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ABSTRACT

In this paper we develop a full stochastic cash fl ow model of outstanding lia-
bilities for the model developed in Verrall, Nielsen and Jessen (2010). This model 
is based on the simple triangular data available in most non-life insurance 
companies. By using more data, it is expected that the method will have less 
volatility than the celebrated chain ladder method. Eventually, our method will 
lead to lower solvency requirements for those insurance companies that decide 
to collect counts data and replace their conventional chain ladder method.

1. INTRODUCTION

While non-life insurance companies often base their reserves on a simple 
method, such as a chain-ladder estimate for either paid data or incurred data, 
Verrall, Nielsen and Jessen (2010) recently pointed out that a model combining 
a classical paid triangle with another triangle of the same format containing 
the number of  reported claims has the advantage of  making a clear split 
between the RBNS reserve and the IBNR reserve. In this paper we consider 
the distributional properties of this model and compare it with the chain lad-
der model. It is to be expected that the additional information of the count 
triangle should lower the volatility of estimated reserves: when more informa-
tion is available, the predictions should be better. We also note that the RBNS 
forecasts use the actual numbers of claims, and can therefore be considered to 
be based on a conditional model of the claim amounts, given the numbers of 
claims. On the other hand, the IBNR forecasts require, by defi nition, forecasts 
of the numbers of claims. We also examine in more detail some of the estima-
tion issues associated with the model developed by Verrall, Nielsen and Jessen 
(2010).

The model of Verrall, Nielsen and Jessen (2010) separates the reporting delay 
from the payment delay from reporting to payment: the reporting delay is 
observed in the reported counts triangle and the delay observed in the paid tri-
angle is a mixture of the reporting delay and the payment delay. The payment 
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delay and the claims severity are estimated from a conditional model of the 
paid triangle given the counts triangle. In this paper, we exploit this new 
method in order to split the full stochastic cash fl ow into one cash fl ow related 
to the RBNS reserve and another related to the IBNR reserve. The RBNS 
reserve is predicted without modelling the counts but instead exploiting the 
fact that the reported counts give an advance warning of future payments. The 
IBNR reserve is constructed by fi rst predicting the reported number of claims 
and then applying the same conditional model for payments given counts as 
outlined above. Thus, in this paper we construct bootstrap estimates of the 
predictive distributions for the total reserve and its split into RBNS and the 
IBNR reserves.

Recent related methods are also discussed in Pinheiro, Andrade e Silva and 
Centeno (2003) and Björkwall, Hössjer and Ohlsson (2009a). It is worth not-
ing though, that these bootstrap methods are aimed at predicting the claims 
distribution for models which use just the aggregate claims data, and one
can therefore expect them to generate higher solvency requirements than the 
approach of  this paper that takes full advantage of  the extra information 
provided by the reported number of claims. Another related idea for combining 
the reported counts and the paid triangles is the separation method of Taylor 
(1977). Here the idea is to predict the incurred counts from the count triangle 
using a chain ladder model and then to apply these predictions in the construc-
tion of the reserves. This approach is somewhat similar to the construction of 
the IBNR reserve in the cash fl ow but more model dependent than the RBNS 
reserve of the cash fl ow model which is constructed conditionally on the counts 
data. Recently, Björkwall, Hössjer and Ohlsson (2009b) have constructed con-
ditional bootstrap estimators for such a separation method.

Section 6 contains the explanation of the bootstrap method for the model 
of  Verrall, Nielsen and Jessen (2010). In sections 3, 4 and 5 we summarise
the model and explain some alterations in the set-up and estimation methods. 
The aim of this is to make the bootstrapping procedure as straightforward as 
possible to implement. It should be noted that the underlying structure of the 
model and the basic philosophy of the approach remain the same. In section 7, 
we consider some simulation studies which are designed to illustrate how the 
model behaves in general.

2. THE DATA

This paper uses the same motor data as Verrall, Nielsen and Jessen (2010), 
which originates from the general insurer RSA and is based on a portfolio of 
motor third party liability policies. These data typically have long settlement 
delays, and the cashfl ow model in this paper is aimed at improved stochastic 
modelling of data of this type. The data available consists of two incremental 
run-off  triangles of  dimension m  =  10, one for reported counts, Nij, and one 
for aggregated payments, Xij, where i  = 1,  …,  m denotes the accident year
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and j  =  0,  …,  m  –  1 is the development year. Collectively, we have data N  =  {Nij, 
(i, j)  !  I} and X  = {Xij, (i, j)  !  I} where I is the triangular index set

 I  =  {i  = 1,  …,  m,   j  =  0,  …,   m  –  1  with i  +  j  =  1,  …,  m}.

