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A ROW-WISE STACKING OF THE RUNOFF TRIANGLE:
STATE SPACE ALTERNATIVES FOR IBNR RESERVE PREDICTION 

BY
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ABSTRACT

This work deals with prediction of IBNR reserve under a different data ordering 
of the non-cumulative runoff triangle. The rows of the triangle are stacked, 
resulting in a univariate time series with several missing values. Under this 
ordering, two approaches entirely based on state space models and the Kalman 
fi lter are developed, implemented with two real data sets, and compared with 
two well-established IBNR estimation methods — the chain ladder and an 
overdispersed Poisson regression model. The remarks from the empirical results 
are: (i) computational feasibility and effi ciency; (ii) accuracy improvement for 
IBNR prediction; and (iii) fl exibility regarding IBNR modeling possibilities.
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1. INTRODUCTION

The issue of  Incurred But Not Reported (IBNR) reserve prediction has been 
extensively explored in the actuarial literature. Many techniques have been 
developed for improving accuracy of the estimated reserves, since biased and 
unreliable estimation generally result in ineffi cient management decisions
(cf. Bornhuetter & Ferguson, 1972). For a good survey on the subject of IBNR 
estimation, see Taylor (1986), Taylor (2000), England & Verrall (2002), and Tay-
lor (2003). In Taylor (2003), the IBNR estimation methods are classifi ed in 
two different types, namely the static/deterministic and the dynamic/stochastic. 
The former includes many well-known methods such as the traditional chain 
ladder, and the latter represents time-varying parameters models, like those 
dealt with under state space approaches.

This paper suggests a methodology for IBNR prediction which split into 
two distinct approaches. These should be classifi ed as dynamic/stochastic and 
are based on an alternative “row-wise” ordering of  the values in the runoff 
triangle. Such ordering produces a univariate time series with several missing 
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values, which, once summed up, give the desired and unobserved IBNR reserve. 
The approaches that shall be considered are based on state space modeling 
and the Kalman fi lter, which implies that missing values treatment and mean 
square error computations become quite attainable.

Even though both approaches give the same numerical result under rather 
general set-ups, they differ in some aspects. On one hand, the fi rst approach, 
termed the blocks method, consists of obtaining each “block” of the mean square 
error matrix associated with the missing values estimates. On the other hand, 
the second approach, the cumulating method, adds a new component to the 
state vector, which “accumulates” the missing values estimates and, as a result, 
the mean square error of the IBNR estimation is automatically obtained from 
the Kalman equations.

The paper has the following plan. Section 2 presents the notation used 
through the paper, the proposed new ordering and some justifi cation. Section 3 
introduces the essentials of  the linear state model and the Kalman fi lter, 
presents both methodologies in a general framework, and discusses related 
practical issues. Section 4 is dedicated to applications with two real data sets 
already used in the literature, where the proposed techniques are estimated, 
evaluated and compared with the chain ladder method and a Poisson regression 
model with overdispersion described in Renshaw & Verrall (1998) and England & 
Verrall (2002); the latter approach has still been quite considered in the litera-
ture on IBNR estimation as a standard benchmark — see for instance de Jong 
(2006). Section 5 concludes the paper and suggests some possible extensions. 
Technical proofs are relegated to the appendices.

2. THE RUNOFF TRIANGLE: NOTATION AND A NEW ORDERING

Traditionally, IBNR data are organized in the so-called runoff double-index 
format, as displayed in Figure 1 (see for example Hart et al., 2001). The rows 
of the triangle represent the accident years or years of origin and its columns 
give the development years. In this paper, the runoff triangle is portrayed in 
the incremental form and its cells are denoted by Cwd , 1  ≤  w  ≤  J and 0  ≤  d   ≤  J  –  1; 
each cell represents, for given w, d, the payment for an accident occurred at 
time w and reported at time w  +  d.

A common assumption of  several methods for IBNR estimation is the 
presence of a regular pattern for the incurred liabilities. The pattern originates 
from the delay between the origin and the payment — that is, a column effect — 
and should be appropriately modeled and predicted. As a seminal example of 
this approach, one should recall the Hoerl curve (cf. de Jong & Zehnwirth, 1983; 
and Wright, 1990). A more recent work from Piet de Jong (cf. de Jong, 2006) 
focuses on correlations between columns — mainly the earliest ones associated 
with smaller delays.

In this paper, a different approach is considered. The entries of the triangle 
in Figure 1 are rearranged as a kind of “time series” formed by stacking the 
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rows, and their former double-index is replaced by a single t, which clearly 
should not be read as a usual calendar time index. The result is a ordered data 
set with several missing values — see Figures 2 and 3. Under this new perspec-
tive, the dependence structure can be modeled in a natural fashion by a state 

Accident
Year

w

Development d

0 1 2 … J  –  1

1 C1, 0 C1, 1 C1, 2 … C1, J – 1

2 C2, 0 C2, 1 … C2, J – 2

3 C3, 0 h

h h h

h h CJ – 1, 1

J CJ, 0

FIGURE 1: Runoff Triangle: traditional double-indexing.

Accident
Year

w

Development d

0 1 2 … J  –  1

1 y1 y2 y3 … yJ

2 yJ + 1 yJ + 2 … y2J – 1 y2J

3 y2J + 1 y2J + 2 … y3J – 1 y3J

h h h

J y(J – 1) J + 1 y(J – 1) J + 2 … yJ2 – 1 yJ2

FIGURE 2: Row-wise ordering of the triangle.

Accident
Year

w

Development d

0 1 2 … J  –  1

1 y1 y2 y3 … yJ

2 yJ + 1 yJ + 2 … y2J – 1

h h

J y(J – 1) J + 1

FIGURE 3: Row-wise ordering of the triangle with missing values.
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space framework. A word of caution: even though not having the usual chron-
ological meaning, the new index t, instead, offers the possibility of organizing 
the data following the usual time series analysis standpoint. Besides, it allows 
the use of periodic components for the aforementioned column effect, as it 
will be seen in the next section.

Following Figure 1, it should be noted that some entries of Figure 2 are in 
fact absent, since they correspond to the IBNR components. So, Figure 3 shall 
be the target of what follows. In practice, to predict the IBNR reserve, which 
is the unobserved sum given by 

 tIBNR ,R y
t A

/ =
!

/  (1)

where A   /  {t  :  yt is missing}, means that the missing values of the new repre-
sentation must be estimated somehow. It is precisely here where the state space 
formulation has a major advantage, since missing values treatment is a quite 
natural task for the Kalman fi lter (cf. Harvey, 1989; Durbin & Koopman, 
2001; Brockwell & Davis, 2002; and Shumway & Stoffer, 2006). Besides, as it 
will be proven in the next section, it will also be possible to obtain an explicit 
formula for the mean square error of (1) under this proposed new ordering.

3. PROPOSED IBNR ESTIMATION METHODS

3.1. Linear state space models and the Kalman fi lter

A Gaussian linear state space model1 consists of  two equations. The fi rst is 
termed the measurement equation, and describes the evolution of a p-variate 
observable stochastic process (that is, the measurements) yt, t  =  1,  2, …. The 
second is the state equation. Specifi cally:

 yt   =   Zt  at + dt + et , et   +   N(0, Ht ) 

 at + 1   =   Tt  at + ct + Rt  jt, jt   +   N(0, Qt ) (2)

 a1   +   N(a1, P1).

