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ABSTRACT

In this paper we consider a reinsurance syndicate, assuming that Pareto opti-
mal allocations exist. Under a continuity assumption on preferences, we show 
that a competitive equilibrium exists and is unique. Our conditions allow for 
risks that are not bounded, and we show that the most standard models satisfy 
our set of suffi cient conditions, which are thus not restrictive. Our approach 
is to transform the analysis from an infi nite dimensional to a fi nite dimen-
sional setting.
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1. INTRODUCTION

We consider the reinsurance syndicate introduced by Borch (1960-62), a model 
closely related to the exchange economy studied by Arrow (1953). Bühlmann 
(1984) shows that, provided that there are Pareto optimal risk exchanges, an 
equilibrium exists for bounded risks. While this result may be of interest for 
practical purposes (since the accumulated wealth in the World is obviously 
bounded), in a modeling context this precludes many probability distributions 
that are of interest, but which may just happen to have unbounded supports.

Bühlmann’s arguments are limited to affi ne contracts, but we shall extend 
to arbitrary contracts in this paper. We basically swap his assumption of 
bounded risks and a Lipschitz condition with a continuity requirement on 
preferences. The latter we demonstrate is satisfi ed for the most common 
exchange economies studied within the “fi nance context”. Under this condition 
we demonstrate both existence and uniqueness of equilibrium.

When Pareto optimal risk exchanges exist in fi nite dimensional models, there 
will be competitive equilibria after a redistribution of the initial endowments 
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Xi , i  !  I  : =  {1, 2,  ···, I }, here a set of random variables referred to as the initial 
portfolio allocation of  the I members of  the reinsurance syndicate (by the 
Second Welfare Theorem). As it turns out, this is true also in our infi nite 
dimensional setting. However, our focus is elsewhere.

We provide a set of suffi cient conditions for the existence of an equilibrium 
for a given set of initial portfolios X  =  (X1, X2 ,  ···,  XI  ), provided Pareto opti-
mal risk exchanges exist. Since the set of  suffi cient conditions for a Pareto 
optimal exchange to exist are indeed very weak for the model that we consider 
(see e.g., DuMouchel (1968)), our approach is not restrictive for this reason. 
In fact, if  there are no Pareto optimal contracts, there can not be a competitive 
equilibrium either, by the First Welfare Theorem.

Existence of equilibrium in infi nite dimensional models is, of course, exten-
sively studied in the mathematical economics literature, and there are many 
possible approaches. Broadly speaking, the strategy that we take is to search 
in the Pareto frontier of  the set of  attainable utilities. This is an approach 
pioneered by Negishi (1960) and Arrow and Hahn (1971) in the fi nite dimen-
sional case, and by Bewley (1969), Magill (1981) and Mas-Colell (1986) in the 
infi nite dimensional setting. Bewley (1972) is another early reference to existence 
in infi nite-dimensional spaces, and later this topic has been extensively inves-
tigated by many authors, including Mas-Colell and Zame (1991), Araujo and 
Monteiro (1989), and Dana (1993) among others. Uniqueness of equilibrium 
is a lesser explored subject in infi nite dimensional spaces.

Our approach will be based to a large extent on “risk theory”, which requires 
us to fi rst defi ne what is meant by a reinsurance syndicate. One distinguishing 
feature of our approach, from the above cited literature on exchange econo-
mies, is that we do not restrict “portfolios” to be non-negative. The connec-
tion to risk theory essentially enables us to transform the existence problem 
from the infi nite dimensional space of L2, to the fi nite dimensional Euclidian 
space RI.

In Section 2 we present some of the basic properties of  such a market.
In Section 3 we discuss existence of equilibrium, and give the basic existence 
theorem of the paper. Our exposition relies mainly on the results of Section 2, 
and a fi xed point theorem. Here one can also fi nd several examples, and we 
fi nally prove uniqueness of equilibrium. Section 4 compares our result to a 
corresponding theorem emerging from a more general theory of an exchange 
economy, and Section 5 concludes.

2. THE REINSURANCE SYNDICATE

Consider a one-period model of a syndicated market with two time points, 
zero and one. The initial portfolio allocation of the members is denoted by 
X  =  (X1, X2,  ···,  XI ), i.e., the one whose realizations would result at time one
if  no reinsurance exchanges took place. At time zero X is a random vector 
defi ned on a probability space (W, F, P ). After reinsurance at time zero the 
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random vector Y  =  (Y1, Y2,  ···,  YI  ) — the fi nal portfolio allocation — results, 
satisfying Si  ! IYi   =  Si  ! I Xi , since nothing “disappears” or is added in a pure 
exchange of risks. Each risk is supposed to be member of a space L, which 
can be fi nite or infi nite dimensional. Typically we will consider L to be an 
Lp(W, F, P )-space in this paper, 1  ≤  p  ≤  3, with special emphasis on L2.

One difference between a syndicate and the general exchange economy of 
Arrow (1953) is that the variables Xi signify economic gains or losses measured 
in some unit of  account, not consumption as in the exchange economy,
which implies that negative values are allowed in the syndicate interpretation. 
For example may we interpret Xi   =  wi   – Vi . i.e., the portfolios are assets less 
liabilities, and when Vi (w)  >  wi for some state of  nature w  !  W, a negative 
value for the portfolio results. When this materializes for some member, this 
person may be interpreted to be bankrupt (but not dead).

Let ui be be the utility index of member i, all assumed strictly increasing 
and concave, let p  :  L  "  R be a price functional and consider the problem of 
each member of the syndicate 

 i
Z L!

( )sup E Zi
i

2
u    subject to   ( ) (Z Xi i#p p ), (1)

for i  !  I; the members maximize expected utility subject to their budget 
 constraints. By a price functional we shall always mean a linear functional, 
which is defi ned and fi nite for each Z  !  L, and which is also continuous (in 
the topology of L). This defi nition demands some further comments, which 
we will return to shortly. Here we just remark that the requirement that p be 
defi ned and fi nite for each risk in L is certainly desirable, but also a strong one, 
which we shall see later.

Let us call a treaty Y feasible if  it satisfi es Si  ! IYi   ≤  Si  ! I Xi  : =  XM, where 
by XM we mean the “market portfolio”, which is just the aggregate of  the 
initial portfolios of the members. Our defi nition of equilibrium is:

Defi nition 1. A competitive equilibrium is a collection (p; Y1, Y2 ,  …,YI  ) consist-
ing of a price functional p and a feasible allocation Y  =  (Y1, Y2 ,  …,YI  ) such that 
for each i, Yi solves the problem (1).

Because of strict monotonicity of the utility functions, the constraint in (1) is 
binding in equilibrium. It is still convenient to formulate the problem with
an inequality constraint, since this facilitates the use of  Kuhn-Tucker and 
directional derivatives, and gives us positive signs on the associated Lagrange 
multipliers.

An important feature of this syndicate is that there are no restrictions on 
contract formation. As a consequence it can be shown that the pricing func-
tional p must be linear and strictly positive if and only if there does not exist any 
arbitrage possibilities (e.g., Aase (2002)).

Recall that an arbitrage possibility simply refers to the existence of some 
fi nancial instrument in the market that provides a strictly positive amount to 
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its holder with strictly positive probability, at time zero or time one, with no 
commitments for the holder to make any payments at any time. It is hardly 
surprising that this possibility can not be allowed in a simple model of a rein-
surance market, with rational members. In this part of  the paper we shall 
restrict attention to initial portfolios Xi , all in L2, and sharing rules Yi that 
involve no arbitrage.

Since any (strictly) positive, linear functional on L2 is also continuous, by 
the Riesz Representation Theorem there exists a unique strictly positive ran-
dom variable z  !  L2

+ (the positive cone of L2 ) such that

 p(Z) = E(Zz)  for all  Z  !  L2.

Notice that the system is closed by assuming rational expectations. This means that 
the market clearing price p implied by the members’ behavior is assumed to be 
the same as the price functional p on which the members’ decisions are based.