The data are shown in Tables 1 and 2, respectively. The data for the aggregate 
paid claims have been infl ation corrected using an infl ation index depending 
on the calendar year i  +  j. This adjustment was carried out using an external 
economic infl ation index before the data were supplied to the authors. It is not 
known when the payments aggregated as Xij were fi rst reported.

3. THE STATISTICAL MODEL

As set out in Verrall, Nielsen and Jessen (2010), the statistical model has two 
ingredients: a conditional model for payments given incurred counts along 

TABLE 1

RUN-OFF TRIANGLE OF NUMBER OF REPORTED CLAIMS, Nij

j 
i 0 1 2 3 4 5 6 7 8 9

 1  6238  831 49  7 1 1 2 1 2 3
 2  7773 1381 23  4 1 3 1 1 3
 3 10306 1093 17  5 2 0 2 2
 4  9639  995 17  6 1 5 4
 5  9511 1386 39  4 6 5
 6 10023 1342 31 16 9
 7  9834 1424 59 24
 8 10899 1503 84
 9 11954 1704
10 10989

TABLE 2

RUN-OFF TRIANGLE OF AGGREGATED PAYMENTS, Xij

j 
i 0 1 2 3 4 5 6 7 8 9

 1 451288 339519 333371 144988  93243 45511 25217 20406 31482 1729
 2 448627 512882 168467 130674  56044 33397 56071 26522 14346
 3 693574 497737 202272 120753 125046 37154 27608 17864
 4 652043 546406 244474 200896 106802 106753 63688
 5 566082 503970 217838 145181 165519 91313
 6 606606 562543 227374 153551 132743
 7 536976 472525 154205 150564
 8 554833 590880 300964
 9 537238 701111
10 684944
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with a model for incurred counts. In this section, we give a summary of the 
model and describe a number of differences in the set-up and estimation which 
simplify Verrall, Nielsen and Jessen (2010) without making any signifi cant 
changes to the overall structure.

3.1. The conditional model for payments given counts

The key feature of the cash fl ow model of Verrall, Nielsen and Jessen (2010) 
is to identify the payment delay through a conditional model for the payments 
X given the reported counts N. The reported claims from accident year i and 
development year j will be paid with some delay, and those paid with delay k 
are denoted by ijkN paid  (k  =  0, 1,  …,  d). Here d denotes the maximum delay in 
paying a claim which has been reported, which in the context of the estimation 
in this paper is defi ned to be such that d  #  m  –  1. While we recognise that 
delays greater than m  –  1 could be envisaged in practice, this would require other 
estimation methods which are beyond the scope of this paper. Also, it would 
simplify the model to put d  =  m  –  1, but we have found that it is often better 
to set d  <  m  –  1 in practice, as discussed in section 4.2. The overall, but latent, 
number of payments in development year j is therefore

 ij ,i ,k

,j

j k- .N N
( )min

paid paid

k

d

=
=0
/  (1)

The observed aggregate payment in development year j is then

 ij

ij
paid

Yij
k

N

1
=

=

X ( )k/  (2)

where Yij
(k) denotes an individual claim payment. We assume that the delays 

are independent of the counts, and are assumed to take the values 0, 1,  …,  d 
with probabilities p0, p1, …, pd , where =k 0 1k =d p/ . In principle, these proba-
bilities could depend on accident year and development year, but in this paper 
we refrain from this further complication.