The former equation relates yt to the m  ≈  1 unobserved state at, and the latter 
gives the state evolution through a Markovian structure. The random errors et 
and jt are independent (in time, between each other and of a1) and the system 
matrices Zt, dt, Ht, Tt, ct, Rt and Qt are deterministic. For a given time series of 
size n and any t,  j, defi ne Fj   /   s(y1, …, yj ), at | j   /   E(at | Fj  ) and Pt | j   /   Var(at | Fj  ). 

1 One could think of a wide sense linear state space model, which has no Gaussian assumptions of 
any kind. Nevertheless, everything developed here maintains great generality, since the formulae 
corresponding to conditional expectations and covariance matrices still represent, outside Gaussian 
set-ups, optimal linear estimators and associated mean square error matrices.
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The Kalman fi lter (prediction and smoothing equations) consists of recursive 
equations for these fi rst- and second-order conditional moments when j  =  t  –  1 
and j  =  n. The corresponding expressions are given in (3) and (4). Details 
 concerning the derivations of such formulae and the estimation of unknown 
parameters in the system matrices by (quasi) maximum likelihood, can be 
found in several books, like Harvey (1989), Durbin & Koopman (2001), Brock-
well & Davis (2002) and Shumway & Stoffer (2006).

 ut   =   yt – Zt at | t  – 1  – dt , Ft  =  Zt Pt | t  – 1 Zt�  + Ht,

 Kt  =  Tt Pt | t  – 1 Zt� Ft 
–1, Lt  =  Tt – Kt  Zt, t  =  1, …,  n, (3)

 at + 1| t  =  Tt at | t – 1  + ct + Kt ut, Pt  + 1| t  =  Tt Pt | t  –  1 Lt�  +  Rt Qt Rt�,

 rt – 1  =  Zt� Ft 
–1 ut + Lt�rt , Nt  –  1  =  Zt� Ft 

–1 Zt + Lt� Nt Lt ,

 at | n  =  at | t  – 1 + Pt | t  – 1 rt  – 1, Pt | n  =  Pt | t  – 1  –  Pt | t  – 1 Nt  –  1Pt | t  – 1, (4)

 rn  =  0, Nn  =  0,  t  =  n, …, 1.

Amongst the works on IBNR estimation employing the state space modeling 
framework, due attention should be paid to the paper by de Jong & Zehnwirth 
(1983), who present the triangle of  Figure 1 in a way that recognizes the 
 diagonals as the size-varying measurements — consequently, their approach 
follows the usual calendar time ordering. It is also mentioned that those 
authors assume a Hoerl Curve structure for each row and its time-varying 
parameters are the components of  the state vector. Verrall (1989), despite of 
also respecting the usual time frame, considers an estimation method sup-
ported by the Bayesian approach; this same inferential perspective was 
adopted in the work by Ntzoufras & Dellaportas (2002). The class of  models 
proposed by Verrall constitute an adaptation of  the static 2-way ANOVA 
structure of  Kremer (1982) to the state space representation. Other works 
that deserve mentioning are Wright (1990) and Taylor (2003), the latter offer-
ing an approach based on the exponential distribution fi lter. More recently, 
de Jong (2006) proposes a state space form that permits the estimation of 
correlations between the triangle’s entries. Still, one should recall the book by 
Taylor (cf. Taylor, 2000), which, amongst many other proposals, discusses a 
particular method that takes the rows of the runoff triangle as the measurement 
vectors.

Even though keeping towards an alternative row-ordering of the triangle 
previously discussed in section 2, the approach of the present paper maintains 
similarities with the state space proposals of  Jong & Zehnwirth (1983) and 
Taylor (2000), such as introducing structural modeling with stochastic level 
and periodicity components. The next subsections conserve space to motivate 
the use of  unobserved level and periodic components for probabilistically 
describing the data in the new row-wise arrangement.
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922 R. ATHERINO, A. PIZZINGA AND C. FERNANDES

3.2. Structural Models

3.2.1. First proposal

A structural model for a time series has unobservable components, such as 
level, slope, seasonality and error, which are explicitly modeled (cf. Harvey, 
1989). This paper will consider in the applications a structural model with two 
components: a local level and a stochastic periodic component. It is presented 
in (5).

 yt   =   mt + gt + xt�b  +  et, et   +   N(0, se
2 ),

 mt + 1  =  mt + ht , ht   +   N(0, sh
2 ), (5)

 gt  + 1  =  t j t
j

J

1
1

1
w- + -

-

=

g + ,/  wt   +   N(0, sw
2 ).

The use of these components is motivated by the claims process behavior. The 
basic assumption is that accident years present very similar patterns regarding 
claims payments, so stacking the whole “square” (that is: the runoff triangle 
merged with the missing values) as a single univariate time series would generate 
a very strong periodicity that could be viewed itself as an unobserved stochastic 
process. As the values of the “lower triangle” are unknown, the time series 
formed from this new-ordering will have missing values.

Following Harvey (1989 ch. 2), standard structural time series models allow 
direct interpretation for their unobservable components: the level component 
responds for long-term movements and the seasonal (periodic) component 
captures calendar effects. In the present context of runoff data: the level com-
ponent mt shall respond for the average value of claims along each accident 
year, while the periodic component gt is supposed to capture the column effect, 
already discussed in section 2. The regression terms that appear in the fi rst 
equation are mainly motivated by the need of intervention effects due to the 
presence of outliers.

Model (5) is easily cast into a state space form (for example, see Harvey, 
1989 ch. 4 and Durbin & Koopman, 2001 ch. 3) and, consequently, everything 
to be derived in the sequel is certainly applicable. A point is worth stressing: 
the structural model (5) can also be used with the series in its logged scale, 
something that maintains coherence with the assumption of the data in its 
original scale having log-normal distributions. From a purely data-driven per-
spective, this way of  modeling is generally motivated by residual analysis, 
whenever the latter suggests a heteroscedastic behavior ex post estimating the 
model with the original scale. Despite of that, such log-normal distribution is 
frequently supported in the literature about IBNR data — see subsection 3.3.3. 
In considering model (5) with logged values, one should, by the time of con-
verting the data back to the original scale, be aware of  two points: (1) the 
interpretation for the exponentials of the components shall be multiplicative 
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The need for considering this additional structure might occur, for instance, 
in cases where the rows of triangle represent quarterly data. This situation is 
depicted in Figure 4. Should empirical evidences of common patterns, within 
a given quarter, arise from residual analysis, such seasonal behavior can be 
incorporated as 

 yt  =  mt + gt + tt d( (

i
t

1

4
b e+

i i

=

,))/

— for instance: an increase in the exponential of the level component is read 
as a percentage change in the yt (in its original scale) —; and (2) some proce-
dures must be carried out in order to preserving unbiased predictions of the 
original data. In connection with the blocks method (to be developed in the 
sequel), these points will be formally addressed; theoretically in subsection 3.3.3 
and empirically along section 4.

3.2.2. Second proposal: addition of a row effect

Even thought not implemented in the applications (see section 4), the meth-
odology proposed in this paper theoretically admits the inclusion of a periodic 
component coming from the rows of the triangle. Such extension is suggested 
in the form of dummy variables that could enter in the regression effect of (5). 

