
Astin Bulletin 40(2), 587-614. doi: 10.2143/AST.40.2.2061129 © 2010 by Astin Bulletin. All rights reserved.

FIRST-ORDER MORTALITY RATES AND SAFE-SIDE ACTUARIAL 
CALCULATIONS IN LIFE INSURANCE
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ABSTRACT

In this paper, we discuss how to defi ne conservative biometric bases in life 
insurance. The fi rst approach is based on cumulative hazard (or survival prob-
abilities), the second one on the hazard itself, and the third one on the rate of 
increase of the hazard. The second case has been studied in the literature and 
the sum-at-risk plays a central role in defi ning safe-side requirements. The two 
other cases appear to be new and concepts related to sum-at-risk are defi ned.
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1. INTRODUCTION AND MOTIVATION

The calculation of premiums and reserves on the safe side has always attracted 
a lot of interest in life insurance. Life insurance calculations are performed 
either with fi rst-order technical bases or with second-order technical bases. 
First-order bases include a safety margin whereas second-order ones do not con-
tain any margin and are assumed to be close to reality. Appropriate fi rst-order 
bases are essential to the life insurance business. The reason is that these bases 
justify the use of expected present values without explicit safety loading (the 
loading being implicitly contained in the prudential life table and interest rate).

Practical experience shows that mortality rates can change signifi cantly 
within one decade. Typically, we are in a situation as exemplifi ed by Figure 1.1. 
The real mortality rate differs from the estimated one (black solid line) because 
of, for example, an unforeseen catastrophe (upper dashed line) or a longevity 
effect (lower dashed line). By applying statistical methods on data of the past, 
we can usually narrow future uncertainties down to a confi dence band (grey 
area with grey solid curves as bounds). Premiums and reserves should now be 
chosen in such a way that they are on the safe side with respect to all kinds of 
mortality scenarios that are within that confi dence band.

93864_Astin40/2_07.indd   58793864_Astin40/2_07.indd   587 13-12-2010   10:53:2213-12-2010   10:53:22



588 M.C. CHRISTIANSEN AND M.M. DENUIT

So far, the literature offers three concepts for the construction of  fi rst-
order mortality scenarios. First, there is the method based on the sum-at-
risk, which was developed by Lidstone (1905), Norberg (1985), Hoem (1988), 
Ramlau-Hansen (1988), and Linnemann (1993). The sum-at-risk quantifi es 
the fi nancial consequence of  a death occurring at time t, in which case the 
insurer has to pay the death benefi t and the reserve is released. Lidstone (1905) 
and Norberg (1985) analyze the effects of  variations in the valuation basis 
while maintaining the equivalence principle, whereas Hoem (1988), Ramlau-
Hansen (1988), and Linnemann (1993) study the emergence of  surplus. In the 
present paper we follow the surplus concept of  the last three authors. For a 
given fi rst-order mortality rate with corresponding sum-at-risk, all of  these 
authors showed that reserves are on the safe side if  the second-order mortality 
rate is smaller at ages for which the sum-at-risk is positive and if  the second-
order mortality rate is greater at ages for which the sum-at-risk is negative. 
(From Lidstone (1905) to Linnemann (1993) the complexity grew from simple 
single life insurance policies to portfolios of  policies with multiple states.) 
This is exemplifi ed in Figure 1.2. Assume that the sum-at-risk — here calcu-
lated on the basis of  the best estimate (black solid line) — is positive until
the policyholder reaches age 50 and negative afterwards. Think, for example, 
of  a combination of  a pure endowment insurance and a temporary life insur-
ance. The sum-at-risk method yields now that premiums and reserves are on 
the safe side with respect to any second-order mortality rate within the
grey area. Unfortunately, we can not say anything about our two alternative 
scenarios (dashed lines), because they do not completely lie within the grey 
area.

FIGURE 1.1: Log mortality rates: best estimate 
(black solid curve), alternative scenarios

(black dashed curves), and confi dence band
(grey area with grey solid curves as bounds.

FIGURE 1.2: Log mortality rates: best estimate 
(black solid curve) with confi dence bounds

(grey solid curves), alternative scenarios
(black dashed curves), and safe side area with 

respect to the best estimate (grey area).
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The worst mortality scenario that can be found within the confi dence band 
by the sum-at-risk method is shown in Figure 1.3. It is on the upper and
lower bound where ever the sum-at-risk is positive and negative, respectively. 
Now we take that worst-scenario as our new fi rst-order basis. Seemingly, we 
expanded the safe-side area in a way we wished for. The safe side area presum-
ably contains now the whole confi dence band, illustrated in Figure 1.3. Unfor-
tunately, Figure 1.3 is in general wrong, because changing the fi rst-order basis 
changes at the same time the sum-at-risk. The effect is shown in Figure 1.4. 
The switching point between positive and negative sums-at-risk moved in our 
example to age 45, and the grey area illustrates the actual safe-side area accord-
ing to the sum-at-risk method with respect to our new fi rst-order basis. We see 
that between age 45 and age 50 our confi dence band is even completely outside 
the safe side area, which means that for all scenarios within the confi dence 
band the sum-at-risk method can not decide whether they are on the safe side 
or not. To summarize, the sum-at-risk method does not yield a fi rst-order basis 
that is defi nitely on the safe-side with respect to all scenarios within a confi dence 
band.

The second method that can be found in the literature is based on deriva-
tives. References using such an approach include Dienst (1995), Bowers et al. 
(1997), Kalashnikov and Norberg (2003), Christiansen and Helwich (2008),
or Christiansen (2008a, 2008b). The problem is here that differentiation in 
general is a local concept. Strictly speaking, we can only study infi nitesimal 
changes of the mortality rate. We get good approximations for realistic changes 
of the mortality rate if  the confi dence band for the second-order basis is not 
too wide, but still the approximation error is generally diffi cult to control. 

FIGURE 1.3: Log mortality rates: fi rst-order basis 
(black solid curve), confi dence bounds (grey solid 

curves), alternative scenarios (black dashed curves), 
and desired safe side area with respect to the 

fi rst-order basis (grey area).

FIGURE 1.4: Log mortality rates: fi rst-order basis 
(black solid curve), confi dence bounds (grey solid 

curves), alternative scenarios (black dashed curves), 
and true safe side area with respect to the 

fi rst-order basis (grey area).
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Thus, the method based on derivatives works only for narrow confi dence 
bands and yields not exact but only approximative results.

A third method for the construction of fi rst-order mortality scenarios is 
given in Christiansen (2010). Based on Thiele’s integral equation, another inte-
gral equation is developed whose solution yields the maximal prospective 
reserve with respect to all cumulative mortality intensities whose rate of 
increase is within some confi dence band. In contrast to the fi rst and the second 
method, the third method yields a fi rst-order basis that is defi nitely on the 
safe-side with respect to a confi dence band, and the results are always exact 
regardless of the width of the confi dence band. However, by bounding the rate 
of increase of the cumulative mortality intensity and not the cumulative mor-
tality intensity itself, it may happen that we exclude mortality scenarios that 
can occur in reality. On the other hand, the method of Christiansen (2010) 
includes scenarios that might be seen as rather unrealistic.

