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OPTIMAL REINSURANCE FOR VARIANCE RELATED PREMIUM 
CALCULATION PRINCIPLES1

 BY

MANUEL GUERRA and MARIA DE LOURDES CENTENO

ABSTRACT

This paper deals with numerical computation of the optimal form of reinsurance 
from the ceding company point of view, when the cedent seeks to maximize 
the adjustment coeffi cient of the retained risk and the reinsurance loading is 
an increasing function of the variance.

We compare the optimal treaty with the best stop loss policy. The optimal 
arrangement can provide a signifi cant improvement in the adjustment coeffi cient 
when compared to the best stop loss treaty. Further, it is substantially more 
robust with respect to choice of the retention level than stop-loss treaties. 
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1. INTRODUCTION

The adjustment coeffi cient plays an important role in risk theory. Its maximi-
zation is equivalent to minimization of the upper bound of the probability of 
ultimate ruin provided by the Lundberg inequality.

In a previous paper (Guerra and Centeno (2008)) we studied the problem 
of fi nding the reinsurance policy maximizing the adjustment coeffi cient of the 
retained risk. Not surprisingly, the solution depends critically on the premium 
calculation principle used by the reinsurer. Assuming that the reinsurance pre-
mium is convex and satisfi es some very general regularity assumptions, it was 
shown that the optimal reinsurance scheme always exists and it is unique up 
to ‘‘economic equivalence”. A necessary optimality condition was found which 
in principle allows for the computation of the optimal treaty.

1 This research has been supported by Fundação para a Ciência e a Tecnologia (FCT) – project 
PTDC/ECO/66693/2006 – through PIDDAC, partially funded by the Portuguese State Budget.
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98 M. GUERRA AND M.L. CENTENO

In this paper we deal with the case where the reinsurer prices the treaties 
using a loading which is an increasing function g of  the variance of  the 
accepted risk. Important instances of such pricing principles are the variance 
and the standard deviation principles. In Guerra and Centeno (2008) it was 
shown that in this case the optimal arrangement is a nonlinear function of a 
type previously unknown in the reinsurance literature. This function depends 
on the optimal adjustment coeffi cient, R, and one additional parameter, a. 
The values of  R and a must be found simultaneously by solving a pair of 
nonlinear equations involving the expected value and variance of the ceded 
risk, which also depend on (R, a). In this paper we show that the numerical 
computation of  (R, a) is feasible. To do this, it is possible to use two-step 
bisection-type algorithms that are guaranteed to converge, or fast Newton-type 
algorithms that exhibit local quadratic convergence.

We have three objectives in the present paper: to characterize the functions 
g that provide convex premium calculation principles, to show that the solu-
tion mentioned above can easily be computed by standard numerical methods, 
and to compare the performance of the optimal treaty with the best stop-loss 
policy under fairly realistic reinsurance loadings and claim distributions.

Comparison with stop-loss treaties is meaningful because it is by far the 
most widely used type of  aggregate treaty that guarantees existence of  the 
adjustment coeffi cient for the retained risk in cases where the distribution of 
the aggregate claims has an heavy tail, as is usually the case in practical appli-
cations. Further, there are well known results in the literature showing that 
stop-loss is the optimal treaty for various types of optimality criteria under 
different sets of  assumptions on the reinsurance premium. Such results go 
back to Borch (1960) and Arrow (1963) that considered the variance and the 
expected utility of wealth, respectively, as optimality criteria. Hesselager (1990) 
proved an equivalent result using the adjustment coeffi cient as optimality cri-
terion. Some recent results in favor of stop-loss treaties are found in  Kaluszka 
(2004). 

The text is organized as follows: Section 2 contains the main assumptions, a 
rigorous statement of the problem, and a characterization of convex variance-
related premium principles. Section 3 contains a short overview of the main 
results in Guerra and Centeno (2008) concerning specifi cally the case where 
the reinsurance loading is an increasing function of the variance. Interested 
readers are referred to Guerra and Centeno (2008) for a full theoretical analy-
sis of the interrelated problems of maximizing the insurer’s expected utility of 
wealth and maximizing the adjustment coeffi cient of the retained risk. Some 
theoretical details which are useful in the computation of optimal treaties are 
added in the present paper. Section 4 contains an analysis of the main issues 
arising in the numerical computation of optimal treaties. We show that though 
the solution given in Section 3 is in an implicit form, it can be numerically 
computed using classical methods. In Section 5 we compare the optimal policy 
with the best stop loss policy with respect to a standard deviation principle for 
two different claim distributions. The distributions are chosen so that the fi rst 
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two moments are identical but the tails are quite different. The results suggest 
that the optimal policy can offer signifi cant improvement in the value of the 
adjustment coeffi cient compared to the best stop-loss treaty and also that its 
performance is much more robust with respect to the retention level. This is 
an important feature for practical implementation when the data of the prob-
lem cannot be known with full accuracy and hence the chosen treaty is in fact 
suboptimal.

2. ASSUMPTIONS AND PRELIMINARIES

Let Y be a non-negative random variable, representing the annual aggregate 
claims and let us assume that aggregate claims over consecutive periods are 
i.i.d. random variables. We assume that Y is a continuous random variable, 
with density function f, and that E [Y 2]  <  +3. Let c  >  E [Y ] and such that 
Pr{Y  >  c}  >  0, be the corresponding premium income, net of expenses. A map 
Z  :  [0, +3)   7   [0, +3) identifi es a reinsurance policy. The set of all possible 
reinsurance programmes is 

 3 0�{ : [ ) | 0 ( , } .Z Z Z y yis measurable andZ 7 # # $= 60, )y+

We do not distinguish between functions which differ only on a set of zero 
probability. i.e., two measurable functions, f and f�  are considered to be the 
same whenever Pr{f(Y )  =  f�(Y )}  =  1. Similarly, a measurable function, Z, is 
an element of Z whenever Pr{0   ≤  Z(Y )   ≤  Y }  =  1.