Origin w
Development d

0 1 2 … 11

2006Q1 C1, 0 C1, 1 C1, 2 C1, 11

2006Q2 C2, 0 C2, 1 C2, 2 …

2006Q3 C3, 0 C3, 1 C3, 2 …

2006Q4 C4, 0 C4, 1 C4, 2 …

2007Q1 C5, 0 C5, 1 C5, 2

2007Q2 C6, 0 C6, 1 C6, 2

2007Q3 C7, 0 C7, 1 C7, 2

2007Q4 C8, 0 C8, 1 C8, 2

2008Q1 C9, 0 C9, 1 C9, 2

2008Q2 C10, 0 C10, 1 C10, 2

2008Q3 C11, 0 C11, 1

2008Q4 C12, 0

FIGURE 4: A quarterly triangle.
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where, for each i  =  1,  …,  4,

 
tht !

t
, quarter

0, otherwise
d

y1( -
=

i ,)

.
i"

*
,

This extension could be used with types of  periodicity others than quarters 
(e.g. months, semesters etc.). It also worth mentioning that one could con-
sider up to S  –  1 dummies, where S is the number of  row periods, with an 
intercept term — if  S  –  1 dummies do enter in the specifi cation, this shall 
entail an equivalent parametrization to a model with S dummies but with no 
intercept.

A word of caution: the inclusion of such additional regression terms would 
certainly turn the maximum likelihood estimation even more diffi cult, given 
the enormous incidence of missing values (cf. see the discussion concerning 
the row-wise ordering in section 2).

3.3. First approach: the blocks method

3.3.1. The method

Consider the state space form in (2), the Kalman fi lter in (3) and (4), and all the 
associated notation and terminology introduced in subsection 3.1. In addition, 
defi ne I   /  {t  :  yt is non- missing}, Y  /  {ytj

   :   tj   !  I, 6j}, Fu  /  s(Y) and 

 t
�*

k
* *

I
*

1
� �

t

, if

, otherwise
.L

L

T
N L L Z F Z L

t

t
t

k t

n

k k k k t1
1

1
1 1f f/

!

/ +
= +

- - +
* L

t
* ** -

* /

In the actual context, Fu  represents the information generated by the triangle 
in Figure 3.

The development of  the blocks methods starts from a set of  recursions, 
derived in de Jong & Mackinnon (1988), Koopman (1993) and Durbin & 
Koopman (2001) ch. 4, for some covariance matrices associated with the error 
term et and the state vector at. These are collected as follows.

Lemma 1. For any t,  j  =  1, …,  n, it follows that

1. Cov(at, aj  | Fn )   =   Pt | t  – 1 Lt� L�t  + 1  …  L�j  –  1  (Im  –  Nj  – 1 Pj |  j  – 1 ),  j   ≥   t

 where Lt� L�t  + 1  …  L�j  –  1  =  Im   for  j  =  t.

2. Cov(et, ej  | Fn )   =   Ht Kt� L�t  + 1  …  L�j  –  1 Wj�,  j > t

 where Wj   =  Hj  (Fj
 – 1Zj   –  Kj�Nj  Lj ).

3. Cov(et, aj  | Fn )   =   – Ht Kt� L�t  + 1  …  L�j  –  1 (Im  –  Nj  – 1 Pj |  j  – 1 ),  j > t.
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4. Cov(at, ej  | Fn )   =   – Pt | t  – 1 Lt� L�t  + 1  …  L�j  –  1Wj�,   j   ≥   t

 where Wj  =  Hj  (Fj
 – 1Zj   –  Kj�Nj  Lj ) and Lt� L�t  + 1  …  L�j  –  1  =  Im   for  j  =  t.

Another important result is Lemma 2 given below. Its proof is a direct application 
of the well-established expressions for the mean vector and the covariance matrix 
under conditional Gaussian distributions (cf. Johnson & Wichern, 2002).

Lemma 2. Let x, y and z be random vectors with joint Gaussian distribution.
If Cov(y, z)  =  0 and Cov(x, z)  =  0, then 

E(x | y, z)   =   E(x | y)

Var(x | y, z)   =   Var(x | y).

The next result has a quite direct proof, which is given in appendix A, and 
reveals a kind of orthogonality between the observed part of the triangle given 
in Figures 2 and 3, and the IBNR unobserved components.

Lemma 3. For each t  "  I, et is uncorrelated with Y.

The derivation of the blocks method necessarily passes through the obtention 
of the conditional covariance matrix of the measurements yt, such that t  "  I, 
given the s-fi eld F.u  In the actual state space framework, this should be done 
by considering the conditional covariance matrices between at, et and jt, and 
by conveniently exploring the linear relation between these unobservable random 
quantities and the measurements yt. The next result, the proof of which is in 
appendix B, works out this idea by combining the lemmas already presented 
in a proper way.

Lemma 4. For each t,  j  "  I, it follows that:

1. 
j

)
=

Cov(
,

0, .

for

otherwise

H t
Ft j

t
; =,e e u *

2. Cov (et, aj  | Fu )   =   0

3. 
1

1 j

jt -

j -)
1 =

1

1 1

� � �
jCov(

( ),

, .

L L L P for t

N P for t

N <
Ft j

t t t t m

t t t t t t

j1 1 1f
; =

-

; ;

; ; ;

- + -

- - -

-
* * *

jP

P P

*-
,

*
a

I
a u *

Now, everything needed for the computational expressions of  the blocks 
method has been gathered. These are displayed in the next theorem; proof is 
given in appendix C:
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926 R. ATHERINO, A. PIZZINGA AND C. FERNANDES

From a practical/computational perspective, the calculation of the expressions 
from Theorem 1 needs the storing of several matrices produced by the Kalman 
fi lter, namely: Pt | t  – 1 and N*

t  – 1 for each t  "  I, and also Lt
*,  L*

t + 1,  …,  L*
t� –  1, 

1  ≤  t  < t�  ≤  n, where t and t� are respectively the fi rst and the last indexes that 
correspond to missing observations. Additionally, once calculated for each 
possible combination of i and j, the same expressions give the complete con-
ditional covariance matrix of Y  /  (y1�, …,  yn�)� given F.u  As a consequence, it 
turns out to be feasible to compute the mean square error associated with 
estimation of every linear combination of the missing values — some of which 
are properly tackled in the next subsection, given their actuarial importance 
if  the missing values do correspond to those from Figure 3.

3.3.2. Mean square error for partial and total IBNR estimation

Since E(a�Y | Fu )  =  a�E(Y |Fu ) and Cov(a�Y | Fu )  =  a�Cov(Y | Fu ) a for any 
given vector a  =  (a1, a2, …, an )�, in order to obtain these statistics for the total 
IBNR reserve, one must take a such that ai  =  1 if  i  "  I and ai  =  0 otherwise2. 
For the partial IBNR reserves, each of these being defi ned as the sum of the 
entries from a specifi c row of the triangle, one in turn has to fi ll the same vec-
tor a with some additional zeros in the appropriate entries. This row-analysis 
can be useful for identifying some sources of randomness in the components 
of the IBNR.

Then, the expressions given by the blocks method for the IBNR estimates 
and their associated standard errors are:

 �IBNR E( )aR F;/ = Y u\  (6)

 �IBNR sd ( )sd a aR Cov F/ ;= Y u_ ^i h\  (7)

Theorem 1. For each t,  j  "  I, it follows that 

j

j

1

1

,

,

and t

t

=t

j

-

-

)

and

1 1 1

1
� � �

j

Cov( ( )

( ) .

for t or j

Z N Z H for t j

Z L L L N P Z for t j j

0

<

F

I I

I

I

t j t t t t t t t t t

t t t t t j m1 1 1f

g

g

;

! !