In the present paper we describe three approaches for the calculation of a 
fi rst-order basis. All of them yield scenarios that are defi nitely on the safe side 
with respect to a confi dence band, and they all offer exact results regardless 
of the width of the confi dence band. They mainly differ in the sets of mortal-
ity scenarios that are included and excluded. Specifi cally,

(a) in approach 1, we allow for any cumulative hazard rate within a lower and 
an upper bound

(b) in approach 2, we allow for cumulative hazard rates whose rate of increase 
is within a lower and an upper bound. In case of differentiability, that is 
equivalent to have a lower and an upper bound for the hazard rate.

(c) in approach 3, we allow for cumulative hazard rates whose rate of accelera-
tion is within a lower and an upper bound. In case of twice differentiability, 
that is equivalent to having a lower and an upper bound for the derivative 
of the hazard rate.

The second approach is based on the method of Christiansen (2010). The fi rst 
and third approaches seem to be new in the literature. Suppose that confi dence 
bands for (a), (b), and (c) are given. Then approach (a) includes the biggest 
set of  mortality scenarios. In return we obtain premiums and reserves that 
have a strong safety loading, but the fi rst-order basis is not necessarily a true 
cumulative hazard rate itself. Approach (b) makes stronger restrictions and 
includes less mortality scenarios than (a), thus the fi rst-order basis is always a 
true cumulative hazard rate, and premiums and reserves now have a smaller 
safety loading. Approach (c) makes the strongest restrictions on the set of 
admissible mortality scenarios, now hazard rates are never decreasing, and in 
return we obtain the smallest safety loading for premiums and reserves. It is 
not obvious which of the restrictions of  (a) to (c) on the set of  admissible 
mortality scenarios are really satisfi ed in reality. Therefore, we present and 
compare in this paper all three approaches and leave it to the practitioner to 
decide which a priori assumptions he is willing to accept. The following table 
gives a condensed overview:
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2. BASIC MODELING

Consider a life insurance policy that is issued at time 0. We write x for the age 
of the policyholder at the beginning of the contract period, T for his or her 
total lifetime, and wx for the limiting age for individuals with age x at contract 
time zero.

The cash-fl ows of the contract are described by the following functions:

1. The lump sum c(t) is payable upon death at time t. We assume that the 
function c has bounded variation on [0, wx ] and is left-continuous (left-
continuity ensures that when the death benefi t corresponds to the reserve 
or to the part of a loan still to be reimbursed, the payment at the time of 
death is not taken into account). 

2. The functions B(t) and P(t) give the accumulated annuity benefi ts and 
premiums in case of survival up to t. We assume that B and P have bounded 
variation on [0, wx ] and are right-continuous.

We write v (s, t) for the value at time s of  a unit payable at time t  >  s and 
assume that it has a representation of the form

 -( , )v s t e=
( )uf

( , ]s t du#

with f being the interest intensity (or short interest rate).
The cumulative mortality intensity (or cumulative hazard rate) is defi ned by

 ln( ) : ( | )P T x t T x> >xL = - +t .

We assume that Lx is continuous. In order to distinguish between different 
cohorts, we do not further simplify this notation to Lx (t)   =   L (x  +  t). If  Lx is 
differentiable, we can also defi ne a mortality intensity (or hazard rate),

Construction of a fi rst-order basis
on the safe side with respect to

a confi dence band

Cumulative hazard rates of 
second-order within the 
confi dence band are ...

method based on
sum-at-risk

no

method based on 
derivatives

approximately, confi dence band
for (cumulative) hazard rate

arbitrary

method (a),
section 3

yes, confi dence band for
cumulative hazard rate

arbitrary

method (b),
section 4

yes, confi dence band for
hazard rate

increasing

method (c),
section 5

yes, confi dence band for rate of
increase of hazard rate

increasing with
increasing speed
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 =( ) d
d ( ) .tx xl Lt t:

If  Lx is even twice differentiable, we defi ne

 =a ( ) d
d ( )

d
d ( )t tx x x2

2

l L=t t t: .

3. WORST-CASE IF THE CUMULATIVE HAZARD RATE IS BOUNDED

The prospective reserve at time s is obtained as the expected present value of 
future benefi ts minus the expected present value of future premiums, that is, 
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Now we regard V(s) as a mapping of the conditional survival function, the 
latter being defi ned by

 [ , ] ( ).s t e P T x t>
( ) ( )

x
s tx x7"w = +

L L- | T x s> +

What happens to the prospective reserve if  the conditional survival function 
is shifted by an amount of Q (·) to exp{Lx(s)  –  Lx (·)}  +  Q (·)? In the following 
we assume that Q (·) is right-continuous, has bounded variation on [s, wx ], and 
is equal to zero at s and wx. Using the linearity of V(s) with respect to the 
conditional survival function and applying Fubini’s Theorem, we get in obvious 
notation 
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 (3.1)

where 

 P=( ) ( , ) ( , ) d( )( ) ( )u v s u v u t c u
[ , ]s u x

- -
w

t:S Bb l#  (3.2)
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can be seen as cumulative survival cost at time s for survival at and after u.
To motivate that defi nition, look at the example where Q  =  e 1[t0,  wx) for some 
fi xed t0  >  s and an e  >  0. For a homogeneous portfolio that means that we have 
from time t0 on throughout (100e)% more policyholders that are still alive. 
According to (3.1), the effect of shift Q  =  e 1[t0,  wx) on the prospective reserve 
V(s) is e Ss(t0 ). Coming back to the homogeneous portfolio, e Ss(t0 ) is the 
increase of the discounted cost per policy due to increasing the survival rate 
on [t0, wx ) by e. We can get another interesting interpretation of function Ss 
after applying partial integration on the last term of (3.1), which gives 

 
(

(Q (u

s u

u

, ( , ) d ( )

) d ).

V s e Q V s e S Q u( ) ( ) ( ) ( )

( ,

( , )

s s
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L L L L- -$)

S
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#
 (3.3)

(Note that Q is right-continuous, Ss is left-continuous, and that we assumed 
that Q (s)  =  Q (wx )  =  0). Now we see that –  dSs (u) describes the effect that the 
increase Q (u) of the survival function at time u has on the prospective reserve 
V (s). Therefore, we denote –  dSs (u) as survival cost at time s for survival at 
time u, and by differentiating (3.2) we can show that 

 
(us fd ) ( , ) (d ( ) d ( ) ( ) ( )d d ( ))

: ( , )d ( )

S v s u B u u u c u u c u

v s u S u

P- = - - +

=
 (3.4)

for all u  ≥  s, where dS(u) is denoted as survival cost for survival at time u. This 
representation allows for an intuitive interpretation: By infi nitesimally delaying 
the death of the policyholder at time u, additional benefi ts of dB(u) fall due, 
additional premiums of dP(u) are paid, the insurer gets a discounting advan-
tage for the death benefi t of f(u) c(u) du, and the contractual liabilities con-
cerning death change by dc(u).

