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ABSTRACT

We consider a set of workers’ compensation insurance claim data where the 
aggregate number of losses (claims) reported to insurers are classifi ed by year 
of occurrence of the event causing loss, the US state in which the loss event 
occurred and the occupation class of the insured workers to which the loss 
count relates. An exposure measure, equal to the total payroll of  observed 
workers in each three-way classifi cation, is also included in the dataset. Data 
are analysed across ten different states, 24 different occupation classes and 
seven separate observation years. A multiple linear regression model, with 
only predictors for main effects, could be estimated in 223  +  9  +  1  +  1   =   234 ways, 
theoretically more than 17 billion different possible models! In addition, one 
might expect that the number of  claims recorded in each year in the same 
state and relating to the same occupation class, are positively correlated. 
 Different modelling assumptions as to the nature of  this correlation should 
also be considered. On the other hand it may reasonably be assumed that the 
number of losses reported from different states and from different occupation 
classes are independent. Our data can therefore be modelled using the statis-
tical techniques applicable to panel data and we work with generalised esti-
mating equations (GEE) in the paper. For model selection, Pan (2001) sug-
gested the use of an alternative to the AIC, namely the quasi-likelihood under 
independence model criterion (QIC), for model comparison. This paper devel-
ops and applies a Gibbs sampling algorithm for effi ciently locating, out of the 
more than 17 billion possible models that could be considered for the analysis, 
that model with the optimal (least) QIC value. The technique is illustrated 
using both a simulation study and using workers’ compensation insurance claim 
data.
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780 J. CUI, D. PITT AND G. QIAN

1. INTRODUCTION

For the past fi fteen years actuaries in general insurance have routinely used 
generalised linear models (GLMs) as a statistical modelling tool. The outputs 
from such analyses have been used to inform their premium and reserving 
calculations. The most authoritative text on GLMs is McCullagh and Nelder 
(1989). An early paper on the application of GLMs in general insurance was 
Brockman and Wright (1992). They considered the analysis of motor vehicle 
insurance claim data and highlighted the potential for simpler and possibly bet-
ter-informed assessment of risk premia using GLMs. Haberman and Renshaw 
(1996) provided a very informative summary of the uses that actuaries have 
made of GLMs which include the determination of outstanding claims provisions 
in general insurance, the description of renewal rates for insurance policies, 
the description of observed mortality rates and the prediction of future mor-
tality rates for insured lives. 

When using a GLM we assume that the dependent variable of the regression, 
which could be for example claim frequencies, claim severities or insurance pol-
icy renewal rates, is a collection of mutually independent random variables. 
The dependent variable is assumed to come from the linear exponential family 
of distributions. Associated with each of the observed values of the dependent 
variable is a set of regressor variables. The mean of the dependent variable, 
conditional on the values taken by the observed regressor variables, is set equal 
to some monotonically increasing transformation of a linear predictor formed 
from the regressor variables. Akaike’s Information Criterion (AIC), Akaike 
(1974), has commonly been used as a method for selecting between a collection 
of GLMs that have been fi tted to a given dataset.

In workers’ compensation insurance, where workers are paid compensa-
tion for workplace related injuries, individual payments are made to workers 
over time. These payments may replace lost income, they may cover medical 
expenses or the costs of rehabilitation or retraining. Such repeated observations 
on individuals are common not only in insurance but also in many studies in 
the social sciences and in econometrics where such data are known as panel 
data. In the workers’ compensation insurance example above, a panel refers to 
an individual on which many observations may be made. It is useful to model 
the payments to policyholders under such insurance arrangements using 
regression type analysis. Ordinary GLM analysis, as described in the previous 
paragraph, is not appropriate for panel data, because of the correlation we 
would anticipate between the size of payments made to the same individual 
over time. Another example of panel data in the area of workers’ compensa-
tion insurance, which we shall explore in this paper, relates to aggregate level 
claim frequency analysis. Observations from the same occupation class and 
state across different years are assuemd to be correlated. The analysis is said to 
run at an aggregate level because data are grouped by state, occupation class and 
year. In the context of analysing correlated dependent variable observations, 
Frees et al. (1999) and Antonio and Berlant (2007) discuss the use of subject 
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specifi c (random effects) generalised linear mixed models (GLMMs). In this 
paper we consider the use of population-averaged (PA) or so-called marginal 
models, Liang and Zeger (1986), for incorporating within-subject correlations 
between the observations from the same panel. 

