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ABSTRACT

We consider the unit-linked endowment with guarantee and periodic premiums,
where at each premium payment date the insurance company invests a certain
fraction of the premium into a risky reference portfolio. In the dual random
environment of stochastic interest rates with deterministic volatilities and mor-
tality risk, and for a fixed guarantee, simple analytical lower and upper bounds
for the fair periodic premium are explicitly derived. We also consider contracts
with guaranteed minimum benefits that vary over time and we obtain tight
lower and upper bounds for both fair periodic premiums and guaranteed
minimum benefits that increase over time. The numerical illustrations of our
results reveal that the analytical bounds are very tight. Moreover, the simple,
fast and very reliable analytical numerical calculations with controlled accuracy
avoid time consuming Monte Carlo calculations and are almost always preferred
by practitioners. Some analytical closed-form solutions for one- and two-year
maturity dates are also stated.
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1. INTRODUCTION

The specific feature of a unit-linked life insurance contract is the fact that the
benefit payable at expiration depends upon the market value of some reference
portfolio. A unit-linked endowment with guarantee is a unit-linked contract,
which additionally provides for a guaranteed minimum benefit payable on either
death or survival at maturity date. In contrast to traditional insurance the
benefit is random but part of the investment risk is covered by the insurer. This
product combines mortality risk (uncertain payment date) and investment risk
(uncertain investment performance). Since the random benefit is the greater of
the value of some reference portfolio and some guaranteed minimum payment,
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the payoff of the contract is equal to the guaranteed amount plus a non-negative
bonus. This bonus corresponds to a call option on the reference portfolio
with the guaranteed amount as exercise price, which has similarities with an
Asian option. The present contribution focuses on the unit-linked endowment
with guarantee and periodic premiums, where at each premium payment date
the insurance company invests a certain fraction of the premium into a risky
reference portfolio.

In the literature single and periodic unit-linked contracts have been analyzed
among others in Brennan and Schwartz (1976/79a/79b), Boyle and Schwartz
(1977), Corby (1977), Delbaen (1990), Aase and Persson (1994), Persson (1994),
Bacinello and Ortu (1993a/93b/94), Nielsen and Sandmann (1995/96/2002).
A basic textbook on the modelling and risk management of investment guar-
antees for equity-linked life insurance is Hardy(2003) and a recent survey
article is Bacinello (2007). In this already long development, one notes that
the periodic premium situation with stochastic interest rate dynamics has only
been discussed since Bacinello and Ortu (1994) and Nielsen and Sandmann
(1995). The latter authors have applied extensive Monte Carlo simulations to
the pricing problem. Furthermore, they have shown existence and uniqueness
of the periodic premium and other interesting properties in Nielsen and Sand-
mann (1996). The most recent contributions have treated this problem in a more
general context. Bacinello et al. (2009a/b) apply the Least Squares Monte Carlo
approach to find the fair periodic premium when an additional surrender
option is embedded into the contract. In their analysis the reference fund
dynamics includes stochastic volatility and jumps and the interest rates follows
the Cox-Ingersoll-Ross square root process. However, the lack of analytical
tractability beyond the Monte Carlo method has only been scarcely discussed.
Costabile et al. (2009) use a bivariate recombining lattice, which describes the
joint evolution of interest rates and equity value to compute the periodic pre-
mium in the presence of a surrender option. We focus on the original problem
and show that it is possible to find tight lower and upper bounds for the fair
periodic premium, which are based on stochastic ordering convex approxima-
tions derived from comonotonic random sums extensively discussed since Kaas
et al. (2000) and Dhaene et al. (2002) among others. Our needs relies on the
developments in Vanduffel et al. (2005a/b/2008a). Since the bonus has simi-
larities with an Asian option, the considered approach has potential to benefit
in future from the most recent developments in this area (e.g. Vanduffel et al.
(2008b)).

The paper is organized as follows. Section 2 introduces shortly the unit-linked
endowment with guarantee and summarizes the required definitions and nota-
tions used throughout. The market price of the periodic premium without
mortality risk but within a financial market model, which includes stochastic
interest rates and a risky reference fund, is determined in Section 3. Due
to the assumption that the mortality process is independent of the financial
market process, the determination of the periodic premium under mortality
risk is obtained in Section 4 as implicit solution of an equation containing the
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call-option prices determined in Section 3. In Section 5 we determine simple
analytical lower and upper bounds for the fair periodic premium for the gen-
eral case of deterministic bond price volatilities. The numerical illustration of
our results reveals rather tight bounds for the fair periodic premium. More-
over, the simple, fast and very reliable analytical numerical calculations with
controlled accuracy avoid time consuming Monte Carlo calculations and are
almost always preferred by practitioners. Analytical closed-form solutions for
one- and two-year maturity dates are also stated. Last but not least, Section 6
extends the results of Section 5 to guaranteed minimum benefits that vary over
time. Using explicit closed-form analytical formulas, we obtain tight lower
and upper bounds for both fair periodic premiums and guaranteed minimum
benefits that increase over time. The latter product type with increasing guar-
anteed minimum benefits is attractive from the policyholder’s point of view
and is increasingly demanded on the market. Since there has been a lack of
analytical tractability beyond the Monte Carlo method for many years, the pro-
posed method closes this gap, a fact which is of great practical value. Indeed,
in recent years the main life insurance players have introduced such products.
For example, AXA Winterthur has been the first Swiss life insurer to launch
a private pension contract of this type in May 2006.