As in Verrall, Nielsen and Jessen (2010), it is assumed that the individual 
payments are independent of delays and counts and are identically distributed 
with expectation m and variance s2. While we recognise that this assumption may 
be unrealistic, we leave possible extensions to other models for future work. The 
methodology is quite fl exible about the distribution for individual payments. 
Verrall, Nielsen and Jessen (2010) used a mixed-type distribution which 
allowed for the possibility of zero claims, and we use this set-up in section 4.2 
when examining the delay distribution. In section 6, we illustrate the bootstrap 
procedures using a simpler assumption that the payments are gamma distributed 
(with no allowance for the possibility of zero claims). In practice, additional 
external information may be available on (for instance) the frequency of zero 
claims and negative claims as well as on the tail behaviour of the claims.
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The conditional expectation and variance of  claims given the reported 
counts were computed in Verrall, Nielsen and Jessen (2010):

 N ,i

,j

k( ) ( ) mNm E
( )min

ij ij
k

d

k
0

;= = -
=

,N jX p/  (3)

 N ,i k

,j

ij kij( ) ( ) ( ) .s mN p pv Var
( )min

k

d

k k
0

2 2
;= = +-

=

–N pjX 1$ ./  (4)

These formulas are used for the estimation of  the parameters, and the con-
ditional expectation (3) is used to calculate a point forecasts of  the RBNS 
reserve (using the incurred counts) and of  the IBNR reserve (using predicted 
counts).

3.2. The model for counts

The model for the counts N will be used for predicting the IBNR counts while 
it has no bearing on the predictions of  the RBNS reserve. For the data in
Table 1 a standard Poisson chain-ladder model seems reasonable. A generalisa-
tion could be to include a calendar effect as in Zehnwirth (1994) and the recent 
analysis in Kuang, Nielsen and Nielsen (2008a,b, 2010). Bryden and Verrall 
(2009) also discuss calendar year effects in the context of the chain-ladder tech-
nique.

The variables Nij are therefore assumed to be independently Poisson dis-
tributed with expectation

 jij( a ,m blog NE ij i= = +)$ .

so that ai is an accident year parameter and bj is a development year param-
eter. The maximum likelihood analysis leads to the standard chain ladder analysis 
as shown by Kremer (1985), for example. Recently Kuang, Nielsen and Nielsen 
(2009) have revisited the maximum likelihood analysis and shown that the
row sums and development factors of the chain ladder analysis are maximum 
likelihood estimators for the parameters.

4. ESTIMATION

In this section, we summarise the estimation of the parameters, based on the 
theory of Verrall, Nielsen and Jessen (2010). We start by reviewing chain lad-
der estimation for the incurred counts. This is followed by a discussion of the 
estimation for the delay parameters ck  =  mpk. Finally, estimators for the indi-
vidual payment parameters m and s2 are given.
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4.1. Chain ladder estimation of the model for counts

The model for the counts N is a standard Poisson chain ladder model for which 
maximum likelihood analysis was given by Kremer (1985). The row sums and 
the development factors,

 iN k m

m
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 (5)

are maximum likelihood estimators for the parameters ri  =  E(Ri) and the 
development factors, F,, see Kuang, Nielsen and Nielsen (2009).

The fi tted values are denoted by Nij, and for use later we defi ne the ratios
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which do not depend on the row index i, see also Kuang, Nielsen and Nielsen 
(2009, eq. 14).

4.2. Estimating the delay and payment means

Considering next the triangle of  paid claims, the delay parameters and the 
payment mean are estimated from the conditional model for the payments X 
given incurred counts N as in Verrall, Nielsen and Jessen (2010). The idea is 
to estimate the parameters through a Poisson regression of  payments X on 
incurred counts N using the conditional mean function mij (N)  =  E(Xij | N) 
given in (3). The parameters ck  =  mpk are then estimated by maximising the 
pseudo likelihood

 log
,i

c ij–( ; ) ( ) ( ) .X N Nm mpseudo
ij ij

j I

, =
!

,X N $ ./  (7)

Based on the estimators ck, k  =  0,  …,  d the mean of the claims distribution 
and the delay probabilities are estimated by

 k km c cp,
k

d

k
0

= =
=

/ m./  (8)

Table 3, fi rst row of fi rst panel, reports the estimates for the data in section 2.
It can immediately be seen that there is a numerical diffi culty here, since it 

is possible that not all values, pk (or equivalently ck), are positive. In practice, 
this may arise since the delay probabilities will tend to tail off  so that for 
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instance pm  –  1 will be close to zero, with the result that the estimate may be 
negative in some cases. One response is to impose the restriction that the max-
imal delay is shorter, for instance d  =  m  –  2 . Table 3, second row of fi rst panel, 
reports the estimates for the motor data, and it can be seen that, for this par-
ticular data set, there is not much difference between the results. The relative 
differences are largest, up to 5%, for the longest delays, but in absolute terms 
the differences are modest, up to 0.1%.

