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ECONOMIC FACTORS AND SOLVENCY

BY

HARRI NYRHINEN*

ABSTRACT

We study solvency of insurers in a practical model where in addition to basic 
insurance claims and premiums, economic factors like infl ation, real growth and 
returns on the investments affect the capital developments of the companies. 
The objective is to give qualitative descriptions of risks by means of crude 
estimates for fi nite time ruin probabilities. In our setup, the economic factors 
have a dominant role in the estimates. In addition to this theoretical view, we 
will focus on applied interpretations of the results by means of discussions and 
examples.

The fi rst version of the paper was presented in ASTIN Colloquium in Hel-
sinki 2009. The colloquium was dedicated to Teivo Pentikäinen.
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1. INTRODUCTION

Solvency of  insurance companies is one of  the main concerns in actuarial 
practice and theory. In order to continue the business, the companies have to 
show a reasonable capacity to survive, that is, to meet their obligations. An appro-
priate requirement is that the survival probability within a given time horizon 
must be above a predescribed high level. For regulatory purposes, the time 
horizon is typically small, for example, one or two years. From the viewpoint 
of company management, longer time horizons are also of interest.

To get quantitative estimates for the solvency position of  the company, 
it is necessary to build up mathematical models for claims, premiums, returns 
on the investments etc. Practical models tend to be complicated and there-
fore, simulation is a popular tool in the estimation of the survival probabilities. 

* Research supported in part by the Academy of Finland, Project No. 116747.
AMS 2000 subject classifi cations. Primary 91B30; Secondary 60F10.
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890 H. NYRHINEN

The purpose of  the present paper is to take a more theoretical look at the 
problem. Our results should be understood as qualitative descriptions of risks 
associated with the company but not, for example, as competitors for simula-
tion in the implementation of a solvency test. We will study a comprehensive 
model which is largely based on Pentikäinen and Rantala (1982). We also refer 
the reader to Pentikäinen et al. (1989) and Daykin et al. (1994) for further 
developments in modelling and for other practical aspects of actuarial problems. 
For empirical observations concerning causes of solvency problems, we refer 
to the report of The Conference of Insurance Supervisory Services of the Mem-
ber States of the European Union (2002).

To describe our interest in detail, let u  >  0 be the initial capital of the com-
pany, and let Un be the capital at the end of the year n for n  =  1, 2,  …. Instead 
of survival probabilities, it is equivalent to study ruin probabilities. Defi ne the 
time of ruin Tu by
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We take the most common approach seen in theoretical studies by considering 
limits of ruin probabilities as u tends to infi nity. The limiting procedure directs 
the focus to small probabilities which is motivated in solvency considerations. 
For appropriate fi xed x  >  0, we will show that in our model,

 (R1 x- )x( ) (lim log u u
u u # = -
"3

loglog T )�  (1.2)

where R(x) is a specifi c parameter. More intuitively, if  R(x) is fi nite then (1.2) 
means that for every given e  >  0,

 ( ( ( (R R
� ( )logu x u u) )x

u
x

# # #
e e- + - -) )T  (1.3)

for suffi ciently large u. The time horizon in the estimate increases slowly with 
u and hence, our study may be viewed to focus on solvency questions within 
moderate time horizons.

Approximation (1.3) is theoretical in the sense that it is crude and asymp-
totic. However, the result is also of applied interest. In our model, infl ation, 
real growth of the business and the returns on the investments will completely 
determine R(x). All these factors are connected with the general economy.
The conclusion is that the economic factors determine the magnitude of the 
ruin probability for large u. In fact, if  R(x) is fi nite then (1.2) is equivalent 
to

 ( (Rx uu x#� ( ) )log u C x
=

-T )u  (1.4)
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where the function Cx is such that

 1 (( ) .lim log logu u 0
u x =
"3

- )C  (1.5)

Insurance risks only contribute the function Cx in (1.4) but they are by no means 
meaningless. As an example, limit (1.5) holds if  Cx(u)  =  log  u for large u. More-
over, it is not known how large u must be in (1.3), and the same view applies to 
limit (1.5). Nevertheless, in the asymptotic sense, the above limits indicate that a 
change in economic factors affects more drastically ruin probabilities than a 
change in the insurance side. As a concrete example, suppose that the company 
had a need to make its solvency position safer. This should be possible by cutting 
large losses in the investment side by means of appropriate options. The returns 
on the investments contribute the parameters R(x), and we can expect that they 
would increase. Consequently, ruin probabilities would have a tendency to 
decrease. An alternative would be to cut large insurance claims by means of an 
excess of loss reinsurance contract. This should also decrease ruin probabilities 
but less drastically since the parameters R(x) would remain unchanged.

A further application of approximation (1.2) is that it provides a quality 
control for nonasymptotic bounds for ruin probabilities. To explain this, sup-
pose that it would be possible to show that

 � f( ) (logx uu x# # u)T  (1.6)

for every fi nite u where fx is a known function. These types of bounds are 
obviously of interest from the applied point of view, for example, in connec-
tion with solvency tests. To have a good upper bound for large initial capital, 
fx(u) should behave asymptotically similarly to �(Tu  ≤  x  log  u), that is, we 
should have

 (R1 x- ( )uf( ) ) .lim log logu
u x = -
"3

 (1.7)

If  this is not the case then one can argue that the upper bound does not focus 
carefully on essential parts of the model, and consequently, relative errors are 
easily huge for large u. In this sense, (1.7) may be seen as a mimimal quality 
requirement for the upper bound.

In recent years, there has been a lot of interest in ruin probabilities for proc-
esses which include stochastic submodels for infl ation and for the returns on the 
investments. It is generally understood that these factors have a crucial impact 
to ruin probabilities. An early observation in this direction is given by Schnieper 
(1983). The main part of the subsequent papers focus on asymptotic expressions 
for the infi nite time ruin probability �(Tu  <  3). The background for the esti-
mates is given in Goldie (1991) and Grey (1994). The conclusion is that

 � ( ) ,Cu u<
r

u "3 3+
-T , (1.8)
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892 H. NYRHINEN

where C and r are constants. The views given by the papers are different. 
Namely, the parameter r is determined by the economic factors in Goldie 
(1991) and by the tail of claims distribution in Grey (1994). Roughly speaking, 
insurance risks dominate over economic risks in Grey (1994). An extension of 
(1.8) to the continuous time case is derived in Paulsen (2002). We also refer 
the reader to Paulsen (1993) where a general framework for the theory is devel-
oped and to Frolova et al. (2002) and Kalashnikov and Norberg (2002) where 
the focus is on the investment risk. Furthermore, all the above mentioned 
papers basically deal with random walk models. Collamore (2009) gives a 
natural extension by allowing a general Markovian dependence between the 
years. Finally, for a survey of the recent state of the theory, we refer the reader 
to Paulsen (2008).