For a given reinsurance policy, Z  !  Z, the reinsurer charges a premium 
P(Z) of the type

 a( ) [ ] ( [ ]P Z E Z g V r Z= + ), (1)

where g  :  [0, +3)  7  [0, +3) is a continuous function smooth in (0, +3) such 
that g(0)  =  0 and g�(x)  >  0, 6x  !  (0, +3). Further we assume that P is a 
 convex functional. We call premium calculation principles of this type “vari-
ance-related principles”. The variance principle and the standard deviation 
principle are both under these conditions, with g(x)  =  bx and g(x)  =  bx1/2, 
b  >  0, respectively. Convexity of these two principles was proved by Deprez 
and Gerber (1985), but also follows immediately from Proposition 1, which 
characterizes convex variance-related premiums.

The net profi t, after reinsurance, is

 )( ) ( ( ) .L c P Z Y Z YZ = - - -  

We assume that c, P and the claim size distribution are such that 

 { < 0} 0,Pr L Z> ZZ 6 ,!  (2)
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100 M. GUERRA AND M.L. CENTENO

otherwise there would exist a policy under which the probability of ultimate 
ruin would be zero. This requires the premium loading to be suffi ciently high. 
Namely, 

 a [ ] [ ]g r c E>(V YY -)  (3)

must hold. Notice that if  (3) fails, then the direct insurer can cede all the risk 
to the reinsurer and still obtain a profi t LY  =  c  –  P(Y )  ≥   0 with probability 
equal to one.

For the variance principle, inequality (3) reduces to 

 b ( [ ]) / [ ]c E Var> - Y Y , (4)

and in the standard deviation principle case the required condition is 

 b a( [ ] / [ ] .c E V r> - Y Y)  (5)

In practice, it may be diffi cult to check analytically whether (2) holds for a 
particular random variable Y and a particular premium calculation principle P. 
However, a numerical procedure to check (2) is easily imbedded in the algo-
rithm presented in Section 4.1 below.

Consider the map G   :   �   ≈  Z   7   [0, +3] defi ned by 

 RL (-3
�( , ) ( , , .G R Z e f dy R Z Z

0
Z ! !=

+ y) )y#  (6)

Let RZ denote the adjustment coeffi cient of the retained risk for a particular 
reinsurance policy, Z  !  Z. RZ is defi ned as the strictly positive value of  R 
which solves the equation 

 G , ) ,R Z 1=(  (7)

for that particular Z, when such a root exists. Equation (7) can not have more 
than one positive solution. This means the map Z   7  RZ is a well defi ned func-
tional in the set 

 .{ : (7) }Z admits a positive solution!=
+

Z Z  

From a mathematical point of view, the problem of fi nding the reinsurance 
policy that maximizes the adjustment coeffi cient of  the retained risk can be 
stated as follows:

Problem 1. Find ( R,  Z )   !   (0, +3)   ≈  Z+ such that 

 { }.R maxR R ZZ Z 4= =
+: ! Z
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We conclude this section with the following characterization of convex variance-
related premiums:

Proposition 1. Let B  =  sup{Var [ Z ]   :   Z  !  Z} and assume that g is twice differ-
entiable in the interval ( 0, B ). P(Z)  =  E [ Z ]  +  g(Var [ Z ]) is a convex functional 
if and only if 

 2( )
( )

, ( , ) .g x
g x

x B1 0 4$ !- x 6
�
�

 (8)

Proof. The proof below is an adaptation of the proof by Deprez and Gerber 
(1985) for a related result.

First assume that the map P   :   Z   7   � is convex. Fix Z  !  Z \  {0} and con-
sider the map t   7  P(tZ), t  !   [0, 1]. Then 

 

+
2

( ) ( [ ] ( [ ]))

( [ ]) [ ] ( [ ]) [ ] .
dt
d tZ

dt
d tE Z g t Var Z

g t Var Z t Var Z t Var Z Var Z4 2

2

2

2

2
2

2 2 2

= + =

=

P

� �g

 

Convexity of P implies convexity of the map t   7  P(tZ), t  !   [0, 1]. It follows

that 
dt
d

2

2

  P(tZ)   ≥   0, i.e., 

 
( [ ]
( [ ]

[ ]g t Var Z
g t Var Z

t Var Z2
1

2

2

2$
-

�

�

)
)

 

must hold for all t  !  (0, 1). Since Z  !  Z is arbitrary, inequality (8) follows 
immediately.

Now, assume that inequality (8) holds and for each Z, W  !  Z consider the 
map 

 t,Z +( ) ( ( ) [ , ] .t P Z W Z t 0 1W7 != - )t ,P

From the defi nition of  convex map, it follows that Z  7  P(Z ) is convex if  
and only if  for every Z, W  !  Z the map t   7   PZ, W (t) is convex. The maps 
t   7   PZ, W (t) are continuous in [0, 1], twice differentiable in (0, 1), and 

 ,Z W Z

t Z

a

a

)

)

V r t

V

( ) [ ( ] ( [ , ] [ ]

( [ ( ] [ ] .

Z W Z Cov Z W Z tVar

r Z W Z Var

4

2

2
= + - - + - +

+ + - -

( )

)

t g )W

Wg

�

�

P�

In particular,

 ,Z W (0)

2

[ ] [ ] ( [ ] [ ]

( [ ] ( [ , ] [ ]

Var Z Cov W Z Var Z Var W Z

Var Z Cov Z W Var Z

4 2

4

2
P = - + - =

= - +

� ,Z( )

) )

)g

g

� �

�

g

93216_Astin40_1_04.indd   10193216_Astin40_1_04.indd   101 11-05-2010   09:37:2011-05-2010   09:37:20



102 M. GUERRA AND M.L. CENTENO

 W
�
�

( [ ] ( [ ] [ , ] [ ]

( [ ]) ( [ ]
( [ ]

( [ , ] [ ])

[ ] [ , ] [ ]

Var Z Var Cov Z W Var Z

Var Z g Var Z
g Var Z

Cov Z Var Z

Var W Cov Z W Var Z

2 2

2
2

2

2

+ - + =

= -

+ - +

)

) )

)

W�

�

g

g d

n

By inequality (8), this implies

 

 

,Z W (0)

]

2

W

( [ ] [ ] ( [ , ] [ ] [ ]

[ , [ ]

[ ]
( [ ]

( [ ] [ ] [ , ] .