Formally our defi nition of (strong) Pareto optimality is the following

Defi nition 2. A feasible allocation Y  =  (Y1, Y2 ,  …,YI  ) is called Pareto optimal 
if there is no feasible allocation Z  =  (Z1,  Z2,  …,  ZI  ) with Eui  (Zi  )  ≥  Eui  (Yi  ) for 
all i and with Euj  (Zj ) > Euj  (Yj ) for some j.

The following characterization of Pareto optimal allocations is well known:

Proposition 1. Assume that each ui is increasing and concave. Then Y is a Pareto 
optimal allocation if and only if there exists a nonzero vector of member weights 
l  !  R+

I such that Y  =  (Y1, Y2 ,  …,YI  ) solves the problem 

 l (sup Eu
( , ,Z

i
i

I

i i
1I1 f =

Z
Z )

)/   subject to  MZ .Xi
i

I

1
#

=

/  (2)

If the allocation Y is Pareto optimal, then the problem (2) defi nes a utility func-
tion ul(·)   :   R  "  R for this l, such that 

 lM( ) ( ) .Eu Eu Yi
i

I

i i
1

=l X
=

/  (3)

Notice that the existence of the member weights l is a consequence of the 
Separating Hyperplane Theorem applied to Euclidian RI. As it turns out, 
these member weights determine state prices via the marginal utility ul�(XM)
of the representative member computed at the aggregate portfolio XM. Thus, 
despite of  the unfortunate fact that the interior of  L2

+ is empty, there is
still hope to get price supportability of preferred sets via the construction in 
Proposition 1. (By “price supportability of preferred sets” we mean, loosely 
speaking, that a price functional can be constructed that is a serious candidate 
for an equilibrium price.)
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Since the utility functions are all strictly increasing, at the Pareto optimum 
the constraint in (2) is binding.

Pareto optimal allocations can be further characterized under the above con-
ditions, the following is known as Borch’s Theorem (see e.g., Borch (1960-62)):

Proposition 2. An allocation Y is Pareto optimal if and only if there exist positive 
member weights l1,  l2,  …,  lI and a real function ul�(·)   :   R  "  R, such that 

 I1 2 MY l( ) ( ) ( ) : ( ) .u u Y u Y u aI I1 1 2 2 gl l l= = = =� � � � .X s  (4)

Proposition 2 can be proven from Proposition 1 by the Kuhn-Tucker Theorem 
and a variational argument (see e.g., Aase (2002)). Karl Borch’s characteriza-
tion of a Pareto optimum Y  =  (Y1, Y2 ,  …,YI  ) simply says that there exist positive 
constants li such that the marginal utilities at Y of  all the members are equal 
modulo these constants. Condition (4) can be rewritten

 
j

j

(i

i

j

j (

� �( ( )) ( ))u Y u Yw w

( ( )) ( ))u Y u Yw w
=

i

i

�

�

�

�
 (5)

for all pairs (i, j ) and (w, w�). The two sides of the above equality correspond 
to the marginal rates of substitution in consumption between states w and w� 
respectively, for members i and j . Condition (5) is the classical “effi ciency 
condition” stating that marginal rates of substitution must be equalized across 
agents. Graphically it means that indifference curves (in a two agent two state 
world) must be tangent at an “effi cient” (i.e., Pareto optimal) allocation.

It also follows from (3) and (4) that the Pareto optimal allocations Yi (w) 
depend on the state w only through the aggregate market portfolioXM(w), so 
we may write Yi (w)  =  gi (XM(w)) for some real function gi   :  R  "  R. In other 
words, whenever two states of  the world w and w� have the same level of 
aggregate wealth XM(w�)  =  XM(w), then for each member i wealth in state w 
must be the same as wealth in state w�: Yi (w)  =  Yi (w�) for i  !  I. This is called 
the mutuality principle. For simplicity we shall use the notation Yi (w)  = 
Yi (XM(w)) for all i. (Notice that the symbol Yi (·) have two distinct meanings, 
one as a random variable Yi   :  W  "  R, the other as a real fuction Yi    :  R  "  R; 
the context will reveal which one we mean).

Let now x denote the generic value of  XM. Because of  the smoothness 
assumptions of Proposition 1, which we maintain in this paper, both sides of 
each of the equations in (4) are real, differentiable functions (the right-hand 
side because of the implicit function theorem), i.e., the functions Yi (·)  : B  "  R 
and ul�(·)  :  B  "  R, for some subset B   3  R of  the reals, are all differentiable. 
Thus taking derivatives gives

 i
1( ( ( ) ( .u Y x x u x x B RYii ! 3l= l

- ),�� i)) �
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Dividing this equation by the fi rst order condition u�(Yi (x))  =  li
  – 1 ul�(x), we 

obtain the following non-linear differential equation for the Pareto optimal 
allocation function Yi (x): 

 ,x
i

i

i

( )
( ( ))

( )
( )dx

d x
R Y x

R x
Y x b x Bi i0 0 != =lY

, , , (6)

where the constants bi represent the relevant boundary conditions, which we 
return to later, Rl(x)  =  �

�

( )
( )
x
x

- l

l

u
u  is the absolute risk aversion function of  “the 

representative member”, and Ri (Yi (x))  =  �

�

i

i
(
(i

( ))
( ))
Y x

u Y x
-

iu  is the absolute risk aversion 
of  member i in a Pareto optimum Yi (x), i  !  I.

Furthermore, we use the notation ri (Yi (x))  =  
i ( ))R Y x

1
i (  to signify the absolute 

risk tolerances of  agent i, i  !  I, in any Pareto optimum, and rl(x)  =  
l( )R x
1  is 

the absolute risk tolerance function of  the representative member.
Since Si  !  IYi�(x)  =  1, we get by summation in (6) that

 i( ) ( )), ,x x x B
I

i
i

!r =
!

l Yr (/

or 

 M Mi( ) ( ( )) .ai
i

r =
!

l
I

.Y srX X/  (7)

as an equality between random variables. Using the defi nitions of risk tolerance, 
we may rewrite the differential equations (6) as follows 

 i
(i i

i
l

)
( )
( ))

( ) , ,dx
dY x

x
x

x b x x Bi
0 0 != =

Y
Yr

r (
, . (8)

In other words, provided Pareto optimal sharing rules exist, we have the fol-
lowing results, which we shall utilize later:

Proposition 3. (a) The risk tolerance of the syndicate rl(XM) equals the sum of 
the risk tolerances of the individual members in a Pareto optimum.

(b) The real, Pareto optimal allocation functions Yi (x)  :  R  "  R,  i  !  I, satisfy 
the fi rst order, ordinary nonlinear differential equations (8).

(c) The following relationships hold

 ll
(

.Bi

i
I( )

)
( ), ,u x dx

dY x
u x x i1

i2
2

!l l= !� �  (9)

The result in (a) was found by Borch (1985); see also Bühlmann (1980) for 
the special case of  exponential utility functions, and also Gerber (1978), 
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among others. The result in (c) is contained in Theorem 10 p. 130 in Wilson 
(1968).

It is well-known that if  an equilibrium exists, then the fi rst order necessary 
and suffi cient conditions are given by the equations (4). If  this is the case, then 
the Riesz representation z, also called the state price defl ator, is given by 
z  =  ul�(XM) a.s. This is our next result:

Assume that p(Xi ) > 0 for each i. It seems reasonable that each member 
of the syndicate is required to bring to the market an initial portfolio of positive 
value. In this case we have the following (a proof can be found in Aase (2002)):

Theorem 1. Suppose that ui�  >  0 and ui�  ≤  0 for all i  !  I, and assume that a 
competitive equilibrium exists, where p(Xi )  >  0 for each i. The equilibrium is 
then characterized by the existence of positive constants ai , i  !  I, such that for 
the equilibrium allocation Y  =  (Y1, Y2 ,  …, YI )

 Y Mi l Ia( ) ( ), . . .u a s for all ii=i !� �u X  (10)

Here ai are the Lagrange multipliers associated with the problem (1), and the 
relation between these and the member weights li is seen to be ai  =  li

 – 1 for all 
i  !  I.