2. THE UNIT-LINKED ENDOWMENT CONTRACT WITH GUARANTEE

The unit-linked endowment life insurance with asset value guarantee and
periodic premium payments is a contract agreement between an insurance
company and a policyholder where the buyer pays regularly a predetermined
premium to the company. At maturity date or early death of the insured per-
son the contract stipulates as benefit the greater of the value of some reference
portfolio and some guaranteed minimum payment. The reference portfolio is
usually build up by investing some predetermined percentage of the premium
in an investment reference fund subject to financial market volatility.

Throughout the paper the following notations and definitions are used:

n : number of premium payments

t; : premium payment dates, i =0, ..., n— 1, with 7, =0

t,=T : maturity date

S(r) : price at time ¢ of one unit of the reference fund

X(1) : value of the reference portfolio at time ¢ of the endowment con-
tract

R(1) : instantaneous risk-free rate of interest at time #

P(t,s) : price at time ¢ of a zero coupon bond with maturity date s > ¢

G : guaranteed minimum death benefit (GMDB) respectively guaran-

teed minimum accumulation benefit (GMAB) at maturity date
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P : periodic premium paid at time ¢, if the insured is alive, i =0, ...,
n—1

D : amount invested in the reference portfolio at the premium payment
dates, assumed proportional to the premium such that D = a - P,
0<ac<l

B(1) : random benefit payable at time ¢

V,(B(t)) :market value at time s < ¢ of the random benefit B(¢)

C,(X(1),G) : market value of an European call option at time s < ¢ to purchase
the reference portfolio at time ¢ for the exercise price G

Due to the GMDB and GMAB guarantees, the benefit at time ¢ satisfies the
relationship

B(1) = max{X(),G} = G+ (X(1) - G),. 2.1)

The payoff (2.1) is decomposed in a deterministic payment G and a stochastic
bonus payment identical to a call-option on the market value of the reference
portfolio with exercise price G. This decomposition allows one to view the
unit-linked endowment contract with guarantee as a classical life insurance
contract with deterministic benefit G subject to a very specific bonus formula.
The value X(z) is stochastic and depends upon the price of one unit of the
reference fund at time ¢, the prices of one unit at the past premium payment
dates ¢; < T'and the amount to be invested in the reference portfolio. It is given
by

X(t)=D- n*:t_z)olg((g’ n*(t) = min{i| ;> 1} (2.2)

As usual we will assume that financial and insurance markets are perfectly
competitive, frictionless and free of arbitrage opportunities. Furthermore we
assume that the mortality process is independent of the financial market process.
For a more rigorous mathematical exposé¢ we refer to the original papers by
Nielsen and Sandmann (1995/96/2002) as well as to the more recent paper by
De Felice and Moriconi (2005). Using (2.1) one observes that the initial mar-
ket value of the random benefit at time 7 is given by

Vo(B(1)) = P(0,t) - G+ Cy(X(1),G). (2.3)

In a first step, one is interested in the market price of the call-option in (2.3)
in the absence of mortality risk as determined in Section 3. Due to the assump-
tion that the mortality process is independent of the financial market process,
the determination of the periodic premium under mortality risk is obtained in
Section 4 as implicit solution of an equation containing the call-option prices
determined in Section 3.
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3. MARKET PRICE WITHOUT MORTALITY RISK

In a continuous time and complete market framework with filtered probability
space (Q, F, Q), where Q is an appropriate arbitrage-free risk neutral measure,
the bond price market and the reference fund are assumed to follow a two-
factor diffusion model of the type

dP(t,s)
P(t,s)

dﬁgﬁ) = R()dt +agp - dW\(1) + a5 1= p* - dW5(0),

= R(t)dt+a(t,s)dW (1), 0<t<s,
(3.1)

where W, (t) and W, (¢) are independent Wiener processes under the Q-measure.
In Section 5 we assume deterministic bond price volatilities a(¢,s). Typically,
this situation covers the specifications o(z,s5) = g - (s — t) (continuous time limit
of the Ho and Lee(1986) model in Nielsen and Sandmann(1995)) and o(z,s) =
Z (1 —exp{—a - (s—1)} (term structure model of Vasicek (1977)). However,
these volatility structures have an oversimplified form that is not consistent
with the one observed on the market. This inconvenience can be removed.
One can consider the extended Vasicek model by Hull and White (1990), which
by the way can be fit to the initial term structure of interest rates (e.g. Yolcu
(2005), Section 3.2.2). Other interesting models include the humped volatility
models in Mercurio and Moraleda (2000/01), Moraleda and Vorst (1997) and
Ritchken and Chuang (1999). The volatility of the reference fund is described
by the constant gg. The correlation coefficient p measures the dependence
between the bond price and the reference fund price dynamic.

Using the zero coupon bond with maturity 7" as numeraire for the processes
S(t) and P(t,s), t <s < T, one considers the T-forward risk adjusted measure Q
defined by the Radon-Nikodym derivative

& = e[ o nyam ) - L[ P 1t} (3.2)

This numeraire change of measure technique, first considered by Jamshidian
(1989/91) and Geman et al. (1995), and applied to the present problem by
Nielsen and Sandmann (1995/96), allows via Itd’s Lemma to rewrite the sto-
chastic differential system (3.1) as

P(t,s) | _ P(t,9)
P(t,T)| Pt T)

(3.3)
d[ S(1) S(1)

d [a(t,5) — a(t, T)]dW; (1),

paty| = Pary (050 = o@D @ + og 1= p> - aw (1)),
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where (dW (1), dW, (1)) = (dW,(t) — o (1, T)dt, dW,(t)) are standard Wiener
processes under the Q7-measure. In this framework the arbitrage price of a
financial contract with payoff at maturity date 7 coincides with the discounted
expected value under the Q7-measure. In particular, the market value of the
call-option on the reference portfolio at maturity date is determined by

(D 5 S —G) ] (3.4)