We investigated the chance of negative estimates by simulation, and Table 4 
reports the simulated probability that the analytic estimator of  the longest 
delay c9 is negative for different values of  c9. The probability of  negative 
estimates was similar using other estimation methods but varies considerably 
with c9. This indicates that the possibility of negative estimates will typically 
be an issue in practice.

One approach to deal with negative delay estimates would be to use a con-
strained optimization routine to ensure that all estimators are non-negative. 
Having the subsequent bootstrap in mind we suggest a pragmatic estimator, 
which is numerically less intensive. If  the sum of absolute values of negative 
ck is less than 1% of the sum of absolute values of all ck then the negative 
estimates are replaced by zero. If  the sum of negative estimates is larger than 
this threshold it may be useful to investigate whether the paid data have special 
features such as many zeros.

TABLE 3

PSEUDO LIKELIHOOD ESTIMATORS OF THE DELAY PROBABILITIES pk BASED ON DATA IN TABLES 1, 2.
PANEL 1 USES ACTUAL COUNTS WITH MAXIMAL DELAY OF d  =  m  –  1  =  9 AND d  =  m  –  2  =  8, RESPECTIVELY. 

PANEL 2 USES PREDICTED COUNTS AND THE ANALYTIC FORMULA

(IN ROW 2 THE LAST ENTRY IS REPLACED BY ZERO).

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 m

N .361 .286 .113 .084 .066 .035 .026 .012 .018 –.001 163.53
.361 .286 .112 .084 .065 .035 .026 .012 .017 163.69

N .361 .287 .112 .085 .066 .035 .026 .012 .018 –.001 163.43
.361 .287 .112 .084 .066 .035 .026 .012 .018 0 163.62

TABLE 4

THE FREQUENCY OF ZERO ESTIMATES OF p9 IS SIMULATED FOR DIFFERENT VALUES OF p9 USING

1000 REPETITIONS. THE DELAY PROBABILITIES IN THE FIRST COLUMN WERE CHOSEN AS

p  =  (0.360, 0.288, 0.111, 0.083, 0.066, 0.035, 0.025, 0.013, 0.016, 1.3e-6). IN THE SECOND COLUMN THE LAST

p9 WAS SUBSTITUTED BY 5.4e-3 AND p8 WAS SLIGHTLY MODIFIED SO THE pk’S SUM TO ONE.
FINALLY, THE THIRD COLUMN CONSIDERS p  =  (0.182, 0.164, 0.145, 0.127, 0.109, 0.091, 0.073, 0.055, 0.036, 0.018). 

THE CLAIMS DISTRIBUTION CONSIDERED IN THE THREE CASES WAS A GAMMA (WITH MEAN m  =  204.91 AND 
VARIANCE s2  =  2589440) MIXED WITH 20% ZEROS. THE COUNTS WERE KEPT FIXED AS IN TABLE 1.

p9 1.3e-6 5.4e-3 0.018

P( p9  <  0) 72% 33% 10%
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4.3. Analytic estimation of delay parameters

Again keeping the bootstrap procedure in mind, we suggest an analytic estima-
tor of the delay parameters as a numerically less costly alternative to the above 
iterative procedure. In this, we depart from Verrall, Nielsen and Jessen (2010). 
While the above estimation procedure conditions on the actual count data the 
idea of the alternative is to exploit a possible chain ladder structure for the counts 
data. We expect this to work well as long as the counts data do not deviate much 
from the chain ladder model, by for instance having a signifi cant calendar effect. 
This analytic method only works when d  =  m  –  1, which is what is assumed in 
this section. In practice, it is necessary to check for negative delay parameter 
values and set these to zero, as discussed at the end of section 4.2.

Thus, the proposal is to replace the observed counts N in the pseudo like-
lihood (7) by the fi tted counts N from a chain ladder model. In general, infor-
mation can be lost in a regression model when replacing regressors by pre-
dicted regressors. However, this loss will be small when the difference N  –  N is 
small, which is not an unreasonable assumption in a Poisson context where 
expectation equals variance. Moreover, the count data come from aggregation 
over many policies which should improve their precision. In this paper, we use 
the analytical method for all our calculations because it makes our extensive 
simulation study of the numerically complex bootstrapping procedure possible.