Var Z Var Z Cov Z W Var Z Var

Cov Z Var Z

Var Z
Var Z

Var W Var Z Cov Z W

2 1

2

2 2

P $

$
-

- + -

- + =

= -

�

)

W))

)

�

�

g

g

d

n

 
 

Then, the Cauchy-Schwartz inequality guarantees that 

 ,Z W (0) , ,Z W0 ZP 6$ !� . (9)

We conclude the proof by showing that inequality (9) implies the apparently 
stronger condition 

 ,Z W ( )t WP 0, , (0,1) .Z tZ6$ ! !� , 6

In order to do this, note that 

 
Z ),Z t W W+ -( ( )s s( ) ( ( ))))

( ))

P Z t Z W Z t Z

t s t1,Z W

P = + - + - + -

= + -(

( (W W

P

holds for every Z, W  !  Z,  t,  s  !  (0, 1) and t,  s  !  (0, 1) implies t  +  s(1  –  t)  !  (0, 1). 
It follows that 

 ,Z W (t)Z ,t t( 2
t ( ) )) ( )

ds
d s

ds
d t s), ,Z W

s
Z W

s
2

0
2

0

= + - = -
+ -

= =

11(W (
2 2

PP P �

which concludes the proof. ¬

Remark 1. Condition (8) holds as an equality for the standard deviation principle 
and the left hand side of (8) is zero for the variance principle. Hence both prin-
ciples are convex.
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3. OPTIMAL REINSURANCE POLICIES FOR VARIANCE RELATED PREMIUMS

In Guerra and Centeno (2008) we proved that, provided the assumptions 
stated in Section 2 hold, Problem 1 admits a solution. Further we proved that, 
provided Z   /   0 is not optimal, there is an optimal treaty Z   !  Z satisfying 

 a
a

(
(

, 0,lny Z R
Z

y1
6 $= +

+
y

y
)

)
 (10)

where R and a are strictly positive constants.
For each R  >  0, a  >  0, the map ( lnz a

a
R

z1g + +=z)  satisfi es 

 (0) 0, ( ) 1, 0.z z> $g = 6g�

Hence (10) defi nes one unique treaty ZR, a  !  Z. Since (lim 0
a a,R =
" 3+

yZ )  and

(lim y
a a,R =
" 3+

yZ )  hold for every y  >  0, R  >  0, we set ZR, 0   /   0, ZR, +3  =  Y, for

every R  >  0.
In what follows n  !  [0, +3) denotes the number 

 { : { } 0},sup Pry Y y#n = =

and we consider the function 

 ,R E ,
,

R
R

a a( ) [ ] 2 ( [ ] .h Z Var Z
1

a
a

= + -
� )g  (11)

In Guerra and Centeno (2008) we provide a rigorous proof of the following 
result:

Theorem 1. Suppose all assumptions stated in Section 2 hold. Then, Z+ is non-
empty, a solution to Problem 1 always exists, and the following statements hold:

a) When g� is a bounded function in a neighborhood of zero, there is an optimal 
treaty Z(y) satisfying (10), where R and a are positive numbers solving (7) 
and

 ,R a( ) 0,h =  (12)

 with h (R, a) defi ned by (11).

 When g� is unbounded in any neighborhood of zero, then either a contract 
satisfying (7), (10)-(12) is optimal or the optimal treaty is Z( y)   =  0, 6y
(no reinsurance at all) and no solution to (7), (10)-(12) exists in (0, +3)2.

b) If n  =  0, the solution is unique. If n  >  0 then all solutions are of the form 
Z( y)  +  x, where Z( y) is the treaty described in a) and x is any constant such 
that – Z(n)   ≤   x   ≤   n  –  Z(n). ¡
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Theorem 1 evokes some simple remarks:

Remark 2. Equality (10) shows that the optimal treaty satisfi es ( .lim
y

3=+
" 3+

Z y)

Therefore, (Z (Z( ))lim lim lny a
a)

y y R
y1 3=+=

" "3 3+ +

+
-y  holds, i.e., the retained risk

Y  –  Z(Y ) is unbounded whenever Y is unbounded. This shows that under the 
optimal treaty the direct insurer always retains some part of the tail of the risk 
distribution. Of course, the retained tail must always be “light” because the theorem 
guarantees existence of a positive adjustment coeffi cient for the retained risk.

Remark 3. If the optimal treaty is not unique (i.e., if n  >  0) then any two opti-
mal treaties differ only by a constant. Since P(Z  +  x) = x  +  P(Z) holds for every 
constant x, we see that LZ+x  =  LZ also holds. Therefore all optimal treaties are 
indifferent from the economic point of view.

Remark 4. Although ZR, a is defi ned only in an implicit form, the distribution func-
tion can be easily calculated. As the right-hand side of (10) is strictly increasing 
with respect to Z, the distribution function of ZR, a is 

 FY # a
a

a
a

( ) .Pr ln lnF R R
1 1

Z ,R
h h

h
h

h
= +

+
= +

+
a

c m' 1  (13)

Therefore the density function is 

 a
a

f a
a

( ) ( )
1 ( )

.lnf R R
R1

Z ,R
h h

h
h

h
= +

+
+

+ +
a

c m  (14)

Theorem 1 leaves some ambiguity about the number of roots of equation (12), 
for fi xed R  !  (0, 3). We will show that this equation has at most one solution.

First, let us introduce the functions 

 k k,R,R
3

a a( ) ( ( ( )) ( ,R Z f dy1 ak 0
!F = + +

+
�.)y y)#  (15)

These functions are useful to prove the properties below. They are also conve-
nient to deal with issues related to numerical computation of optimal treaties.