Now we assume that the conditional survival function exp{Lx (s)  –  Lx (·)} 
has a lower and an upper bound, 

 e( ( (s , [ , ]e e t s) ) ) ( ) ( ) ( )U U t s t L s L t
x

x x x x x x
# # ! wL L- - - , (3.5)

where the bounds shall be continuous survival functions with respect to t. 
Instead of  studying shifts of  the survival function of  the form exp{Lx (s)  – 
Lx (·)}  +  Q (·) within the boundaries (3.5), we will study shifts of  the form 
Lx  +  H and use the equivalent bounds 

 x x( ) ( ) ( ) ( ) ( ) ( ), [ , ]L L s s s t sx x x x x# # ! wL L- - -t t t ,U U  (3.6)
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where the bounds have to be continuous cumulative hazard rates with limiting 
age wx. From now on we see the prospective reserve V(s)  =  V (s, Lx ) as a map-
ping of the cumulative hazard rate Lx.

3.1. Construction of a worst-case scenario

We are interested in the maximal value that the prospective reserve V(s) can 
take if  the conditional survival function may be chosen arbitrarily within the 
bounds (3.5) or, equivalently, if  the cumulative mortality intensity may be 
chosen arbitrarily within the bounds (3.6). In other words, we are looking
for the worst-case prospective reserve (or at least an upper bound for it) from 
the perspective of the insurer. Let Y and Z be random variables with survival 
functions eLx (s)  –  Lx (·) and eLx (s)  +  H(s)  –  Lx (·)  –  H(·). If  Ss is non-increasing or, equiv-
alently, dS(t) is never negative, then the fact that
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(for the fi rst equality apply Fubini’s Theorem similar to (3.1)) leads to
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The same relation holds for the prospective reserves if  Ss is non-decreasing and 
H(s)  –  H(t)  ≥  0 for all t  !  [s, wx ]. Thus, we get that Lx  =  Lx maximizes the 
prospective reserve if  Ss is non-increasing and Lx  =  Ux maximizes the prospec-
tive reserve if  Ss is non-decreasing. In other words, the lower bound Lx and 
the upper bound Ux are worst-case scenarios if  the survival cost dS is through-
out non-negative and throughout non-positive, respectively. This result can be 
generalized to cases where dS may change its sign, as shown next.

Property 3.1. Let dS be the survival cost according to (3.4). Then, for all continu-
ous functions H with bounded variation on [s, wx ], we have 

 
H (V

( )H

+

tsign( ( ) sign(d ( ))

( ) , )

for allS t s

V s

>

x x( $ L

- = t)H s

,s L
 (3.7)
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and

 
H (V
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PROOF. Because of (3.3), the difference

 H L+( , ) ( , ) ( , ) d ( )V s V s e e v s t S( ) ( )

( , )

( ) ( )
x x

s t

s

H s H tx x

x
- =
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is always non-negative and non-positive under conditions (3.7) and (3.8), 
respectively. ¡

Property 3.1 allows us to calculate an upper bound for the prospective reserve:

Proposition 3.2. Let dS be the survival cost according to (3.4). Then Lx defi ned 
by 

 
( ) : ( ) 0s S <t( ) U-t x

=L L( ) ( )
( ) ( ) : ( ) 0

s
L L s S
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>
x x

x x

x
-

-
t

t t
: *  (3.9)

and arbitrary values on {s}  ,  {t | dS(t)  =  0} satisfi es V ( s, Lx )   ≥  V ( s, Lx ) for all 
cumulative mortality intensities Lx that are within the bounds (3.6).

PROOF. Apply Property 3.1, and note that in the proof  of  Property 3.1 the 
function eLx (s)  –  Lx (t)  +  Q is not necessarily a survival function but only has to 
be right-continuous and of bounded variation on [s, wx ]. ¡

We denote Lx as worst-case scenario with respect to the bounds (3.6). Note
that Lx(·) is not necessarily monotone and, hence, not always a true survival 
function.

REMARK 3.3. (Time invariance). What happens to the worst-case scenario of 
V(s) when time s is moving forward? The worst-case scenario according to 
Proposition 3.2 depends only on the sign of dS which does not depend on s. 
That means that if  we once calculated Lx at the beginning of  the contract 
period s  =  0, it remains to be a worst-case scenario during the whole contract 
time.

However, the approach presented in this section has a signifi cant disadvan-
tage. In many examples the worst-case scenario Lx is not monotone and, 
hence, not a true cumulative hazard rate anymore. This implies that the upper 
bound for the prospective reserve is in fact not sharp. This is why in Section 4 
we bound the rate of increase of Lx instead of Lx itself.
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4. WORST-CASE IF THE HAZARD RATE IS BOUNDED

In contrast to (3.6), we assume now that the rate of increase of the cumulative 
hazard rate is bounded, 

 d ( ) d ( ) d ( ), [ , ]t sx x x x# # ! wt t tL ,L U  (4.1)

where Lx and Ux are continuous and increasing functions with bounded vari-
ation on [s, wx ]. In case of differentiability, that is equivalent to bounding the 
hazard rate, 

 ( ) ( ) ( ), [ ]l u t sx x x# # !l w,t t t ,x  (4.2)

where lx and ux are the derivatives of Lx and Ux . The monotony of Lx implies 
that Lx is monotone and, hence, is always a true cumulative hazard rate.

The prospective reserve at time s can be written as
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Alternatively, we can see the prospective reserve as the unique solution of 
Thiele’s integral equation 
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with initial value V (wx )  =  0, where R(s)   : =   c(s)  –  V (s)  –  D (B  –  P) (s) is the 
so-called sum-at-risk for occurrence of dead at time s.

What happens to the prospective reserve if  Lx is shifted by an amount of 
H to Lx  +  H ? By generalizing the ideas of Lidstone (1905), Norberg (1985), 
Hoem (1988), Ramlau-Hansen (1988), and Linnemann (1993) to a model with 
a cumulative mortality intensity, we obtain the following result, which is the 
basis for the ‘sum-at-risk method’.

Property 4.1. Let R (s, Lx ) be the sum-at-risk that corresponds to Lx . If the shifted 
cumulative mortality intensity Lx +  H is still a continuous cumulative hazard rate, 
then we have 

 
H (V+
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93864_Astin40/2_07.indd   59693864_Astin40/2_07.indd   596 13-12-2010   10:53:2313-12-2010   10:53:23



 FIRST-ORDER MORTALITY RATES IN LIFE INSURANCE 597

and
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PROOF. Let W(s)   : =   V (s,  Lx  +  H )  –  V (s,  Lx ) be the difference between the 
prospective reserves at time s. By replacing V (s,  Lx  +  H ) and V (s,  Lx ) with 
the right hand side of (4.4), we get an integral equation for W,

 
H

H H

f( ) ( ( , ) ( , )) ( )d

( , ) d( )( ) ( , ) d ( )

W s V t V t t
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L L L L
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w

w

t

t t_ i

#

#

with initial value W (wx )  =  0. With defi ning C by

 ( ) ( ) ( , ) d ( )C C s R t
( , ]x s x

x
w L-

w
tH= ,#

we can write the above integral equation for W in the form

 Hf( ) ( ) ( ) ( ) ( )d ( ) )( ).W s C C s W t t W
( , ] ( , ]x s xsx x

w= - - + - +
w w

t t t- d(L# #

We can interpret this integral equation as a Thiele integral equation for a 
policy with no death benefi ts and accumulated annuity benefi ts and premiums 
of C. (In the actuarial literature, C(s) is interpreted as the accumulated surplus 
at time s). Hence, the integral equation has the solution (see (4.3)) 

 
( ) ( , ) d ( )

( , ) ( , ) d ( ) .