Recalling that the ratios Bj  =  Nij  /  Ni0 do not depend on the row index i
(see (6)) the conditional expectation evaluated at the predictor has chain lad-
der structure:

 i,i j k- j k-N jjN N B( ) .h hm whereij
k

j

k
k

j

k
0

0
0

= = =
= =
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Evaluating the pseudo log likelihood (7) at N therefore gives
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The estimators for the parameters ck then solve the linear system
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The second panel of Table 3 shows delay estimates using, fi rst, the analytic 
estimator as it is, and, secondly, in combination with the pragmatic rule to deal 
with negative estimates. For this particular data set there is not much differ-
ence between any of the reported estimates.

4.4. Estimating the claims variance

The claims variance can be estimated by inserting the estimators ck in the 
conditional expectation (3) to get mij (N)  =  ,i k

(
-k 0= j k

min cN,j d)/  and computing 
the over-dispersion statistic

 
–ij ij

ij
f

m
m
( )

( )
.df N

X N1
,i j I

=
!

2
$ .

/  (11)

Here, the degrees of freedom are df  =  n  –  q where n  =  m(m  +  1) / 2 is the dimen-
sion of X and q  =  d  +  1 is the number of estimated delay parameters. This sta-
tistic could be viewed as an estimator of
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recalling the expressions for the conditional mean and variance of Xij given N 
in (3), (4). A consistency argument could possibly be made in which the num-
ber of rows was increased in the index set I while the number of columns is 
kept fi xed. The variance estimator implied by (11), (12) is
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/  (13)

This estimator is slightly different from the variance estimator s 2
VNJ  =  mf  –  m2 

given in Verrall, Nielsen and Jessen (2010). However, if  f is much larger than 
m as for the present data set the difference between the two variance estimators 
is modest.

4.5. Summary of estimates for motor data

Table 5 gives an overview of the estimates from the motor data. The estimates 
ck are obtained from the last row of Table 3, that is by the analytic estimator 
combined with the zero rule of thumb. The sum of these estimators is m. The 
estimates pk are computed as ck  /  m, and the variance s2 is obtained using (13).
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5. POINT FORECASTS OF THE RESERVES

Point forecasts of the reported but not settled (RBNS) reserve and the incurred 
but not reported (IBNR) reserve can now be constructed along the lines of 
Verrall, Nielsen and Jessen (2010). As a benchmark for comparison purposes, 
we also consider the chain ladder reserve, and discuss the construction of this 
fi rst in section 5.1.

5.1. Point forecasts of the chain ladder reserve

Forecasting using the chain ladder technique assumes that the aggregated pay-
ment triangle X indexed by the upper triangle I has a chain ladder structure, 
which is extrapolated to the lower triangle of payments indexed by

 J1 = {i =  1,  …,  m, j = 0,  …,  m  –  1  where  i  +  j  =  m  +  1,  …,  2m  –  1}.

The index sets I and J1 are illustrated in Figure 1.
The cash fl ow predicted by the chain ladder is shown in the last column of 

Table 6. The cash fl ow by calendar year is computed by summing the point 
forecasts Xij along the diagonals of  J1. Table 6 also shows the RBNS and 
IBNR forecasts which are discussed in further detail below. Note that while 

TABLE 5

ESTIMATES FOR MOTOR DATA. Rk AND Fk ARE ROW SUMS AND DEVELOPMENT FACTORS FOR COUNT DATA IN 
TABLE 1 COMPUTED AS IN (5). ck, pk, m ARE DELAY PARAMETERS ESTIMATED AS DESCRIBED IN §4.2 USING THE 

ANALYTIC METHOD WITH A NEGATIVE c9 REPLACED BY ZERO. f AND s2 ARE COMPUTED AS IN (12), (13).
s2

VNJ   =  mf  –   m2.

k Rk Fk hk ck pk

 0 59.0 59.0 0.361
 1  7135 1.135291 54.9 46.9 0.287
 2  9190 1.003790 24.9 18.3 0.112
 3 11427 1.000917 16.6 13.8 0.084
 4 10667 1.000329 12.8 10.7 0.066
 5 10951 1.000284  7.27  5.70 0.035
 6 11421 1.000234  5.13  4.26 0.026
 7 11341 1.000144  2.67  2.02 0.012
 8 12486 1.000306  3.21  2.87 0.018
 9 13658 1.000421  0.28  0 0
10 10989

m  =  163.62
f  =  12793.19
s2  =  2070821  =  1439.02

s2
VNJ  =  2066398  =  1437.52
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FIGURE 1: Index sets for reserves.