Pan (2001) argues that the AIC measure is not suitable for selecting between 
population-averaged, generalised estimating equation type models which are the 
models employed in this paper. He proposes a new measure, the quasi-likeli-
hood under independence model criterion (QIC). Cui and Qian (2007) discuss 
the application of this model selection criterion to biomedical data. In this 
paper we develop a methodology, using the Gibbs sampler, for determining 
quickly the model with the lowest (best) value of QIC. The Gibbs sampler has 
been used in the past for model selection using the AIC with both ARIMA 
models, Qian and Zhao (2007), and logistic regression models, Qian and Field 
(2000).

The paper is organised as follows. Section 2 describes the workers’ com-
pensation insurance claim frequency dataset used in the paper. Section 3 is 
devoted to methodology. The GEE population-averaged models along with the 
QIC selection criterion and the Gibbs sampler algorithm for locating an optimal 
model are described. Section 4 assesses the ability of the Gibbs sampler algo-
rithm to select an optimal model using a simulation study. Section 5 provides 
the results of  our analysis of  the workers’ compensation insurance dataset 
using the methodology described in Section 3. Section 6 concludes the paper.

2. DATA

As mentioned in the introduction, the dataset analysed in Section 5, which 
provides the motivation for the methodological development presented in Sec-
tion 3 of this paper, are given in Klugman (1992) as Data Set 4. Antonio and 
Beirlant (2007) also discuss these data in Section 2 of their paper. We do not 
repeat the exploratory data analysis that they conducted on this dataset here 
but instead we emphasise the main characteristics of the dataset which make 
it suitable for illustrating our methodology.

The dataset includes the number of observed losses on workers’ compensa-
tion insurance policies split by year, occupation class and state. Our analysis 
works from data on 24 different occupation classes and ten different states. Data 
are recorded annually over seven years. For each observation in the dataset,
a measure of exposure, equal to the total payroll of all insured individuals in 
that particular classifi cation of state, occupation class and year is also recorded. 
The fi rst ten records of the dataset are shown in Table 1. For example, the 
payroll total in year 2 for those in the fi rst state and the fi rst occupation group 
was $33.779 times ten million (payroll fi gures have been divided by 107 for
ease of readability in Table 1). The observed number of losses in this category 
was 4. This dataset has been analysed in a Bayesian framework by Klugman 
(1992) and later by Scollnik (1996) and Makov et al. (1996). 
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Antonio and Beirlant (2007) present a scatterplot matrix of the observed 
number of losses by year of occurrence. The matrix shows very clear positive 
correlation between the number of losses reported in year i and in year j for 
i,  j   !  {1, 2,  ...,  7}. In addition they include a selection of the number of losses 
recorded plotted against the year. The positive correlation between observed 
number of losses and year of occurrence for losses occurring in the same state 
and for the same  occupation class is evident. 

3. METHODOLOGY

3.1. GLMs and the Extension to Population-Averaged GEE Models

Population-averaged Generalised Estimating Equation (PA-GEE) models, 
introduced by Liang and Zeger (1986), are an extension of  GLMs. They 
address the issue of panel or subject level correlation. In the context of the 
workers’ compensation claim frequency data considered in this paper, we allow 
for dependence between the observed claim frequency values across the seven 
years of data for claims recorded in the same state and the same occupation 
class.

In this section, we provide a quick review of the procedure for estimating 
the coeffi cients in a GLM. We then describe the PA-GEE models and cast 
them as a natural extension of GLMs. McCullagh and Nelder (1989) describe 
the maximum likelihood procedure which is applied to the estimation of regres-
sion model coeffi cients in the GLM setting. In the GLM regression model 
framework, the dependent variables are assumed to be drawn from the linear 
exponential family of probability distributions. These variables are assumed 

TABLE 1

WORKERS’ COMPENSATION CLAIM FREQUENCY DATA. FIRST 10 RECORDS SHOWN.