Remark 5. Since we assume that E [Y 2]  <  +3, Fk(R, a) is fi nite for all k  ≤  2, 
a  >  0, R  >  0.

Remark 6. For k  ≥  0, it is clear that Fk(R, a) is a linear combination of the 
moments of ZR, a of order ≤ k. A simple computation shows that for the fi rst two 
moments we have: 

 ,R,R a a[ ] ( ) (1E Z R R1
a 1F= - + ,)_ i  (16)

 ,R a( )F,R[ ] .Var Z
R
1

a 2 1
2

2= - ,R a( )F` j  (17)
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In many arguments and expressions throughout this paper we use the functions 
Fk instead of the moments of  ZR, a because, due to Proposition 2 below, functions 
Fk with k  <  0 turn out naturally. This makes several expressions far simpler when 
expressed using the functions Fk.

Derivatives of Fk with respect to the parameter a can be easily computed:

Proposition 2. For k  ≤  2, R  >  0 the map a  7  Fk(R, a) is smooth and

 
2

a a ( .k R1k
k k1 22 X

F
F F= + -- - )b l  (18)

Proof. From (10) it follows that

 , ,R R

, ,R R

2

a a a a a
a

a
(

(1 ( ( )
( 1

(1 ( ( ) .R Z
Z

R R
R

R Z
1 1a

a

a

a2 =
+ +

=
+

+ +
-

Z y
y

y
y

)
)

)
)

Then, 

 

(f2

f

,dyyk-

( =R

R )

3

3

,R

a a

R

R

,

, ,

R

R R

2
y

2
+

k 1-

a a a

a a

( ( ( )

(
(( ( ( )) ( ( ( )) )

k Z

k
R Z Z

1

1
1

a
a

a a

k k

0

1

0

2

2
= + + +

=
+

+ + - + +

-

+

dy)
ZF

)

1

1

y

y y

)

) )

d n#

#

from where (18) follows. ¬

Proposition 2 allows us to state the following:

Proposition 3

 , )R,R

R R
R

12a a a
a a

[ ]
( ,

E Z 1a2
F= -

+
-

1  (19)

 ,R,R
1a

a
a

a a a
[ ] 2( )

( ( , ) ( ) 1) .
r Z R

Ra
2 12

2
XF=

+
--

V 1
R

F  (20)

Using the previous propositions we are able to prove the following uniqueness 
result:

Proposition 4. Suppose that g is twice differentiable in the interval (0, +3). For 
each R  !  (0, +3) (fi xed) equation (12) has at most one solution, aR  >  0.

If such a solution exists, then a
h

2
2  (R, aR)  >  0 holds. Therefore h(R, a) is strictly 

negative for a  !  (0, aR), and it is strictly positive for a  !  (aR, +3). ¡
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Proof. Differentiating h (R, a) with respect to a we get 

 ,R ,

,

, ,R

R

R RE

a

a a2

a a a a( ) 1
[ ]

[ ]

[ ]) [ ]
.h Z

r Z

g r Z r Z
2
1a

a

a a
22

2
2 2

2
= + +

V

V V

))

(�

(g( �
 (21)

At the points where h (R, a)  =  0, 

 R RaE a, ,( [ ] ) ( [ ]Z r Z2
1

a a= + V )�g  (22)

and hence

R
R

R

R R,R
E

( ,

,
,

,

, ,

h R

2
a

]
] ]

] ]
a
a a

(a a a a( ) ) (
(

.h Z
E Z r Z

r Z r Z
1

a

a
a

a

a a

) 02
2

2 2

2
= + + +

= V
V V[

[ [ )
[ [g

g�

�

 (23)

Noticing that E [ZR, a ]  +  a and 2Var[ZR, a ]  /2a (given by (20)) are positive and 
using Proposition 1 we have

      R

R

R R,

,

, ,a]
]

] ]
a

a(

,Ra a a1 2
)

.h E Z
r Z

E Z r Z

a

a

a

a a

( ) 0h2
2

2

2

2

2
$ + -

+

= V
V[

[
[ [

a( , )R  (24)

Using (16), (17), (19) and (20), we get

R
1 1

1 1

1
1

1 1

1

) F

, ]

F

-

- -

- -

-
-

- -

-

a
a

a

a

a
a

a
a

1 (1 ) ( 1)

1 (1 )
( )

( 1)

1 1
( )( )

( )
1 ((1 ( ) ( 1)( 1))

)
(( ) (1 ) ( 1) ) .

h
R

E Z
R

R
R R

R

R
R

R
R

1 1

1
1 1 1

1 1 1

1

a

a

( , )h R 0 2 1
2 1

2 1
2

1
1

2 1
2

1 1

2 1
2 2 1

2
1 1

2 1
2 2 1 1

2

2
2

$ F
F F

F F

F
F F

F F

F
F F

F

F
F F F F F

F F F F

+ - -
-

+
+ - =

= + - -
-

-
+ - =

= + - -
-

- -
=

=
-

+
- - - - =

=
-

+
- - - -

=

F

a

a

a

[

(

F

F

F F

,R a( ) c b

c b

c f

m l

m l

m p

Let

 
R R

R

R

, ,

,

,

R
a

,

( ( )
.

X

R Z Y

a a

a

a

1

2

=

+

a a( ( ) ) ( ( ) ))R Z Y R Z Y+ +

a( ( )Z Y1 + +
=

( +1

X
)

)
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For a  >  0, the unique constants satisfying 

 0{ } 1Pr X1 1 2 2+ = =cc X

are c1  =  c2 =  0. This implies the that Cauchy-Schwartz inequality is strict, i.e. 