TABLE 6

POINT FORECASTS OF CASHFLOW BY CALENDAR YEAR, IN THOUSANDS.

Future Calendar Year RBNS IBNR RBNS + IBNR CL

 1 11 1307  93 1399 1354
 2 12 720  78  798 754
 3 13 494  34  529 489
 4 14 323  26  349 318
 5 15 188  20  208 185
 6 16 117  12  130 115
 7 17 65   9   74 63
 8 18 37   5   42 36
 9 19 0   6    6 2
10 20   1    1
11 21   0.6    0.6
12 22   0.4    0.4
13 23   0.2    0.2
14 24   0.1    0.1
15 25   0.07    0.07
16 26   0.04    0.04
17 27   0.02    0.02
18 28   0    0

Total 3251 287 3538 3316
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the chain ladder forecast is comparable to that of the sum of the RBNS and 
IBNR forecasts, it is indeed somewhat smaller. This is in contrast to our simulated 
results below, where the median of the sum of the RBNS and IBNR reserves 
estimated by the method of this paper is more or less the same as that of the 
classical chain ladder reserve. Therefore, it appears that it is the particular sample 
at hand that causes this difference, and it is not a general feature of the new 
method. Similar conclusions were noted in Verrall, Nielsen and Jessen (2010).

5.2. Point forecasts of the RBNS reserve

Forecasting the RBNS reserve by the cash fl ow model assumes that the pay-
ments relating to the incurred counts are delayed as described in §3.1. These 
forecasts vary over the index set J1 as well as the index set

J2 = {i = 1,  …,  m;  j = m, … 2m  –  2  where  i  +  j  =  m  +  1,  …,  2m  –  1},

illustrated in Figure 1.
The point forecasts are constructed from the conditional expectation mij (N ) 

in (3). Recognising that the counts are only available in the upper triangle I 
and inserting the estimates c, gives the point forecasts

 iN , k-

,j

ij j cm ( ) ,N
( )min

k
k j m i

=
= - +

d

/  (14)

over the index set J1  ,  J2. The RBNS cash fl ow by calendar year is computed 
by summing the point forecasts along the diagonals of J1  ,  J2.

Point forecasts of the RBNS cash fl ow by calendar year for the motor data 
are shown in the fi rst column of Table 6. Note that the cash fl ow for calendar 
year 19 is zero as the last delay parameter c9 is set to zero.

5.3. Point forecasts of the IBNR reserve

The IBNR forecasts are constructed in two stages. First, predictions of the incurred 
but not reported counts, Nij are computed over the index set J1. Secondly, 
these predictions are inserted in the expression mij (N ) to get the IBNR point 
forecasts

 ,iN j k-ij Nm ( ) .
( , )

( , )

max

min

k
k j m

d j m i

0 1

1

=
= - +

- + -

c/  (15)

Due to the delay, these point forecasts run over the index sets J1, J2 as well 
as the index set

J3 = {i = 1,  …,  m;  j = m,  …,  2m  –  2  where  i  +  j  =  2m,  …,  3m  –  2},

illustrated in Figure 1.

94352_Astin41-1_05_Miranda.indd   11894352_Astin41-1_05_Miranda.indd   118 12/05/11   14:2912/05/11   14:29



 CASH FLOW SIMULATION FOR A MODEL OF OUTSTANDING LIABILITIES 119

The IBNR cash fl ow is shown in the last column of Table 6. The cash fl ow 
by calendar year is computed by summing the point forecasts along the diag-
onals of J1  ,  J2  ,  J3. As the last delay parameter c9 is set to zero the cash 
fl ow for calendar year 28 is zero.