C(X(T),G) = PO.T) - E"|( D - ¥ 5

From (3.3) one derives further that

P(1,T) = I;((%’Y;)) : exp{—fol[a(u,t) —a(u,T)]dW, (u) s
+ %fot[a(u, ) —o(u, T)]zdu},
sy 1 [ e ot D g
SO PODTEN s Moyp - o D)W (0 + [ o 1= 52 dwd |
(3.6)

and through combination of the expressions (3.5) and (3.6) one obtains

—At[a(u, 1) —a(u,T)|dW/ (1) — %/Olr[a(u, 1) —o(u, T)]zdu
§(7(7;)) = If((g,’It“)) - exp —%[T<[asp —o(u, 7))+ a5(1 —p2)>du
+f "osp — o, T)]dW(u) + [ "o 1= p2dw )
3.7)

For deterministic volatilities the ratio (3.7) follows a log-normal distribution
under the T-forward risk adjusted measure Q7. In this situation we show in
Section 5 how to get analytical approximations for the call-option prices (3.4),
where the reference portfolio is given by a sum of correlated log-normal random
variables under the Q7-measure.

4. FAIR PERIODIC PREMIUM WITH MORTALITY RISK
As already stated we assume that the mortality process is independent of the

financial market process and that the insurance company is risk neutral with
respect to the mortality risk. Let the infinitesimal measure denoted by 7 (7) dt
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represent the probability that the endowment contract terminates in the time
interval (¢,¢+dt). The fair periodic premium P is obtained by equating the
expected discounted values of costs and benefits, where a proper arbitrage-free
pricing justification of this statement is presented in Nielsen and Sandmann
(1996), Section 4. It is given by the implicit solution of the equation

n—1 4
P ,-;op(o’t') : <1 _f() nx(t)dt> =
1716 - PO.0+ G (X(1).6)] - ()

6+ PO.T) + Co(X(T),G)] (1 _fOTnx(t)dt> (4.1)

(a-P'n(tZ):IS(Z) )

Co(X(T),G) = P(0,1) - E'

b

where E’ denotes the t-forward risk adjusted measure Q' defined similarly to
(3.2). Furthermore, the usual simplified assumption that death occurs at the
end of a year is made. In this situation, the infinitesimal measure 7,(¢)dt is
replaced by the conditional probability ,p, ¢, +, to die in the time interval [¢,7+ 1)
given survival at time ¢ and the implicit equation for the fair periodic premium
with mortality risk can be rewritten as

n—1
P kZOP(O’k) "k Px

= 3 i [GPORTCo(X(0).6)

+,0¢-[G-P(0,n)+Cy(X(n),G)]

4.2)

Co(X(K),G) = P(0,k) .Ek[<a f *2((’3 ) ] k=1...n

Remark 4.1. Suppose that all call-options in (4.2) are out-of-the-money in
such a way that their corresponding call-option prices can be neglected. Then
the fair periodic premium coincides with the fair premium of the traditional
endowment with sum insured G and it is explicitly given by

G- kzl P(Oak) k=1Px9x+k—1 + P(O;n)npx
p= S 4.3)

Z P(Oa k) kPx

k=0
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5. ANALYTICAL APPROXIMATIONS FOR THE FAIR PERIODIC PREMIUM

In the present Section we show how to determine simple analytical lower and
upper approximations for the fair periodic premium in the deterministic case
a(t,s) and illustrate the method numerically. For simplicity we assume yearly
periodic premiums, which are paid at the time points ¢, =4, i =0, ..., n— 1, and
T=n.

5.1. Convex lower and upper bounds for the call-option prices

To find useful analytical approximations for the implicit solution of the equa-
tion (4.2) it suffices to bound the call-option prices Cy(X(£+1),G), t =0, ...,
n — 1, where the reference portfolio at time ¢ + 1 is proportional to the sum of
correlated log-normal random variables

Y(t+1) = i% (=0, ..n—1. 5.1)

i=0

For this, we apply the method considered originally in Kaas et al. (2000) and
Dhaene et al. (2002). The developments by Vanduftel et al. (2005a/b/2008a)
suits exactly our needs. The representation (5.1) shows that it suffices to con-
sider random variables of the general form

k—1 k—1
SO N o (l9e? ™, k=1,2,..n, (5.2)
=y S() i=0

Y(k) =

where the «;(k)’s are non-negative and the random vector (Zy(k), Z,(k), ...,
Z,._,(k)) follows a multivariate normal distribution with mean vector (£,(k))o<;i<x_1»
ui(k) = E[Z;(k)], and covariance matrix

(pi(K) Gi(K) (o< 1 <x10 (k)2 = Var[ Zi(k)], py(k) o,(k) (k)
= Cov[Z(k), Z,(k)]

For fixed k consider the conditioning random variable defined by

k=1
A(k) = ;) 7i(K) Z,(k) (53)

for some constants y,(k). Following Kaas et al. (2000) one defines a random
variable

k=1 A(k)—E[AK)]

Y(k)Q — E[Y(k)|/\(k)] — zoai(k)eﬂi(k)"’%(l*ri(k)z)o'i(k)z+ri(k)0'i(k)7amk) , (5.4)

i=
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where r;(k) gi(k)opw = Cov[Zi(k), A(k)] = le:(l) 7; (k) Cov[Zi(k), Z;(K)], i =0,
., k— 1. One has the equality in distribution

k=l L1 — 100002 + 1 (5 6:(k) D!
Y(k)g = 'ZO ai(k)e#i(k)-%—z(l ri(k)*) a;(k)* + r;(k) o;(k) © (U), (5.5)
i=

with ®(x) the standard normal distribution and U a uniform random variable
on (0,1). If all the correlation coefficients r;(k) defined in (5.4) are non-negative,
then Y(k)'is a comonotonic sum. In this situation it is well-known that the
so-called stop-loss transform with deductible d, 0 < d < oo, is determined by

k—1

E[(Y(0)' =d)]= 2o ()" 5O 0 (1 (k) 0, (k) — @7 (p)) — d(1 - p).
(5.6)
where @ '(p) is the root of the quantile equation
0 [Y(k) ] — a (k)eﬂi(k)Jr 21 =1 (D)o () + (k) o) @~ (p) _ =d. (5.7)
) .