3. EXISTENCE AND UNIQUENESS OF EQUILIBRIUM

Will there always exist prices such that the budget constraints all hold with 
equality? We will now analyze this question for the reinsurance syndicate just 
described. The results that we shall prove in this section are:

Theorem 2.  Suppose ui�  >  0, ui�  ≤  0, and ui�� are continuous for all i , and 
E{(ul�(XM ))

2}  <  3. Then a unique equilibrium exists.

We present a proof  of  the existence part in Section 3.1, and a proof  of  the 
uniqueness part in Section 3.2.

The problem of existence of equilibrium in an infi nite dimensional setting 
has been extensively discussed in the literature. Several diffi culties have been 
identifi ed, among them that the interior of the orthant L2

+ is empty, so calculus 
becomes rather diffi cult. Normally the Separating Hyperplane Theorem guar-
antees that it will be possible to separate a convex set C from a point x  "  C, 
provided that the interior of C is not empty. Hence, if  consumption sets have 
non-empty interior, then the continuity and convexity of preferences will guar-
antee that preferred sets can be price supported.

As commented after Proposition 1, despite this diffi culty we obtain the 
member weights by a separation argument, which provides us with state prices 
via the representative member’s marginal utility at XM. It should thus be pos-
sible to use this construction to show existence of equilibrium. As it turns out, 
from Theorem 2 we see that it is suffi cient to make an extra smoothness 

93864_Astin40/2_03.indd   49793864_Astin40/2_03.indd   497 13-12-2010   10:51:1913-12-2010   10:51:19



498 K.K. AASE

assumption on preferences. In this section we make this precise by utilizing the 
results of the previous section to essentially transform the problem from an 
infi nite dimensional to a fi nite dimensional setting.

To this end we start with the initial portfolios Xi , which are supposed to 
satisfy Xi  !  L2, i  !  I. The fi nal portfolios Yi and the state price defl ator z are 
supposed to be in L2 and L2

+ respectively, according to this theory, the latter 
because L2 is its own dual space, where the positive cone stems from the 
absence of arbitrage. In fact, z is strictly positive a.s. However, both the prob-
ability distribution of X and the utility functions are exogenously given, and 
it is not clear at the outset that any particular choice of  these, satisfying 
Xi  !  L2, will have these properties. From (7) and (8) of the previous section, it 
follows that |Yi  –  bi  |  ≤  |XM  | for all i, so if  XM  !  L2, then Yi  !  L2 for all i  !  I. 
However it is far from clear that z  =  ul�(XM)  !  L2

+, which this theory requires 
to be consistent. That is, will there exist positive state prices z  =  ul�(XM) having 
fi nite variances such that the budget constraints in (1) are all satisfi ed with 
equality? These are the problems we now address.

First we notice a few facts about the existence problem. Since the state 
prices ul�(XM) are determined by the member weights l, and the budget sets 
remain unchanged if  we multiply all these weights by any positive constant, 
each member’s optimal portfolio Yi (XM)  : =  Yi 

(l) is accordingly homogeneous 
of degree zero in l. Hence we can restrict attention to member weights belong-
ing to the (I  –  1) dimensional unit simplex

 l+ : .S R 1I
i

i

I
1

1
l= =

-
!

=

I
) 3/

Returning to the question posed at the beginning of this section, recalling that 
we consider a pure exchange economy with strictly increasing utility functions, 
an equilibrium will exist if  there exists some l  !  SI  –  1 such that

 XM i( ) ( ) 0, for 1, 2, ,E u Y i Ii g- = =l� X ,( )l
` j  (11)

where we have chosen to parameterize the optimal allocations Yi (XM) by
the member weights l. Equations (11) are just a restatement of the budget 
constraints in (1) with equality, recalling that for any risk Z, its market price 
p(Z)  = E(Zz), where z  =  ul�(XM) a.s. The existence problem may be resolved 
if  one can identify these budget constraints with a continuous function
f   :   SI  –  1  "  SI  –  1 and then employ Brower’s fi xed-point theorem.

We fi nd it more convenient to use the constants bi to span the Pareto opti-
mal frontier instead of the constants li . That this is equivalent follows from 
the differential equations (6), or equivalently (8), since the solutions to these 
equations are unique once the boundary conditions have been specifi ed.
The idea is perhaps best illustrated by a few examples: In the fi rst one the utility 
functions are negative exponentials.
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EXAMPLE 1: Suppose ui (x)  =  1  –  r
x

i
-e , i  !  I. It is a consequence of Proposi-

tion 2 that the Pareto optimal allocations are affi ne in the aggregate wealth 
XM , i.e.,

 i M= ( )Y Y bi
i

M ir
r

= +: X ,Xl

where the constants ri are the risk tolerances of the members, r  =  Si  !  I  ri by 
the result (7), so that r is the risk tolerance of the representative member, or 
the syndicate, and bi are zero-sum side-payments, corresponding to Yi (x0)  =  bi 
for x0  =  0.

By imposing the normalization E(ul�(XM))  =  1 (corresponding to a zero 
risk-free interest rate), the budget constraints of the members correspond to 
the equations

 e

E
M

i

ir
I,

e
ii

b

l =
r-

X !,
% /

 (12)

where the zero-sum side-payments bi are given by

 
M

ME M
M

/

/ /
- r

r

I.ii X

i
X i X

= r

r r

E

X
b !

X

-

- -

,
e

e e

#

)

-

3

 (13)

Since there is a one to one connection between the member weights li and the 
side-payments bi , the latter could alternatively be used in the fi xed-point argu-
ment. The state price defl ator z  =  u�l(XM)  =  ce  –XM  / r for some constant c 
depending on the ri and the weights li , or equivalently on the ri and the side-
payments bi . ¡

The second example is that of constant relative risk aversion:

EXAMPLE 2: Preferences represented by power utility means that ui (x)  = 
(x1  –  ai  –  1) / (1  –  ai ) for x > 0, for ai ! 1 and ui (x)  =  ln(ci  x  +  di ) for ci  x  +  di > 0 
when ai  =  1, for some constants ci and di , where the natural logarithm results 
as a limit when ai  "  1. This example only makes sense in the no-bankruptcy 
case where Xi > 0 a.s. for all i when ai ! 1.

Let us assume that the supports of  the initial portfolios are (0, 3), and 
Yi  (x0 )  =  bi for some x0 > 0. The parameters ai > 0 are the relative risk aversions 
of the members, here given by positive constants, and we consider the HARA-
case where a1  =  a2  =  …  =  aI  =  a.

The marginal utilities of  the members are given by ui�(x)  =  x – a, and the 
Pareto optimal allocations Yi

l are found from Proposition 2 to be
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 MMi I( ) , .X i1/

/

a
j

a1

!

l
l

=
I!

Y iX
j/

 (14)

The differential equations (6) for these allocations are

 (
(

i

i
i i I)

)
( ) ,x

dY x
x
dx x b i0 != =,Y Y  (15)

showing that Yi (XM)  =  Mx
bi

0
X , where bi is member i�s share of  the market 

portfolio when the latter takes on the value x0, where Sj  !  I bi  =  x0.
Comparing the two versions of the Pareto optimal allocations, we notice

that i

j
/

/

a

a

1

1

x
b

Ij0
=

l

S
!

i

l
, again giving a one to one correspondence between the

boundary conditions bi of the differential equations (6) and the member weights 
li. The latter are determined by the budget constraints, implying that

 
M

M
, ,k

E X

E X X
ii a

i
l = - I!

a

1

a-

`

`
f

j

j
p  (16)

or, li is determined modulo the proportionality constant k  =  ( Sj  !  I  lj
1/a )a for 

each i. Here the state price defl ator can be seen to be of  the form z  = 
u�l (XM)  =  cXM

– a for some constant c depending on a and the weights li , or 
equivalently on a and the constants bi . ¡

For both these examples we have computed the respective equilibria, where
it is understood that the expectations, appearing in the expressions for the 
member weights, exist. This must accordingly follow from any set of suffi cient 
conditions for existence of equilibrium. The reason why the existence of the 
li , or, equivalently the bi , is not automatic, is that both the probability distri-
bution of X and the utility functions are given exogenously, as explained in 
the introduction. Although it is clear that if  XM  !  L2, then also Yi  !  L2, it is 
still not obvious that z  =  ul�(XM) is in L2

+. This has to be checked separately.
While it is a celebrated fact that the fi rst order conditions for an optimal 

exchange of  risks do not depend on the probability distribution of  the
vector X of  the initial endowments1, clearly the equilibrium allocation Y (l) 
does depend on this distribution through the budget constraints, and only if  
this probability distribution allows for the computation of  the moments 
appearing in the expressions for the member weights li , as e.g., in (12) and 
(16), the relevant equilibrium will stand a chance to exist.