A few of the papers in the area deals with fi nite time ruin probabilities. 
Approximation (1.2) as such has been studied in Nyrhinen (2001). The main 
extension of the present paper is that we allow real growth in the model. This 
leads to a multiplicative trend inside the insurance process and requires new 
mathematical arguments. We also discuss economic cycles and focus in general 
on applied aspects of  the problem. Finite time ruin probabilities are much 
studied in more classical models where economic factors are not present.
We refer the reader to Collamore (1998) and Chapter IV of Asmussen (2000). 
These studies provide a useful background for models where economic sub-
models are present. A heuristic explanation of connections can be found in 
Section 1 of Nyrhinen (2001).

 The paper is organized as follows. Main results, discussions and examples 
are given in Section 2. Section 3 consists of the proofs.

2. STATEMENT OF RESULTS

We begin by describing the main variables and parameters of the model in our 
interest. Some variants and extensions will be discussed in Section 2.2 below. 
For the motivation and the background, we refer the reader to Pentikäinen 
and Rantala (1982) and Daykin et al. (1994)

Numbers of claims. Associated with the year n, write

Nn = the accumulated number of claims occured in the years 1,  …,  n,
l = the initial level of the mean of the number of claims in the year,
gn = the rate of real growth,
qn = the structure variable describing short term fl uctuations in the numbers 

of claims,
bn = the variable describing cycles and other long term fl uctuations in the 

numbers of claims.

Write further N0  =  0 so that Nn  –  Nn  –  1 represents the number of claims occured 
in the year n. We assume that they have mixed Poisson distributions such that 
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 ECONOMIC FACTORS AND SOLVENCY 893

conditionally, given b1,  …,  bn , g1,  …,  gn and q1,  …,  qn , the variables N1  –  N0,  …, 
Nn  –  Nn  –  1 are independent and Nk  –  Nk  –  1 has the Poisson distribution with the 
parameter

 g( ) ( )g qk k k1 g+ +1 1l b  (2.1)

for k  =  1,  …, n.

Total claim amounts. Let

Xn = the total claim amount in the year n,
Zj = the size of the j th claim in the infl ation-free economy,
mZ = the mean of the claim size in the infl ation-free economy,
in  = the rate of infl ation in the year n.

We consider the model where

 i( )+ ji 1= ( ) .X Z
1

n n
j N

N

1
n

n

1

g+
= +-

1 /  (2.2)

Premiums. For the year n, write

Pn = the premium income,
s = the safety loading coeffi cient,
cn = the variable describing long term fl uctuations in the premiums.

We take

 g( ) ( ) ( ) ( ) ( ) .s c i in Z n n n1 1g gl= + + + + +gP m 11 1 1 1  (2.3)

The transition rule. We next describe the development of the capital in time. 
Let

Un = the capital at the end of the year n,
rn = the rate of return on the investments in the year n.

Let U0  =  u  >  0 be the deterministic initial capital of the company. We defi ne

 n( ) ) .r P Xn n n n1= + + --U 1 (U  (2.4)

Technical specifi cations and assumptions. We end the description by specifying 
the dependence structure and other technical features of the model. All the 
random variables below are assumed to be defi ned on a fi xed probability space 
(W, F, �).
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We begin by giving a detailed mathematical description for the total claim 
amounts in the infl ation-free economy. For the year n, denote this quantity by 
Vn , that is,

 j .
n

Z
1

n
j N

N

n 1 +-=

V = /  (2.5)

The distributions of the N-variables depend on the b-, g- and q-variables. We take

 (g, q), (g1, q1), (g2, q2),   …

to be an i.i.d. sequence of random vectors where the fi rst one (g, q) is generic 
and is introduced for notational simplicity. We also assume that g and q are 
independent, and that the b-variables are independent of the g- and q-variables. 
We do not give a specifi c dependence structure for the sequence  {bn}. Instead 
of that, we just assume that

 !� 1 for everyb b nn =b , r` j7 A  (2.6)

where ß and b are fi nite and positive constants. Let Fn
b be the joint distribution 

function of (b1,  …,  bn ), and let Fg and Fq be the distribution functions of 1  +  g 
and q, respectively. Let further Fn be the joint distribution function of  the 
random vector

 n n= ( , , , 1 , , 1 , , , ) .z b b g g q qn n1 1 1f f f+ +:  (2.7)

Thus for every n nn1 �, , ,y y y yg q q
1 1 !

b gb, , ,y yf f f, , ,
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By these specifi cations, we assume that for every h1,  …,  hn  !  �  j  {0} and for 
every Borel set C   3   �3n,

 (2.9)
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The claim sizes Z,  Z1,  Z2,  …  are assumed to be i.i.d. (Z is again a generic 
variable). We also assume that they are independent of the numbers of claims 
in all respects. Let FZ be the distribution function of Z, and let (FZ)h* be the 
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hth convolution power of  FZ. In precise terms, we assume that for every 
h1,  …,  hn  !  � j {0} and y1,  …,  yn  !  �, and for every Borel set C   3   �3n,
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 (2.10)

In words, the distribution of (V1,  …, Vn ) is obtained by mixing distributions 
of n-dimensional random vectors with independent compound Poisson variables 
as components. We refer to Grandell (1997) for more information about mixed 
Poisson distributions and related topics.

Consider now the other parts of  the model. We do not give a specifi c 
dependence structure for the fl uctuation sequence  {cn} associated with the pre-
miums. Instead of that, we assume similarly to (2.6) that

 !� for everyc nc c 1n =, r_ i7 A  (2.11)

where © and c are fi nite and positive constants. We allow an arbitrary depend-
ence structure between the c- and V-variables. As the model for infl ation and 
the returns on the investments, we take

 (i, r), (i1, r1), (i2, r2),  … (2.12)

to be an i.i.d. sequence of random vectors, and these vectors are assumed to 
be independent of g- and V-variables.

Concerning the parameters of the model, we take l, mZ and s to be positive 
real numbers. For the supports of Z and q, we assume that

 0 0� � �( ) 1, ( ) 1 and ( (1 ) / ) 0,s c b> > >$ = = +Z q q r  (2.13)

and for the supports of the economic factors that

 � � �( 1) 1, ( 1) 1 and ( 1) 1.i g> > >- = - = - =r

For the moments of the main variables, we assume that

 aa a
� � �(1 ) (1 ) and (1 )i g r+ + +,` ` `j j j

are all fi nite for every a  !  �, and that �(qa) and �(Za ) are fi nite for every 
a  >  0. Finally, assume that �(q)  =  1 and that �(g)  ≥  0.