From the definitions in (5.4) one sees that a sufficient condition for r,(k) > 0 is
that all y,(k) >0 and all Cov|Z,(k), Z;(k)| > 0. Using Jensen’s inequality it
can be proved that Y(k)'is a convex lower bound of Y(k), a fact written
Y(k)' <., Y(k), which means that for any convex function v(x) one has

Elv(Y(k)Q)J < E[v(Y(0))- (5.8)

In particular, one has for any real number d the inequality

E[(Y(k)ﬂ - d)+J < E[(Y(k)—d),]- (5.9)

Note that the idea of using convex lower bounds for Asian option pricing can
be traced back to Rogers and Shiu (1995). In Dhaene et al. (2002) the como-
notonic convex upper bound, denoted by Y(k)" and such that Y(k) <., Y(k)"
is proposed. In the lognormal context this random variable can be defined by
imposing r;(k) = 1 in (5.4). For this upper bound one has

k=1 _
YOO =, 3 a,(k)etPrae O yng (5.10)
i=0

E[(Y(k)' ~d), ]_ a(k)e”’(kH 0 D (g,(k) — @ (p)) — d(1-p), (5.11)
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where ®!(p) is the root of the quantile equation

0,[Y(h)"] = X ay(kyet D 0T = g, (5.12)
=0

Since Y(k)' <., Y(k) <., Y(k)" the following relationships hold:

E[Y(k)] = E[Y(k)] = E[Y(k)" ]— ,(k)eW+ 0 (5.13)

k=1 1 2 2
Var[Y(k)Q] = ZO ai(k) aj(k) e#i(k)+ﬂ,(k)+ 53 (0i(k)” + a;(k) )(er,-(k) ri(k)oi(k)aj(k) _ 1)
L]=

Leg(k)? (52 . . y
< Var[Y(k)] = ZO a,-(k)aj(k) eﬂf(k)+ﬂj(k)+ 5 (0i(k)”™+ a;(k) )(eﬂ,,(k)tf,(k) a(k) _ 1)
L=

< Var[Y(k)"] = Z o, (k) o (k) eﬂl(k)+ﬂj(k)+ (01(k)* + 0;(k) )( ai(k)oy(k) _ )’ (5.14)

i,j=0
E|(Y(k)' =d).| < E[(Y(k)—d),] < E|[(Y(k)*=d), |, de R. (5.15)

For more details on these results we refer to Kaas et al. (2000) and Dhaene et
al. (2002). In view of the inequality (5.14), it is clear that the best comonotonic
lower bound approximations of Y(k) are the ones for which Var|Y(k)'| is as
close to Var[Y(k)] as possible. Vanduffel et al. (2005a/b) were the first to pro-
pose maximization of the first order approximation of Var|Y(k)'| obtained
by letting "R ®RGE _ 1 ~ 1 (k) r;(k)o,(k) a,(k) to get the following coef-
ficients in (5.3)

(k) = ay(k)e" W3’ =0 k1. (5.16)

This most simple choice is retained here and defines the so-called comonotonic
maximum variance approximation of Y(k). The above analytical specifications
immediately imply the following lower and upper bounds for the call-option
prices in (4.2)

< C,(X(k),G) = P(0,k) -a-P-Ek[< Y(k) - P) ] (5.17)

CLX(k),G) = P(0.k)-a- P- Ek[<

< CYX(k),G) = P(O,k)-a-P-Ek[< G )J k=12,..n
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It is remarkable that the upper bound in (5.17) is formally identical to the
quasi-explicit solution proposed by Kurz (1996) if one sets in her formulas
= Var[Z(k)],i=0,..., k—1. To be ready for numerical evaluation, it remains
to calculate the model parameters «;(k), g,(k), p;(k) under the k-forward risk
adjusted measure Q* for each k = 1, ..., n. For this, we note that (3.7) implies
incase t=1i,i=0,..., k-1, T=k, the representation if:; = al-(k)e:"(k), where
Z(k) = A;(k) + Bi(k) + Cy(k) with

A,k = [[o(w.i) = 0. k)] dW; ().

(5.18)
Bk) = [([osp = o)) dWi @), C(k) = [“ox 1= p2awi ),

and
a(k) — P(Oal) - exXp _%Li[a(u,i) - U(u,k)]2du
i P(O,k) _%£k<[03p—6(u,k)]2+03(1 —p2)>du

(5.19)

Example 5.1 (Nielsen and Sandmann (1995))

In the simplest situation o(¢,s5) = o * (s — ¢) the random variables 4,(k), B;(k),
Ci(k) have mean zero, the pairs (4;(k), C/‘(k))Osi,jsk—l’ (B;(k), C/’(k))Osi,jsk—l and
(A;(k), Bj(k))o<i<j<x-1 are independent and for 0 <i<j<k —1 one has

E*|4,(k) A, (k)| = EX| 4,(00%| = (k =) (j = i) (k= i =)o,
E*[B,(k) B,(k)] = E*| B,(k)*], E[C.(k) C;(k)] = E[C,(0)*],  (5.20)
E*[4;(k)B,(k)| = So(k —j)(j—i)[o(2k—i—j)—2pas].