W s e v s t C

e v s t R t t

( ) ( ) ( ) ( )

( , ]

( ) ( ) ( ) ( )

( , ]

s H s t H t

s

s H s t H t

s x

x x

x

x x

x
L

=

=

w

w

L L

L L

+ - -

+ - -

t

H

#

#
 (4.7)

Under the conditions in (4.5) and (4.6) we obtain W (s)  ≥  0 and W (s)  ≤  0, 
respectively, and, hence, V ( s, Lx  +  H )  –  V ( s, Lx)  =  W (s)  ≥  0 and V ( s,  Lx  +
H )  – V ( s, Lx )  =  W (s)  ≤  0. 

Defi ning 

 =( ) ( , ) ( , )R t e v s t R t( ) ( ) ( ) ( )
s

s H s t H t
x

x x L
L L+ - -:  (4.8)

as the sum-at-risk at time s for occurrence of death at time t, we get from (4.7) 
an expression similar to (3.3): 

 H d( , ) ( , ) ( ) ( ) .V s V s R t H t
( , ]x x ss x

L+ - =
w

L #  (4.9)
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While the survival cost – dSs (t) describes the effect that a Q (t) shift of  the 
survival function has on V(s), it is here Rs (t) that quantifi es the effect that a 
dH(t) shift of the mortality intensity has on V(s). Property 4.1 is similar to 
Property 3.1. While sign (dS(t)) describes the direction of  the effect that a
H(t) shift of the cumulative mortality intensity at time t has on V(s), it is here 
sign (R(t)) that quantifi es the direction of the effect that a dH(t) shift of the 
mortality intensity at time t has on V(s). It is then tempting to believe that we 
can fi nd a worst-case scenario analogously to Proposition 3.2 by letting dLx 
be equal to dLx and dUx where ever R(t, Lx ) is negative and positive, respec-
tively. As already indicated in the introduction, this idea does not work. The 
problem is here that quantity (4.8) depends on shift H, whereas – dSs did not 
depend on shift Q. Therefore the worst-case problem is more complicated here.

4.1. Construction of a worst-case scenario

Property 4.1 guarantees that the valuation basis Lx is on the safe side with 
respect to all alternative mortality scenarios Lx  +  H that meet condition (4.6). 
This safe side area usually does not contain the whole confi dence band (4.1). 
(See also the explanations in the introduction.) But if  we had a mortality sce-
nario Lx that satisfi es 

 
:( )tx L( , ) 0R t >

L
d ( )

d ( ) : ( , ) 0

d
,t

L t R t

U

<
x

x x

x

=L *  (4.10)

then Property 4.1 would yield a safe side area for Lx that indeed contains the 
whole confi dence band (4.1), because all possible shifts H meet (4.6). The 
natural questions are therefore:

• Does such a special scenario Lx always exist?
• If  so, how do we fi nd Lx ?

Answers to that questions can be found in Christiansen (2010). By replacing 
the cumulative mortality intensity in Thiele’s integral equation (4.4) with the 
right hand side of (4.10), we get a new integral equation that does not directly 
depend on Lx anymore, 

    
( )t

-

P P

U

V V f( ) ( ) ( ) ( ) ( ) ( ) ( )d

( ) |
d ( )

( ) |
d

s s t t

t
L t

t
2 2

( , ]

( , ] ( , ]

x s

s x s x

x

x x

w= - - - -

+ +
+

w

w w

t-

R R

B B

( ) ( )t tR R| |

#

# #
 (4.11)

with initial value V(wx )  =  0, where we use the short notation V(s)   : =   V(s, Lx ) 
and R(s)   : =   R (s, Lx). Christiansen (2010) showed that the integral equation 
(4.11) has a unique solution in
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{V  :   [0, wx ]   "  �  |  V is right-continuous and has bounded variation, V (wx)  =  0 }.

Once we have a solution V for (4.11), we can construct a worst-case mortality 
scenario as follows.

Property 4.2. Let V be the unique solution of integral equation (4.11) with cor-
responding sum-at-risk R. Then Lx defi ned by 

 
:( )tx 0>

d ( )
d ( ) : ( ) 0

d ( )
t

L t t

U t

<
x

x
=L

R
R

*  (4.12)

and arbitrary but increasing values on {0}  ,  {t  :  R (t)  =  0} is a cumulative 
mortality intensity with V (s, Lx )   ≥  V (s, Lx ) for all s  !  [ 0, wx ] and all Lx that 
satisfy (4.1).

PROOF. Christiansen (2010) showed that Lx is indeed a cumulative mortality 
intensity. In the same way that we derived (4.11) from (4.10), we can verify that 
V ( ·,  Lx ) is equal to the unique solution V of (4.11). Thus, we also have R  =  R ( ·,  Lx ), 
which means that (4.12) satisfi es (4.10). By applying Property 4.1 now for each 
s   !  [ 0, wx ], we get the maximality of V (s, Lx ) for all s  !  [ 0, wx ]. ¡

We call Lx according to (4.12) the worst-case scenario with respect to (4.1).

REMARK 4.3. (Time invariance & characterization of the worst-case). Note 
that the worst-case scenario Lx maximizes not only the prospective reserve at 
some fi xed time s, but also at any other time t  !  [ 0, wx ]. That means that if  we 
once calculated Lx at the beginning of the contract period, it remains to be
a worst-case scenario during the whole contract period. This implies that
R (t, Lx)  =  c(t)  –  V (t, Lx )  –  D(B  –  P) (t) is minimal for all t, and consequently

 R RL( , ) ( , )inft tx x
x

L=
L

_ i

for all t. By interpreting a positive sum-at-risk as occurrence character and a 
negative sum-at-risk as survival character, we get that the worst-case scenario 
is always that scenario that has the biggest share of survival character during 
the contract period.

The worst-case method in this section fi xes the problem of the previous 
section that the worst-case scenario Lx is in general no cumulative hazard rate 
anymore. However, we still get unrealistic scenarios where the mortality inten-
sity jumps between extremes and where mortality rates can also fall with 
increasing age. Such scenarios make sense in risk management if  one is inter-
ested not in usual but in extreme developments of mortality.
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Still, we can ask the question if  it is possible to calculate worst-case sce-
narios which additionally have the following two properties: (a) they never fall 
with increasing age and (b) they have no extreme jumps. An answer to that 
question is given in Section 5.