As another example, recall the application of  this theory to the risk 
exchange problem between an insurer and an insurance customer. Here the 

1 They depend on the support of the probability distribution.
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premium represented by a parameter p takes on the role of the weight l in 
generating the Pareto effi cient frontier.

As these examples illustrate, instead of  focusing attention on the member 
weights li, we might as well consider the constants bi of  the differential equa-
tions (6), and try to associate with the budget constraints a fi xed-point for these. 
As noticed above, this observation turns out to be quite general, and is the line 
of attack we choose to follow.

A natural condition to impose for the constants bi to exist, might be that 
all the risks are bounded. Often this is too strong. For example if  X is multi-
normally distributed, and thus possesses unbounded supports, certainly the 
moments in (13) can still be computed, and are well defi ned (Aase (2009)). 
This is also the case for many other distributions with unbounded supports.

However, even in the case with bounded supports it is not clear that the pric-
ing functional p is continuous. To see this, consider Example 2 with B  =  (0, 1]. 
Here the state prices are represented by the function u�l (XM)  =  cXM

– a for some 
constant c depending on the member weights l and a. Suppose that XM is 
uniformly distributed on (0, 1). Then all the initial portfolios have bounded 
supports, but it is seen that ul�(XM) is not a member of L2 if  a  >  1/2, e.g., in 
the log utility case there would be no equilibrium. Empirical research indicates 
that the parameter a is in the range between 1 and 20, supposedly close to 2, 
so for this particular example there is no equilibrium in the interesting param-
eter range. (Bühlmann (1984) overlooked this possibility, and confi ned his 
analysis to situations of the type described by Example 1).

One may wonder if it is at all possible for the aggregate portfolio to be uni-
formly distributed. In the above only the properties of this distribution near zero 
was really utilized. To show that it is possible for an aggregate quantity to be 
uniformly distributed near zero, consider the following simple example: Assume 
that I  =  2 and X1 and X2 are independent each with a Beta( 2

1 , 1)-distribution. 
This means that the probability density function for each portfolio is given by

 ( , for 0 1.f x x2
1

2
1

# #=
-)x

Here expectations and variances exist, so let us fi nd the probability density 
fM (s) of XM  =  X1  +  X2 for 0  ≤  s  ≤  2. By the convolution formula it is given by

 f (( x
3

fM
3

( ) )f s x s dx
x s x

dx4
1 1 1

= - =
--

) .# #

Since (s  –  x)  !  [0, 1] for x  !  [0, 1], the last integral is split into two regions as 
follows:

 
, if 0 1;

, if 1 2x s x
dx

x s x
dx s

x s x
dx s4

1 1 1 4
1 1 1

4
1 1 1

s

0

1

1

# #

# #
-

=
-

--

s

.

Z

[

\

]
]

]]

#
#

#
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Considering the fi rst integral, and noticing that x(s  –  x)  =  –  (x  –  s
2 )2  +  ( s

2 )2, by 
the substitution t  =  x  –  s

2  we obtain for 0  ≤  s  ≤  1,

 s
t

/s 2
Arcsin / Arcsin( )

s
dt t

4
1

2

1
4
1

2
1 1 4s

s

2
22

2 p

-

= = =
- /s 2-

,2
d

c

n

m#

and for 1  ≤  s  ≤  2 the second integral reduces to 2
1  Arcsin ( s

2   –  1). Thus the den-
sity fM (s) is uniform on [0, 1], and decaying from 4

p  to 0 for s  = !   [1, 2]:

 ( s)
if 0 1;

Arcsin 1 if 1 2
f s

s

s

4

2
1

2
M

# #

# #

p

=
- .

,

d n

Z

[

\

]
]

]
]

For power utility, a common terminology is to call a member risk tolerant when-
ever the relative risk aversion a satisfi es 0 < a < 1. In the above example there is 
only an equilibrium when the members are very risk tolerant (0 < a < 1/2).

3.1. A basic fi xed point argument

As observed in the previous section, instead of focusing attention on the mem-
ber weights li (because these determine prices via ul�(XM)), we restrict attention 
to the constants bi of  the differential equations (8). The optimal allocations, 
now parameterized by b instead of l, are functions of the aggregate risk XM, 
so we will use the notation Yi 

(b) instead of  Yi
l for Yi , i.e., Yi 

(b) : =  Yi (XM),
where Yi (·)   : B  "  R. Likewise the state price defl ator z also depends on b by 
Proposition 2 and Proposition 3 (b), allowing us write z  =  ub�(XM) instead of 
z  =  ul�(XM) to emphasize this.

Returning to the fi rst order non-linear differential equations (8) for the 
optimal allocations Yi 

(b), in order to use the standard theory of differential 
equations of this type, Bühlmann (1984) used the following assumption:

(A1) The risk tolerance functions ri (y) satisfy the Lipschitz condition | ri (y)  – 
ri (y�) |  ≤  C | y  –  y�| for all i.

(In Bühlmann (1984), the assumption (A1) was made for the absolute risk 
aversions Ri (y) instead of  the risk tolerances ri (y). In this case we do not 
obtain that e.g., power, or logarithmic utility functions satisfy Bühlmann’s 
assumption H. Also, it is not clear that the differential equation (8) has a solu-
tion under H. But (A1) is what we think he meant).

We now investigate what this requirement means for some familiar exam-
ples: For negative exponential utility, the marginal utility is given by ui�(x)  =
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xe /1
i

i
r

r-  and the risk tolerance function ri (y)  =  ri is a constant for all y, so 
| ri (y)  –  ri (y�)|  =  0, and the condition is trivially satisfi ed.

For power utility ui (x)  =  
i

x( )
(

a
a

1
1 1 i
-

- )  with constant relative risk aversion 
ai ! 1, the risk tolerance ri (y)  =  (1 / ai ) y and | ri (y)  –  ri (y�) |  =  (1 / ai ) | y  –  y�|, 
so here the condition is satisfi ed using C  =  maxi { a

1
i
}.

When the relative risk aversion equals one, the logarithmic utility function 
is appropriate, i.e., ui (x)  =  ln(ci x  +  di ) for constants ci and di . In this case the 
risk tolerance ri (y)  =  y  +  c

d
i

i  in which case (A1) holds with C  =  1.
Our basic assumption is that Xi  !  L2 for all i  !  I. By Minkowski’s inequal-

ity also XM  !  L2, but what about the optimal portfolios Yi  ? Recall from (7) 
that r(x)  =  ii 1= ( ( ))xir YI/ , and this relationship together with (8) imply that

 | ,X|M Mi i( ) ( ) |x0 #-Y YX|  (17)

which means that and Yi  !  L2 for all i  !  I as well.
Bühlmann’s assumptions of  fi nite supports of  the Xi together with 

assumption (A1) allowed him to use standard, global results of  ordinary, 
non-linear differential equations to guarantee that the optimal allocations are 
continuous in the constants bi . In order to relax this condition, observe that the 
differential equations given by (8) are indeed very “nice”, since the non-linear 
functions

 =( , ) ( )
( )

F y x xi i
i i

r
r

:
y

satisfi y |Fi (yi , x)|  ≤  1 for all i due to (7). Thus Witner’s condition of  global 
existence is satisfi ed for the differential equations (8). In this case we do indeed 
have global existence and uniqueness of solutions for these equations, over the 
entire region (yi , x)  !  R2. In order for the solutions Yi (x) to be continuous 
functions of the constants bi , the following is suffi cient:

(A2) The functions Fi (yi , x) and d
d

iy  F(yi , x) are continuous for all (yi , x).