A calculation shows that fori, j =0, ..., k—1,i<j, k=1, ..., n one has (see the
Appendix in Nielsen and Sandmann (1995))

1) =0, 9,(k) = a,(k)e=™™ = P(0,i)/P(0,k),
0,(k)* = (k — i) a5 + (ic” = poag) (k — i)’ + +0° (k — i)’ (5.21)

pi (K)o, (k) 0;(k) = 0,(k)* + o(k = j) (j = i) [50(i +/) = pos)-

Example 5.2 (Mercurio and Moraleda (2000))

In 1996 Mercurio and Moraleda proposed the following deterministic volatility
structure
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at,s)=0c [1+y6s-0] e a,9,2>0 (5.22)

This specification provides a humped volatility structure for any y > 4 and is
stationary, that is it depends only on the difference s — .

Example 5.3 (Moraleda and Vorst (1997))

An alternative humped volatility model that overcomes some drawback of the
previous model is the structure (see Mercurio and Moraleda(2001) for discus-
sion and motivation):

1 +yps .e—/l(s—t)
1+ pt ’

o(t,s) =0 - o,7, 4>0 (5.23)

This function has a humped graph if y > Aand 1 <(y—21)/yA.

The determination of the required formulas for the Examples 5.2 and 5.3, which
correspond to the specification (5.21), lies beyond the scope of the present paper.

5.2. Iterative algorithm for analytical evaluation of the fair premium bounds

To get the call-option price lower and upper bounds in (5.17) it suffices to
use the formulas (5.18) and (5.19) for each k = 1, ..., n, respectively their coun-
terparts in the Examples 5.1 to 5.3, and insert them in the corresponding
formulas (5.6) and (5.11) for the lower and upper stop-loss transform bounds.
The specification can be performed using EXCEL spreadsheet calculations, at
least for Example 5.1. The only step, which is not straightforward and may
require the EXCEL Solver, is the calculation of the roots @ '(p) in (5.7) and
(5.12) for each maturity date k = 1, ..., n. Let us summarize the required cal-
culations for the lower approximation obtained from the lower bound in (5.17).
For ease of notation the maturity index » is omitted in the relevant quantities.
The lower approximation to the unknown fair periodic premium, denoted by
P, is defined to be the solution P of the modified equation (4.2¢), which is
obtained from (4.2) by replacing the option prices Cy(X(k),G) by their lower
bounds in (5.17). In the defining equation (4.20) for P’ rewrite the deductibles

in (5.17) for all indices k = 1, ..., n as (the scaling constant P(0,1) is chosen for
convenience)
0
G _
a P~ PO.D) (-24)

for some unknown f°. Consider the roots x(k) of the implicit equations

k=1 — L 02 6. + ri(k) o ¢
Z yi(k)e 3 1i(k) o, (k)" + ri(k)ai(k)x (k) - _ p k=1
i=0

PO K= L (529
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which are derived from (5.7). Then, using (4.20) and (5.6) one sees that ' must
also solve the implicit equation

1 n—1 _
a 2 PO,k)p, = P(0,1)

n—=1
k; P(0,K) -1 Dx Gy k-1 P(x(K)) + P(0,n),_, p, P(x(n))

n—1
+ k;k—lpqu+k—1 Z P(0,0) @ (r;(k)o;(k) — x(k))

i=0

(5.26)

n—1

+a1Py 0 2 PO.D)D((n) oi(n) — x(n).

i=0

The non-linear system of n + 1 equations (5.25)-(5.26) in the n + 1 unknowns
x(k), k=1, ...,n, ', fully determines the lower premium approximation P".
Replacing ' by * and all r,(k)’s by r,(k) =1 a similar system of non-linear
equations for the upper premium approximation P" is obtained. In practice,
the system (5.25)-(5.26) is solved by iteration as follows. Start with an approx-
imation [)’ﬁpp,, >0 to the true value S°. Solve (5.25) for the unknowns x(k),
k=1, ...,nand insert the results into (5.26) to get an approximation Ay tO
the glven proportional share a. Change the approximation ﬂapp, appropriately
and repeat the iteration until a,,, is sufficiently close to a, which yields a close
approximation to f°. The upper unknown value f* is obtained similarly. Then,
the true fair periodic premium is approximated by the quantities

PO.D) G pu_ POD G (5.27)

¢ _
P - ﬁﬂ a’ - ﬂu a

Numerical examples suggest that the inequality P’< P < P* holds true, but a

proof is not provided here. The Newton-Raphson method leads to the follow-

ing simple efficient algorithm to solve (5.25). Fori=0,1, ..., k-1, k=1, ....n
kpy =L 0k + rik) o (k) x —

set f"(x) = pi(x)e 2 i r where r;(k) =1 for the upper bound

specification. Then, for each k =1, ..., n, solving the equations

S ﬂﬂ

,;)fl (x) = m, k= 1,...,]1, (528)
which are equivalent to (5.25), is done as follows. For each k =1, ..., n let x(k)

be the exact solution of (5.25). For k = 1 one has (noting that r,(1) = 1)

x(1) = 00(1)+ (1) In{'}. (5.29)
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For 1 <k<n,m=0,1,2, ..., consider the (m+ 1)-th Newton-Raphson itera-
tion step x,,+(k), which satisfies the recursive relationship

S e - P
Xpp1 (k) = x,,(k) =425 i P(O’l), m=12.  (530)
PIACLACTACHD)

By appropriate starting point x,(k) it is known that lim x, (k) = x(k). Our
numerical experience has shown that the starting points x,(2) = x(1), xo(k) =
x(k—1), k> 2, lead after at most five iteration steps to very accurate solu-
tions. In fact, the first order iterates x,(k), k > 1 have been enough accurate to
obtain all numerical bounds in Table 5.1.