93864_Astin40/2_18.indd   89593864_Astin40/2_18.indd   895 13-12-2010   10:58:3613-12-2010   10:58:36



896 H. NYRHINEN

2.1. Estimates for ruin probabilities

Let the model be as described in the fi rst part of  Section 2, and let the
time of ruin Tu be as in (1.1). Recall that U0  =  u is the initial capital. Recall
also that i, g and r are generic rates of infl ation, real growth and the return on 
the investments, respectively, and that they are the main economic factors in 
the model. Our objective is to give the magnitude of  the ruin probability 
�(Tu  ≤  x  log  u) for appropriate values of x and for large u. The impact of the 
economic factors will come via the variable

 =
+

+ +( ) ( )
W r

i g
1

11
, (2.14)

and in fact, W will be in the key role in our considerations. Roughly speaking, 
large W means that the risk of ruin is high. Thus an increase in infl ation or in 
real growth increases the risk. This is natural since both of the changes basi-
cally mean that the volume of the insurance business increases. Thus in the 
long run, larger and larger yearly losses are possible. An increase in the returns 
on the investments decreases the risk which is even more natural.

Defi ne the generating functions L  : �  "  � j{3} and Lg   :  �  "  �  j{3} by

 L(a)   =   log  �(W a) (2.15)

and
 Lg(a)   =   log  �((1 + g)a). (2.16)

Recall that �(g)  ≥  0 by our assumption so that either �(g  >  0)  >  0 or g  /  0. 
Write

 r
�a a{ ; ( ) 0} if ( 0) 0

0 0,

sup

if

g

g

> >g #

/

L
=g *

and let

 r a a{ ; ( ) 0 .sup #L= }

Write further

 gr r r( , ) [0, ] .max 3!=  (2.17)

Let L*   :  �  "  �  j {3} be the convex conjugate of L, that is,

 (x) a( ) �a{ .sup*
!L L= ;a }-x

It is well-known that both L and L* are convex functions. We refer the reader 
to Rockafellar (1970) and Dembo and Zeitouni (1998) for the background.
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Defi ne the parameters m and x0 by

 
r( )r( ) !r

otherwise
1 if and 0
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otherwise
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inf
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> <
0

3

3
=

if/ �L
)

Finally, defi ne the function R   : (0,  m)  "  �  j{3} by

 R(x)   =   x L*(1/x). (2.18)

We next state a simple lemma and the main result of the paper.

Lemma 2.1. For the above parameters, we have rg  <  3 and x0  ≤  m. Further, 
R(x)  =  3 for every x  !  (0, x0), and R is fi nite and strictly decreasing on (x0,  m). 
Let a0  !  � be such that L�(a0)  >  0. Then

 L*(1 / x) = sup{a / x  –  L(a); a  ≥  a0} (2.19)

whenever 0  <  x  ≤  1 / L�(a0).

Theorem 2.1. Let x  !  (0, m) 5 {x0} be arbitrary. Then

 1
�( ) ( ) ( .lim log log logu x u R

u u # = -
"3

- x)T  (2.20)

Remark 2.1. By Lemma 2.1, the right hand side of (2.20) is strictly increasing 
for x  !  (x0,  m). In particular, for large u, �(Tu  ≤  x  log  u) is essentially smaller 
than �(Tu  <  3).

It is interesting to compare our model with the classical one where infl ation, 
real growth and the return on the investments are not present. So let i   /   0, 
g   /   0 and r   /   0. Then W  /  1, r  =  3, m  =  3 and x0  =  3. Thus limit (2.20) 
holds for every x  >  0 with R(x)  =  3, and hence, the magnitudes of ruin prob-
abilities are asymptotically smaller than in general in the present paper. As an 
extension of the classical model, suppose that infl ation and real growth are 
not present but that the return on the investments is always non-negative. 
Hence, i   /   0, g   /   0 and r  ≥  0. Then W  ≤  1. By Theorem 2.1, we still have (2.20) 
for every x  >  0 with R(x)  =  3.

By the above discussion, the company could have a motivation to adjust 
its strategy such that W  ≤  1 would hold. A problem here seems to be that it is 
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diffi cult to control infl ation. To illustrate this, take g  /  0, for simplicity. Then 
the target would be to have

 .r
i

1
1 1#

+
+  (2.21)

In fi nancial terms, this can be viewed as a superhedging against infl ation by 
means of appropriate investments. It is not obvious that instruments can be 
found for the hedging, especially, because the company faces specifi c claim 
infl ation instead of general infl ation in the economy. We refer to Pentikäinen 
and Rantala (1982), Volume I, Section 2.5.

2.2. Discussion of conditions

The model we have studied is complicated but there is still applied motivation 
for generalizations. We briefl y discuss in this section our conditions and some 
possible extensions.

Dependences between the years. Dependences between consequtive years in
the model are caused, for example, by infl ation, real growth and the returns 
on the investments. However, we assumed in (2.12) and elsewhere that the cor-
responding rates in different years are independent. It would be natural to 
allow at least a Markovian dependence. This type of extension has been gener-
ally possible in classical models in the case where the state space of the under-
lying Markov chain is fi nite. We refer to Asmussen (2000). We believe that a 
similar extension is possible here, especially, since we only consider crude esti-
mates for ruin probabilities. More general Markovian structures could also be 
analyzed. We refer to Collamore (2009) for results in this direction.

Real growth. Real growth g is modelled as a part of the Poisson parameter in 
(2.1). A natural interpretation is that it describes changes in the numbers of 
insureds. We assumed that �(g)  ≥  0. This basically excludes the case where
the insurance business will be stopped. A non-negative constant could be an 
appropriate model for real growth but it is also natural to allow some random-
ness in this part.

Short term fl uctuations. We assumed for the structure variable q in (2.13) that

 � ( ( ) / ) 0.q s c b> >+1 r  (2.22)

This condition is satisfi ed at least in the popular Polya case where q has
a gamma distribution. Roughly speaking, the condition means that in any 
circumstances, the yearly profi t Pn  –  Xn is negative with a moderate probabil-
ity. Without the assumption, positive long-term real growth could make the 
probabilities very small. This is easiest understood by looking at a simple case 
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where (2.22) does not hold. So take c  =  ß and q   /  1, and let g be a positive 
constant. Then by the law of large numbers, �(Pn  –  Xn  <  0) tends to zero as
n tends to infi nity. It is not clear to us how ruin probabilities behave in this 
case.