This assumption will thus replace (A1).We also check (A2) for the standard 
cases: For the negative exponential utility function we can use the domain B of 
the Xi to be all of R  =  ( – 3, 3), and Fi (yi , x)  =  

ri
r  so the condition is trivially 

satisfi ed.
For the power utility function the quantity ai > 0 is the relative risk aver-

sion of member i, and the function F (yi , x) is given by

 
a

( , ) ( )F y x x

1

i
i

i

r=
y

,
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where r(x) > 0 is a smooth function of x, so again (A2) is satisfi ed and the 
domain B of  the Xi can be taken to be B  =  R  ++  =  (0, 3).
For the logarithmic utility function we obtain that

 i( , )F y x
x

c
d

j

j
j

i
i

i

=

+

+y

c
d

,
/

so d
d

iy  F(yi , x)  =  1( j -
jx c

d

j
+ )/  which is continuous for x  > j

j .c
d

j
-/  Here B  = 

(b, 3) where b  =  maxi {– di  / ci }.
We conclude that the assumption (A2) is not restrictive, since it does not 

rule out any of the most common examples.
A closer examination of Assumption (A2) reveals that the only additional 

requirement it imposes on the preferences of the members to those of Theo-
rem 1 is that the third derivative of  the utility functions must exist and be 
continuous. Third derivatives of utility is important, since it allows us to check 
whether the members are prudent or not.

Let us now assume that the moments implied by the budget constraints 
given in (11) exist. Suffi cient for this to be the case is that E{(ub�(XM))2} <  3. 
From Pareto optimality it follows that li  ui�(Yi )  =  ub�(XM), implying that it is 
also suffi cient that E{(ui�(Yi ))

2}  <  3 for all i.
Finally notice that the state price defl ator ub�(XM) is also a continuous func-

tion of b for the same reason, since ui�(·) is a continuous function for each i, 
and Yi

b is continuous in b for all i, under (A2).
We are now in position to prove the existence part of the main theorem:

Theorem 3.  Suppose u�i  >  0, ui�  ≤  0, and ui�� are continuous for all i, and 
E{(ub�(XM))2} <  3. Then an equilibrium exists.

PROOF: Consider the mapping f   : RI  "  RI which sends b  =  (b1, b2,  ···, bI  ) into 
c  =  (c1, c2,  ···, cI  ) by the rule

 iM i i( ) ( , for 1, 2, ,E u X Y b c i Ib i- - =� .X = g( )b
`a jk  (18)

By (17) it follows that |Yi 
(b)  –  bi  |  ≤  |XM |, so E(Yi   –  bi )

2  ≤  EXM
2    =  C < 3, and 

EYi
2 < Ci < 3 implies that bi  !  G for some compact rectangle G in RI. Also

 
i

2

i

b

M

M i

b-

i

| | | ( ( ) ( ( )) |

( ( )) ( )

E u Y

E u E X E Y K< <

i i

b i i

b

22
1

2
1

2
1

3

# #-

+ -

c X�

�

X

X 2

( )b

`a `jk j$ '. 1

for any b  !  G by fi rst applying the Schwarz inequality and then Minkowski’s 
inequality. This establishes c  !  H where H is a rectangle like G. Let J be the 
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rectangle in RI containing both G and H. Denote the hyperplane i 1 xi 0
I == b/  

by F. Note that the intersection F  +  J is non-empty, compact and convex.
The mapping b  "  c defi ned by f in (18) maps F  +  J into F  +  J since by Walras’ 
law

 iYX -M i
( )b( ) .c E u b bi

i

I

b i
i

I

i

I

i
i

I

i

I

1 1 1 1 1
= - =

= = = = =

� X eff opp/ / / / /

By our above observation that the optimal allocations Yi 
(b) and the state price 

defl ator ub�(XM) are all continuous functions of b, and since the linear func-
tional p(Z)  =  E(ub�(XM)Z) is continuous in L2 from our assumption that 
z  =  ub�(XM)  !  L2, the mapping f is continuous and hence has a fi xed-point by 
Brower’s theorem. Therefore there exist bi

* such that

 iY
*

b- * *
* i i

)
M

(b( ) ( ( ) , for , , ,E u X b i I1 2i g- = =b� X` j

and consequently

 i XY
*

-*
)

M
(

i
b( ) ( ) , for , , ,E u i I0 1 2 g= =b� X` j

This completes the proof. ¡

Let us consider some illustrations where Theorem 3 is conclusive, but where 
the assumption of bounded risks is not satisfi ed.

EXAMPLE 3. Returning to the situation in Example 1 where the utility func-
tions are negative exponential, consider the case where there exists a feasible 
allocation Z, in which the components Zi are i.i.d. exponentially distributed 
with parameter q. Let X  =  DZ where D is an I   ≈   I-matrix with elements di,  j 
satisfying i ,id 1=j/  for all j, so that .M i 1 Z Zi M= ==

I :X /
This gives an initial allocation X of  dependent portfolios, which seems 

natural in a realistic model of a reinsurance market. Here it means that the Xi 
portfolios are mixtures of  exponential distributions with a fairly arbitrary 
dependence structure.

In this case XM has a Gamma distribution with parameters I and q. Accord-
ing to Theorem 3 all we have to check for an equilibrium to exist is that 
E{(ui�(Yi ))

2}  <  3 for all i, or equivalently that E{(ul�(XM))2}  <  3. Since 
ul�(XM)  =  Ke – XM / r for some constant K, we have to verify that the following 
integral is fi nite:

 
M x23

( ) !
( )

.E e e e I
x

dx1
/

( )X
x

I2

0

1

q
q

=
-

r r q- - -
-

a k #
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This is indeed the case, since by the moment generating function of the Gamma 
distribution, it follows that

 1E e 2 <
X

I
2 M

q r

q
=

+

r-
a fk p

because both the parameter q and the risk tolerance r of  the syndicate are 
strictly positive.

Instead of the assumption of the exponential distributions, suppose that 
the Zi are independent, each with a Pareto distribution, i.e., with probability 
density function

 i
i

i

a
a( ) , ( , ) .f x

z
c

c z 0<
a

Z i ii

i

3 3# != a1 +

i c,,

This is known as the Pareto distribution of  the fi rst kind. In this case EZi 
exists only if ai > 1, and var Zi exists only if ai > 2, etc. The moment generating 
functions fi (b)  =  EebZi of  these distributions exist for b  ≤  0, since the random 
variables ebZi are then bounded. Carrying out the same construction as above, 
we notice that

 E e E e <
1i

I2 2
M i 3=r r-

=

- ZX
` `j j%

since each of the factors has fi nite expectation. Accordingly, for these distribu-
tions a competitive equilibrium exists by Theorem 3.

Here the Xi are mixtures of Pareto distributions, but we should exert some 
caution, since our theory is developed for risks belonging to L2. We are out-
side this domain regarding the Zi if  ai < 2 for some i, in which case Xj   "  L2 
for any j. However, as long as the initial risks are in L2, an equilibrium exists 
by Theorem 3.

Finally consider the normal distribution, and assume that each Xi is N (mi, 
si )-distributed and that X is jointly normal, where cov (Xi, Xj )  =  rij  si  sj for i, 
j  =  1, 2,  ···, I. By the moment generating function of the normal distribution 
we have that

 2-2M( ) expE u E e i<
2 2 2

M 3 6r
s

r
m

= =l
r-� X ,X

` ` efj j o p

where = i 1= im mI/  and j= si
I

i j1 >2 .i ij
2s s+i= s r2/ /  Thus an equilibrium 

exists.
Even if the positivity requirements are not met, still all the computations of 

the equilibrium are well defi ned, the state price defl ator z(XM) is a strictly posi-
tive element of L2

+, prices can readily be computed and an equilibrium exists.
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It may admittedly be unclear what negative wealth should mean in a one 
period model, but aside from this there are no formal diffi culties with this case 
as long as utility is well defi ned for all possible values of wealth. In the reinsur-
ance syndicate we usually interpret Xi  =  wi  –  Vi where wi are initial reserves and 
Vi are claims against the ith reinsurer, or member. In this case negative values 
of Xi have meaning, in that when this occurs, reinsurer i is simply bankrupt or 
in fi nancial distress. ¡

In the above example with the Pareto distributions, if  the parameters ai satisfy 
1 < ai < 2 for all i, expectations exist, but not variances. Still ul�(XM)  =  

!
M

+
2 ,e LX2

- r  however L2 is not the relevant dual for L1, but turns out to be 
L3. We notice that ul�(XM)  !  L+

3
    as well, which means that this case will now 

be covered by our next theorem. Our development in Theorem 3 can be seen 
to be valid for L1 replacing L2, and dual price space L3 replacing L2.