= -
; ; ;

; ;

- - -

- + - -
* * *

+

j

P P P

P

*

*

�

�-

,y

I

y u

Z

[

\

]
]

]
]

2 In which concerns a�Cov(Y | Fu ) a, another possibility would be to choose a  =  (1, …, 1)�, since,
theoretically, the multiplications of  covariance blocks involving yt , for each t  !  I, must vanish
(cf. Theorem 1). However, numerically, it is not unreasonable to expect some loss of effi ciency and 
numerical instability if  such parts are not removed from the calculations. These drawbacks are 
caused by the fact that, although some matrix algebra operations should result in zeros analytically, 
in practice they do not, in light of rounding errors coming from fl oating point computations (cf. 
Thisted, 1988).
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For the practitioner, the procedure — adapted to the structural modeling 
framework from subsection 3.2.1 — could be summarized as follows:

1. Estimate the hyperparameters (se
2, sh

2 and sw
2 ) of the model via maximum 

likelihood. If the model has regression parameters, they should be estimated 
via maximum likelihood as well;

2. Apply the Kalman fi lter given in (3)-(4) and store the matrices Pt | t  – 1, Lt and 
Nt for all t;

3. Construct the covariance matrix Cov(Y | Fu ) using the formulae derived in 
Theorem 1;

4. Obtain the mean square error of the reserve from (7).

3.3.3. The use of the log-normal distribution for yt

An alternative that has been considered for modeling the runoff data is the 
log-normal distribution (cf. Taylor, 2000 ch. 9). From the generalized linear 
modeling perspective, one should look at Kremer (1982), Hertig (1985), Ren-
shaw (1989), Christofi des (1990), Verrall (1991), and Doray (1996). Kremer 
(1982) introduces the 2-way ANOVA to the triangle data, while the others present 
some variants of the technique or modifi cations on the data perspective, like 
modeling individual development factors (Hertig, 1985) instead of incremental 
data. In the time series literature, one should mention the works by de Jong & 
Zehnwirth (1983), Verrall (1989), de Jong (2004), and de Jong (2006), most of 
those based on state space models. The log-normal distribution implies an 
additive structure of the state vector on the logarithmic scale, forcing its com-
ponents to be normally distributed.

This alternative distribution induces the following algorithm for estimating 
the IBNR reserve and calculating its mean square error, which is still entirely 
supported by the blocks method.

1. Apply the Kalman fi lter to the triangle with entries zt   /   log yt, storing all 
the required matrices (see comments coming just after Theorem 1).

2. Use the blocks method to get3 zt   /  E(zt | Fu )   =   E(log  yt | Fu ), s2
zt
   /

Var(zt |Fu ) and szt, zj 
   /   Cov(zt, zj  | Fu ).

3. Compute4:

 
zt

s
y zexp 2t t= +

2

) 3 (8)

 y z
z

t
ts s s

t
2 1exp t= + e -

2 2 2

z _ i$ .  (9)

3 Note that the s-fi elds generated by the original measurements yt and by the transformed measure-
ments zt , t  !  I, are actually the same.

4 These expression are obtained from a straightforward application of moment generating functions.
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j

y
sz z

j
t zt

s s
exp e2 2 1, t

,

t j
js = + + +zy -z

2 2

z_ i* 4  (10)

4. Use the calculations discussed in subsection 3.3.2.

The possibility of adopting the log-normal distribution is a clear advantage 
of the blocks method over the cumulating method (next section), which does 
not permit the use of zt.

3.4. Second approach: the cumulating method

3.4.1. The method

The cumulating method consists of plugging a coordinate dt to the state vector 
in model (2), which shall respond for the accumulation of the estimated missing 
values. The resulting state space model is

 

0

p

t

t
t

t

t

a

a a

d

T

X I

c R0

0 0

t t
t

t t

t

t

t t t1

1

d
e

d d
j

= + +

= + +
+

+

,

y Z7 >

> > > > >

A H

H H H H H

 (11)

where Xt  =  0 for t  !  I and Xt  =  Zt for t  "  I (missing observation). Also, 
d1   /   0.

Denote the vector of unknown parameters from models (2) and (11) by c 
and c† respectively, and the corresponding likelihood functions by L and L †. 
Although c  =  c† — indeed: model (11) simply represents an augmentation of 
the state vector of  model (2), whose additional matrices do not bring any
new parameters —, it is not that obvious to affi rm the same, or not, for the 
maximum likelihood estimators associated with L and L †. The next statement, 
whose proof is in appendix D, solves the query and shall be key to implementing 
the method.

Theorem 2. c   /   arg max L(c)  =  arg max L †(c†)   /   c†.

The interpretation of Theorem 2 is that, even though having an additional 
“cumulating” coordinate in the state vector, the augmented model in (11) does 
not produce any improvement in the maximum likelihood estimation. In fact, 
the additional coordinate depends recursively only upon itself, something that 
preserves the distributional properties of yt. In practice, it shall imply feasibility 
of the implementations, since the estimation of the unknown parameters can 
be accomplished using the original model in (2) (which has lower-dimension 
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matrices) and, after, the obtained estimates should be used with the augmented 
model in (11).

3.4.2. Extension of the cumulating method: partial and total IBNR estimation

Taking the same motivation given in subsection 3.3.2, it is generally advisable 
to also incorporate partial cumulating components in the state vector of 
model (2) for each accident year. Let dt be a J  ≈  1 stochastic process such
dt  = (dt

(2),  dt
(3),  …,  dt

(J ),  dt
(T))�, whose indexes (i) represent the entries associated 

with each row, the last one being reserved to the total IBNR already defi ned. 
Use these new quantities, with d1  /  0, to obtain the following model:
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where Xt  =  (Xt
(2)�,  …,  Xt

(J )�,  Xt
(T )�)�, such that, for each i  =  2,  …,  J,

 t

and row

0 otherwise
X

Z t t iIt !

=
g

,
(i)

*

and also 

 
,

t otherwise
X

t

0

It
=

gZT(

.
)

)

Clearly, there exists a direct extension of Theorem 2 for model (12) that, again, 
would serve as a useful device for the estimation of unknown parameters in 
practical situations.

In which concerns the reserve estimation, by its very defi nition the random 
vector dJ

2  +  1 has partial and total unobservable IBNR reserves, except for
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the system matrices dt and the random errors et, which are excluded from the 
cumulating process. Therefore, the Kalman fi lter estimates of their entries and 
the associated mean square errors do play a role in the computations of partial 
and total IBNR predictions together with their corresponding accuracy meas-
ures. For example, the total IBNR estimate and its associated standard error 
is given by:

 d+J 1 tIBNR E( ) ,R F
t I

/ ;d= +
g

2
T( ) u\ /  (13)

 +J 1 tsd IBNR sd IBNR ( ) .Var HF
t I

/ ;d= +
g

2
T( ) u_ _i i\ \ /  (14)

For the practitioner, the procedure to obtain the mean square errors of the 
estimated IBNR reserves — under the structural modeling framework from 
subsection 3.2.1 — is summarized as follows:

1. Estimate the hyperparameters (se
2, sh

2, sw
2 and the coeffi cients associated 

with possible regression terms) of the reduced model by maximum likeli-
hood, using the original state space representation (cf. Theorem 2);