Something like (2.22) seems to be necessary to end up with the conclusion 
of Theorem 2.1. We note, however, that it should be possible to relax the con-
dition by specifying the fl uctuation sequences {bn} and {cn} in more detail. 
Nevertheless, in the presence of real growth, also the short term fl uctuation 
may be viewed as an essential risk factor in the model. Finally, it is worth to 
note that condition (2.22) can be dropped in the case where g  /  0.

Heavy tailed claim sizes. We assumed that �(Z a) is fi nite for every a  >  0. This 
excludes heavy tailed distributions as models for the claim sizes. If  the assump-
tion is relaxed then limit (2.20) may change but it may still be possible to 
specify it. We refer to Nyrhinen (2005), Example 3.4.

Economic cycles. Economic cycles may be included in the model by means of 
the b- and c-variables as it was described in the fi rst part of Section 2. A pos-
sible interpretation is that cycles in the general economy induce cycles in the 
numbers of claims. This can be described by means of the b-variables. The affect 
to the premiums should be similar but it could come with a delay and in a 
smoothed way. This can be described by means of the c-variables.

It is intuitively clear that cycles increase the risk of ruin in a short time hori-
zon, especially, if  a bad period is just starting. Still their impact is not seen in 
the moderate time horizon of Theorem 2.1. We believe, however, that cyclicity 
associated with the economic factors would affect the limits of the theorem.

We did not give any specifi c model for the b- and c-variables but just 
assumed uniform bounds (2.6) and (2.11). These assumptions seem not to be 
very restrictive. An interpretation is that they just exclude extreme variations 
in the general economy. Cycles could be introduced by making use of appro-
priate autoregressive processes. As an example, let

 p flog log loga an n n1 1 g= + + +- pb -nb b  (2.23)

where p  !  � and a1,  …,  ap  !  � are constants and {fn} is an i.i.d sequence of 
random variables. We consider log bn in (2.23) instead of bn since it is necessary 
to guarantee that bn is positive. An appropriate choice of the constants makes 
the process {log bn} causal. Our condition (2.6) is then satisfi ed if

 �(f1  !   [ – M,  M  ] )   =   1 (2.24)

for some M  !  �. This is easily seen from the series representation for {log bn}. 
We refer to Brockwell and Davis (1991) for the background. Assumption (2.24) 
is rather strong but necessary in our proofs. It is plausible that it could be 
relaxed in this particular example.
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Other variants. Some further changes in the model could be motivated from the 
applied point of view. For example, in the defi nition of the premium in (2.3),
it could be natural to replace the last infl ation rate in by an estimate. Also in the 
transition rule for the capital in (2.4), alternative models could be used for the 
investment return on the profi t Pn  –  Xn of the current year. The proofs indicate that 
small changes in these directions would not affect the limits of Theorem 2.1.

2.3. Examples

We illustrate in this section Theorem 2.1 by means of two examples. It turns 
out that the crude description of the theorem is suffi cient to confi rm some 
intuitively natural viewpoints concerning the risk of ruin associated with the 
models in question. In both of the examples, the risk will be measured by R(x) 
for small x. It is interesting that for large x, the conclusions may be different. 
We prefer to focus on short time horizons since they are probably more rele-
vant from the applied point of view.

We will consider some fi nancial instruments in the examples. For the back-
ground, the reader is referred to Chapters 1 and 2 of Panjer et al. (1998).

Example 2.1. We will compare two investment strategies in a model where 
infl ation and real growth are not present, that is, i   /   0 and g   /   0. Suppose 
that there are a stock and an associated put option available in the fi nancial 
market. Let Sn be the value of the stock at the end of the year n, and let kSn 
be the strike price of  the put option associated with the year n  +  1 where 
k  !  (0,1) is a constant. According to Theorem 2.1, assume that

 {Sn + 1  /  Sn ;  n   =   0, 1, 2,  …}

is an i.i.d. sequence of random variables. The value of the option at the end 
of the year n  +  1 is

 max (kSn – Sn + 1, 0).

We assume that the price of the option at the beginning of the year n  +  1 is 
p(k) Sn where p(k) is a constant. The above assumptions hold, for example, in 
the Black-Scholes model for the fi nancial market.

Suppose fi rst that the company invests all its money in the stock. Let rs be 
the associated generic rate of return on the investments. Hence, 1  +  rs has the 
same distribution as Sn + 1  / Sn. Associated with this investment strategy, denote 
by Ls the function corresponding to (2.15). Thus 

 s
a-

�a( ) ( .logsL = r+1 )a k

Let further Rs(x) be the parameter corresponding to (2.18), that is, Rs(x)  = 
xLs* (1 / x).
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 ECONOMIC FACTORS AND SOLVENCY 901

Consider an alternative investment strategy where the company cuts large 
losses in the investment side. This can be done by keeping the number of stocks 
and options equal in the portfolio. Defi ne the variable ra according to

 s,r k
k1 ( )

( )max
1ar p+ =

+
+

.
1

Then ra describes the rate of return associated with the strategy. Correspond-
ing to (2.15) and (2.18), write

 (a�a( ) ( and ( 1/ .log R x xarL L= + =
- *

a a x) )a1 )a k

Let’s compare ruin probabilities related to the above two strategies. Under the 
natural assumption that

 � s1 ( ) 01< >r p k
k

+
+

,e o

there exists a0  ≥  0 such that Ls (a)  ≥  La (a) for every a  ≥  a0. The point is that 
the derivative of La is bounded from above by log ((1  +  p(k)) / k) but the deriv-
ative of Ls is not. See for example Bahadur and Zabell (1979), Theorem 2.4, 
and Rockafellar (1970), Corollary 26.4.1. We can further choose a0 such that 
Ls�(a0)  >  0. Let 0  <  x   ≤   1 / Ls�(a0). By (2.19),

 
*

*

a a a a

a a a a

( ) { / ( ); }

{ / ( ); } ( ) .

sup

sup

x x

x x

1

1

s

a

0

0

$

# $ #

L L

L L

= -

-

s

a

/

/

Thus Rs (x)  ≤  Ra (x) for small x, and the inequality is often strict. If  this is
the case then the ruin probability within the time horizon [0,  x  log  u] has a 
tendency to be smaller when the alternative strategy with options is used.