 [ ] .E X X X X<1 2 1 2E E2 [ ] [ ]2 2

Since 

 

R R
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R R

R

R

R

1

3

3

3

a

a

)

)

, ,

,

,

,

-

2 a a

a

( ) ( ( ( )) [ ]

( ( )
( (

[ ]

( ( [ ]

Z Z dy E X

Z
Z

dy E X

Z dy E X X

1

1 1

1

a a

a

a

a

1 0 1

0 2

1 0 1 2

F F

F

F

- = + + + =

- =
+ +

+
=

- = + =

+

+

+

( y y

y
y

y

(

(

(

f
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f

2

2 ,

,

) )

)
)

)

,y

y

y

)

)

)

#

#

#

the proof follows from (25). ¬

Remark 7. For the variance premium calculation principle we have g(x)  =  bx, 
b  >  0. Therefore g�  /  b is bounded in a neighborhood of zero. Therefore, Theorem 1 
guarantees that the optimal reinsurance policy is always a nonzero policy. Since 
the solution for (7), (10)-(12) is unique, it gives indeed the optimal solution (and 
not any other critical point of the adjustment coeffi cient).

This contrasts with the case of the standard deviation principle where g(x)  =
bx1/2, b  >  0, and g�(x)  =  2

b x–1/2 is unbounded in any neighborhood of zero. In this 
case the optimal policy may be not to reinsure at all, but this can only happen when 
the tail of the distribution of Y is light enough so that the moment generating 
function of Y is fi nite in some neighborhood of zero. In any case, if the optimal 
policy is to reinsure, it will be given again by the unique solution of (7), (10)-(12).

4. NUMERICAL CALCULATION OF OPTIMAL TREATIES

It can be shown that for any given y  >  0, R  >  0 and a (fi xed), the Newton 
algorithm applied to (10) exhibits global quadratic convergence. This means 
that, given R and a, the value of ZR, a(y) can be quickly and accurately com-
puted. Hence, from a numerical point of view, the only remaining diffi culty is 
to fi nd the optimal values of R and a.

We discuss two algorithms to fi nd numerical solutions of system (7), (10)-
(12). The fi rst algorithm (4.1 below) is guaranteed to converge to the solution 
albeit this convergence is slow. In alternative, we discuss application of New-
ton algorithm (4.2) which exhibits quadratic convergence but only if  the initial 
guess is suffi ciently close to the solution.

Many variants of  these algorithms can be devised improving the basic 
design given below. Most of  these variants require the computation of  the 
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108 M. GUERRA AND M.L. CENTENO

same basic quantities as the simple designs. Thus, the main point of the fol-
lowing discussion is to show that all the required functions can be computed 
by standard numerical quadrature algorithms.

In the following, we use G (R, a) to denote G (R, ZR, a).

4.1. An algorithm with sure convergence

Due to Proposition 4, the solution to Problem 1 can be found in two steps:

(S1) For each R  >  0 fi nd aR, the unique solution of (12) for that particular R 
(aR  =  0 if  there is no solution);

(S2) Solve the one-variable equation G (R, aR) = 1.

Thus, algorithms that are guaranteed to converge to the solution of Problem 1 
can be based on algorithms having the same property for each of the steps 
(S1), (S2) above.

Bisection algorithms are very simple algorithms of this kind.

Sub-algorithm to compute aR

The following algorithm to compute aR takes as inputs an initial guess a for 
aR, a step size parameter d  !  (0, 1) and a tolerance parameter e  >  0. The out-
put is an estimate of aR with truncation error smaller that e.

Initialization: (Find a1  <  a2 such that h (R, a1)  <  0, h (R, a2)  ≥   0)
Case h(R, a)  ≥  0: While h(R, a)  ≥  0 and a  ≥  e: set a2  =  a, update a    =  d  ≈  a; 

When h(R, a)  <  0: set a1  =  a; When a  <  e: set a1  =  0, a2  =  a.

Case h(R, a)  <  0: While h(R, a) <  0: set a1  =  a, update a  =  d
1   ≈  a; 

When h(R, a)  >  0: set a2  =  a.

While a2  –  a1  ≥  e: Set a  =  
a a

2
1 2+

; 
If h(R, a)  >  0: update a2  =  a; 
If h(R, a)  <  0: update a1  =  a;

When a2  –  a1  <  e: Output aR  =  
a a

2
1 2+

.

The scheme above is still consistent in the case where no positive a solves (12) 
for the particular R being considered. To see this, notice that 

a( , )lim h R
a

3= +
" 3+

holds for every R  >  0. Therefore, Proposition 4 shows that if  there is no posi-
tive a solving (12), then h(R, a)  >  0 must hold for every a  >  0 and that par-
ticular R. Thus, the scheme will return a value aR that differs from zero less 
than the tolerance e.
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Algorithm to compute R and a

The algorithm below takes as inputs initial guesses of R and a, a step size 
parameter d   !  (0, 1), a tolerance parameter e  >  0 and a large parameter K 
(see below the meaning of this parameter). The output is an estimate of (R, a). 
The truncation error in the computation of  R is smaller that e, while the 
 estimate of a differs by less than e from the true value of aR (where R is the 
estimated R, not the exact adjustment coeffi cient).

Initialization: (Find R1  <  R2 such that G (R1,  aR1
)  <  1, G (R2,  aR2

)   ≥   1)
Use sub-algorithm to fi nd aR ;
Case G(R, aR)   ≥  1: While G(R, aR)  ≥  1: set R2  =  R, update R  =  d   ≈  R, use sub-

algorithm to update aR ; 
When G (R, aR)  <  1: set R1  =  R.

Case G(R, aR)  <  1: While G(R, aR)  <  1 and R  <  K: set R1  =  R, update R  =  d
1   ≈  R, 

use sub-algorithm to update aR ; 
When G (R, aR)  ≥  1: set R2  =  R; When R  ≥  K: set R1  =  R2  =  K.

While R2  –  R1  ≥  e: Set R  =  
R R

2
1 2+

, use sub-algorithm to fi nd aR ; 
If G (R, aR)   ≥  1: update R2  =  R ; 
If G (R, aR)  <  1: update R1  =  R ;

When R2  –  R1  <  e: Set R  =  
R R

2
1 2+

, use sub-algorithm to fi nd aR , 
Output (R, aR).