2. Apply the Kalman fi lter prediction equations in (3) with extended models 
of the form given in (12) — the number of cumulating components might 
depend on the application at hand — and store the result Var(dJ2 + 1 | Fu ).
It is the the last block of the matrix PJ2 + 1 | J2 ;

3. Obtain the mean square error of the reserve using (14) and variants for 
IBNR reserves other than the total.

4. APPLICATIONS

In this section, the methods previously developed are used with two real  runoff 
triangles. The results are compared with those from the traditional chain
ladder method (CL, hereafter) and those from Renshaw & Verrall (1998) and 
England & Verrall (2002), who used an overdispersed Poisson regression model 
(Poisson model, hereafter). In the sequel, the results from the estimations are 
presented and analyzed. The estimations have been done using a structural 
time series model as given in (5). The initialization of the Kalman fi lter has 
been carried out by the exact initial Kalman fi lter as presented in Koopman 
(1997) and in Durbin & Koopman (2001) ch. 5. The unknown parameters were 
estimated by maximum likelihood, using the BFGS quasi-Newton optimizer 
with an aid of the EM algorithm5 in order to obtain good initial guesses for 

5 This procedure has been taken in order to alleviate potential problems with the Fisher information 
due to the missing values, something that usually implies a low curvature of the likelihood function 
(cf. Migon & Gamerman, 2001 ch. 2).
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the variances; see Koopman (1993) and Durbin & Koopman (2001), ch. 7. The 
state space implementations have been carried out using the Ox 3.0 language 
(cf. Doornick, 2001) together with the Ssfpack 3.0 library for linear state space 
modeling (cf. Koopman et al., 2002).

It is also worth mentioning that, although the CL and the Poisson model 
do incorporate the parameters uncertainty, by considering the modifi cations 
on the forecast function and on its corresponding mean square error, the 
approaches proposed in this paper do not. Instead, it was used the very same 
paradigm defended by Harvey (1989), Brockwell & Davis (1991), Box et al. (1994), 
Hamilton (1994), Durbin & Koopman (2001), Brockwell & Davis (2002), 
 Enders (2004) and Shumway and Stoffer (2006): expressions for the forecast 
function and associated mean square error have been derived, and those have been 
used with maximum likelihood estimates in place of the unknown parameters, 
resulting in approximated versions of the theoretical formulae.

4.1. AFG data

The fi rst data set had already been used by many authors (e.g. England & Ver-
rall, 2002; and de Jong, 2006). It is displayed in Table 1 and, hereafter, it shall 
be referred to AFG. The univariate series created from stacking the data AFG 
are graphically displayed in Figure 5a in their original scale, and also in their 
log values6 in Figure 5b. Even from a very fi rst glance, there is a clear evidence 
of periodicity coming from the column effect.

6 Obviously, the negative value observed in Table1 is also treated as a missing value under this scale.

TABLE 1

AFG RUNOFF TRIANGLE (THOUSANDS OF DOLLARS).

Accident
year w

Development d

0 1 2 3 4 5 6 7 8 9

 1 5012 3257 2638  898 1734 2642 1828 599  54 172

 2  106 4179 1111 5270 3116 1817 –103 673 535

 3 3410 5582 4881 2268 2594 3479  649 603

 4 5655 5900 4211 5500 2159 2658  984

 5 1092 8473 6271 6333 3786  225

 6 1513 4932 5257 1233 2917

 7  557 3463 6926 1368

 8 1351 5596 6165

 9 3133 2262

10 2063
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Given some evidences from residual analysis supporting the presence of 
outliers, three models have been considered for each of the scales: one with
no interventions, other with “less interventions” and another with “more inter-
ventions”. These will de referred according to the notation explained below, 
which also lists the “time instants” that required dummies.

• I-a – original scale with no interventions;
• I-b – original scale with 5 interventions (t  =  11, 13, 31, 42, 44);

FIGURE 5: AFG time series resulted from row-wise ordering.
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• I-c – original scale with 8 interventions (t  =  4, 11, 13, 14, 31, 34, 42, 44);
• II-a – logarithmic scale with no interventions
• II-b – logarithmic scale with 7 interventions (t  =  11, 13, 21, 31, 44, 46, 60);
• II-c – logarithmic scale with 10 interventions (t  =  4, 9, 11, 13, 21, 31, 34, 44, 

46, 61);

The estimated variances from the structural model, together with the maximized 
log-likelihood, are displayed in Table 2, for both original and logarithmic 
scales. Some complementary information can be extracted from Figures 6 and 
7, which contain the output from the Kalman fi lter estimations for models I-c 
and II-c. The fi rst thing to be noted are the substantial increases in the log-
likelihood whenever interventions are added7. These are the very fi rst symp-
toms in favor of statistical relevance of such regression terms — there will be 
certainly more to be said about it later. On the estimated variances and cor-
responding signal/noise ratios8, one will probably note that those behave quite 
differently from one model to another. Although, two points are worth stressing. 
The fi rst is that, except for model II-a, the periodicity really seems to be sto-
chastic, something that is reinforced by the obviously time-varying estimated 
components depicted in the last panel of Figure 6 and in the second panel of 
Figure 7. The second is the quite intuitive and therefore expected decreasing 
path taken by the estimated irregular component variances from model I-a to 
model I-c (and also from model II-a to model II-c); again, one could take this 
as another piece of evidence supporting the need of intervening procedures.

In Tables 3, 4 and 5, there are several criteria that are of  great help of 
deciding which model seems to be most appropriate. In the fi rst three lines of 

7 Given that some models were estimated with the original data while others used the logged values, 
the log-likelihoods allowed to be compared are those within a given scale.

8 These are defi ned as the ratios between a level (or periodicity) error variance and the irregular 
component variance, and, to some extent, reveal the actual importance of such level (or periodicity 
component) for explaining the movements of the series being modeled.

TABLE 2

ESTIMATED VARIANCES AND SIGNAL-NOISE RATIOS FOR THE AFG DATA.

I-a I-b I-c II-a II-b II-c

Log-likelihood – 407.41 – 392.66 – 380.27 – 62.96 -39.89 – 17.39 

Irregular 2.15  ≈  106 9.89  ≈  105 3.00  ≈  105 6.59  ≈  10 – 1 1.99  ≈  10 – 1 9.06  ≈  10 – 187 

Level 1.64  ≈  104 1.03  ≈  10 – 4 0 1.82  ≈  10 – 13 9.89  ≈  10 – 13 1.64  ≈  10 – 4 

Periodic 2.05  ≈  105 2.37  ≈  105 3.68  ≈  105 2.39  ≈  10 – 10 1.34  ≈  10 – 2 7.48  ≈  10 – 2 

S/N (level) 7.62  ≈  10 – 3 1.04  ≈  10  – 10 0 2.77  ≈  10 – 13 4.95  ≈  10 – 12 –

S/N (periodic) 9.55  ≈  10 – 2 2.39  ≈  10 – 1 1.23 3.63  ≈  10 – 10 6.71  ≈  10 – 2 –
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FIGURE 6: Kalman smoothing estimation results from model I-c
for the AFG data in their original scale.
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FIGURE 7: Kalman smoothing estimation results from model II-c
for the AFG data in their logarithmic scale.
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Table 3, the in-sample predictive powers of the six proposed models, of the 
CL and of the Poisson model are assessed using three different performance 
measures9. Almost all those measures indicate that model I-c compares to 
models II-c in terms of their best capability of reproducing the data amongst 
the eight proposals10. Also note that the performance of the CL is quite inferior 
to all the structural models, even to those that have not accounted for outliers 
(models I-a and II-a) and that the Poisson model has each of its associated 
goodness-of-fi t measures assuming values worse than those from the structural 
models with interventions. Concentrating now on the remaining lines, there 
are formal and rather strong evidences, gathered from information criteria11 

TABLE 3

MODEL COMPARISON STATISTICS ( p-VALUES FOR THE LR TESTS ARE IN PARENTHESES)
FOR THE AFG DATA.