Year State Occupation Class Payroll Count of Losses

1 1 1 32.322 1

2 1 1 33.779 4

3 1 1 43.578 3

4 1 1 46.686 5

5 1 1 34.713 1

6 1 1 32.857 3

7 1 1 36.600 4

1 1 2 45.995 3

2 1 2 37.888 1

3 1 2 34.581 0
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to be mutually independent. The probability density (or mass) function for a 
variable Y from the linear exponential family is 
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where q is the natural parameter, f is the dispersion parameter and a (.), b (.) 
and c(.) are functions that take particular forms depending on the particular 
distribution being considered. For example, for the Poisson distribution with 
mean l, it can be shown that q  =  ln l, b (q)  =  l,  f  =  a (f)  =  1 and c (y;  f)   = 
–  ln y !. It can also be shown that the natural parameter q is related to the 
mean of Y, specifi cally E  [Y ]   =   b�(q). Similarly the dispersion parameter f is 
related to the variance of  Y through Var(Y )  =  b�(q)  a (f). Since the second 
derivative term b�(q) is connected to both the mean and variance of Y, we have 
the notation V( m)  =  b�(q). 

For a set of n independent observations from the linear exponential family 
of distributions, the log-likelihood function, where we consider the observed 
values of Y as given and the parameters as unknown is 
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Note that a subscript i has been added to each of the observed values of the 
variables Y and also to the natural parameter q. Note also that the dispersion 
parameter is not indexed and is estimated only once for the entire model rather 
than separately for each individual data record. Heller et al (2007) consider 
joint modelling of the natural and dispersion parameters using motor vehicle 
insurance data. The natural parameters qi are related to the means of  the 
dependent regression variable mi . In the GLM we restrict the mean parameter 
to be of the form 
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where the bj are regression coeffi cients and the xji are the observed independent 
regression variables for the ith observation. Note that very often xi1 would be 1, 
as the models very often include an intercept. 

The maximum likelihood estimation procedure involves equating the vector 
of fi rst order partial derivatives (where derivatives are taken with respect to each 
of the regression model coeffi cients) of the log-likelihood function to the zero 
vector and solving for the resultant coeffi cient estimates. The equations formed 
in this process are known as the score equations and take the general form 
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Suppose now that instead of  having n independent observations from the 
variables Yi , we have n panels of data where the ith panel contains ni data points. 
Dependent variable observations are denoted {yit}i  = 1,  ...,  n;  t  =  1,  ...,  ni  

. Suppose 
that all variables, including those in the same panel, are mutually independent. 
The score equations are then 
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where mit is the mean of the tth observation from the ith panel, and xjit is the 
jth covariate value for the tth observation from the ith panel. Following Har-
din and Hilbe (2003) these score equations can be written in matrix form as 
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where D( ) represents an ni  ≈  ni diagonal matrix. Note that V(mi ) is also an 
ni  ≈  ni diagonal matrix which can be written as 
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The transition from GLM to PA-GEE model replaces the identity matrix in 
the above decomposition with a correlation matrix for the observations within 
a panel. We therefore have for the PA-GEE model that 
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We note that the resulting equations (6) need not correspond to series of fi rst 
order partial derivatives of a log-likelihood function. The specifi cation of R(r) 
need not match up with a specifi c likelihood function. In addition, it is pos-
sible to express the relationship between the mean and the variance of  the 
dependent variable in a way that does not coincide with that for a standard 
linear exponential family probability density or mass function.

Different forms of the correlation matrix, R(r) have been proposed. In this 
paper we will consider independent, exchangeable and autoregressive correla-
tion of order 1 (AR(1)). The independent correlation structure has R(r) equal 
to the identity matrix, the exchangeable correlation structure has 
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while the AR(1) correlation structure has 
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The estimation of a PA-GEE model involves solving the system of equations (6). 
The model outputs include parameter estimates for each regression coeffi cient 
and an estimated correlation matrix R(r). 

3.2. QIC and PA-GEE Model Selection

Model selection for GLMs is frequently performed by selecting the model with 
the lowest value of Akaike’s Information Criterion (AIC). The AIC is calcu-
lated as 

 AIC   =   – 2 ln L  +  2p, (9)

where ln L denotes the log-likelihood for the fi tted model and p is the number 
of parameters included in this model. 