To make this precise, we assume the portfolio space L  =  Lp   : =   Lp(W, F, P), 
where the associated price space is the dual Lq, for 1  ≤  p < 3 and .1p q

1 1+ =  
Again we start by assuming that the moments making up the budget con-
straints (11) exist. By Hölder’s inequality it is suffi cient that E{u�b(XM))q} <  3. 
We then have the following result.

Theorem 4. Suppose u�i  >  0, ui�  ≤  0, and ui�� are continuous for all i, and 
E{u�b(XM))q} <  3. Then an equilibrium exists.

The proof can be carried out along the lines of the proof of Theorem 3, except 
that we use Hölder’s inequality instead of  Schwartz’, and observe that the 
price functional p(Z) is continuous in Lp since z  =  u�b(XM)  !  Lq.

The space L3 is exempted from the above discussion, and deserves some 
special comments. It is well behaved from the point of view of price support-
ing preferred sets since the positive cone has a non-empty interior, but neither 
does L1 furnish all the continuous linear functionals on L3, nor do we know 
that the strictly positive functionals on L3 are continuous. Thus our argument 
based on no arbitrage can not be used directly to characterize a price func-
tional p for the portfolio space L3. As it turns out, so long as the preferences 
are “continuous enough” i.e., continuous in the Mackey topology, this forces 
continuous prices to be in L1. As Bewley (1972) shows, expected utility functions 
are concave and continuous in the Mackey topology provided u   :   [0, 3)  "  (– 3, 
3) is concave. From the results of  of  Mas-Colell and Zame (1991) we can 
show the following:

Theorem 5. Assume, in addition to our assumptions, that u   :   [0, 3)  "  (– 3,  3)
is strictly monotone and concave for all i, that the initial allocation XM  !  intL+

3 
(which is non-empty), and that p(Xi ) > 0 for all i. Then an equilibrium exists, 
and every equilibrium price belongs to L1.

The assumption p(Xi ) > 0 for all i has been discussed previously in connection 
with Theorem 1. Its signifi cance here is the same as in Section 4.
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This theorem can be related to the development in Bühlmann (1984) in the 
following sense: The portfolio space is assumed to be L  =  L2. Recall that we 
require the price to be defi ned and fi nite for every Z  !  L. Since risks are 
assumed bounded in Bühlmann (1984), in reality they are in L3 (in fact in a 
subset of this space), which is a subset of L2. Provided the assumptions of 
Theorem 5 hold, we can fi nd state prices z  !  L1  2  L2 such that z assigns a fi nite 
price to every risk in L3, and hence to every risk “present in the market”.
If, on the other hand, z  "  L2, then z does not assign a fi nite price to all ele-
ments of  L2, so some risks are left unpriced. This shows that the desirable 
requirement that price is defi ned and fi nite for all risks is also a strong one.

EXAMPLE 4. Returning to Example 2 with B  =  (0, 1], XM uniformly (0,1)-
distributed, and z  =  cXM

– a, this situation does not satisfy the requirements of 
Theorem 5, but it is easy to see that when the relative risk aversion a satisfi es 

2
1  < a < 1, then z  !  L1 but z  "  L2, illustrating the above possibility. The opti-

mal allocations 
lj

MY
j

i
a

a

1

1

=
li X

/
 are seen to be in L3, which means that there

exists an equilibrium in L3 for 2
1  < a < 1, demonstrating that the suffi cient

conditions of Theorem 5 can be too strong. The risk MZ X 3
1

=
- , on the other 

hand, is seen to not be a member of L3, but is in L2, hence it is not priced. 
When 0 < a < 1/2, there is an equilibrium in L2. ¡

In this example the aggregate portfolio XM is rather risky, since it contains 
much probability mass near zero, where the utility functions of the members 
are not bounded from below. One may wonder who will hold most of this risk 
in equilibrium. Since we have assumed that they all have the same preferences, 
the members are only distinguished by their initial allocations Xi . Here we 
notice from the expressions for the member weights li that the the member 
with “stronger reserves” will hold more of  the risks than the economically 
“weaker” members, in that li is proportional to E(Xi  /X aM ). This result appeals 
to intuition: Those members best fi t to carry risk will do so in equilibrium. 
Notice that no member holds the risk Z in equilibrium. Also, there is only an 
equilibrium here when the members are risk tolerant.

We now leave this theme and present an example where the relative risk 
aversions of all the syndicate members are constants, still as in Example 2, but 
from another perspective:

EXAMPLE 5. Consider the model of  Example 2, where ui (x)  =  (x1  –  ai  – 1)  /
(1  –  ai ) for x  >  0, ai ! 1. We again restrict attention to the case where a1  =  a2  =
… = aI   =  a.

Recall that the weights li are determined by the budget constraints, imply-
ing that

 
M

M

I, ,k
E X

E X X
ii a

i
a a

l = - !

-

1
`

`
f

j

j
p
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or, li is determined modulo the proportionality constant al /1( )k
I

a
j=
! j/  for 

each i. 
Let us again consider a situation where there exists a feasible allocation Z, 

where the Zi components are i.i.d. exponentially distributed with parameter q. 
Let X  =  DZ where D is an I  ≈  I-matrix with elements di, j satisfying d ,ii 1=j/  
for all j, so that .=M M=i 1X Z Zi= :I/

Regarding existence of equilibrium, according to Theorem 3 it is suffi cient 
to check that ul�(XM)  !  L2. In this case XM has a Gamma distribution with 
parameters I and q, and all we have to check is if  the expectation

 M
qx-qa23

( ) !
( )

E X x e
x

dx1

I

0

1q
=

-
-

a2

I -
-

` j #

is fi nite. The possible convergence problem is seen to occur around zero, and 
the standard test tells us that when (– 2a  +  I  –  1)  >   – 1, or when I > 2a, this 
integral is fi nite. Thus, for example if  a  =  10, then equilibrium exists in this 
syndicate if  the number of members exceeds 20.

One may wonder if  the member weights li can be computed when I > 2a. 
To check this consider the two expectations E(XM

1 –  a ) and E(Zi  XM
– a ). In order 

to verify that these expectations exist, we have to fi nd the joint distribution of 
Zi and XM. It is given by the probability density

 2
xq-

i( , ) ( ) !
( )

, , 0 .f z x e
x z

z x z< <
i

i i3 3# #q
q

=
-

-

I
2

I 2-
_ i

So we have to check if  the integral

 
z

M 2
i33

( ) !
( )

E Z X z e dz dxi i
x

i0

2
2

i
q

q
=

-

-q-a-

Iz
x

xa
I -

-
`

_
j

i
##

is fi nite. The possible convergence problem is again seen to occur around zero, 
and the standard test requires that (1  –  a  +  I  –  2 ) >  – 1, i.e., when I > a this 
integral is fi nite. From this it is obvious that the expectations E(Xi  XM

– a ) also 
converge in the same region, by linearity of expectation, since Xi  =  d ,ij .jj Z/

Similarly, we have to check the following expectation:

 M
a

1
-3

( ) !
( )

E X x e
x

dxa x
I

0

1
1

q
q

=
-

q- -
-

.I
1

` j #

Near zero the possible problem again occurs, and the standard comparison 
test gives convergence when (1  –  a  +  I  –  1) >  – 1, or when I > a  –  1. To con-
clude, when I > max{a, a  –  1}  =  a, both expectations exist, showing that the 
member weights exist in the parameter range (I > 2a) where state prices are 
known to exist.
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510 K.K. AASE

Notice that an equilibrium will exist with a fairly low number of partici-
pants in the interesting region for the parameter a. For instance, for a  =  1 
corresponding  to a logarithmic utility function, an equilibrium exists with
only three members in the syndicate. When the relative risk aversion is two, 
only fi ve members are required, and so on.