I-a I-b I-c II-a II-b II-c CL Poisson 

MAPE (%) 52.54 32.55 16.11 59.02 21.29 5.67  ≈  10 – 16 85.38 65.60 

MSE 1.32  ≈  106 0.60  ≈  106 0.13  ≈  106 2.61  ≈  106 1.18  ≈  106 1.24  ≈  10 – 23 3.83  ≈  106 1.70  ≈  106

Pseudo R2 (%) 74.26 87.88 97.43 48.63 77.07 99.99 43.22 64.08

AIC 15.29 14.93 14.59 2.76 2.18 1.47 – –

BIC 15.76 15.59 15.36 3.24 2.91 2.31 – –

LR Test – 29.50 54.28 – 46.14 91.14 – –

– (0.000) (0.000) – (0.000) (0.000) – –

TABLE 4

OUT-OF-SAMPLE COMPARISON BETWEEN THE MODELS WITH INTERVENTION FOR THE AFG DATA.

I-a I-b I-c II-a II-b II-c CL Poisson 

MAPE (%) 217.40 171.81 156.06 205.72 25.75 19.60 205.17 169.81

MSE 1.60  ≈  106 0.85  ≈  106 0.74  ≈  106 1.97  ≈  106 0.13  ≈  106 0.29  ≈  106 3.92  ≈  106 1.38  ≈  106

Pseudo R2 (%) 69.52 80.76 82.34 50.43 96.71 93.29 53.02 63.92

 9 During the calculations of these measures, the fi rst row and the fi rst column of the triangle in Table 1 
have been discarded, since the former is a diffuse period used to the Kalman fi lter initialization, and 
the latter cannot be predicted by the CL — in other simple words: only the portion of the data that 
can be predicted by both the Kalman prediction equations and the CL is considered.

10 Since the variance of the irregular component of model II-c has been estimated to be almost zero 
— cf. Table 2 —, some care must be exercised in analyzing in-sample measures from this particular 
model.

11 Same content of footnote 7.

93864_Astin40/2_19.indd   93593864_Astin40/2_19.indd   935 13-12-2010   10:59:1013-12-2010   10:59:10



936 R. ATHERINO, A. PIZZINGA AND C. FERNANDES

and from likelihood ratio (LR) tests12, in favor of the intervention analyses 
performed on both original and logarithmic scales.

In Table 4, the structural models, the CL and the Poisson model are con-
fronted in an out-of-sample validation. Each of those has been re-estimated 
without using the diagonal elements of  the AFG triangle. Such excluded
data have been compared, by means of the same performance measures, with 
their corresponding Kalman smoothing out-of-sample estimates. Once more, 
the CL and the Poisson model were beaten by each of the structural models 
with interventions and, again, the models that have consistently shown to be the 
most capable of reproducing the data were I-c and II-c, given their outstanding 
performances.

12 Here, the null for the LR test is H0 : “The coeffi cients associated with the intervention dummies are
all zero”. Consequently, these tests aim at comparing the “reduced” models I-a (II-a) with the 
“complete” models I-b or I-c (II-b or II-c). Since the required nesting conditions are all respected 
and both reduced and complete models maintain the standards for good properties of maximum 
likelihood estimation (cf. Harvey, 1989 sec. 3.4.1 and 4.5.1), it follows that, asymptotically, LR   =
2[log LMax, Comp  –  log LMax, Red ]   +   xk

2 , where k is the number of parameters set to zero under the null. 
However, analytical and/or Monte Carlo investigations for the LR test about its asymptotic proper-
ties would deserve some special attention here, given the amounts of missing values entailed by the 
approaches of this paper. This important issue shall be left for a future paper. Here, it is a least said 
that some care has to be taken in forming any judgment from the results of these tests, solely on an 
asymptotic theory basis.

TABLE 5

DIAGNOSTICS WITH THE STANDARDIZED INNOVATIONS (p-VALUES FOR THE TESTS ARE IN PARENTHESES)
FOR THE AFG DATA.

I-a I-b I-c II-a II-b II-c 

Heterokedasticity F test (20) 1.225 0.952 1.535 0.589 0.343 1.079 

(0.655) (0.913) (0.346) (0.245) (0.021) (0.867) 

Ljung-Box autocorrelation test (15 lags) 11.898 8.962 11.660 7.287 12.526 24.530 

(standardized innovations) (0.687) (0.879) (0.705) (0.949) (0.639) (0.057) 

Ljung-Box autocorrelation test (15 lags) 8.042 7.442 10.411 4.199 9.587 16.690 

(squared standardized innovations) (0.922) (0.944) (0.793) (0.997) (0.845) (0.338) 

Cox-Stuart independence test 7 6 8 8 7 14 

(0.134) (0.052) (0.286) (0.286) (0.134) (0.134) 

Jarque-Bera normality test 0.733 1.700 0.486 23.070 13.981 1.569 

(0.693) (0.427) (0.784) (0.000) (0.001) (0.456) 

Anderson & Darling normality test 0.193 0.328 0.322 0.977 0.685 0.501 

(0.890) (0.509) (0.519) (0.013) (0.069) (0.197) 

Durbin-Watson 1.778 1.935 2.058 1.639 2.121 2.247 

Mean 0.050 0.074 – 0.047 0.104 0.143 – 0.186 

Standard deviation 0.999 0.997 0.999 0.995 0.990 0.983 
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Finally, Table 5 offers diagnostics for the six structural models estimated 
in this paper. All of them have been performed using the standardized innova-
tions, which are defi ned for each t as 

Ft
t

tu =
uS  (see subsection 3.1) and, under 

the Gaussian state space model basic assumptions, should behave as i.i.d 
standard normal random variables. Except for model II-b that presents some 
problems concerning heteroscedasticity — which might imply that most of the 
remaining diagnostics for this specifi c model turn meaningless —, and for 
model II-a that had a relatively low Durbin-Watson statistic and showed an 
expressive lack of normality behavior (see small p-values for its corresponding 
Jarque-Bera and Anderson-Darling tests), all the basic assumptions are being 
fairly supported by the data, including the cases of models I-c and II-c (with 
“more interventions”) that gave the best data fi ts. Still concerning these two 
models, Figures 8 and 9 serve as additional information that indicates excellent 
behavior of their standardized innovations and auxiliary residuals, the latter 
of which constituting an important tool for identifying remaining outliers13 
(cf. Durbin & Koopman, 2001 ch. 7).

The total and partial IBNR estimated reserves are given in Table 6 along 
with their corresponding theoretical coeffi cients of variation (CV). The con-
struction of such theoretical predictive measure has been made possible by the 
block method from section 3.3 applied to the structural models I-c and II-c, 
by Mack’s approach for the CL (cf. Mack 1993, 1994a and 1994b) and by the 
formulae derived in Renshaw & Verrall (1998) and England & Verrall (2002) 
for the Poisson model14. From a perspective widely adopted in the literature, 
which bases itself  on the comparison of  CVs from different methods, it is 
unlikely to expect any conclusion different from the following:

• in which concerns total IBNR estimation, model I-c gave better results as 
compared with the CL, the Poisson model and model II-c.