Example 2.2. We will focus in this example on the correlation between infl a-
tion and the returns on the investments. Suppose that there are a stock and
a risk-free asset available in the fi nancial market. Let i be the generic rate of 
infl ation as earlier, and let rs be the generic rate of return on the stock. We assume 
that the pair (log (1  +  i ), log (1  +  rs )) has a two-dimensional normal distribution. 
Let (mi, ms ) be the mean and

 
i

ii

s

s

s

s
s

S =
s

s2

2f p

the covariance matrix of  the distribution. Assume further that the rate of 
return on the risk-free asset is a fi xed constant rf . Write in short mf   =  log (1 +  rf ). 
Finally, let g   /   0.
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We assume that ms  >  mf   >  mi . This corresponds to the natural situation 
where in the mean, the returns on the investments suffi ce to compensate the 
affect of  infl ation, and the return on the stock is larger than the risk-free 
return. It is also natural to assume a positive correlation between infl ation and 
the return on the stock. Hence, we take sis  >  0.

Consider fi rst the strategy where the company invests all its money in the 
stock. Let j be the variance of the variable log (1  +  i )  –  log (1  +  rs ), that is,

 i s2i sj s s s= - + .2 2

 

We assume that j  >  0 which just excludes superhedging (2.21). Associated with 
this strategy, let Ls and Rs be the functions corresponding to L in (2.15) and 
R in (2.18). Then

 m mj -) (sa a a( ) ( / and ( .R x x
x2
1

s i s s i
2

L = - + = + )) j2
2

m mb l

Consider an alternative strategy where the company invests its money in the 
risk-free asset only. Let Ra be the function corresponding to R in (2.18). Then

 m
i

f( ( .R x x
x2
1

a is
= + -) )m

2

2 b l

Suppose fi rst that ss
2  –  2 sis  >  0. It is easy to see that then Rs (x)  <  Ra (x) for 

small x  >  0. This indicates that by investing in the risk-free asset, the company 
ends up with smaller ruin probabilities than by investing in the stock. On the 
other hand, if  ss

2  –  2 sis  <  0 then Ra (x)  <  Rs (x) for small x  >  0. This gives the 
signal that it is safer to invest in the risky asset in the case where the correla-
tion between infl ation and the return on the stock is high.

2.4. Simulation examples

The asymptotic estimate of Theorem 2.1 gives the magnitude of the ruin prob-
ability for large u. In this section, we will complement the view by means
of simulation. We will study the speed of  convergence in the theorem and 
compare the estimates with the classical case. We also vary economic and 
insurance parameters to get an idea of their impact to ruin probabilities.

We begin by fi xing the model to be considered. Concerning the returns
on the investments, we assume that log (1  +  r) has a normal distribution. 
Denote by mr and sr the mean and the standard deviation, respectively. The 
rates of  infl ation and real growth are constants. Write mi  =  log (1  +  i ) and 
mg  =  log (1  +  g). We only consider cases where mr  >  mi  +  mg . Then x0  =  0 and 
m  =  1 /  (mr  –  mi  –  mg) in Theorem 2.1. The model for the claims will be fi xed in 
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all respects. The initial level of the mean of the number of claims is l  =  100. 
The structure variable q has the distribution

 �(q  =  0.8)  =  �(q  =  1.2)  =  0.5,

and the long term fl uctuations in the numbers of  claims are dropped by tak-
ing bn   /   1. The claim sizes in the infl ation-free economy are exponentially 
distributed with mean mZ  =  1. The safety loading s is varied. We also drop the 
fl uctuations in the premiums by taking cn   /   1 in every example.

In the fi rst example, we study the ruin probability �(Tu  ≤  x log  u) with 
x  =  5, and take mr  =  0.1, sr  =  0.5 and s  =  0.05. We consider two alternatives 
for infl ation and real growth, namely, (mi,  mg )  =  (0.05, 0) and (mi,  mg )  =  (0, 0.05). 
In both of the cases, the distribution of log W is normal, and the mean and 
the standard deviation are – 0.05 and 0.5, respectively. Further, R(x)  =  0.625. 
Let P be the empirical estimate of �(Tu  ≤  x log  u) and let

 R  =  (log u)– 1 log P.

The results are given in Table 2.1. The estimates corresponding to the alter-
native values of (mi,  mg ) are rather close to each other which is not suprising. 
By Theorem 2.1, estimate R should be close to R(x) for large u. The conver-
gence seems not to be fast in this example. In the classical case where i   /   0, 
g   /   0 and r   /   0, the probability �(Tu  ≤  x log  u) is approximately 1.1  ≈  10  – 1 for 
u  =  102, and it is less than 10  – 7 for u  =  103. In comparison with the estimates 
of Table 2.1, the relative difference is huge for large u. The ruin probabilities 
in the table are larger that 10 – 4 even for u  =  106.

TABLE 2.1

mr  =  0.1 AND s  =  0.05

u
Time

horizon

(mi,  mg)  =  (0.05, 0) (mi,  mg)  =  (0, 0.05)

P R P R

102 23 2.2  ≈  10 – 1 0.330 1.9  ≈  10 – 1 0.355

103 34 3.9  ≈  10 – 2 0.472 3.7  ≈  10 – 2 0.478

104 46 1.0  ≈  10 – 2 0.497 8.1  ≈  10 – 3 0.523

105 57 1.9  ≈  10 – 3 0.543 1.6  ≈  10 – 3 0.558

106 69 4.1  ≈  10 – 4 0.564 3.5  ≈  10 – 4 0.577

We next increase the mean of the returns on the investments, and also make 
a similar change in the insurance side by increasing the safety loading. In 
Table 2.1, we had (mr , s)  =  (0.1, 0.05). Now consider the cases where (mr , s)  = 
(0.15, 0.05) and (mr , s)   =  (0.1,0.1). We also fi x (mi , mg )  =  (0.05, 0), and take 
again x  =  5 and sr  =  0.5. The resulting estimates are given in Table 2.2.
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In comparison with Table 2.1, both of the changes led to smaller ruin prob-
abilities. For large u, the change in the economic parameter mr reduced them 
more than the change in the safety loading s. This should be the case since 
R(x)  =  0.9 when mr  =  0.15 and R(x)  =  0.625 when mr  =  0.1.

3. PROOFS

We begin by giving an intuitive description of  the proof of  Theorem 2.1. 
Conditionally, for given values of economic factors, the mean of the number 
of claims in the year n can be approximated by

 (1  +  g1)  ···  (1  +  gn), (3.1)

and the mean of the discounted value of the claim size is approximately

 r
i

r
i

1
1

1
1

n1
g

+
+

+
+1 n .

The approximation concerning the number of claims is best motivated in the 
case where (3.1) is large. If  ruin occurs in the year n then we can expect that 
the discounted value of the total claim amount is of the same magnitude as 
the initial capital u. This means that

 
i gk( ) ( )

log r1k

n

k

k

1 +
+ +

=

1 1
d n/

is approximately log u. By taking n close to x  log u, the probability of the event 
can be estimated by making use of standard large deviations techniques. This 
leads to the estimate of the theorem.