The AIC model selection criterion is only valid for comparing models that 
are estimated based on the maximisation of a log-likelihood function. As described 
in Section 3.1, the PA-GEE models, which are estimated based on a modifi ed 
quasi-likelihood function, do not necessarily use a log-likelihood function.
Pan (2001) modifi ed the AIC so that it could be employed for selecting amongst 
PA-GEE models. His proposed model selection criterion is called the quasi-
likelihood under independence model criterion (QIC) and is calculated as 

 QIC   =   –2Q ( m;  I )  +  2trace (WI  VR), (10)

where I represents the independence correlation structure under which the 
quasi-likelihood Q(.) is calculated. The negative Hessian WI is estimated from 
the quasi-likelihood under the independence correlation structure also. The 
robust regression coeffi cients b and their associated variance matrix VR  are 
estimated from the estimating equations (6) and (8) with the specifi ed working 
correlation matrix R. Therefore, in order to calculate the QIC value we need 
to run the GEE model twice, once under the independence correlation structure 
and then again under the specifi ed working correlation structure.

The QIC value can be used to select both the best correlation structure and 
the best fi tting GEE model. A correlation structure with the smallest QIC value 
is usually chosen as the best correlation structure. A mean response model with 
the smallest QIC value can be considered as the best fi tting model.
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3.3. Gibbs Sampler and Model Selection Involving Many Candidate Models

In this section we describe how the Gibbs sampler, Geman and Geman (1984), 
can be used to select the optimal PA-GEE model based on the QIC model 
selection criterion. We describe the methodology for doing this by making 
reference to the workers’ compensation insurance claim frequency dataset 
described in Section 2. 

Suppose yi  =  (yi1,  yi2,   ...,  yi7)T is a vector containing the observed numbers 
of claims in a particular state and a particular occupation class over the seven 
years of  observation. Given that we have data relating to ten states and 24 
occupation classes, we therefore have 240 separate observation vectors yi . Denote 
the mean vector for the response variables E  [Yi  ]   =   mi   =   ( mi1,  mi2 ,  ...,  mi7)t. Denote 
the variance-covariance matrix for the response variables as Var (Yi )  =  Si  . Let 
g(.) denote a link function. 

Associated with each element of each response variable vector, we have a 
vector of independent predictor variables. One variable relates to year, and one 
variable relates to payroll. Since state is a categorical variable having 10 states, 
we need 9 indicator variables to encode it. Also 23 indicator variables are needed 
to encode the occupation class since it is a categorical variable with 24 occupa-
tion classes observed. In total there are 34 predictor variables relating to panel 
i and year t which are stored in a column vector xit . The predictor variables 
relating to panel i are collected into a design matrix Xi  =  (xi1,  xi2 ,  ···,  xi7)

t. 
Note Xi does not include the model intercept column of 1’s.

The full model for the number of claims occurring is g(mi)  =  b017  +  Xi  b 
where b0 is the intercept coeffi cient, 17 is a column vector of seven 1’s, and b 
is a column coeffi cient vector of length 34. The variance-covariance matrix Si 
is modelled using one of  the structures from Section 3.1. Clearly, the full 
model can be reduced most of the time because the response variable may not 
be signifi cantly dependent on some of the predictors. This has induced the 
issue of model selection.

A sub model, denoted Ma, is a model that includes the intercept plus a 
subset of the 34 available predictor variables in the linear predictor. Let a be 
a subset of {1,  2,  …,  34}. So, a represents the columns of the design matrix Xi 
that are included in the sub model under consideration. The predictor for the 
mean of the dependent variable under this sub model is written 

 Ma  :  g (mi)   =   b017  +  Xia ba, (11)

where Xia consists of  those columns of  Xi indexed by a and ba is similarly 
defi ned.

To help in the description of the Gibbs sampler, we defi ne an alternative 
method for representing a sub model, Ma . Defi ne a 1  ≈  K  (K  =  34 for the
dataset here) vector ga  =  (ga,1,  ...,  ga, 34), where ga, k  =  1 if  k  !  a and ga, k  =  0 if  
k  "  a, k  =  1,  ...,  34. The domain of ga is {0, 1}34, which represents all possible 
sub models. This model space has 234 points!
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Suppose we use QIC to perform model selection. The best model, denoted g* 
would be 

 g( ) .arg min QICa
{0,1}

*
34

g =
g

* /

!

g  (12)

That is, we choose as our optimal model the one which has the minimum value 
of  the QIC model selection criterion amongst all 234 models in our model 
space.