The parameter K allows for a numerical check of condition (2). Results in 
Guerra and Centeno (2008) show that if  (2) fails, then G (R, aR )  <  1 holds for 
every R  >  0. Thus, the scheme above will stop in a fi nite number of steps and 
yield an estimate R  =  K. By the Lundberg inequality, the corresponding treaty 
ZK, aK

 gives “virtually zero” probability of ultimate ruin.

4.2. Newton algorithm

The Newton algorithm applied to system (7), (10)-(12) takes the form outlined 
below. The required inputs are an initial guess of the solution (R, a ) and a 
tolerance parameter e  >  0.

(1) Find x1,  x2 , solving the system

 
a a a a

a a a a

( , ) ( , 1 ( ,

( , ) ( , ( ,

R
G R x G R x G R

R
h R x h R x h R

1 2

1 2

2
2

2
2

2
2

2
2

+ = -

+ = -

)

)

)

)

Z

[

\

]]

]]

(2) Update R and a: R  =  R  +  x1, a  =  a  +  x2 ;

Repeat steps (1)-(2) until | x1 |  <  e  and | x2 |  <  e.
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It is well known that if the initial guess (R, a) is suffi ciently close to the solution 
and the Jacobian matrix 

 
a

a

( , ( ,

( , ( ,

R
G R G R

R R Rh h
2
2

2
2

2
2

2
2

a a

a a

) )

) )

J

L

K
K
KK

N

P

O
O
OO
 (26)

is nonsingular when (R, a) solves (7), (10)-(12), then the Newton algorithm 
converges quadratically fast and e is an approximate upper bound for the 
truncation error (see, e.g., Quarteroni et al. (2000), Ch. 7).

We will show that if  Z  /  0 (no reinsurance at all) is not optimal and (2) 
holds, then (26) is nonsingular (see Corollary 1). However, the algorithm may 
fail to converge when Z  /  0 is optimal and diverges when (2) fails. Further, 
numerical experiments suggest that in the cases where the algorithm converges, 
the choice of an initial guess may be tricky.

A suitable compromise between reliability and effi ciency is to start by run-
ning algorithm 4.1 with a fairly large tolerance parameter to check condition 
(2), check that the optimal a is strictly positive and fi nd a suffi ciently accurate 
guess from which the Newton algorithm can be started.

4.3. Algorithm requirements

The algorithm outlined in Section 4.1 only requires evaluating the functions 
h (R, a) and G (R, a). The Newton Algorithm requires evaluating h (R, a), 
G (R, a) and matrix (26).

We will proceed to show that these functions reduce to sums of integrals 
which can be computed by standard numerical quadrature methods.

First, we show how G (R, a) and h (R, a) can be represented as functions 
of F1 (R, a) and F2 (R, a):

Proposition 5

 

2

,R

2

( ,

( ,

R

R

(R,

,
, ,

R

R
R R

a a
a

a a
a

a a

( )

( )
( ) ( )

G R e

h R

R

1

1 1

(P Z c1

1

2
2 1

aF

F

F F

=
-

=
-

-
-

�g

)

)

)- ;)

e o

(with P(ZR, a) expressed as a function of F1 (R, a) and F2 (R, a) using (16)-(17).

 ¡
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Proof. It follows straightforwardly from (10) that 

 

3( ( (

( ( ,

( (

R P R

R P R

R P

R R

R

R

,

( ,

R

R

Z, ,

,

,

a

a
a

a
a

( (

(
(

.

G e e f
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R e
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(Z c y
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=

=
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- +

-

)

)
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)

)
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)

)

)

y
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)
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#

#

The second equality is trivially obtained by substituting (16)-(17) in (11). ¬

In order to deal with partial derivatives of G and h, we introduce the auxiliary 
functions 

 
f (k

R
R3

a( ,R Z ,
, ,dy) y

�

a a
a

a

(1 ( ( )
(

0, 0, .

lnR
Z

R k> >

a
a

k 0

!

= + +
++

C )) y
y

)
)

d n#

In the following we will omit the arguments (R, a), i.e., we denote ZR, a by Z, 
Fk(R, a) by Fk, etc. To simplify further, we use g, g�, g�  to denote g (Var [ZR, a ] ), 
g�(Var [ZR, a ]) and g�(Var [ZR, a ]), respectively.

Proposition 6. For k  ≤  2, a  >  0 the map R   7  Fk(R, a) is smooth and

 21
2

--( .R R
kk

k k k k12 X
F

F F= - + -- C )C

Proof. By differentiating (10) with respect to R, we obtain 

 aa
a .lnR

Z
R

Z
R R

Z0 1 1 1
22

2
2
2

= -
+

+
+Zc m

Solving this with respect to R
Z
2
2  yields 

 R a a
a

( ) .lnR
Z

R Z
Z1 1 1

1
22

2
= -

+ +
+

d cn m

The assumption E [Y 2 ]  <  +3 implies that Ck is fi nite for all k  ≤  1, R  >  0, a  >  0. 
It follows that 

 
k fdy

k

2

3

3
a a

a
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R R Z Z R R
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1

1

k

0
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#

2 2
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1
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Using Propositions 5, 2 and 6, long but straightforward computations result 
in the following expressions for the partial derivatives:

Proposition 7. The partial derivatives of G and h can be represented as 

1
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Proposition 7 has the following corollary, announced in Section 4.2:

Corollary 1. If (R, a) solves system (7), (10)-(12) and a  >  0, then matrix (26) 
admits inverse. ¡

Proof. Throughout this proof (R, a) is the solution of (7), (10)-(12) with a  >  0.

Proposition 4 shows that 2
2
a
h   >  0. By Proposition 5, equation (12) is equivalent 

to 

 2 .R
1 11F -

= g�
 (27)

Hence, we see from Proposition 7 that G
2
2

a   =  0 holds and we only need to prove 
that R

G
2
2   !  0.