5.3. Numerical illustration

The illustration of our results is based on Example 5.1 for the following finan-
cial market parameters

o =8%, asp=10%, agy1—p*=15%. (5.31)

We have calculated lower and upper bounds for the fair periodic premiums for
three different maturity dates 7= 10, 12, 15, each with three different specifica-
tions of the initial term structure of interest rates (TSIR), namely:

Scenario I : flat initial TSIR P(0,7) = (1.06) ", 0<t<T
Scenario II : normal initial TSIR P(0,7) = [0.04 + (1.02)*]7’, 0<t<T

Scenario IIT: invers initial TSIR P(0,7) = [2.08 - (1.02)%]7’, 0<t<T

The mortality risk is assumed to follow Makeham’s distribution such that the
conditional probability ,p, ¢g.., of a life aged x to die in the time interval [z,7 + 1)
given survival to time ¢ is given by (values of Nielsen and Sandmann (1995))

L..,—L, v
,pqu+,=“L—X““, L.=b-s% g s5=0.99949255, (5.32)

g = 0.99959845, ¢ =1.10291509, b = 1000401.71.

Besides the three TSIR scenarios we consider three age classes x = 30,40, 50
and three investment strategies @ = 0.4,0.5,0.6. Table 5.1 lists the lower and
upper approximations of the fair periodic premiums as well as their average
for the fixed guarantee G = 1000. The very tightness of the approximations in
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Table 5.1 indicates that the sum of correlated lognormals is likely to be “rather”
comonotonic. The extent to which this is true and the question whether this
phenomenon depends upon the model (here Example 5.1) and/or on the
chosen parameters has not yet been analyzed. It is worthwhile to mention that
up to now only Monte Carlo simulations have been available to determine
the fair periodic premiums. The advantages of simple, fast and very reliable
analytical numerical calculations with controlled accuracy are self-evident.
Since such an efficient approach, which avoids time consuming Monte Carlo
calculations, is almost always preferred, the proposed method can highly be
recommended for practical use. Moreover, it might be interesting to analyze
more deeply why this method should be preferred to the Monte Carlo one.
A referee has suggested that the problem seems to be quadratic in some sense,

TABLE 5.1

LOWER AND UPPER BOUNDS FOR THE FAIR PERIODIC PREMIUM UNDER VARIOUS CONDITIONS

Maturity date 7' 10 12 15
Initial TSIR 1 11 I 1 11 I 1 11 I
Age Share

77.45 75.17 79.75 64.50 62.25 66.79 52.04 49.84 5493
30 0.4 77.61 75.32 79.92 64.66 62.40 66.96 52.17 49.97 55.08
77.77 75.48 80.08 64.82 62.56 67.12 5231 50.10 55.23

81.40 79.00 83.82 69.32 6691 71.78 57.57 55.15 61.16
0.5 81.66 79.26 84.09 69.57 67.15 72.03 57.78 55.36 61.40
81.92 79.51 84.36 69.82 67.38 72.28 58.00 55.56 61.64

87.26 84.69 89.86 76.18 73.55 78.87 65.30 62.60 70.07
0.6 87.66 85.09 90.27 76.56 73.91 79.26 65.64 62.92 70.45
88.06 85.48 90.69 76.93 7427 79.65 65.97 63.23 70.84

78.48 76.24 80.75 65.79 63.60 68.02 53.80 51.70 56.64
40 0.4 78.65 76.40 80.92 65.95 63.76 68.18 53.95 51.84 56.79
78.82  76.57 81.09 66.11 6391 68.35 54.09 51.98 56.95

82.55 80.20 84.92 70.80 68.46 73.18 59.68 57.40 63.24
0.5 82.82 80.47 85.20 71.05 68.70 73.44 59.91 57.61 63.49
83.10 80.74 85.48 71.30 68.95 73.70 60.14 57.82 63.74

88.59 86.09 91.13 77.95 75.40 80.55 67.97 6543 72.72
0.6 89.01 86.49 91.57 78.34 75.78 80.94 68.32 65.77 73.12
89.43 86.89 92.01 78.72 76.15 81.34 68.67 66.10 73.53

81.25 79.12 83.41 69.25 67.22 71.32 58.62 56.79 61.29
50 0.4 81.44 79.31 83.60 69.43 67.39 71.49 58.77 56.95 61.46
81.63 79.50 83.80 69.60 67.56 71.67 58.93 57.10 61.64

85.65 83.44 87.90 74.80 72.66 76.98 65.50 63.58 68.92
0.5 85.96 83.73 88.21 75.07 7292 77.26 65.75 63.82 69.20
86.26 84.03 88.51 7534 73.18 77.53 66.00 64.06 69.48

92.20 89.86 94.58 82.77 80.49 85.10 75.38 73.37 80.10
0.6 92.67 90.31 95.05 83.19 80.90 85.53 75.77 73.75 80.55
93.13 90.77 95.53 83.60 81.30 85.95 76.17 74.14 81.00
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which would imply that the analytical solution is of great use. Unfortunately,
the author must left this point open for further research.

5.4. Two special closed-form analytical solutions

A more detailed analysis of the non-linear system of equations (5.25)-(5.26)
is done in the Appendix. It yields instructive analytical closed-form formulas
for the maturity dates n = 1,2.

In case n = 1 the lower and upper bound fair premium coincides with the
one-year exact fair premium. Setting ¢ = +a,(1) the exact one-year fair pre-
mium can be expressed as

p= %P(O,I)G - [®<c+%lnﬁ)+%®<c—%lnﬁ> PO.1)G, (5.33)

with f solution of the implicit equation
Lo ofcttmp)+d(c—Lnp (5.34)
a 2c 2c ) ‘

The special closed-form solution for f =1 is especially simple and has a nice
interpretation. Rewrite (5.34) as a - P = P(0,1)G to see that the amount invested
in the one-year reference portfolio is equal to the one-year discounted guar-
anteed amount by death or survival. The corresponding one-year fair premium
is simply equal to P =2®d(¢) - P(0,1) - G.