In order to speed up the process of locating this model with the minimum 
QIC compared with the time that would be required to do an exhaustive 
search, we apply the method of Gibbs sampling. Defi ne 

 l
,QIC ,1 QIC-g( ) , { }P e 1( ) 34gD=l

g- ,0!  (13)

where l g
{ }1gD

( )QIC
34=

-
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e/  and l  >  0 is a tuning parameter. It is clear that 
PQIC, l (g) is a multivariate discrete probability mass function defi ned over the 
space {0,1}34, and that 

 ,QIC( ) ( ) .arg min arg maxQIC P
{ , } { , }
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0 1 0 134 34

g g g= =
g g

l
! !
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Suppose now that we were able to generate a sample of g values from {0, 1}34 
based on the probability function PQIC, l (g). We know that g* has the highest 
probability of appearing in this sample. We would therefore expect g* to be 
generated early (after a suitable burn-in period) and most frequently in the 
sample. Therefore, it is with probability converging to 1 in the limit that the 
optimal model g found from the generated sample of g is the global optimal 
model g*. In other words, g would be a very good (i.e. consistent) estimator of 
g* in practice. This implies that, in fi nite sample situations, g is either g* itself, 
which often is the case if  QIC (g*) is noticeably smaller than QIC values of 
other sub-models, or captures all signifi cant variables in g* if  the function 
QIC (g) is fairly level. The optimal properties of g in related model selection 
problems have been discussed in Qian (1999), Qian and Field (2000) and Qian 
and Zhao (2007).

As mentioned previously, the method of generating a sample (g1, g2,  ...,  gQ) 
from {0, 1}34 involves the Gibbs sampler. The simulation algorithm adopted is 
given below:

• Start from an initial value of g, say g0  =  (1,  …, 1)  !  {0, 1}K.

• Suppose g0,  g1,  …,  gq have already been generated, with their QIC values also 
having been calculated. Write gq  =  (gq,1,  …,  gq, K) and gq, l : m  =  (gq, l ,  gq, l  +  1,  ...,  gq, m) 
with 1  ≤  l  ≤  m  ≤  K. Note that gq, a : b  =  0   if  a  >  b.
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• For k  =  1,  …,  K do the following loop

 Calculate QIC (gq,1 : ( k  –  1), 1  –  gq, k,   gq, ( k  +  1) : K ) where (gq,1 : ( k  –  1), 1  –  gq, k,  gq, ( k  +  1) : K ) 
is the same 0-1 indicator vector as gq except that its kth component equals 1 
if  gq, k  =  0 and 0 if  gq, k  =  1.

 Calculate the conditional probability 

l l
l

QIC, ,q

q

,

,

,

q

q

q
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,

q

q
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-
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 and generate a random number, denoted as g�q, k, from the Bernoulli distribu-
tion with zk as the probability of ‘success’

 Update gq  =  (gq,1 : ( k  –  1),   g�q, k,   gq, ( k  +  1) : K ) and QIC ( gq ).

 At the end of each loop, update gq  +  1  =  gq .

• Continue this procedure until g1,  …,  gQ are generated.

• The generated g1,  …,  gQ constitute a Markov chain which, when Q is suffi -
ciently large, will become stationary with the equilibrium distribution being 
PQIC,  l . The generated Markov chain, after a burn-in period, can serve as a 
random sample from PQIC,  l .

The next two sections are devoted to an illustration of this methodology using, 
in turn, simulated data and workers’ compensation claim frequency data.

4. SIMULATION STUDY

In this section we report the results of a simulation study designed to assess 
the ability of the Gibbs sampler algorithm described in the previous section 
to locate an optimal model. We simulate data according to a PA-GEE model 
from the Poisson family with independent observations within the panels.
The model linear predictor is of the form 

 b i( (number of losses))log E i
i

i
i

i
1

23

1

9
b g= + +x z

=
0

=

,/ /  (15)

where the bi parameters relate to the intercept and the regression coeffi cients 
for occupations while the gi parameters relate to the regression coeffi cients for 
the states. The assumed values of  these parameters are shown in Figure 1 
where the year variable is given fi rst followed by the state variables and fi nally 
the occupation variables. The simulated dataset is the same size and has the 
same values for the predictor variables as in the claim frequency dataset described 
in Section 2. 
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Using this simulated set of  data, we apply the algorithm described in 
 Section 3.3 to determine the optimal PA-GEE model using the QIC as
our indicator of  model quality. We apply the Gibbs sampling algorithm 
assuming, in turn, independence, exchangeable and AR(1) correlation within 
panels. 

