as intractable; see Vieland & Hodge 
( 1995 ). Our model shows that the special rôle of  time in survival analysis 
introduces new problems in respect of pedigree data.

What should be done by the actuary who wishes to apply epidemiological 
studies to pricing, reserving and adverse selection problems? Or the regulator, 
who needs to test the evidence base for differential pricing? Retrospective 
 studies are likely to yield onset rates with an unknown degree of ascertainment 
bias. This will be true of  non-genetic studies as well as pedigree analyses.
( This is, of course, the very reason why retrospective data are so often analysed 
by case-control studies; the estimated odds ratio is unbiased. Unfortunately, 
onset rates are of much more use to actuaries. ) We can only conclude that 
actuaries must highlight the possible lack of robustness in such models, and 
even quite crude sensitivity tests ( such as the arbitrary reductions in onset 
rates in Macdonald, Waters & Wekwete ( 2003 ) ) might be advisable. It is then 
up to assessors, such as GAIC in the UK, to judge the evidence.
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NOTATION

bi calendar time of birth of ith pedigree member
eh( t ) mark associated with event h at time t: eh( t )  !  Eh( t )
g an individual person’s genotype
h event in H or H*: h   =  ( i, k, l  ) means ith person jumps from State k to 

State l
i, j persons or pedigree members
k, l states: events in a life history are represented by transitions between 

states
mu( t ) probability of  pedigree genotype u given observed information at 

time t
mi

g( t ) probability that ith member has genotype g given observed informa-
tion at time t

p genotype transmission probabilities
r, s, t calendar time
u, v the joint genotype of the members of a pedigree: elements of U( t ) or 

U*( t )
ui, vi the genotype of the ith member of a pedigree: a component of u or v
x, y age
xi  ( t ) age of the ith pedigree member at calendar time t

( i, k, l  ) the event that the ith pedigree member jumps from State k to State l

Dh( t ) distortion applied to intensity lh( t )
Di

kl( t ) equal to Dh( t ) for event h  =  ( i, k, l  ); distortion applied to l i
kl( t ) 

Eh( t ) mark space associated with event h at time t : eh( t )  !  Eh( t ) 
L ( q, t ) Likelihood for parameter q based on observations up to and including 

time t
M number of distinct genotypes
N( t ) number of pedigree members who have ever lived, as at calendar time t
T calendar time when observation ceases; observation is in the interval 

[ 0, T ] of  calendar time

Ah( t ) compensator of counting process Nh( t )
Ai

kl( t ) equal to Ah( t ) for event h  =  ( i, k, l  ) 
Nh( t ) process counting occurrences of event h by time t
Ni

kl( t ) equal to Nh( t ) for event h  =  ( i, k, l  )
Yh( t ) process indicating being at risk of event h at time t–

Yi
kl( t ) equal to Yh( t ) for event h  =  ( i, k, l  )
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At information known at time t given only the pedigree structure
Ft information known at time t given entire history
H space of possible events befalling pedigree members
H* space of possible events befalling pedigree members, augmented by 

joining the pedigree
Rt risk set: set of persons at risk of a specifi ed event or set of events
U( t ) set of possible pedigree genotypes given pedigree at time t
U*( t ) U( t ) excluding pedigree genotypes ruled out by genetic tests

fg population frequency of genotype g
lh( t ) intensity of event h at time t, a function of calendar time
l i

kl ( t ) equal to lh( t ) for event h  =  ( i, k, l  ); intensity of person-specifi c events
lh( t ) distorted intensity of event h at time t
l i

kl ( t ) equal to lh( t ) for event h  =  ( i, k, l  )
mg( x ) intensity of onset, a function of genotype g and age x: the target of 

estimation
q parameter of the genetic model
p probability that an affected sibling becomes a proband, in the p-model
h probability that a sibling is affected, in the p-model
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