• in which concerns partial IBNR estimation, the CL and the Poisson model 
at times outperform model I-c.

While the fi rst conclusion is in some tune with previous analyses, the second 
goes in an opposite direction. In addition, it is worth stressing that, even 
though omitted to conserve space, additional CV comparisons taking account 
models I-a, I-b, II-a and II-b did support some models already proved to be 
not the most suitable choices for describing the AFG data. Quick example: 
model II-b showed a heteroscedastic behavior in its standardized innovation 
(see Table 5), besides offering less predictive power than model II-c (see Table 3); 
however, for the total IBNR estimation, the CV of the former was 14.8%, 
against 17.1% of the latter.

13 The analysis is as follow: if  an observed auxiliary residual is larger than 3 in absolute value, one 
should take this as an evidence in favor of an outlier.

14 Formal justifi cation for using the Poisson distribution with claims amounts and a technical discus-
sion about the numerical coincidence between the estimated reserves from the CL and from the 
Poisson model is offered in Renshaw & Verrall (1998).
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FIGURE 8: Diagnostics from model I-c for the AFG data in their original scale.
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FIGURE 9: Diagnostics from model II-c for the AFG data in their logarithmic scale.
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In light of  these confronting conclusions, some questioning should be 
posed about the use of the CV to evaluate alternatives for IBNR estimation. 
Indeed, one should bear in mind that this measure is obtained using some 
theoretical formulae derived from the model being considered and, as such, 
needs not be supported anyhow by the data. If, for instance, a given model 
violates some basic assumptions or does not suitably predict/reproduce the 
data, then, rigorously speaking, there might not be many arguments left in 
favor of trusting on theoretical measures, such as the CV, computed under 
misspecifi ed hypotheses. Consequently, this paper defends that theoretical 
measures, like the mean square errors from the block and cumulating methods 
and their resulting CVs, must not be evoked as complementary criteria for 
model selection, but, instead, should be used for assessing the nominal predic-
tive power and reduced uncertainty implied by the “best” models.

4.2. MC1 data

The second runoff triangle chosen to be tested with the approaches of this 
paper is displayed in Table 7 and had been previously considered by Verral 
(1991) and Mack (1993). It shall be referred to MC1.

In order to conserve space and since the modeling strategies have proved 
to be quite the same of those adopted with the AFG data, this subsection will 
focus on showing only the summary results. The best structural model for
the MC1 was one estimated with the data in their logarithm scale and had 10 
intervention dummies for outliers that appeared in t  =  4, 6, 7, 14, 17, 26, 27, 34,
25, 73; such terms have shown to be statistically signifi cant by the same LR 
test used with the AFG data. In Table 8, this model is compared with the CL 

TABLE 6

ESTIMATED RESERVES FOR THE AFG DATA AND CORRESPONDING COEFFICIENTS OF VARIATIONS

(IN PARENTHESES).

Accident year Chain ladder Poisson Model I-c Model II-c 

 2   154 (134.0%)   154 (361%)   226 (461.5%)   199.57 (24.0%) 

 3   617 (101.0%)   617 (181%)  1185.09 (112.4%)   937.43 (22.1%) 

 4  1636 (45.7%)  1636 (109%)  2264.32 (67.3%)  1597.49 (20.9%) 

 5  2747 (53.5%)  2747 (81%)  4118.51 (40.5%)  2733.11 (19.4%) 

 6  3649 (54.9%)  3649 (67%)  5544.08 (32.2%)  5836.64 (18.4%) 

 7  5435 (40.6%)  5435 (57%)  8270.34 (22.7%)  9046.18 (18.7%) 

 8 10907 (49.1%) 10907 (46%)  9286.14 (21.1%) 11051.12 (22.2%) 

 9 10650 (59.5%) 10650 (57%)  16435.9 (12.4%) 20882.02 (20.8%) 

10 16339 (150.4%) 16339 (79%) 19525.93 (10.9%) 25393.56 (25.2%) 

Total 52135 (51.6%) 52135 (35%) 66856.31 (14.9%) 77677.13 (17.1%) 
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and the Poisson model in terms of in-sample and out-of sample predictive 
measures. From those fi gures, it is clear that the structural model has once 
more shown to be superior to its competing approaches, from both in-sample 
and out-of-sample standpoints.

Table 9 gives the fi nal IBNR estimates, which resulted from an application 
of the blocks method related formula (8), discussed in subsection 3.3.3. As can 
readily seen, the CL and the Poisson model tend to systematically give reserves 
larger than those obtained from the structural model, the exception being only 
the partial IBNR reserve associated with the 10th accident year. Should the 
CL and/or the Poisson model be in fact not adequate methods to estimate the 
reserve, and should the structural model be a valid probabilistic description of 
the true data generating mechanism — two conjectures fairly supported by the 

TABLE 7

MC1 RUNOFF TRIANGLE.

Accident 
year

w

Development d

0 1 2 3 4 5 6 7 8 9

 1 357848  766940  610542  482940 527326 574398 146342 139950 227229 67948

 2 352118  884021  933894 1183289 445745 320996 527804 266172 425046

 3 290507 1001799  926219 1016654 750816 146922 495992 280405

 4 310608 1108250  776189 1562400 272482 352053 206286

 5 443160  693190  991983  769488 504851 470639

 6 396132  937085  847498  805037 705960

 7 440832  847631 1131398 1063269

 8 359480 1061648 1443370

 9 376686  986608

10 344014

TABLE 8

MODEL COMPARISON STATISTICS FOR THE MC1 DATA.

Structural model CL Poisson

MAPE in-sample (%) 10.31 28.84 23.32

MSE in-sample 0.87  ≈  1010 4.42  ≈  1010 2.50  ≈  1010

Pseudo R2 in-sample (%) 92.95 63.46 79.37

MAPE out-of-sample (%) 17.75 24.08 20.29

MSE out-of-sample 1.27  ≈  1010 2.89  ≈  1010 1.42  ≈  1010

Pseudo R2 out-of-sample (%) 97.91 87.28 93.40
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data in view of the results concerning predictive power —, a insurance com-
pany would have incurred the risk of loosing competitiveness if  the CL or the 
Poisson model results were taken as the fi nal ones.

Finally, a word about the theoretical accuracy measures from both approaches 
is pertinent. From Table 9, one can easily notice that every reported CV from 
the CL and from the Poisson model is larger than its corresponding one asso-
ciated with the structural model, the latter being obtained from Theorem 1 
with an aid from formulae (9) and (10) from subsection 3.3.3. Sticking to the 
standpoints proposed and supported in the fi nal of subsection 4.1, this fi nding 
must not be interpreted in this paper as another piece of evidence of a better 
predictive capability for the structural model. Instead, the CVs associated with 
the structural model are considered to be the “most correct”, in light of the 
data analyses that generated the results and suggested inadequacy of the CL 
and of the Poisson model.