Applying our Gibbs sampler model selection algorithm, assuming inde-
pendence of observations within panels we fi nd that the optimal model has a 
QIC of 1349.9. In fact the top fi ve models, based on our Gibbs algorithm, have 
QIC values all less than 1350.5. Figure 1 shows the model coeffi cients (with a 
circle) used to simulate the claims data along with 95% confi dence intervals 
for each regression coeffi cient in the optimal model (the model with minimum 
QIC value from the application of our Gibbs sampler algorithm). These con-
fi dence intervals are shown as vertical bars. These confi dence intervals were 

FIGURE 1: Simulation Study results.
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determined from the large sample distribution of  the maximum likelihood 
estimators for the regression coeffi cients in the PA-GEE model. Analysis of 
Figure 1 shows that the QIC Gibbs sampler algorithm has chosen as optimal 
a model which estimates the regression coeffi cients to be very close to those 
used in the model from which the data were simulated. The only small poten-
tial anomolies relate to the impact of being in occupation group 2, where the 
model underlying the simulation had a regression coeffi cient equal to 0.2 while 
this term failed to appear in the model estimated as optimal by our model 
selection algorithm. In relation to this, we note that the impact of being in 
Occupation Group 2 was included in the three out of the fi ve most optimal 
models identifi ed by our model selection algorithm. Also evident from Figure 
1 is that the impact of being in State 2 is not included in the model identifi ed 
as optimal by the model selection algorithm but the model underlying the 
simulation of the data employed here had a regression coeffi cient for State 2 
of  0.05. We note from Figure 1 that the 95% confi dence intervals for the 
impacts of being in the various occupation groups and states go very close to 
overlapping (or do indeed overlap) the underlying regression coeffi cient employed 
in the simulation. We also note that with the large number of confi dence inter-
vals being compared here, it is appropriate to compute wider confi dence inter-
vals, using for example the method of Bonferroni, see Kutner et al (2005). 
Such wider intervals would cover the underlying model coeffi cients used to 
create the simulated dataset. 

It is also important to note that while a model has been used to simulate 
the claim data from, it is indeed possible, particularly with a moderately sized 
dataset being employed here, that the simulated data may give a different mes-
sage to that of the model employed to generate it. So while the investigation 
summarised in Figure 1 is useful, it can be complemented by determining the 
proportion of models chosen by our QIC algorithm, in the 1200 models con-
sidered after burn in (see Section 5 for discussion of this). Figure 2 is a plot 
of the proportion of Gibbs sampler models which include each of the possible 
regression coeffi cients against the actual value of  the regression coeffi cient 
assumed in the model used to generate the simulated dataset. We see that the 
Gibbs algorithm performs very well in that it includes statistically signifi cant 
regression coeffi cient variables for the parameters that indeed generated the 
data in the vast majority of cases.

Our simulated dataset was created on the basis of independence between 
observations within a panel. Nevertheless, it is of interest to employ our QIC 
Gibbs sampler algorithm to determine the optimal model under each of an 
exchangeable and AR(1) assumed correlation between observations within a 
panel. For the exchangeable correlation for observations in a panel, we note 
that the correlation estimated in our optimal model is r  =  –  0.0127 which is 
very close to zero. Similarly for the AR(1) correlation for observations in a 
panel, the lag 1 autocorrelation estimated for our optimal model is r  =  0.0231. 
This is very close to zero and is in agreement with the model underlying our 
simulated dataset.
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5. CLAIM FREQUENCY ANALYSIS

In this section we report the results of applying the Gibbs Sampler QIC model 
selection methodology from Section 3 to the US workers’ compensation insur-
ance dataset described in Section 2. We propose a PA-GEE model from the 
Poisson family, of the form 

 j( (Number of Claims)) (payroll) ,log logE Xj
j

0
1

33
b b= + +

=

/  (16)

where X1 relates to the observation year, and, noting that occupation class 7 
has zero exposure and so is not included in the coding, we have 

FIGURE 2: Ability of the Gibbs Sampler Algorithm to select models in agreement
with the model used for the simulation
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Note that the state variable has 10 categories, thus one would need at most
9 indicator variables in order for a suffi cient coding of it. Similarly, at most
23 indicator variables would be needed to suffi ciently encode the occupation 
class variable. Certainly, there are many ways to defi ne the indicator variables 
required. For example, different indicator variables would result if  choosing 
different reference categories. Also the number of indicator variables required 
can be reduced if  some categories of a categorical variable are merged. Clearly, 
which categories are used as the reference ones and which categories can be 
merged are issues that can be addressed in a model selection procedure. However, 
we will ignore these issues in this paper in order to convey the idea of Gibbs 
sampling selection in a concise way. Nevertheless, a more complicated model 
selection framework may be designed to allow these issues to be adequately 
addressed where the Gibbs sampling technique can still be applied.