6. BOOTSTRAPPING THE PREDICTIVE DISTRIBUTION

INCLUDING PARAMETER UNCERTAINTY

In this section, we explain the bootstrapping procedure which can be applied 
to the model set out above. It should be noted that the term ‘bootstrapping’ 
can be used to cover a wide range of approaches. For example, it is sometimes 
used in connection with procedures that just simulate the process distribution. 
However, it is more common (especially in the actuarial literature) to use it 
when the estimation error is also included, and this is the context in which it 
is used in this paper. For completeness, we will also mention the former case in 
section 6.2, but all the results will include the estimation error. A further dis-
tinction in bootstrapping methodology is between parametric and non-para-
metric bootstrapping. Again, in the actuarial literature, it is more common to 
encounter non-parametric bootstrapping, where (for example) the residuals of 
the model are resampled. However, it is possible also to use parametric boot-
strapping, and the choice may depend on the particular properties of  the 
model being considered. In the case of the model in this paper, parametric 
bootstrapping is more appropriate and is used in the remainder of this section. 
The results of this parametric bootstrapping estimation procedure are compared 
with non-parametric bootstrapping applied to the chain-ladder technique in 
section 6.3. In section 7, a simulation study compares the conditional boot-
strapping method with the classical unconditional chain ladder method.

6.1. The predictive distribution

We fi rst introduce some notation for the predictive distributions of the RBNS 
and IBNR reserves, which will be estimated by bootstrapping.

The reported counts Nij are indexed over I. Their distribution is denoted 
NI (w) and is Poisson distributed with mean given in terms of the population 
version w of  the row sums Ri and development parameters F,.

The distribution of  the aggregated claims Xij over I  ,  J1  ,  J2 arising
from the incurred counts Nij is denoted Xij (q, N ), where q  =  ( p,  m,  s2). This 
distribution is constructed sequentially. Given the incurred counts, the paid 
counts Nij

paid are defi ned over the set I  ,  J1  ,  J2 through the formula (1). The 
individual claims distribution (or the severity distribution) is assumed to be a 
gamma distribution with mean m and variance s2. Therefore, the shape param-
eter is l  =  m2 / s2, the scale parameter is k  =  s2 / m, and the density is

 y(y)
( )

( ) 0.
g k

kexpy y1 forf >=
l

1 /
l

–l -
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Note that the possibility of zero claims is excluded, in contrast to assump-
tion in Verrall, Nielsen and Jessen (2010). Given the count Nij

paid, the aggregate 
claims Xij are then gamma distributed with shape Nij

paid l and scale k.
The RBNS reserve is the sum over J1  ,  J2 of the aggregate claims arising 

from the reported counts N, that is mij (N ) as given in (14).
The IBNR reserve arises from the incurred but not reported counts Nij over 

the lower triangle J1. These are Poisson distributed distributed in a similar 
way to the reported counts, and in accordance with the notation above, their 
distribution is denoted NJ1

(r, F). The aggregated claims over J1  ,  J2  ,  J3 
arising from the predicted counts N, mij (N) as given in (15), will then have a 
mixture distribution Xij {q,  NJ1

(w)}.
The total reserve is found by adding the RBNS and the IBNR reserves.

6.2. Bootstrap predictive distribution of RBNS and IBNR cash fl ow

The predictive reserve distributions will be estimated using a parametric boot-
strapping procedure. As mentioned above, the term ‘bootstrapping’ is some-
times used to describe the situation where the unknown parameters are simply 
replaced by the estimated parameters (ignoring the estimation uncertainty). 
This would give the bootstrap estimators

 .
1 1JJ w( , ) { , ( )}, { , ( )}q q w qRBNS IBNR Total,N ,NN N  (16)

The more usual bootstrapping procedure, taking parameter uncertainty into 
account, is defi ned as follows.

The delay and severity parameters q  =  (p,  m,  s2) are estimated using the 
conditional model of aggregrated payments X given reported counts N, while 
the chain ladder parameters w are estimated using the model for the reported 
counts N. For the bootstrap, this can be replicated by considering these two 
distributions varying independently in spaces Q and W say. The conditional 
distribution given N of  the estimators of the delay and severity parameters
is denoted Dq (q*;  N) while the distribution of  the estimators of  the chain 
 ladder parameters is denoted Cw(w*). Hence the bootstrap distributions of the 
reserves are the mixtures

 ,
!