Finally consider the case of  Pareto distributions for the initial portfolios 
Xi directly, assuming ai > 2 for all i. The integrals

 <
1

i
a2

i a1E X c a2a

i

2 3= +
-

- .` ddj nn

Since min i  !  I  ai > 0, there are no problems with convergence, and an equi-
librium exists in this case regardless of the values of the relative risk aversion 
parameter a, (a > 0) or its relationship to I, since E(XM

– 2a )  ≤  Si E(Xi
– 2a ). In this 

latter case all the portfolios are bounded away from zero, which helps with the 
existence problem for power utility, while the exponential distribution has 
more probability mass near zero, potentially causing problems with existence 
in certain parameter ranges, as we have seen above. ¡

The result of this example is in line with the very spirit of a competitive equi-
librium, which generally implies that the theory may work better the more 
individuals that participate. Recall that classical economics sought to explain 
the way markets coordinate the activities of  many distinct individuals each 
acting in their own self-interest.

We end this section with a fairly general example, namely the utility func-
tions with affi ne risk tolerances, also called the class of Harmonic Absolute 
Risk Aversion (HARA) preferences.

EXAMPLE 6. Assume that the risk tolerance ri of  member i is of  the form 
ri (xi )  =  axi  +  ci  for  i  !  I. Here the risk tolerance of the representative mem-
ber is rb(x)  =  ax  +  c, where c  =  Si  !  I ci  . In this case the optimal sharing rules 
are all affi ne and of the form

 a a(i I
a

) ,Y x c x x c x
c c x

ii i i i

0 0

0= +
+

+ +
-

!,
c b b

as solutions of  the equations i
a

a( ) ( )
dx

dY x
x c

Y x ci i= +
+ , with boundary conditions 

Yi (x0)  =  bi , where S i  bi  =  x0. In equilibrium the constants bi are determined 
from the budget constraints as

 
a

a
x i

M

M

( ) ( )
( ) ( ) ( )

,b E c
c E X x E

ii
i0 0

z z
z z

=
+

+ + -

E I
( )

,
c E z

X
X

!

_ i

where the state price defl ator is z  =  u�b(x)  =  c( ) a
1

+
-ax , when a  ! 0, z  =  -e c

x

 
when a  =  0. Notice, a does not depend on i.
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 EXISTENCE OF EQUILIBRIUM IN A REINSURANCE SYNDICATE 511

This class of utility functions contains many of the common examples as 
special cases: When a  =  0 we have the negative exponential utility function 
u(x)  =  c (1  –  -e c

x

) of Example 1, where x0  =  0; when a  =  1 we get the logarith-
mic utility function u(x)  =  ln(x  +  c) of Example 2, and x0 > 0; when a  >  0, 
a  ! 1, we get the power utility u(x)  =  a( ) ,xa

a
1

1 a
1

+-

-c  where 1/a is the  relative 
risk aversion of Example 2; when a  =  – 1, utility is quadratic, etc. As usual, 
equilibrium is only determined modulo some normalizing constant, here rep-
resented by x0 .

Using Theorem 3, assumption (A2) holds, so the remaining assumption is
-cM( ) )E <a

2

3+(aX  when a  ! 0 (
M-( )E e <c

2

3
X

 when a  =  0) for equilibrium 
to hold, when the initial portfolios Xi   !  L2. ¡

The HARA utility class has a very interesting property: It is the most general 
class of  preferences for which the following is true: Each member of  the
pool holds an identical attitude towards aggregate risk. Therefore there is 
 unanimity on the management of the risk followed by the representative mem-
ber, or the “central planner”. It happens that these important properties
hold only in this special case of linear risk tolerances with the same “slope”, 
or cautiousness a. To put it differently, fi rst the members agree on a Pareto 
optimal risk sharing arrangement. Second, each member, using his own utility 
function and this sharing rule, will reach the same decision regarding risk 
 taking as the representative member: Defi ning the “implicit” utility function 
vi of  member i by vi (x)  =  ui (Yi (x)), it is the case that  – vi�(x)  /  vi�(x)  =  rb(x) for 
all x and i (Wilson (1968)).

3.2. Uniqueness of Equilibrium

The question of uniqueness of equilibrium is largely unexplored in the infi nite 
dimensional setting. However, given our smoothness assumptions one would 
expect equilibrium to be unique, provided one exists. In this section we show 
that this conjecture holds.

Approaches that take preferences and endowments as primitives seem to 
encounter many diffi culties in addition to the usual diffi culty of doing calculus 
in infi nite dimensional spaces. As mentioned before the natural domain of 
prices is a subset of the dual space of L2, the positive orthant L2

+, but this
set has empty interior, which is very inconvenient for doing calculus. Excess 
demand functions are not defi ned in general, and are not smooth even when 
they are defi ned. Araujo (1987) argues that excess demand functions can be 
smooth only if  the “commodity” space is a Hilbert space, which is noticed to 
be the case in our model (when p  =  q  =  2).

Inspired by our approach in Theorem 3, where we basically transformed 
the infi nite dimensional problem into a fi nite dimensional one represented by 
the member weights l, or equivalently, the constants b, we attempt the same 
line of reasoning regarding the uniqueness question.
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512 K.K. AASE

Going back to the fi rst order non-linear differential equations in (8), to each 
point (x0,  b1,  b2,  ···,  bI ) there is only one solution Y  =  (Y1, Y2 ,  …,YI ) to these 
equations under the assumption (A2). However, there could be several fi xed-
points and thus one possible equilibrium associated with each of them.

Arguing in terms of the member weights l instead of the b’s, let us defi ne 
the individual demands of the I members by Zi

(l)  =  (Yi
(l)  –  Xi ) and the excess 

demand Z (l)  =  Si  ! I Zi
(l). Below we show that these are well defi ned and smooth 

functions of the member weights li , i  !  I.
One reason why we consider the member weights here instead of the con-

stants b, is due to Proposition 3(c), equation (9), where it was shown that the 
state price z(l) is an increasing function of the weights li . As a consequence, 
by increasing li , member i’s optimal portfolio function must increase to main-
tain equilibrium, since, loosely speaking, this can be associated with a strength-
ening of member i’s initial portfolio Xi , while all the other members’ optimal 
portfolio functions will decrease. This will be formalized below.

The excess demand is zero at the possible equilibrium points l*, correspond-
ing to the points b* of  Theorem 3. If  the excess demand curve as a function 
of each member weight li is downward sloping for all i at all equilibria where 
Theorem 3 holds, there can only be one equilibrium. It is enough that Z (l) is 
downward sloping in (I  –  1) of  the l’s because of the normalization of the 
weights. Because of the smoothness of the excess demand function in l, this 
will be a suffi cient condition for uniqueness.

By investigating the marginal effect on the excess demand Zl* from a mar-
ginal increase in li

*, making sure that the resulting l is still on the simplex SI  –  1, 
we may use this procedure to check for uniqueness. As real functions the 
demands Zi

l   : R  "  R can be expressed as Zi
l  =  Yi

l (x)  –  xi where Si xi  =  x. Thus, 
in the language of calculus, we must therefore consider the quantities

 - la 1Z
I

i
i

*

-
!

l ,b l/

where a is the Lagrange multiplyer associated with the constraint of remaining 
on the simplex. Since any marginal change in one of the member weights will 
necessarily bring the resulting vector of  weights outside the simplex unless
the other weights are correspondingly lowered, a  >  0. Thus, we calculate the 
following

 1,a for 2, , ( 1)Z
*

2
2

gl - = -
l

i
i

I

at any equilibrium point l*, and check wether all these have the same sign for 
all x  !  B.