The structure of the proof of Theorem 2.1 is largely the same as in Nyr-
hinen (2001). However, new technicalities arise because we allow real growth 

TABLE 2.2

mi  =  0.05 AND mg  =  0

u
Time 

horizon

(mr, s)  =  (0.15, 0.05) (mr, s)  =  (0.1, 0.1)

P R P R

102 23 1.5  ≈  10 – 1 0.415 1.0  ≈  10 – 1 0.493

103 34 1.3  ≈  10 – 2 0.627 1.6  ≈  10 – 2 0.603

104 46 1.9  ≈  10 – 3 0.682 4.0  ≈  10 – 3 0.599

105 57 2.2  ≈  10 – 4 0.730 8.6  ≈  10 – 4 0.613

106 69 2.4  ≈  10 – 5 0.770 1.9  ≈  10 – 4 0.619

93864_Astin40/2_18.indd   90493864_Astin40/2_18.indd   904 13-12-2010   10:58:3713-12-2010   10:58:37



 ECONOMIC FACTORS AND SOLVENCY 905

in the model. To explain this, let’s drop infl ation, returns on the investments, 
and cycles from the model. By the notations of Section 2, this means that the 
profi t of the company in the year n is

 n js
n

g gn( ) ( ) ( ) .P Z
1

n Z
j

N

1
n 1

gl- = + + +
+-

X
=

1 1
N

m 1 - /  (3.2)

Real growth affects the premium Pn in a simple multiplicative way. If  the same 
would be true for the total claim amount Xn then everything would be very 
similar to Nyrhinen (2001). This is not the case in the present model since real 
growth affects the number of claims Nn  –  Nn  –  1, and there seems to be no sim-
ple multiplicative connection between the distributions of Nn and Nn  –  1.

In the proof of upper bounds, we need new arguments to estimate moments 
of the total claim amounts Vn in (2.5). To this end, we state Lemma 3.1 below 
concerning compound Poisson distributions. For the lower bounds, the main 
new task is to study the interplay between real growth and short term fl uctua-
tions. The conclusion will be lower bound (3.28) below. All these things must 
be put together with the other parts of the model.

We need some basic facts from the theory of convex functions. They will 
be used throughout the proofs. The background can be found in Rockafellar 
(1970). Let f   : �  "  �  j{3} be a proper convex function. The convex conju-
gate f * of  f is a function �  "  �  j{3} defi ned by

 f *(x)   =   sup{tx  –  f (t); t  !  �}.

Also f * is convex. Assume henceforth that f (0)  =  0. Then f *(x)  ≥  0 for every x. 
If  x  =  f �(tx ) for some tx  !  � then f *(x)  =  tx  x  –  f (tx ). In particular, if  f �(0) 
exists then f *(  f �(0))  =  0. In this case, f * attains its global minimum at f �(0), 
and so f * is increasing on (  f �(0), 3). Assume further that f is differentiable on 
some interval [t0, 3), and write z  =  limt  "  3  f �(t). Then

 f *(x)  =  sup{tx  –  f (t); t  ≥  t0} (3.3)

for x  ≥   f �(t0). Further,

 f *(x) < 3  for  x  !  (  f �(t0),  z)  and  f *(x) = 3  for  x > z. (3.4)

Proof of Lemma 2.1. To see that rg  <  3, it is suffi cient to consider the case 
where �(g  >  0)  >  0. It is clear that then Lg(a) tends to infi nity as a tends to 
infi nity. Thus rg  <  3. The function R is strictly decreasing on (x0, m) by Martin-
Löf (1983) and Nyrhinen (1998). The other results follow immediately from 
the convexity of L and from (3.3) and (3.4). ¡

Before the proof of Theorem 2.1, we will give an asymptotic result concerning 
the moments of compound Poisson distributions. The proof of the result will 
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be given at the end of the section. Let Z, Z1, Z2,  …  be an i.i.d. sequence of 
non-negative random variables, and assume that �(Z  >  0)  >  0. Let Nn be a 
Poisson distributed random variable with the parameter n. Assume that Nn is 
independent of the Z-variables so that

 Xn   := Z1  +  ···  + ZNn
 (3.5)

has a compound Poisson distribution.

Lemma 3.1. Assume that �(Z)  <  3.  If �(Za)  <  3 for a  >  0 then

 1
nlog a( )lim log an =

"3n
- (� .X )  (3.6)

We now turn to proof of Theorem 2.1. It is convenient to consider a discounted 
version of the process {Un}. For n  !  �, write

 
n

A r
i

1
1

n =
+
+ n

and

 n s g g( ) ( ) ( )Bn Z n n1 gl= - + + +V 1 1c1 m  (3.7)

where Vn is as in (2.5). Let further

 i1g ( ) .A A Bn
k

n

k k k
1

1= +
=

- 1Y /  (3.8)

By dividing each Un by (1  +  r1)  ···  (1  +  rn), it is seen that the time of ruin Tu can 
be expressed as

 
�

u
n

#
=

n

{

for every

inf

if
T

n Y u

Y u n

>

3

!

.

; }
*  (3.9)

Defi ne the generating functions Li and LA by

 i a
+a( ) ( )logL = �i 1` j (3.10)

and

 r
ia( ) logAL =

+
+ a

� 1
1

ce m o (3.11)

for a  !  �. Let L and Lg be as in (2.15) and in (2.16). By our assumptions,

 L   =   LA + Lg. (3.12)
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Proof of Theorem 2.1. We begin by showing that for every x  !  (0, m),

 1-
�( ( ) ( .limsup log log logx u R

u
u # # -

"3
u) )xT  (3.13)

Let Vn be as in (2.5), and let

 i .n 1 ( )Y A A V
k

n

k k k1
1

1= + +
=

-g 1/  (3.14)

Then Yn  ≥  1, Yn  ≥  Yn, and {Yn} is an increasing process. Hence,

 Y� �( ) ( )logx u ulogu x u# # $T
_ i

 (3.15)

where a_ i denotes the smallest integer  ≥  a.
We will apply the Gärtner-Ellis theorem to the sequence {log Yn}. We refer 

to Dembo and Zeitouni (1998) for the background. To apply the theorem, 
defi ne the function G  :   �  "  �  j{± 3} by

 n
1 Y- �a( ) .lim sup logn

n
=

"3

a
G ` j

Then G is convex. The fi rst step is to show that

 
r

a
a

a a
( )

0 for 0

( ) for .
#

#

$L
G *  (3.16)