Due to (27) and Proposition 7, we have 

 a ( ) .R
G

R
e P c R1 1

1

R c

1
1

1 0
2
2

F
= - - +

-
-( ) C-P C

F d n
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Using Proposition 5, this reduces to 

 a .ln lnR
G

R
G e RR1 1

11R c

1

1 0

1

1 0 1
2
2

F F

F
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-
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=
-
-

-
-( C C C C)-P
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Due to Jensen’s inequality, we have 

 f ( .C
3 (

a
a

ln lnR
Z

y dy
11
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-
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= -
+

)
y)#

Substituting above, one obtains 

 0 .R
G

R 1
1

1

1 1
2
2

#
F

F

-
- CC

Using Schwartz inequality and an argument analogous to the one used to
prove Proposition 4, we see that this implies R

G
2
2   <  0. ¬

4.4. Computation of integrals

Propositions 5 and 7 show that the implementation of the algorithm described 
in Section 4.1 depends only in our ability to compute the integrals F1 and F2, 
while implementation of the Newton algorithm requires also computation of 
F–1, C1, C0 and C–1.

At fi rst glance, these integrals may seem hard to compute because equa-
tion (10) defi nes ZR, a only in implicit form. The following proposition removes 
this diffi culty by giving an explicit representation of Fk and Ck.

Proposition 8. The functions Fk, Ck can be represented as the integrals:

 (28)
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Proof. Using the change of variable y  =  h  +  R
1   ln a

ah+ , h  !  [ 0, +3 [, we obtain 
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The proof of equality (29) is similar. ¬
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Since the integrand functions in (28)-(29) are explicit, there are several numerical 
integration schemes that can be applied. The choice of a particular one will 
depend on the properties of the particular distribution of Y  being considered. 
The interested reader may consult Quarteroni et al. (2000), Ch. 9 and 10, and 
references therein.

To proceed further, we will consider the case when the density f is a con-
tinuous function in [ 0, +3) with the possible exception of a fi nite set of points, 
where it has right and left limits (possibly infi nite). Thus, the density f can be 
unbounded but only in the neighborhoods of  a fi nite number of  points of 
discontinuity. Also, we assume that there is some constant e  >  0 such that 

 f ( 0lim y
y

3
=

" 3

e

+

+ y)  (30)

Notice that our blanket assumption that E [Y 2 ]  <  +3 guarantees that if
lim y f

y
3

" 3+
(y) exists, then it must be zero. The case that we are considering now

is fairly generic and presents the advantage that the integrals (28)-(29) can be 
further reduced to integrals of continuous functions in compact intervals.

To see this, notice that there is a partition 0  =  a0  <  a1  <  ...  <  am  <  +3 such 
that the map f ln a

a
R
1

7h h + h+
` j is continuous and bounded in [ am, +3) and 

for each i   !  {1, 2,  ...,  m} it is continuous in one semiclosed interval, ( ai – 1,  ai ] 
or [ ai – 1,  ai ). Thus, we only need to reduce integrals over the intervals [ am, +3) 
and ( ai – 1,  ai ] or [ ai – 1,  ai ), i  =  1, 2,  ...,  m.

If  condition (30) holds then the condition 
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also holds. Using the change of variable = ,t 1
1
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We can check that the integrand on the right-hand side of (32) is bounded for 
k  ≤  2 and the integrand on the right-hand side of (33) is bounded for k  ≤  1.

Now, consider the case when f ln a
a

R
1

7h h + h+
` j is continuous in ( ai – 1,  ai ] 

(resp., [ ai – 1,  ai )) but
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must hold.
Using the change of variable h  =  ai – 1  +  (ai  –  ai – 1)t2 (resp., h  =  ai  –  (ai  –  ai – 1) t2), 

we transform the integrals
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into integrals of continuous functions over the interval [0, 1].
Further, if  f has continuous derivatives up to order n in the intervals (0, a1), 

(a1, a2),  ...,  (am–1,  am), (am, +3), then the same holds for the integrands after 
the changes of variables introduced above. In that case all the integrals can be 
computed by Gaussian quadrature or any other standard method based on 
smooth interpolation. Note that adaptive quadrature based on these methods 
allows for easy estimates of the truncation error.

5. EXAMPLES

In this section we give two examples for the standard deviation principle. In the 
fi rst example we consider that Y  follows a Pareto distribution. In the second 
example we consider a generalized gamma distribution. The parameters of 
these distributions were chosen such that E [Y ]  =  1 and both distributions have 
the same variance (which was set to Var [Y ]  =  5

16 , for convenience of the choice 
of parameters). Notice that though they have the same mean and variance, the 
tails of the two distributions are rather different. However, none of them has 
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116 M. GUERRA AND M.L. CENTENO

moment generating function defi ned in any neighborhood of the origin. Hence 
the optimal solution must be other than no reinsurance.

In both examples we consider the same premium income c  =  1.2 and the 
same loading coeffi cient b  =  0.25.

Example 1. We consider that Y  follows the Pareto distribution 

 
(21 11 )

32 21 , 0f
y

y >/

/

43 11

32 11#
=

+
( .y)

The fi rst column of Table 1 shows the optimal value of a and the corresponding 
values of R, E[Z ], Var [Z ], P(Z), and E [LZ ], while the second column shows the 
corresponding values for the best (in terms of the adjustment coeffi cient) stop loss 
treaty. The optimal policy improves the adjustment coeffi cient by 16.1% with 
respect to the best stop loss treaty, at the cost of an increase of 111% in the rein-
surance premium. However, notice that the relative contribution of the loading to the 
total reinsurance premium is much smaller in the optimal policy, compared with the 
best stop loss. Hence, though a larger premium is ceded under the optimal treaty 
than under the best stop loss, this is made mainly through the pure premium, rather 
than the premium loading, so the expected profi ts are not dramatically different.