4.2. Alternative construction of a worst-case scenario

Earlier in this section we discussed that, in contrast to (3.3), formula (4.9) does 
not yield a construction method for a worst-case scenario because the integrand 
depends on shift H. The ‘method based on derivatives’ (see the introduction 
of this paper) gets rid of that dependence on H by just allowing for local shifts 
H. Christiansen (2008a) shows that

H+( , ) ( , ) ( , ) ( , ) d ( )V s V s e v s t R t H t o H( ) ( )

( , ]x x
s t

s x
x x

x
L L- =

w

L L-
-L ,^ h#  

(4.13)

where   || H ||   is the total variation of H on [ 0, wx ]. Thus, given that o (|| H ||) is 
negligible, the prospective reserve V( s, Lx + H ) can be maximized by choosing 
d (Lx +  H ) equal to dLx and dUx where ever R (t, Lx ) is negative and positive, 
respectively. This is the same scenario as the one suggested by the sum-at-
risk method. The difference to the true worst-case scenario rises with o (|| H ||). 
Christiansen (2008a) interpreted the integrand of (4.13) as some form of gen-
eralized gradient

 VL =( ) ( ) ( , ) ( , )t e v s t R t( ) ( )s t
xx

x x L
L L-:d

which gives us a new idea for the construction of a worst-case scenario. In the 
same way that gradient ascent methods are used to fi nd local maxima of dif-
ferentiable functions on � n, we can do iterated small steps in direction of the 
generalized gradient dLx

V in order to fi nd a maximizing mortality scenario:

1. Choose a starting mortality scenario Lx
(0).

2. Calculate a new scenario by using the iteration

  V(
L(

)nd ( )t( )1
)ndn

= +
+ ( ) ( ) ( ) d .t K t tx x

L L: dx

 If  the right hand side is below dLx or above dUx, we cut dLx
(n  +  1) off  at dLx 

or dUx, respectively. Here, K > 0 is some step size that has to be chosen.

3. Repeat step 2 until | V (s, Lx
(n  +  1) )  –  V (s, Lx

(n) ) | is below some error tolerance. 

In order to increase the speed of convergence, we could try to increase K to 
infi nity. As the sign of VL( )n( ) ( )t

x
d  is equal to the sign of R (t,  Lx

(n) ), and since 
we cut dLx

(n  +  1)  off  at dLx and dUx, we obtain the following algorithm:
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1. Choose a starting mortality scenario Lx
(0).

2. Calculate a new scenario by using the iteration 
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L L =
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L

Ux

Z

[

\

]
]

]]

 (4.14)

3. Repeat step 2 until  V (s, Lx
(n  +  1) )  –  V (s, Lx

(n) ) | is below some error tolerance.

For n  =  0, step 2 yields the same scenario as the one that is suggested by the 
sum-at-risk method or the method based on derivatives in order to maximize 
the prospective reserve V(s). Hence, the second algorithm is just an iteration 
of the sum-at-risk method or the method based on derivatives. The question 
is whether that algorithm converges to the true worst-case. The following result 
provides the answer.

Proposition 4.4. Let Lx
(0), Lx

(1), Lx
(2), … be a series of cumulative mortality inten-

sities calculated by iterating (4.14). Then

 ( )ns s L( , ) ( , )lim V V xn
L =

"3 x ,

where Lx is the worst-case scenario according to (4.12).

Note that Proposition 4.4 states the convergence of the prospective reserves 
V (s, Lx

(n) ) and not the convergence of  the scenarios Lx
(n). The latter do not 

necessarily converge to Lx on {t  :  R ( t, Lx )  =  0}.

PROOF. Since defi nition (4.14) implies that

 ( )n 1+ ,R t( (sign d ( ) signt)
x

n
xL L L- = )n

x ,`a `aj k jk

we can apply Property 4.1 and obtain that

 (( )n, ,V t V t )
x x

n 1
#L L

+
` `j j

for all t  ≥  s and all integers n  ≥  1. Because the prospective reserves must be 
fi nite, the limit limn  " 3 V(t, Lx

(n) ) exists pointwise for all t. With the series 
V(t, Lx

(n) ) being monotonic increasing, the series R(t, Lx
(n) )  =  c(t)  –  V(t, Lx

(n) )   –
D (B  –  P) (t) must be monotonic decreasing. In view of defi nition (4.14), we 
can then conclude that dLx

(n) (t)  ≥   dLx
(n  +  1) (t) for all t and that the limit limn  " 3 

Lx
(n) exists in the Banach space of continuous functions with support in [0, wx ] 

and the total variation as its norm. The differentiability of  the prospective 
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reserves with respect to the cumulative mortality intensity (see (4.13)) implies 
also continuity. Therefore we have

 ( () )n n, , .lim limV s V s
n n

=
" "3 3x xL L` aj k

One can easily show now that the limit limn  " 3 Lx
(n) meets property (4.10) 

and therefore corresponds to the unique solution of  (4.11). Hence, we have
limn  " 3 Lx

(n) (t)  =  Lx(t) on {t  :  R(t)  !  0} and, consequently, V(s, limn  " 3 Lx
(n) )  = 

V(s, Lx). ¡

We see that the sum-at-risk method yields an approximation of the true worst-
case, and we can improve this approximation by just iterating the sum-at-risk 
method.

5. WORST-CASE IF THE RATE OF INCREASE

OF THE HAZARD RATE IS BOUNDED

Here we generally assume that lx exists. In contrast to (4.2) we do not bound 
the mortality intensity but the rate of increase of the mortality intensity. Spe-
cifi cally, assume that the inequalities 

 d ( ) d ( ) d ( ), [ , ]t t t t sx x x x# # !ll ,u w  (5.1)

are valid where lx and ux are hazard rates, and let lx(s) be an arbitrary but 
fi xed starting value at present (time s). The specifi cation of  lx at time s is 
needed since the derivative dlx on its own does not uniquely determine lx.
If  Lx is twice differentiable, (5.1) is equivalent to bounding ax on [s, wx]. If  we 
choose a lower bound dlx that is positive, then the mortality intensity is always 
monotonic increasing on [s, wx],

 ( ) ( ) d ( ) .t s u
( , ]x x s t x$l l l- #

REMARK 5.1. For some practical applications it might be desirable to relax the 
assumption that lx (s) is a fi xed constant. In fact, we can easily expand our 
model to the more general case where lx (s) is just restricted to an interval with 
fi nite bounds lx (s) and ux (s),

 ( ) ( ) ( ) .l s s u sx x x# #l

For that purpose, we transform the more general problem into an equivalent 
problem with a constant starting value: Expand the time interval [s, wx] to 
[s  –  e, wx], let lx (s  –  e)  =  0, and defi ne dlx and dux on (s  –  e, s] in such a way 
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that  ( ,e ( )l sx x=s - s] dl#  and   ( ,e ( ) .sx x=s - s u] du#  Further, set v (s  –  e, s) to 1 and 
redefi ne the payment functions B, P, c in such a way that there are no pay-
ments on [s  –  e, s]. Now we can apply all results of  this section on the new 
equivalent worst-case problem with fi xed starting value lx (s  –  e)  =  0.

We now regard the prospective reserve at time s as a mapping of  the
mortality intensity lx and are looking for a scenario within the bounds (5.1) 
and with fi xed starting value lx (s) that maximizes V(s, lx ). Let lx be some 
starting point that is shifted by a function h that is right-continuous and
has bounded variation on [s, wx]. By applying Fubini’s Theorem, (4.9) can be 
transformed to

 
h

d

( ) ( , ) ( ) d ( ) d

( ) d ( ).