5. CONCLUSION

The empirical evidences from section 4 suggest that the alternative ordering 
of the runoff triangle and the proposed techniques of this paper emerge as 
useful alternatives for IBNR prediction. Another interesting point is the pos-
sibility of choosing from two different methods (blocks or cumulating), whose 
fi nal results are guaranteed to be the same, should one consider the data in 
their original scale. Also, from the computational standpoint, the models pro-
posed are quite tractable, since the methodological basis given by the Kalman 
fi ltering is rather effi cient nowadays. Finally, since everything developed here 

TABLE 9

ESTIMATED RESERVES FOR THE MC1 DATA AND CORRESPONDING COEFFICIENTS OF VARIATIONS

(IN PARENTHESES).

Accident year CL Poisson Structural model 

 2      94,634 (79.8%)       94,634 (116.3%)      78,904 (23.3%)

 3     469,510 (25.9%)     469,511 (46.0%)     433,790 (17.3%)

 4     709,640 (18.8%)     709,638 (36.8%)     663,310 (13.7%)

 5     984,890 (26.5%)     984,889 (30.8%)     891,770 (12.0%)

 6  1,419,500 (29.0%)  1,419,459 (26.4%)  1,336,400 (10.8%)

 7  2,177,600 (25.6%)  2,177,640 (22.7%)  2,009,900 (10.3%)

 8  3,920,300 (22.3%)  3,920,301 (20.2%)  2,919,600 (10.4%)

 9  4,279,000 (22.7%)  4,278,972 (24.5%)  3,810,800 (10.8%)

10  4,625,800 (29.5%)  4,625,810 (42.8%)  4,726,900 (12.1%)

Total 18,681,000 (13.1%) 18,680,854 (15.8%) 16,871,000 (7.1%)
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is embedded in a linear state space framework, there is still the great fl exibility 
of considering a wider range of statistical models for IBNR data.

This paper closes with four perspectives for future research: 

• The fi rst is a Monte Carlo study for assessing the small sample statistical 
properties of the LR tests used here for the intervention effects, since this 
papers’s ordering of IBNR data always induces a small time series with lots 
of missing values. Besides, according to many other practical experiences, it 
is not unusual to fi nd outliers in runoff data sets, and it is surely advisable 
to use signifi cance tests for the inclusion of intervention dummies.

• The second suggestion is to consider other frameworks in state space mode-
ling, such as non-Gaussian possibilities. For instance, one could understand 
that the numbers of outliers from the best models in both applications of the 
paper exceeded reasonable limits, which would serve as evidence in favor of 
heavy-tailed distributions. However, one must be aware of the complications 
of taking this path, since, as regards the alternatives for estimating more gen-
eral state space models, none of them is computationally trivial — see for 
instance the importance sampling approach by Durbin and Koopman (2001) 
Part II, the particle fi lters developed along the chapters of Doucet et al. (2001) 
and the density  –  based nonlinear fi lters in Tanizaki (1996) ch. 4.

• Thirdly, we mention that, should a formal justifi cation become available, an 
extension of the structural model (5) in which the level and the periodic com-
ponents are dependent can be a valid alternative. But, as just said, the ques-
tion that might be answered before considering such more complex modeling 
alternative — which might probably entail numerical diffi culties even greater 
than the existing ones — is: are there any previous experiences or actuarial 
theories suggesting that the average value of claims along each accident year 
(supposed to be represented by the level component mt) and the values associ-
ated with each delay time between the origin and the payment (supposed to 
be represented by the periodic component gt) could interact anyhow?

• Finally, the fourth possibility, which shall be certainly relevant if  one con-
siders the use of such methods in an insurance company, would be the study 
about how different initializations of  the Kalman recursions affect fi nal 
IBNR predictions and associated mean square errors.
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APPENDIX 

A. Proof of Lemma 3

Fix an arbitrary t  "  I. It is suffi cient to prove that Cov(et, ys)  =  0, for each 
s  !  I. But this follows from the recursive solution of the measurement equation, 
which is 

 Tj Rk +jjay Z T c ds s
j

s

k j

s

j

s

j s s s t s
1

1

1
1

1

1

2

1 1 1j e= + + + +
=

-

= +

-

=

-

- - -+R c ,j_ i> >H H* 4% %/

and from the random vectors et, es, jj for j  =  1,  …,  s  –  1 and a1 being mutually 
uncorrelated (cf. assumptions listed in subsection 3.1). ¡ 

B. Proof of Lemma 4

Consider an auxiliary linear state space model that has the same state equation 
of (2) and whose measurement equation is given by 

 yt
*   =   Zt

*at + dt
*  +  et

*,   et
*  +  N(0, Ht

*),

where yt
*  =  yt, Zt

*  =  Zt,  dt
*  =  dt and Ht

*  =  Ht for t  !  I, and Zt
*  =  0,  dt

*  =  0 and 
Ht

*  =  I otherwise. Therefore, once ys
* is uncorrelated with (Y�,  at�,  ej�)� for 

s, t, j  "  I, expression 1 follows from Lemmas 2 and 3 (indeed: under normality, 
absence of  correlation implies independence), and expressions 2 and 3 are 
direct consequences from Lemmas 2 and 1, noting once more that Ki  =  0 
whenever i  "  I. ¡ 

C. Proof of Theorem 1

If  t  !  I, then E(yt | Fu )  =  yt , which is suffi cient for the fi rst case. Now, suppose 
that t,  j  "  I and note that, from the measurement equation of (2),

 
�

�.

+Cov( | ) Cov( | ) Cov( | )

Cov( | ) Cov( | )
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F F F

F F

t j t t j j t j
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e ,

a

a
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e

y Z

Z

u u u

u u
 (15)

From item 2 of Lemma 4, the third and fourth terms from right-hand of (15) 
vanish. Besides, if  t  =  j, items 1 and 3 from Lemma 4 assert that the fi rst and 
second terms from right-hand of (15) result in Zt (Pt | t  – 1  –  Pt | t  – 1 N*

t  –  1 Pt | t  – 1) Zt� 
and Ht, respectively. This proves the second case. Finally, if  t  <  j, then, again 
from items 1 e 3 of Lemma 4, the fi rst term from right-hand of (15) equals

1j -1
� � �

j t( )Z L L L N P Zt t t t t j m1 1 1f
; ;- + - -

* * *
j

�P *-I  and the second vanishes, proving 
the third case. ¡ 
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D. Proof of Theorem 2

It is suffi cient to prove that L  =  L† over all the parametric space, which, in light 
of the prediction error decomposition of the likelihood (cf. Harvey, 1989), comes 
as a consequence of showing that ut  =  ut

† for each t  =  1,  …,  n. Implementing: 
fi x an arbitrary t. According to (3) applied to models (2) and (11), it follows 
that 

 ut = yt – Zt  at | t  – 1  –  dt  and  ut
†   =   yt

†  –  Zt a
†
t | t  – 1  –  dt , (16)

where “†” is an indication that the model under consideration is the augmented 
and a†

t | t  – 1  /  E(at | F †t  – 1 ). Besides, under the augmented model in (11), the recur-
sive solution for the measurement equation, for an arbitrary s  =  1,  …,  t  –  1, is
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Observe that 
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where As depends upon Zj and Tj, j  =  1,  …,  s  – 2, and the matrices Bj depend 
upon Zk and Tk, k  =  j  +  1,  …,  s  – 2. Then, placing (18) and (19) appropriately 
in (17) implies 

s RjTT s 1 +-( )y Z c c ds j
j

s

j k
j

s

j j s s
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s

t s
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1

1

1 1
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=

-
@ ,R ja= =G G* 4% %/  (20)

which coincides with the recursive solution of the measurement equation from 
the original model (2). Finally, combine (20) and (16). ¡ 
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