For n = 2 we obtain a special solution, which can be expressed explicitly in
term of the model parameters. The lower approximation for the fair periodic
premium is specified by

x(1) = 3oo(D) m In{A'}, x(2) = 57,23, (2),

g Qa2 — (D)}
P(O,l)_p(o’z)[l-l-P(O’])g21 @rem e

{
L PODR] = Bl [PO.DGOGM) + PO.2)p 02D

+¢, @ (0y(1) = x(1) + p [ @ (1, (2)5(2) — x(2) + PO, ) D(r(2)5,(2) — x(2))],

1
a-

P =

s P(0,1)G. (5.35)

1

The upper approximation for the fair periodic premium P* = I -P00,1)G

is obtained from (5.35) setting r,(2) = r,(2) = 1 and replacing f° by "
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6. A CONTRACT WITH VARIABLE INCREASING GUARANTEES

Instead of constant guaranteed minimum benefits in case of death or survival
it appears more appealing from a policyholder’s point of view to profit from
variable guaranteed minimum benefits over the contract duration. In this
context guaranteed minimum benefits that increase over time are especially
attractive. For example, AXA Winterthur has been the first Swiss life insurer
to launch such a private pension product in May 2006.

To analyze the unit-linked endowment contract with variable guarantees
the fixed guarantee G in the previous development is changed to a variable
guarantee defined and denoted as follows:

G, +(n): variable guaranteed minimum death benefit (GMDB) at time ¢, ,,
i=0,...,n—1, respectively guaranteed minimum accumulation benefit
(GMAB) at maturity date z, = T, i=n—1

For simplicity we restrict ourselves to the deterministic case o(z,5) = o - (s — 1)
and to the yearly periodic case t;,=i, i=0, ..., n—1, T=n and illustrate the
method numerically. Let us fix the amount D invested in the reference portfolio.
The comonotonic approximations of Section 5 will yield lower and upper
approximations for the variable guaranteed minimum benefits G, (n)", G;.,(n)",
fair periodic premiums P(n)’, P(n)", as well as corresponding fractions a(n)’,
a(n)" of the premiums such that D = a(n)'- P(n)', D = a(n)" - P(n)". From
(5.25)-(5.26) it is straightforward to see that the lower approximations are
determined by the following explicit and closed-form analytical formulas in
the n variables x(k), k=1, ..., n:

k=1
Gk(n)Q =D- Z yi(k)e—%ri(k)zo',-(k)2+r‘-(k)o',v(k)x(k)’ k — 1,...,”. (61)
i=0

n—

1
P(n)a ’ z P(O’k)kpx =

k=0

n

-1
G(n)" - zlP(O»k)kflpquJrkfl(D(x(k)) +P(0,n),-,p, P(x(n))

S PO.0) B (K)3,() — x(K)) 6.2)

n—1
Z k=1Px9x+k—-1"
k=1 i=0

+D- ne1

T 1Py ;0 P(0,0)®(r;(n) g;(n) — x(n))

In our numerical examples below the following simple specification of the
variables is made:

x(k) = ro(k)og(k), k=1,..,n (6.3)
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Replacing everywhere all r;(k)’s by r;(k) = 1 similar formulas for the upper
approximations are obtained.

Let us illustrate these results quantitatively. For a constant yearly invested
amount D = 1000 in the reference portfolio, the same financial market parameters,

TABLE 6.1

LOWER BOUND, AVERAGE AND UPPER BOUNDS FOR THE INCREASING GUARANTEES

Initial TSIR
Year
1 11 111
1 1060 1060 1060 1060 1060 1060 1060 1060 1060
2 2188 2188 2188 2198 2198 2198 2178 2178 2178
3 3384 3385 3386 3412 3413 3414 3357 3358 3359
4 4659 4662 4664 4713 4716 4719 4606 4609 4611
5 6026 6031 6036 6116 6121 6126 5938 5943 5948
6 7503 7512 7521 7639 7649 7658 7371 7380 7388
7 9116 9131 9146 9312 9327 9343 8928 8942 8956
8 10899 10922 10945 | 11169 11193 11217 | 10640 10662 10684
9 12895 12930 12965 | 13258 13294 13331 | 12549 12582 12615
10 15163 15214 15264 | 15641 15694 15748 | 14708 14756 14804
11 17779 17852 17924 | 18402 18478 18555 | 17189 17257 17325
12 20847 20949 21051 | 21652 21761 21869 | 20085 20182 20278
13 24506 24650 24793 | 25544 25698 25851 | 23528 23662 23797
14 28952 29153 29354 | 30292 30508 30723 | 27695 27882 28069
15 34461 34741 35022 | 36196 36499 36802 | 32838 33098 33358
TABLE 6.2
LOWER BOUND, AVERAGE AND UPPER BOUNDS FOR THE FAIR PERIODIC PREMIUM

Maturity date T’ 10 12 15

Initial TSIR I 11 111 I 11 111 I 11 111

Age

1435 1436 1434 | 1602 1604 1601 | 1953 1958 1947
30 1443 1443 1442 | 1612 1614 1610 | 1968 1973 1962
1450 1451 1449 | 1621 1623 1619 | 1982 1988 1976

1437 1438 1436 | 1605 1608 1603 | 1956 1963 1948
40 1445 1446 1443 | 1615 1618 1612 | 1970 1978 1962
1452 1453 1451 | 1624 1627 1621 | 1985 1993 1977