For a  ≤  0, (3.16) holds since Yn  ≥  1. Consider now an arbitrary a  >  0, and let 
e  >  0 and k  !  �. By our model assumptions,

k
a

V �( a )
h

1l-
� �

( ( ) ( ) )
(( ) ) .e h

g g q
Z

1 1( )b g g k k k
h

h

1

0
1

k k k1
g

g
l

=
+ +

+ +
g

3
+

=

) ! Zq+ b(1
f p/

Take Z  =  Z in Lemma 3.1 and choose large M  >  0 such that �(Xn
a)  ≤  n a + e 

whenever n  >  M. Write

 gg{ ( ) ( ) .MM k k k1 gl= + +1 1G q >b }

Then

 
e+ e

k

a e+

g gM1V e

+a

� �

�

( ( )) ( ) ( )

( ( ) .

q

q e ( )

k k k

k

1 g#

#

l

l

+ +

Lb a

+

g

G 1

)

a1ba
_` i j
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Concerning the complement of GM, we have

 kV M M
M� �( ) ( ) .ea

#G1 X
c a

` j

By the above estimates, there exists a constant C1 such that

 kV� ( ) 1,maxC e (k
1

g
#

eL +a a )
_ i

for every k  !  �. By (3.12), there exists a constant C2 such that

a)Vg i ((e� (( ( ) ) ( ,maxA A C e1a a a) ( ) ) ( ) (
k k k

k k k
1 1 2

1 1 g g
#+

eL L L
-

- - - +1 )e ) (3.17)

for every k.
Assume now that r  <  3, and let a  ≥  r. Then L(a), Lg (a) and Lg (a  +  e) are 

all non-negative. For a  >  1, apply Minkowski’s inequality to conclude by (3.17) 
that there exists a constant C such that for every n,

 nY� ( ) .C e ea a a( ) ( ( ( ))n n g g
#

eL L+ -La )  (3.18)

By the continuity of Lg, the estimate implies (3.16) for a  ≥  r in the case where 
a  ≥  1. A similar proof  applies to the case where a  !  (0,1). Instead of  Min-
kowski’s inequality, we now make use of the inequality

 ( y x ya a a
#+ +)x  (3.19)

for x, y  ≥  0.
We need an additional estimate for G in the case where r  =  3. Then L(a)  ≤  0 

for every a  ≥  0. Since Lg(a) is non-negative for a  ≥  rg we conclude as above 
that

 G(a)   ≤   0  for  a   ≥   rg. (3.20)

Let e  >  0. By the above estimates and by convexity, G is fi nite everywhere. By 
the Gärtner-Ellis theorem,
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 (3.21)
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Consider fi rst the case where r  =  3. Then (3.20) holds and consequently, 
G*(v)  =  3 for every v  >  0. Thus (3.15) and (3.21) imply (3.13). Let now r  <  3. 
It follows from (3.3) and (3.16) that for v  >  L�(r),

 
(v)*

a

a

( )

( ) r

�a

a

( {

{ ; } .

sup

sup

v*
!

$ $

G G

L L

= -

=

)

a

;

-

a }v

v

Further, L* is increasing on (L�(0), 3), and hence, on (L�(r), 3). Recall that 
x  <  m. By the above discussion, it is seen that for small e, (3.21) is at most 
– xL* (1 / x  –  e). Finally, x  !  x0 so that xL* (1 / x  –  e) tends to R(x) as e tends 
to zero. Thus (3.15) implies (3.13).

To complete the proof, we have to show that for every x  !  (x0,  m),

 1 log-
�( ) ( ) ( ) .lim inf log logu x u R x

u u # $ -
"3

T  (3.22)

Namely, by Lemma 2.1, (3.22) is trivial for x  !  (0, x0 ). In particular, we can 
assume that x0  <  m and r  <  3. This implies that L is strictly convex. Recall the 
defi nitions of Lg, Li and LA from (2.16), (3.10) and (3.11).

We will construct a subset of {Tu  ≤  x log u} which is large enough to lead 
to (3.22). Consider fi rst the case where g is not identically zero. Defi ne the 
continuous time processes

 ( () 0 ) 0 and ( ) 0t t z t t z t t< < < < < <
,

n
A

n
A

n
g3 3 3; , ; ;z i

$ $ %. . /

by

 
i

A

A

(

(

) / ,

) (1 ) /

log log

log log log

z t A n

z t A n,

A
tn

A
tn tn

1

1 1

g

g

= + +

= + + + +-

n

n
i

_

_

i

i

^

^ ^

h

h h

and
 g( ) ( ) ( ) /log logz t g nn tn1 g= + + + + .1g 1_ i^ h

Fix p  >  0 and small e  >  0, and let x1 and x2 be such that 0  <  x1  <  x2  <  x. Write

 
p

1H

H

( ) | ( ) ( ) / |

( ) | ( ) ( ) / |

sup

sup

z t p t x

z t t x

0

,

t x
n

t x
n
A

0
1

<

<

#

#

e e

e e

= - -

= - -
#

#

A
n

n
i

1

1,

A

A i

,&

&

0

0

and

 1nH ( ) | ( ) / |sup z t pt x
t x

n
0 <

#e e= -
#

.gg
' 1  (3.23)
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Write further

 g gH ( ) ( ) ( ), ,B k x n xnn k k1 1g 6$ !e e= + +11B
8 B$ .

where Bk is as in (3.7). By Mogulskii’s theorem,

 1 log *H� ( / 4) .lim inf n x x
p1

n n
A

A
1

$e L-
-

"3

-
` dj n  (3.24)

We refer to Dembo and Zeitouni (1998) and Martin-Löf (1983). For a  >  0, we 
have by Chebycheff’s inequality,

 i n
� ( ) / / 4 .log n e>

a a/ 4 ( )i
#e+

L- +e1^ h

A similar estimate holds for the probability �(log(1  +  i )  /  n  <  – e / 4) so that 

 
a

log

log

i

n na a

1

1

� | ( ) / | / for some

/

lim sup log

lim sup

n n k xn

n xn e e

4 1

4
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a a/ ( ) / ( )

n
k

n

4 4i i

# #

#

e

e

+

+ = -

"

"

3

3

e eL L

-

- - + - + -

1

.