We assess the suitability of independence, exchangeable and AR(1) assumed 
correlation for observations within panels. For the purposes of describing the 
process of implementing the methodology from Section 3, we assume that we 
are working with the AR(1) correlation within panels. Beginning with the full 
model, containing all of the 32 indicator variables for the categorical variables 
state and occupation class, we estimate the parameters of PA-GEE model with 
AR(1) within panel correlation and predictor of the form (16). We then apply 
the algorithm given at the end of Section 3.3 to draw a sample of size 5000 
from PQIC,  l (g). Before we determine the model from our sample of 5000 which 
has the lowest QIC value, and is therefore optimal in our simulation, we assess 
the convergence of the Gibbs sampler. When we apply the Gibbs sampler to 
the problem of simulating values from the multivariate discrete probability 
mass function PQIC,  l (g), the initial values generated in our chain of simulated 
values will not be genuine simulated values from this distribution. It is known 
that the Gibbs sampler simulated values only approach the target distribution, 
in this case PQIC,  l (g), after a suitable number of iterations of the algorithm have 
been performed. It is therefore common practice, particularly in the applica-
tion of Bayesian statistics where the Gibbs sampler is routinely adopted, to 
discard the values generated from the Gibbs sampler from the early iterations 
of  the algorithm. This period of iterations, where the outputted values are 
discarded, is known in the literature as the “burn-in period”. We will work 
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with a burn-in period of 3000 iterations, leaving us with, potentially (if  the 
algorithm has indeed converged) 2000 simulations from PQIC,  l (g).

One method for assessing convergence, discussed in Qian and Field (2000), 
is to apply the well-known chi-squared test of association. The idea behind 
the application of this test to the assessment of the convergence of the Gibbs 
sampler algorithm is simple. We take our 2000 output values from our Gibbs 
sampler, which relate to after the burn-in period, and divide them up into
4 bins. The fi rst bin contains outputs 3001 to 3500, the second bin contains 
outputs 3501 to 4000, the third bin contains outputs 4001 to 4500 and the 
fourth and fi nal bin contains outputs 4501 to 5000. For each bin, we count the 
number of QIC output values which fall into each of four intervals. These four 
intervals are determined by considering the minimum and maximum generated 
QIC values in our sample of 2000 values and dividing this range up into four 
bins of equal expected frequency. We then have a complete 4  ≈  4 contingency 
table for our QIC values. We use the chi-squared test of association to deter-
mine whether or not there is a relationship between position in the chain, as 
recorded by the four bins of observations and the relative magnitudes of the 
QIC values, as recorded by the bins used to count the number of outputs in 
each range of the QIC values. This methodology was applied to the AR(1) model, 
2000 QIC simulations and the results are shown in Table 2. Note that in Table 2, 
Group A contains QIC outputs in the fi rst bin, that is outputs from 3001 to 
3500 in the chain, and Groups B, C and D contain the QIC outputs in the 
second, third and fourth bins described above. The range of  QIC values, 
recorded in each bin, are self  explanatory from the table. Observed counts are 
recorded in each cell along with expected counts (under the hypothesis of no 
association between position in chain and magnitude of simulated model QIC 
values) are recorded in parentheses in each cell. From this table, the observed 
chi-squared test statistic value is 12.6 which is below the critical value, at the 
5% signifi cance level, of 16.9. The p-value for the test of no association vs an 
association between position in the chain and simulated model QIC is 0.181. 