In order to calculate the quantities 
*

Z
i2

2
l

l

, we must fi nd j (d
*

)Y x

i2l

l

 for all i, j  !  I. 
It follows by differentiation of the fi rst order conditions

 i (( )) ( ) for anyu Y x u x ii il = l�� l
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that

 
i

i
i

d

( ( ))u Y xl

( )
( ) ( ( )) ford

Y x
u x u Y x i j1

i i i
i i2

2
l l l= - =� �

i
,l

� l

l

d n

for all x  !  B, and using equation (9) and the fi rst order conditions, we obtain

 i
i

i

d
( )

( ) 1
( )

for
dY x

Y x dx
dY x

i j1
i

il l= - =r
i

,
l

l
l

` dj n  (19)

for all x  !  B. Similarly we get

 
j

j
i(
(( )

)
)

for ,d
dY x

Y x dx
dY x

j i1
j !l l= -

i i

l
l

l

r ` j  (20)

for all x  !  B.  Notice that i

dx
dY ( )xl

  !  (0, 1) by equation (8), in other words, an 
increase in the market portfolio leads to an increase in all the members’ port-
folios Yi, and no member assumes the entire increase because they are all risk

averse. It follows that id
d

Z
li

( )xl

  >  0 for all i and 
d j

d
Z

li

( )xl

  <  0 for all j ! i, demonstrat-
ing what was loosely explained above.

We are now in position to compute the required marginal changes in excess 
demand within the simplex. It is

 

j

j

j i

i
i i

Y
a a a

a( )) 1
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Z Z Y

Y x dx
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*

*

l l

l
l

l
l

( ( ,re o

/ /

/

for all x  !  B, where we have used (19) and (20). Continuing, we get

 i
i(

(
(a a( ))

)
))Z Y x dx

dY x
x1

i *2
2

l l r- = - -l
i i

l*
*

*

l
l

(r

for all x  !  B, where we have used that

 (l ( (x Y x x B
I

i
i

i* !r r=
!

) )), ,/

according to Proposition 3(a). Finally using (8) we observe that

 Ia a 0 for .all andZ x B i<
i2

2
!l - = - !

l*
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The conclusion is formulated in the following uniqueness part of  the main 
theorem: 

Theorem 6. Under the assumptions of Theorem 3, or Theorem 4, or Theorem 5, 
the existing equilibrium in the reinsurance syndicate is unique.

Thus, our conjecture is confi rmed. Notice that in the examples we have pre-
sented we were able to fi nd the equilibrium by direct calculation, and the 
weights li were uniquely determined (modulo multiplication by a positive 
 constant) from the budget constraints. Thus, these equilibria are all unique.

4. COMPARISON WITH A MORE GENERAL THEORY

As mentioned in the introduction, an exchange economy deals with consump-
tion, which can not be negative by defi nition. An allocation V  ≥  0 a.s. thus 
means that Vi  ≥  0 a.s. for each i  !  I. A pair (Y, p) is a quasi-equilibrium if  
p(XM) ! 0, and for each i, p(Zi )  ≥  p(Xi ) whenever Eui (Zi ) > Eui (Xi ).

Drawing on the results of a more general theory of an exchange economy, 
as in e.g., in Mas-Colell and Zame (1991) and Araujo and Monteiro (1989), 
based on proper preference relations (Mas-Colell (1986)), Aase (1993) formu-
lated the following existence theorem for quasi-equilibrium in an exchange 
economy in L2 :

Theorem 7. Assume ui (·) continuously differentiable for all i. Suppose that XM > 0 
a.s., and there is an allocation V  ≥  0 a.s. with i Mi 1 V X=I

=/  a.s., such that 
E{(ui�(Vi ))

2}  <  3 for all i, then there exists a quasi-equilibrium.

If every member i brings something of value to the market, in that E(z  · Xi ) > 0 
for all i, we have that a quasi-equilibrium is also an equilibrium, which then 
exists under the above stipulated conditions. This assumption we also met in 
Theorem 1, as well as in Theorem 5, in the latter case for the same reason as 
here.

We notice that these requirements put joint restrictions on both preferences 
and probability distributions that are rather similar to the ones of Theorem 3. 
Although we have stronger requirements on the utility functions ui , our require-
ment on XM is weaker. In addition we also have demonstrated uniqueness of 
equilibrium. An example may illustrate the differences between the two theories:

EXAMPLE 7. Consider the case of power utility of Example 5, where ui (x)  =  
(x1  –  ai   – 1) / (1  –  ai ) for x > 0, ai ! 1. In this example the exponentially distrib-
uted Zi’s satisfy the assumptions of the allocation V in Theorem 7, and XM  >  0 
a.s. since XM has a Gamma distribution. Provided E (z · Xi )  > 0 for all i, an 
equilibrium will exist if

 2 qa- xi
i

2 -
3

(E Z x dx <i
i i 3qa ,=

-

0
) e#
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which holds true when ai  <  1/2, i.e., for very risk tolerant members. As we 
demonstrated in Example 5, in the case where a1  =  a2  =  …  =  aI  : =  a, an 
 equilibrium exists for I > 2a. Thus our previous result is stronger, or perhaps 
more relevant, since empirical studies suggest that the interesting values of ai 
may be in the range between one and 4, say.

Here it is simple to verify existence also when the parameters ai are unequal, 
and provided E(z  · Xi )  >  0 for all i, an equilibrium will exist in the region
ai < 1/2 for all i according to the above theorem2.

In the case where all the dj, i are equal (to I
1 ), the initial portfolios all have 

the same Gamma (qI,  I )-distribution, in which case the allocation X satis-
fi es the requirements of  the allocation V of  Theorem 7. In this case we get 
existence in the region I > 2   maxi {ai }, which is quite similar to the result of 
Example 4, ¡

We see that the two theories give comparable results, albeit they guarantee exist-
ence in slightly different regions depending upon circumstances. In general it 
seems easier to reach an equilibrium the more risk tolerant the members are.

5. SUMMARY

Classical economics sought to explain the way markets coordinate the activities 
of many distinct individuals each acting in their own self-interest. An elegant 
synthesis of two hundred years of classical thought was achieved by the gen-
eral equilibrium theory. The essential message of this theory is that when there 
are markets and associated prices for all goods and services in the economy, 
no externalities or public goods and no informational asymmetries or market 
power, then competitive markets allocate resources effi ciently.

In this paper the idea of general equilibrium has been applied to a reinsur-
ance syndicate, where many of  the idealized conditions of  the general theory 
may actually hold. The most critical assumption seems to be that of  no infor-
mational asymmetries. Reinsurers like to stress that their transactions are 
 carried out under conditions of  “utmost good faith” – uberrima fi des. This 
means that the reinsurers usually accept, without question, the direct insurer’s 
estimate of  the risk and settlement of  claims. The mere existence of  rating 
agencies in this industry is an indication that there may be both adverse selec-
tion, and also elements of  moral hazard in these markets. Nevertheless, the 
above theory may still give a good picture of  what goes on in syndicated 
markets.

In models of such markets properties of competitive equilibria have only 
academic interest so long as it is not clear under what conditions they exist. 
Existence is thus an issue of great importance.

2 The explicit computation of the state price defl ator z is not straightforward when the parameters 
are no longer equal across the agents. In this case sharing rules are certainly not linear.
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516 K.K. AASE

The advantage with the existence and uniqueness theorems of this paper 
is that they rest largely on results in risk theory, or the theory of syndicates, 
which implies that we may essentially restrict attention to the member weights 
in Euclidian I-dimensional space, thus reducing the dimensionality of  the 
problems. In contrast, Theorem 7 requires a rather demanding, infi nite dimen-
sional equilibrium theory, where the topological structure of infi nite dimen-
sional spaces plays an important role.

To sum up, the specifi c contributions of this paper are: (i) We extend the 
analysis in Bühlmann (1984) from merely affi ne contracts to any contracts, and 
from bounded risks to unbounded ones, (ii) we demonstrate uniqueness of 
equilibrium, using fairly deep results in Risk Theory, and (iii) we demonstrate 
that the existence results based on risk theoretic tools are not inferior to, or 
uniformly dominated by, existence results based on the theory of proper pref-
erence relations of an exchange economy.
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