V V s R t u t

R t t u

( , ] ( , ]

[ , ]( , ]

x x ss s t
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xx
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=

w

ww

h

h

,s l b

b

l

l
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With writing H for the cumulative version of h, we denote

 
x x

=( ) ( )d ( , ) ( , )dCR u R u t e v s t R t t
[ , ]

( ) ( ) ( ) ( )

[ , ]s su

s t H s H t

u x
x x L=

w w

L L + --: ##

as cumulative sum-at-risk at time s for occurrence of death at and after u. This 
gives an expression similar to (3.3) and (4.9), that is, 

 h( , ) ( , ) ( )d ( ) .V s V s CR u h u
( , ]x x s s

x
l+ - =

w
l #  (5.2)

The cumulative sum-at-risk CRs (u) describes the effect that a change dh(u) of 
the rate of increase of the mortality intensity (the rate of acceleration of the 
cumulative mortality intensity) has on V (s). Analogously to Property 3.1 and 
Property 4.1 we get the following result:

Property 5.2. If the shifted mortality intensity lx  +  h is a regular hazard rate, then 

  hsign(d ( )) sign( ( )) ( , ) ( , )t CR t for all t s V s V s>s x x( $ l= +h l  (5.3)

and 

  hsign(d ( )) sign( ( )) ( , ) ( , ) .t CR t for all t s V s V s>s x x( # l= - +h l  (5.4)

For the proof just apply (5.2). In contrast to dS(t) in Property 3.1 and R(t)
in Property 4.1, the sign of  CRs (t) depends on shift h. Thus we can not
just transform the ideas of  the previous sections in order to fi nd a maximiz-
ing scenario. Again, we can get rid of the dependence on h by allowing just 
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for local shifts. Applying Fubini’s Theorem, the integral in (4.13) can be trans-
formed to 

 
V

( , ) ( , ) d ( ) d

( )( )d ( ),

e v s t R t u t

u u

( ) ( )

( , ] ( , ]

( , ]

s t
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l
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L L- h

hd

b l# #

#
 (5.5)

where dlx 
V is interpreted as some form of generalized gradient defi ned by

 V( ) ( ) ( , ) ( , )d .u e v s t R t t( ) ( )

[ ]

s t
xx

x x

x
L=l

w

L L-

,u
:d #

If  o(|| H ||) in (4.13) is negligible, then the prospective reserve V (s, lx  +  h) can 
be maximized by choosing d(lx +  h) equal to dlx and dux where ever (dlx 

V ) is 
negative and positive, respectively. If  the confi dence band (5.1) is not very 
narrow, o(|| H ||) might not be negligible. But the fi rst-order Taylor expansion 
(4.13) in the version of (5.5) allows at least to formulate a characteristic of 
global maxima.

Property 5.3. Let lx be a scenario within the bounds (5.1) that maximizes V (s,  lx ). 
Then lx satisfi es 
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V
d ( )

d ( ) : ( ) ( ) 0
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x

x

x

=l
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ld

d
*  (5.6)

on (s, wx ].

PROOF. Assume that lx does not satisfy (5.6). Then
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d
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#

is strictly positive. Let lx be defi ned by the right hand side of (5.6). Applying 
(4.13) in the version of (5.5), we obtain for e  >  0

 V lu u
( , ]s w

l, ( ) ( , ) ( ) ( ) d( )( ) ( ) .V s V s ox x x x x x

0>

xx
e e e+ - = + - +l l l ld l` j

1 2 34444444 4444444
#

Now choose e small enough such that the integral (linear Taylor term) is greater 
than the absolute value of the remainder o (e). Then we have V (s,  lx  +  e (lx  – 
lx)) > V (s, lx ), which means that lx is not maximal. ¡
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If lx is a maximizing scenario, then the characteristic (5.6) that lx is mainly 
on the bounds is analogous to (3.9) and (4.12) (or (4.10)). However, a worst-
case integral equation similar to (4.11) seems to be out of reach here. The crux 
of (4.11) is that the discontinuities at R(t)  =  0 of the integrator (4.10) in the 
last integral in (4.4) are annihilated by the integrand R(t). We do not have 
such a property for (5.6) since the signs of CRs (t) and (d lx 

V ) (t) can differ. 
However, in order to fi nd a worst-case scenario, we can at least design gradient 
ascent methods similar to the algorithms in Section 4.2:

1. Choose a starting mortality scenario l x
(0).

2. Calculate a new scenario by using the iteration

  Vl
(

(
)nd ( )t( )1

)ndn
= +

+ ( ) ( ) ( ) d .l lt K t tx x
: dx

 If  the right hand side is below dlx or above dux, we cut dlx
(n  +  1) off  at dlx or 

dux, respectively. Here, K > 0 is some step size that has to be chosen.

3. Repeat step 2 until | V (s, lx
(n  +  1) )  –  V (s, lx

(n) ) | is below some error tolerance. 

If  we increase K to infi nity, we obtain the following algorithm:

1. Choose a starting mortality scenario l x
(0).

2. Calculate a new scenario by using the iteration 
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 (5.7)

3. Repeat step 2 until  V (s, lx
(n  +  1) )  –  V (s, lx

(n) ) | is below some error tolerance.

If  these algorithms converge, the limit satisfi es (5.6). The second algorithm 
makes better use of  the fact that maximizing scenarios are always of  the 
form (5.6).

REMARK 5.4 (Bounds for higher order derivatives). In sections 3 and 4 and 
in this section we looked for worst-case mortality rates with respect to confi -
dence bounds for Lx, dLx, and d(L�x)   =   dlx. The ideas in this section can be 
generalized to confi dence bounds of higher order d(L�x), d(L���x   ), ... by apply-
ing Fubini’s Theorem in (5.5) not only once but consecutively in order to 
obtain generalized gradients VLx

( )�d , VLx
( )��d , etc. With these gradients, one 

can fi nd characterizations of  the maximizing scenario similar to (5.6) and 
design iteration methods similar to (5.7).
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606 M.C. CHRISTIANSEN AND M.M. DENUIT

6. NUMERICAL ILLUSTRATIONS

6.1. Confi dence bands for the underlying hazard

For the numerical illustrations, we assume that the hazard rate is piecewise 
constant and obeys the Lee-Carter model. Specifi cally, this means that for any 
integer age x and calendar year t 

 b k( ) ( ) ( )expt tzx x x x tl x l+ = = ++ a  (6.1)

for any 0  <  z  <  1, where the parameters bx and kt are subject to constraints 
ensuring model identifi cation. Here, the parameters are estimated from the 
mortality surface available from the Belgian Federal Planning Bureau. The 
ages considered here range from 35 to w  =  115, and the observation period is 
1970-2006. The estimated parameters are displayed in Table 1.

Lee & Carter (1992) reported that for life expectancy forecasts, it is reason-
able to restrict attention to the errors in forecasting the mortality index kt and 
to ignore those in fi tting the mortality matrix, even for short run forecasts.
The same comment applies to actuarial present values. Therefore, we disregard 
the sampling errors in the ax and bx and concentrate on the variability relating 
to the mortality index kt .

We use Box-Jenkins techniques to forecast kt within an ARIMA times series 
model. For the data set under consideration, an ARIMA (0, 1, 0) process is 
appropriate to describe the dynamics of the kt. This means that the kt obey

  kt   =   kt  – 1  +  q  +  zt , (6.2)

where q is the drift parameter and the zt are independent and normally dis-
tributed with common mean 0 and variance s2. The estimated parameters are 
q  =  – 1.061997 and s2  =  1.097764. The projected kt are then obtained from 
k2006 by adding a linear trend with slope q.