_

^`

i

hj

_

_

i

i

By the same arguments, it is seen that

 1 log- � a/ | / 4 for some 1 / 4.lim sup n A k xn
n

k # # #e -
"3

| log n e>_ i_ i

Since a is arbitrary we conclude by (3.24) that

 1 log- H� ( )lim inf n x x
p1

A
1

$e L-
-*

n"3

,
n
A i .` dj n  (3.25)

Similarly, by making use of Mogulskii’s theorem, it is seen that

 1 log- H� ( )lim inf n x x
p
1

$e L- *
n"3

n .g
g

` ej o

Let Xn be a compound Poisson variable as in (3.5), and take Z  =  Z. Let 
mZ  =  �(Z) as earlier. Fix n0  >  0, and write

 Zn( ) ( ); .inf m0 0$ $g g n n n= = nX�# -  (3.26)

Obviously, g is strictly positive. Denote

 + k1� ( , , ) 0, , 0 .y y y> >k 1f f= ;k y# -
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Corresponding to Hn
g(e) in (3.23), defi ne the subset of +�

xn_ i
 by

,f �( ) , | / / | .sup log logy y y y n pt xxn
g xn

t x
tn1

0
1 1

<
g! #e e= + + -

#

+nH g g g;g
b bl l' 1

_

_

^i

i

h

Choose a  >  (1  +  s) c / ß such that �(q  >  a)  >  0. This is possible by assumption 
(2.13). Recall the defi nition of the distribution function Fn from (2.7) and (2.8). 
By (2.9) and (2.10),

ls Z

1 1 1
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k# #H H H H� �

�

( ) ( ) ( ) ( ) for every

( )

, , , , , ,

c

q a x n xn

X m y y

dF y y y y y y

>n n n n k

k x n

xn

C y y y y
g g

xn
b

xn
b g

xn
g q

xn
q

1

n
k
b g

k
g

k
q

1
1

+ + +

g

f f f

$

$$

e e e e

e+ +gl
=

1

B B

, ,

g g
` a

_a

a

j k

i k

k

$ .` _

`

_

_ _ _ _

j i

j

i

i i i i

%#

where

 

n k

1 1 1

1 !

�, , , , , ,

, , ( ), , .

C y y y y y y

y y H y a k x n xn>

n xn
b g

xn
g q

xn
q xn

g
xn

g

3

1

f f f

f 6

!

e

= +

q

b ,

,g
!

, ;a

b

k

l 9 C

&

1` _

_ _ _

_

_
j i

i i i

i

i

Recall that bk  ≥  ß  >  0 for every k. Take n0  =  1 in (3.26) to see that for small e 
and large n,

    

k
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 (3.27)

Consequently,

 

1

x

log

log
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1

H ( )e�
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q a x x
p
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n n n

1$ g L- + -
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*
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+ H ( )e

x

Bg
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jj o
 (3.28)

On the event H H H( ) ( ) ( )e e en n n+ +,A i Bg , we have for large n,
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Y D e (
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n
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1 2
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` j
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and

 2Y Y D e ( /
x n n

n x 2
2 1

2 1
$

-
x

e)x
-

` `j j

where D1 and D2 are positive constants. Choose e, x1 and x2 in an appropriate 
way to see that  

2
Y e>n

n
x` j

 for large n on the event. By (3.25) and (3.28),
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 (3.29)

where o(1) tends to zero as x1 tends to x from the left. Choose x1 close to x 
such that x1  !  (x0,  m). Then L�(a1)  =  1 / x1 for some a1  >  r and hence,

 ( (1 a a1 / ) / ) .x x*
1 1 1L L= -

We now choose p such that Lg� (a1)  =  p / x1. Then p  >  0 and it is easy to see by 
(3.12) that

 
1

*

1 1
A .x x

p p1 1
L L L=

-
+* *

g xc d em n o

By (3.29),

 1- log �( ) ( ) (1) .liminf log logu x u x x o1*
u

1
# $ L- +

u"3
T c m  (3.30)

Now L* is continuous at 1 / x since x  !  (x0,  m). Thus (3.22) follows from (3.30).
Consider fi nally the case where g   /   0. We now choose p  =  0 in the defi ni-

tions of the sets Hn
A(e) and Hn

g(e). Then �(Hn
g(e))  =  1 for every n. Similarly 

to the case p  >  0, it is seen by choosing n0  =  lßa in (3.26) that

 

1- log u

1
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(1) (1) .

liminf log logu x u
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u"3
T

*
c cm m

This implies (3.22). ¡
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Proof of Lemma 3.1. Defi ne the function LN   :   (0, 3)  "  � by

 1
nN

- logN �( ) ( ) .lim sup logL t tn=
"3n

` j  (3.31)

We fi rst show that LN (t)  =  t and that (3.31) holds as the limit for each t.
We have �(Nn )  =  n, and by convention, let �(Nn

0 )  =  1. It is easy to see that 
then

 n nN Nh� �
h

k

0

1
n=

=

- 1 hk -k
` d `j n j/  (3.32)

for k  =  2, 3,  …. This shows that

 1
nN

-
�( )lim log log tn =

"3n
t

` j  (3.33)

for every t  !  �. Let t  !  (0, 1). Apply Jensen’s inequality to conclude that

 nN n� �
t

# n=N
t t

` _j i

so that LN  (t)  ≤  t. Now by Hölder’s inequality, LN is convex so that necessarily, 
LN  (t)  =  t for every t  >  0. It remains to show that (3.31) holds as the limit. 
Assume on the contrary that there would exist a sequence nj  "  3 and t0  >  0 
such that

 nNlog1
j

�( ) .lim log t<
j j 0

0n
"3

- t
a k  (3.34)

Write

 nNlog1
j

( �) ( )lim sup logL t
j

jn=
"3

-
N

t
a k (3.35)

for t  >  0. By the fi rst part of  the proof, ( )L t t=N  for every t  !  �, and 
( )L t t#N  for every t  !  (0, 1). By (3.34), ( ) .L t t<0 0N  This is a contradiction 

since also LN  is convex. It follows that (3.31) holds as the limit for every 
t  >  0.

Consider now (3.6). Let fi rst a  ≥  1. By Minkowski’s inequality,

 (3.36)
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By (3.26) and Jensen’s inequality,
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 (3.37)

By the above estimates and the fi rst part of the proof, (3.6) holds if  a  ≥  1.
Let now a  !  (0, 1). By (3.36) and Jensen’s inequality,
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To get an appropriate lower bound, let M  >  0 be such that �(Z  !  (0, M ))  >  0, 
and let k,Z (min M= Zk ) for k  !  �. Write

 X Z Z .g= + +
n1n N

Then also Xn  has a compound Poisson distribution. Write

 1-
X�( )( ) lim sup log logL n=

"3n
t nX

t
_ i (3.38)

for t  >  0. By the fi rst part of the proof, ( )L t=t
X

 for t  ≥  1, and ( )L t#t
X

 for 
t  !  (0, 1). Also L

X
 is convex so that by making use of arguments similar to the 

fi rst part of the proof, it is seen that ( )L t=t
X

 for every t  >  0, and further, that 
(3.38) holds as the limit for every t. The desired lower bound now follows since 
X X$n .n  ¡
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