Figure 1 shows the optimal reinsurance arrangement versus the best stop loss 
treaty ZM (y)  =  max{0,  y  –  M}. It shows that the improved performance of the 
optimal policy is achieved partly by compensating a lower level of reinsurance 
against very high losses (which occur rarely) by reinsuring a substantial part of 
moderate losses, which occur more frequently but are inadequately covered or not 
covered at all by the stop-loss treaty.

In general, it can be expected that the treaty selected in a practical context 
is suboptimal. Supposing that the direct insurer is allowed to chose a treaty of 
the type (10), numerical errors and incomplete knowledge about the distribution 
of claims ensure that the choice of the value for the parameter a can not be made 
with complete accuracy. Therefore, it is interesting to see how the adjustment coef-
fi cients of treaties of type (10) and stop loss treaties behave as functions of the treaty 
parameters (resp., a and M). For this purpose we present some additional fi gures.

TABLE 1

Y – PARETO RANDOM VARIABLE

Optimal Treaty Best Stop Loss
a  =  1.74411 M  =  67.4436

R 0.055406 0.047703
E [Z ] 0.098018 0.001050
Var[Z ] 0.212089 0.160269
P(Z) 0.213151 0.101134
E [LZ] 0.084867 0.099916
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FIGURE 2: Adjustment coeffi cient as a function of treaty parameter for policies of type (10) (full line) 
compared with stop loss policies (dashed line) in the Pareto case. In both cases the horizontal axis 

represents the policy parameter (a and M, resp., scales not comparable).

FIGURE 1: Optimal policy (full line) versus best stop loss (dashed line): the Pareto case.

Figure 2 plots values of the adjustment coeffi cient against the treaty parameters. 
In order to make the retained risk to increase in the same direction (from left to 
right) in both curves, we plot the a parameter of the treaties (10) in inverse scale 
(i.e., we plot a

1 ). The curves corresponding to both types of treaties have the 
same overall shape, decreasing smoothly to the right of a well defi ned maximum. 
However, notice that the horizontal scales of these curves is not comparable because 
the parameters M and a

1  do not have any common interpretation.
In order to make the comparison more meaningful we present two other plots 

in which the horizontal axis has the same meaning for both treaties. In Figure 3 
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we show the adjustment coeffi cient plotted as a function of the ceded risk (E [Z ]). 
We see that while stop loss policies exhibit a very sharp maximum correspond-
ing to a small value of E [Z ], the policies of type (10) exhibit a broad maximum. 
The adjustment coeffi cient of stop loss policies decreases very steeply when E [Z ] 
departs in either way from the optimum (this can be seen in some detail in  Figure 4). 
Such behavior contrasts with policies of type (10) which keep a good performance 
even when the amount of risk ceded differs substantially from the optimum.

The presence of a sharp maximum is due to the fact that when stop loss policies 
are considered, the expected profi t decreases very quickly when the ceded risk 
increases. By contrast, using policies of type (10) it is possible to cede a larger 
amount of risk with a moderate decrease in the expected profi t.

FIGURE 3: Adjustment coeffi cient as a function of the ceded risk (E [Z ]) for policies of type (10) (full line) 
compared with stop loss policies (dashed line) in the Pareto case.

FIGURE 4: Detail of fi gure 3.
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Figure 5 shows the adjustment coeffi cient plotted as a function of the expected 
profi t (E [LZ ]). Recall that the adjustment coeffi cient is defi ned only for policies 
satisfying E [LZ ]  >  0 and in our examples E [LZ ]  ≤  0.2 holds for all Z  !  Z. 
Therefore we see that the policies of type (10) signifi cantly outperform the com-
parable stop loss policies except for very high or very low values of expected profi t 
(i.e., except in situations of very strong over-reinsurance or sub-reinsurance).

FIGURE 5: Adjustment coeffi cient as a function of expected profi t (E[LZ]) for policies of type (10)
(full line) compared with stop loss policies (dashed line) in the Pareto case.

Example 2. In this example, Y  follows the generalized gamma distribution with 
density 

 ( ) , ,f k
b y

e y 0>
y

q qG
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y) e
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with b  =  1/3, k  =  4 and q  =  3!/6!. Table 2 shows the results for this example. The 
general features are similar to Example 1 but the improvement with respect to the 
best stop loss is smaller (the optimal policy increases the adjustment coeffi cient by 
about 7.8% with respect to the best stop loss). The optimal policy presents a 
larger increase in the sharing of risk and profi ts and a sharp increase in the rein-
surance premium (more than seven-fold) with respect to the best stop loss. However, 
in both cases the amount of the risk and of the profi ts which are ceded under the 
reinsurance treaty are substantially smaller than in the Pareto case. Our comments 
on Example 1 comparing the performance of treaties of type (10) with stop loss 
treaties remain valid for the present example.

Notice that the plots of the adjustment coeffi cients as functions of the expected 
profi t in the present example (Figure 8) are skewed to the right compared with 
the corresponding plot in Example 1 (Figure 5). In Figure 8 the stop loss treaty 
presents a sharper maximum than in Figure 5, while the opposite is true for the 
treaties of type (10).
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FIGURE 7: Adjustment coeffi cient as a function of the ceded risk (E [Z ]) for policies of type (10) (full line) 
compared with stop loss policies (dashed line) in the generalized gamma case.

TABLE 2

Y – GENERALIZED GAMMA RANDOM VARIABLE

Optimal Treaty Best Stop Loss
a  =  0.813383 M  =  47.8468

R 0.084709 0.078571
E [Z ] 0.076969 0.000204
Var[Z ] 0.049546 0.004951
P(Z) 0.132616 0.017794
E [LZ] 0.144353 0.182410

FIGURE 6: Optimal policy (full line) versus best stop loss (dashed line): the generalized gamma case.
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FIGURE 8: Adjustment coeffi cient as a function of the expected profi t (E [LZ]) for policies of type (10)
(full line) compared with stop loss policies (dashed line) in the generalized gamma case.
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