Consider the cohort reaching age x0 in year t0. We take the central forecast 
produced by the Lee-Carter approach as reference,

 
0

a .exp kx k x k t0 0 0
l b k q= + ++ +x k+

ref
_` ij

For our specifi c cohort cohort, we determine the band ( , )low
ref

up
ref

x k x k0 0
p l p l+ +  

such that

 
a

, for some , , ,

expP

k x1 2low
ref

up
ref

x k x k t k

x k x k 0

0 0 0

0 0
fg #

b k

p l p l w e

+

=

+ + +

+ + -

_`

`

i

j k

for some probability level e small enough. In order to fi x the values of plow and 
pup , we require that
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TABLE 1

ESTIMATED LEE-CARTER PARAMETERS FOR BELGIAN MALES, GENERAL POPULATION 

Age x ax bx Age x ax bx Age x ax bx

35 –6.49800 0.01025 62 –4.02154 0.02170 89 –1.49859 0.00812
36 –6.44594 0.01102 63 –3.92972 0.02224 90 –1.41131 0.00780
37 –6.39713 0.01135 64 –3.83591 0.02247 91 –1.32524 0.00750
38 –6.31816 0.01165 65 –3.73619 0.02250 92 –1.24031 0.00721
39 –6.22791 0.01187 66 –3.63617 0.02283 93 –1.15656 0.00693
40 –6.13930 0.01170 67 –3.54186 0.02308 94 –1.07388 0.00665
41 –6.04465 0.01161 628 –3.44848 0.02295 95 –0.99240 0.00637
42 –5.95458 0.01188 69 –3.34902 0.02265 96 –0.91183 0.00611
43 –5.868239 0.01221 70 –3.24567 0.02232 97 –0.83212 0.00587
44 –5.77236 0.01195 71 –3.14967 0.02160 98 –0.75337 0.00563
45 –5.67342 0.01161 72 –3.05698 0.02080 99 –0.67555 0.00540
46 –5.57691 0.01182 73 –2.96229 0.02039 100 –0.59857 0.00517
47 –5.47885 0.01211 74 –2.86884 0.01991 101 –0.52240 0.00495
48 –5.37766 0.01255 75 –2.77536 0.01905 102 –0.44697 0.00473
49 –5.27580 0.01333 76 –2.67986 0.01806 103 –0.37224 0.00452
50 –5.18100 0.01436 77 –2.58440 0.01712 104 –0.29813 0.00432
51 –5.08784 0.01548 78 –2.48886 0.01632 105 –0.22463 0.00412
52 –4.98878 0.01644 79 –2.39115 0.01578 106 –0.15161 0.00393
53 –4.89342 0.01684 80 –2.29443 0.01516 107 –0.07907 0.00375
54 –4.80459 0.01691 81 –2.20478 0.01410 108 –0.00686 0.00357
55 –4.70873 0.01757 82 –2.11702 0.01288 109 0.06503 0.00340
56 –4.60393 0.01896 83 –2.02564 0.01204 110 0.13677 0.00323
57 –4.50356 0.01953 84 –1.93736 0.01112 111 0.20835 0.00307
58 –4.40951 0.01904 85 –1.85548 0.00984 112 0.28002 0.00291
59 –4.31335 0.01947 86 –1.76928 0.00901 113 0.35179 0.00276
60 –4.21347 0.02087 87 –1.67766 0.00870 114 0.42390 0.00261
61 –4.11588 0.02145 88 –1.58707 0.00844 115 0.49639 0.00246

Time t kt Time t kt Time t kt Time t kt

1970 16.75929 1980  9.62899 1990  –3.48992 2000 –12.04364
1971 16.57651 1981  8.24881 1991  –4.16356 2001 –13.49205
1972 16.08087 1982  6.94314 1992  –4.64450 2002 –14.04277
1973 15.55938 1983  7.22406 1993  –4.56888 2003 –15.24265
1974 13.54655 1984  5.61148 1994  –6.14456 2004 –18.81096
1975 14.04627 1985  5.07589 1995  –5.79617 2005 –19.34756
1976 13.68657 1986  3.34483 1996  –7.75518 2006 –21.47259
1977  9.97551 1987  0.16340 1997  –9.24917
1978 11.02624 1988 –0.59693 1998 –10.28659
1979  9.85718 1989 –1.62033 1999 –10.58694
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The bounds can now be determined as quantiles of the random vector
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Consider the generation aged x0  =  35 in year t0  =  2006. Imposing that the 
future life table should be in the band ( , )low

ref
up

ref
x k x k0 0

p l p l+ +  with a probability 
of at least 99%, we get plow  =  0.9396105 and pup  =  1.064271. These values have 
been found using the qmvnorm function of the R package mvtnorm.

6.2. Annuity with death benefi ts

Consider an annuity insurance with additional death benefi ts. A constant pre-
mium is paid yearly in advance from age 35 on till retirement at age 65. From 
then on a constant annuity benefi t of 1 is paid yearly in advance till death. 
The functions P and B are thus given by

 ( ) const ( ), ( ) .1 1t t t[ , ) [ , )
k k

k k
0

34

35

x

P = 3 3
=

w

=

( )B t =/ /

If  the policyholder dies before age 65, a death benefi t is paid that has the size 
of the prospective reserve just before retirement. If  the policyholder dies after 
retirement but before age 85, a death benefi t is paid that equals the prospective 
reserve at that time. The function c is thus given by

 - -( ) ( ) ( ) ( ) ( ) .1 1c t V t V t[ , ) [ , )0 30 30 50= +$ $30 t

We assume that the yearly interest rate is at 2.25% and that interest is paid 
continuously with an intensity of f (t)  =  ln (1.0225). For our exemplary calcu-
lations we use the mortality intensity ref

0lx k+  derived from (6.1) with parameters 
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estimated from Belgian mortality statistics as best estimate and confi dence 
bands where

(A) the lower and upper bound are   –  6.03895% and   + 6.4271% below and 
above the best estimate as obtained from the coeffi cients plow and pup .

(B) the lower and upper bound are   – 25% and   +  15% below and above the 
best estimate as suggested in Consultation Paper no. 49 of the Committee 
of European Insurance and Occupational Pensions Supervisors (CEIOPS) 
for the Solvency II project.

The equivalence principle and the best estimate mortality rate yield a constant 
yearly premium of 0.51059236. Figure 6.1 shows the death benefi t function 

FIGURE 6.1: Death benefi t function c(t). FIGURE 6.2: Approach I: Cumulative survival
cost S0 (t).