1442 1445 1440 | 1613 1619 1608 | 1963 1977 1950
50 1450 1453 1447 | 1623 1628 1617 | 1977 1991 1964
1457 1460 1455 | 1632 1637 1626 | 1991 2005 1978
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initial TSIR and mortality assumptions as in Section 5, we obtain the results
of Tables 6.1 and 6.2. One observes that the approximations for both the
increasing guaranteed minimum benefits and the fair periodic premiums are
rather close together. It is remarkable that the dependence on both the age at
entry and the TSIR scenario is rather limited. This numerical stability could
not be expected a priori and is somewhat surprising. However, there is of
course an important dependence on the level of interest rates at insurance
issue. For example, assume a 3% interest rate level instead of a 6% level with
the following initial TSIR:

Scenario I : flat initial TSIR P(0,7) = (1.03)', 0<¢t<T
Scenario II : normal initial TSIR P(0,7) = [0.02 + (1.01)*]7’, 0<t<T

Scenario I11: invers initial TSIR P(0,7) = [2.04 - (1.01)%]”, 0<t<T

With this initial TSIR one obtains the results summarized in the Tables 6.3
and 6.4. The same observations as before can be made. The lower interest rate
level results in a significant decrease in the guaranteed minimum benefits,
which can be offered, however, at a similar fair periodic premium level.
One notes a somewhat counterintuitive fact, namely that the premium for the
longer maturity date decreases with the entry age (though very slightly).

TABLE 6.3

LOWER BOUND, AVERAGE AND UPPER BOUNDS FOR THE INCREASING GUARANTEES

Initial TSIR
Year
| 11 111
1 1030 1030 1030 1030 1030 1030 1030 1030 1030
2 2095 2095 2095 2100 2100 2100 2090 2090 2090
3 3193 3194 3195 3207 3208 3208 3179 3180 3181
4 4330 4333 4335 4356 4359 4361 4304 4307 4309
S 5516 5521 5526 5559 5564 5569 5474 5479 5484
6 6765 6774 6783 6828 6838 6847 6702 6711 6720
7 8096 8111 8126 8186 8201 8216 8008 8022 8037
8 9535 9558 9581 9656 9680 9704 9415 9438 9461
9 11115 11149 11184 | 11276 11311 11347 | 10957 10991 11025
10 12880 12931 12981 | 13089 13141 13193 | 12676 12725 12774
11 14890 14962 15034 | 15158 15232 15307 | 14628 14698 14768
12 17221 17323 17425 | 17564 17669 17774 | 16889 16988 17087
13 19982 20125 20268 | 20417 20565 20713 | 19560 19698 19837
14 23318 23519 23719 | 23872 24080 24288 | 22782 22976 23170
15 27439 27720 28000 | 28147 28438 28730 | 26755 27025 27296
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TABLE 6.4

W. HURLIMANN

LOWER BOUND, AVERAGE AND UPPER BOUNDS FOR THE FAIR PERIODIC PREMIUM

Maturity date 7' 10 12 15

Initial TSIR I 11 111 I 11 111 I 11 111
Age

1428 1428 1428 | 1595 1596 1594 | 1955 1958 1953

30 1436 1437 1436 | 1606 1606 1605 | 1973 1976 1970

1445 1445 1444 | 1616 1617 1615 | 1991 1994 1988

1429 1430 1428 | 1596 1597 1595 | 1954 1958 1950

40 1437 1438 1437 | 1607 1608 1605 | 1971 1975 1968

1446 1446 1445 | 1617 1619 1616 | 1989 1993 1985

1432 1433 1430 | 1599 1601 1596 | 1950 1956 1944

50 1440 1441 1439 | 1609 1611 1607 | 1967 1973 1961

1448 1449 1447 | 1619 1622 1617 | 1984 1991 1978
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APPENDIX

Derivation of the special closed-form solutions of Section 5.4

One-year maturity date

In case n = 1 one gets from (5.4) and (5.21) immediately the following model
parameters

n) = ppy: o) = Vas—poos+ it r() =1 (A1)

Setting ¢ = %00(1), f = p"= B, the solution to (5.25) equals x(1) = ¢ + 217 Inp.
Inserted into (5.26) one obtains that f solves the implicit equation (5.34) and
the exact one-year fair premium is then given by (5.33).

Two-year maturity date

In case n = 2 the required model parameter from (5.4) and (5.21) are given by
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@ = 33 WO = B

6,(2)° = 2o§ —4paag + %az, 0,(2)* = 03% — (0" — poag) + %02,
P (2)00(2)51(2) = 6,(2)* + 6] 30 — pag], (A2)
0'/%(2) = [V0(2) 00(2)]2 + 270(2)71(2) po1 (2) 5¢(2) 7, (2) + [V1 (2)a, (2)]2

70(2)30(2) + 71(2)po1(2) 3, (2) Q) = 20(2) P01 2)3¢(2) + 71(2)7,(2)
OAQ) » ! OAQ) )

r(2) =

The system (5.25)-(5.26) is equivalent to the system with unknowns x(1), x(2),
B

g1 o~ 3907+ ay(Dx(D)
PO,1) — P(0,1) :
0
B _ 1 ~tnera@+n@axe | PO —1hera@+nonexe
P(0,1)  P(0,2) P(0,2) ’

1 _ B (A.3)
o [1+PO.Dp] = P00 [P(0,1)q, @ (x(1)) + P(0,2) p, P (x(2))]

+¢,@(0g(1) = x(1) + pe [P (1,(2) 0(2) = x(2) + P(0, ) D(r,(2) 0, (2) — x(2))].

This system implies without difficulty the special solution (5.35).
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