Other diagnostic checks, routinely performed in Bayesian applications of 
the Gibbs sampler, such as I-Charts and the Gelman-Rubin test of  conver-
gence were also conducted for this chain and found to give satisfactory results. 
We therefore have no reason to believe that our Markov Chain of simulated 

TABLE 2

CHI-SQUARED TEST FOR INDEPENDENCE BETWEEN POSITION IN CHAIN AND QIC VALUE

4055.87-4059.33 4059.33-4063.41 4063.41-4068.79 Greater than 4068.79

Group A 115 (125) 126 (125) 135 (125) 124 (125)

Group B 101 (125) 136 (125) 133 (125) 130 (125)

Group C 121 (125) 124 (125) 131 (125) 124 (125)

Group D 139 (125) 110 (125) 178 (125) 118 (125)
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values from PQIC,  l (g) do not correspond to simulations from this distribution. 
We therefore proceed to the task of fi nding the optimal model. 

The optimal model is identifi ed as that model with the lowest QIC value 
in the post burn-in Gibbs sampler model simulations. This model also 
appeared the most frequently in the post burn-in QIC simulations. The opti-
mal estimated model is of  the form (16) with parameter estimates shown in 
Table 3 below. The model intercept is – 3.53. The regression coeffi cients pre-
sented in the table below are all statistically signfi cantly different from zero. 
We note that there is a strong effect due to state, with quite wide variation in 
the coeffi cient  estimates. There is some grouping in the values of  the occupa-
tion indicator variables, although again we see marked differences in the pre-
dicted number of  claims by occupation class. Given the relatively low level of 
estimated correlation between observations within the panels, it is of  interest 
to compare the coeffi cients obtained from our selected model with those 
obtained by estimating a simple GLM where independence between observa-
tions within panels and between panels is assumed. The coeffi cient estimates 
from a GLM from the Poisson family with log link function and log exposure 
as an offset variable are included in the table below in parentheses in each cell. 
We note that the simple GLM coeffi cient estimates are broadly similar to those 
obtained from the GEE based model but do differ in some instances by a 
material amount. We have also provided, in Figure 3, a histogram of the dif-
ferences in fi tted values for the independence GLM and the GEE based model 
that includes AR1 autocorrelation within the panels. The benefi t of including 
the correlation within the panels is evident here with some marked differences 
evident between the predicted number of  losses under the two modelling 
approaches.

TABLE 3

FINAL MODEL COEFFICIENT ESTIMATES AND COEFFICIENTS FOR ASSOCIATED GLM

Predictor Coeffi cient Predictor Coeffi cient Predictor Coeffi cient

Occupation 2 – Occupation 14 –

Year – Occupation 3 0.077 (0.05) Occupation 15 0.56 (0.58)

State 2 0.82 (0.85) Occupation 4 – 0.31 (– 0.43) Occupation 16 –

State 3 1.32 (1.44) Occupation 5 0.44 (0.48) Occupation 17 0.16 (0.23)

State 4 0.43 (0.50) Occupation 6 1.09 (1.14) Occupation 18 – 0.093 (– 0.08)

State 5 – 0.03 (0.03) Occupation 8 – Occupation 19 – 0.35 (– 0.15)

State 6 0.82 (0.73) Occupation 9 – Occupation 20 0.12 (0.13)

State 7 – Occupation 10 – 0.56 (– 0.32) Occupation 21 – 0.12 (– 0.12)

State 8 1.32 (1.30) Occupation 11 0.15 (0.27) Occupation 22 0.32 (0.19)

State 9 0.02 (0.04) Occupation 12 0.058 (0.02) Occupation 23 – 0.66 (– 0.63)

State 10 1.07 (1.08) Occupation 13 0.21 (0.23) Occupation 24 0.32 (0.27)
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6. CONCLUSION

This paper has given a new algorithm for determining optimal statistical 
 models using the QIC model selection criterion. We used both simulated data 
and a workers’ compensation claim dataset to illustrate this algorithm. This 
algorithm works well with different assumptions about the correlation structure 
of the observations with the panels. The methodology described in this paper 
has the advantage of quickly determining an optimal model when the space 
of potential models is extremely large. The algorithm uses the Gibbs sampler 
and has, for the purposes of illustrations in this paper, been programmed using 
the statistical language R. The algorithm could equally be written in most 
other statistical software packages. The methodology from this paper can be 
adapted to other model selection problems of interest to actuaries including 
GLM selection, graduation model selection and state space models which are 
beginning to see application in actuarial practice.
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FIGURE 3: Histogram of Difference in Fitted Values between GEE and Independence Based GLM.
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