FIGURE 6.4: Approach III: Cumulative 
sum-at-risk CR0  (t) with respect to the best 

estimate mortality rate and zero shift

FIGURE 6.3: Approach II: Sum-at-risk R (t)
with respect to the best estimate

mortality rate
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c (t). Figures 6.2, 6.3, and 6.4 illustrate the cumulative survival cost S0 (t) at 
time zero for survival at and after time t, the sum-at-risk R (t) for occurrence 
of  death at time t, and the cumulative sum-at-risk CR0 (t) at time zero for 
occurrence of death at and after time t. All illustrations are based on the best 
estimate mortality scenario. For the calculation of CR0 (t), we assumed that 
the shift H is zero, which implies that the cumulative sum-at-risk is equal to 
the generalized gradient (dlx 

V ) (t) here. The following table shows the prospec-
tive reserve V(0  –  ) before beginning of the contract with respect to different 
mortality scenarios:

valuation basis
prospective reserve V (0 –)
w.r.t. confi dence band (A)

prospective reserve V (0 –)
w.r.t. confi dence band (B)

best estimate  0.000000 0.000000

lower bound  0.007703 0.084987

upper bound –0.001460 0.005674

separated contract  0.324404 1.112690

worst-case method I  0.163750 0.594622

worst-case method II  0.084025 0.323160

worst-case method III  0.079010 0.296063

sum-at-risk method  0.082006 0.285200

2  ≈ sum-at-risk method  0.082772 0.297097

3  ≈ sum-at-risk method  0.084012 0.322808

‘Separated contracts’ means that the policy is unbundled into an annuity pol-
icy and a temporary life insurance policy, and the two parts are valuated on 
the basis of the lower bound and the upper bound. The results ‘2 ≈ sum-at-risk 
method’ and ‘3 ≈ sum-at-risk method’ are obtained by applying the sum-at-risk 
method iteratively. The rows ‘worst-case method I, II, and III’ refer to the 
methods of sections 3, 4, and 5. The bounds are given by

 ( ) ( ) ( ( ) ( )), ( ) ( ) ( ( ) ( ))L t L s t s t s t slow upx x x x x x x xp p L- = =L L- L -UU -

for approach I, by

 ( ) ( ), ( ) ( )l t t u t tlow upx x x xp l p l= =

for approach II and the sum-at-risk method, and by

 
d ( ) ( ) { ( ), ( )},

d ( ) ( ) { ( ), ( )}

min

max

t t t t

t t t t

up low

up low

x x x x

x x x x

p p

p l p

D D D

D D D

= =

= =

l ll

u u

l

l
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for integers t  =  1,  ...,  wx , and d lx(t)  =  dux(t)  =  0 otherwise for approach III. 
The last approach additionally needs a starting value for lx at outset. Using 
Remark 5.1, we let lx (0)  !   [ plow lx (0), pup lx (0) ]. Although section 6.1 gener-
ates pup and plow only for the hazard concept (approach II), it still makes sense 
to employ them also for the other two concepts: In case of approach I, we 
justify that with the linearity of  integration. In case of  approach III, the 
restriction lx (0)  !   [ plow lx (0), pup lx (0) ] and the fact that Dlx (t)  ≥  0 (at least in 
our example) imply that the set of scenarios that we are maximizing over for 
approach III is a true subset of the set of scenarios that we are maximizing 
over for approach II. Hence, pup and plow represent a conservative choice for 
approach III.

The numbers in the table above can be seen as (maximal) losses due to 
mortality rate fl uctuations. (For their interpretation note that the yearly annuity 
benefi t is 1). We see that the throughout lower and throughout upper mortality 
scenario have a rather small impact compared to the mixed scenarios that are 
produced by the worst-case methods or the sum-at-risk method. As a consequence 
of this, actuaries often separate policies with both, survival and death benefi ts, 
into two parts with either survival or death benefi ts. But we see in our example 
that the separation concept signifi cantly overestimates the risk. The maximal 
losses of the worst-case scenarios I to III show a downward order, which is 
due to the fact that (at least in our example) the set of scenarios that we are 
maximizing over is monotonic decreasing. As predicted at the end of section 4, 
the iteration of the sum-at-risk method shows a convergence to the worst-case 
according to approach II.

The following table shows the (numerically calculated) worst-case mortality 
scenarios, which all are at any time t either equal to a bound or equal to the 
best estimate:

ages where the valuation 
basis is equal to ...

... the upper bound of 
confi dence band (A)

... the best 
estimate

... the lower bound of 
confi dence band (A) 

best estimate (35,116)

worst-case method I (35,65]  ,  (84,85] (65,84]  ,  (85,116] 

worst-case method II (35,64.792) (64.792, 116) 

worst-case method III {35,  …,  59} {60,  …,  116} 

sum-at-risk method (35,65) (65,85) (85,116) 

ages where the valuation 
basis is equal to ...

... the upper bound of 
confi dence band (B)

... the best 
estimate

... the lower bound of 
confi dence band (B) 

best estimate (35,116)

worst-case method I (35,65]  ,  (84,85] (65,84]  ,  (85,116]

worst-case method II (35,63.925) (63.925, 116) 

worst-case method III {35,  …,  57} {58,  …,  116} 

sum-at-risk method (35,65) (65,85) (85,116)
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Worst-case method I sets the cumulative mortality intensity equal to the 
upper and lower bound where ever the cumulative survival cost S0 is increasing 
and decreasing. The shifting times are independent of the confi dence band, 
because S0 does not depend on the bounds. Note that we have two negative 
jumps for the cumulative mortality intensity. The sum-at-risk method sets the 
mortality intensity equal to the upper and lower bound where ever the sum-at-
risk R (with respect to the best estimate) is positive and negative. We see that 
the result differs from the true worst-case calculated by worst-case method II. 
For the sum-at-risk method, the shifting times do not depend on the confi dence 
band, but for worst-case method II they do. For worst-case method III, our 
choice of the bounds dlx and dux allows only for changes of lx at integer times. 
The shift between high and low rate of increase of the mortality intensity is 
for both confi dence bands earlier than the shift between high and low mortal-
ity intensity in method II, which is a result from the facts that the cumulative 
sum-at-risk aggregates the future sums-at-risk and that the sum-at-risk is fi rst 
throughout positive and then throughout negative. While the mortality intensity 
of method II shows an extreme jump from ux to lx near the age of retirement, 
the mortality intensity of method III evolves gradually with small steps D lx or 
D ux.

7. CONCLUSION

In this paper, we have shown how to construct a fi rst-order life table that rep-
resents the worst mortality scenario from the insurer’s point of view within all 
scenarios contained in a given confi dence region. By worst mortality scenario 
we mean in this paper the one that maximizes the prospective reserve for given 
benefi ts and premiums. Three approaches are offered for the calculation of 
fi rst-order mortality bases, which differ in their restrictions on the set of admis-
sible mortality scenarios. The confi dence region can be given by confi dence 
bands for either the cumulative hazard, its rate of increase (i.e., the hazard rate 
itself), or its acceleration (i.e. the rate of increase of the hazard rate). We leave it 
to the practitioner to decide which a priori assumptions he is willing to accept.

Contrarily to other methods that can be found in the literature, the fi rst-
order mortality basis determined in this paper are on the safe side with respect 
to a confi dence band. This allows for an explicit link with statistical inference 
to quantify the risk that the insurer suffers adverse mortality experience (by 
means of the confi dence level).

The maximization problems that arise in the fi rst and second approach are 
fully solved, whereas the maximization problem of the third approach is only 
tackled with an approximative procedure. The derivation of an exact method 
also for the third approach could also be of theoretical interest.

The worst-case calculations performed in this paper are based on single 
insurance contracts. The results remain still valid for homogeneous portfolios, 
but we do not consider heterogeneous portfolios. Extending the results to 
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heterogeneous portfolios is an interesting fi eld for future research, especially 
in view of applications such as Solvency II.

Section 6.1 demonstrates a well-known technique for the calculation of 
hazard rate bounds of the form (4.2). Under some reasonable additional con-
ditions, the results for the hazard rate can be used to create also bounds for 
cumulative hazard rates (cf. (3.6)) or for the rate of increase of hazard rates 
(cf. (5.1)). However, it is still an open question how to obtain sharp bounds in 
the latter case.
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