)N( ) ( ( )dRBNS RBNS
q qmix =

H*
* *;N Nq q q, ,D#  (17)

 
1J{ , ( )}q wIBNRmix N

           
, 1

* *d d ;
* J w{ , ( )} ( ) ( ),w q NwIBNR

( ) ( , )q qw*
=

! H X

* *Cq N D#  (18)

 
1J{ , , ( )}q N wTotalmix N

           ,
,

d d
1 w ;

* J{ , ( )} ( ) ( ) .q w w qN NCTotal
( ) ( , )

* * * *
q w q*

=
! H X

DN#  (19)
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These bootstrap distributions are evaluated at the estimated parameters giving 
the bootstrap estimators

 .
1 1J J w( , ), { ( ) , { ( }q wNRBNS IBNR Totalmix mix mix} )q,,q ,N NN  (20)

As the integral (17), (18), (19) cannot be calculated exactly they are approximated 
by simulation by drawing 999 repetitions of  the independent distributions 
Cw(w*) Dq (q*;  N). In each repetition the integrand is evaluated as in (16).

To implement the above bootstrap approximations we defi ne the following 
bootstrap algorithms for the RBNS and IBNR cash-fl ows.

Algorithm RBNS

Step 1. Estimation of the parameters and distributions. From the original data 
(N, X) estimate the parameters in the model by q  =  ( p,  m,  s2 ) through 
(10) and (8). The delay distribution is estimated by a multinomial 
distribution with probability parameter p. The distribution of  the 
 individual payments is estimated by a gamma with shape parameter 
l  =  m2 / s2 and scale parameter k  =  s2 / m.

Step 2. Bootstrapping the data. Keep the same counts N but generate new 
bootstrapped aggregated payments X *  =  {Xij 

*, (i,  j)  !  I} as follows:
– Simulate the delay: from each Nij in I generate the number of paid 

claims, Nij 
*paid, by (1) from the Multinomial distribution estimated at 

Step 1.

– Get the bootstrapped aggregated payments, Xij 
*, from a gamma dis-

tribution with shape parameter Nij 
*paid  l and scale parameter k, for 

each (i,  j)  !  I. 

Step 3. Bootstrapping the parameters. From the bootstrap data, (N, X *), get 
q *  =  ( p*, m*,  s2*), calculated in the same way as q but with the bootstrap 
data generated at Step 2.

Step 4. Bootstrapping the RBNS predictions.
– Simulate the delay from the Multinomial distribution with boot-

strapped probability parameter p* (as in Step 2). Calculate the num-
ber of RBNS claims trough (1) and denote these values by Nij 

*rbns, with 
(i,  j)  !   J1  ,  J2.

– Get the bootstrapped RBNS predictions, m*
ij (N ), from a gamma 

distribution with shape parameter Nij 
*rbnsl* and scale parameter k*. 

Here l*  =  m*2 / s2* and k*  =  s2*/ m*.

Step 5. Monte Carlo approximation. Repeat steps 2-4 B times and get the empir-
ical bootstrap distribution of  the RBNS reserve, mij (N ), from the 
bootstrapped {mij *(b) (N ), b  =  1,  …,  B}, for each (i,  j)  !  J1  ,  J2.
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Algorithm IBNR

Step 1. Estimation of the parameters and distributions. Estimate q as in Step 1 
of Algorithm RBNS, above. Estimate w using chain ladder, through (5) 
and (6).

Step 2. Bootstrapping the data. Get new bootstrapped data (N *, X *) as follows:
– The counts N * are simulated from Poisson distributions with mean 

parameters given in terms of w from the original observed reported 
counts N.

– The bootstrapped aggregated payments X * are simulated exactly as 
was described in Step 2 of the algorithm RBNS above.

Step 3. Bootstrapping the parameters. From the bootstrap data, (N,  X *), get 
q *  =  (p*,  m*,  s2*), and w*  =  ( r*,  F*) calculated in the same way as
(q, w), but with the bootstrapped data generated at Step 2. Calculate 
the bootstrapped count parameters, w*, by (5) using N *, and get the 
bootstrapped predictions in the lower triangle N*

J1
(w*).

Step 4. Bootstrapping the IBNR predictions.
– For each entry N*

ij  in N*
J1

(w*), simulate the delay from a Multi-
nomial distribution with bootstrapped probability parameter p*. 
Calculate the number of IBNR claims trough (1) and denote these 
values by Nij 

*ibnr, for each (i,  j)  !   J1  ,  J2  ,  J3. 
– Get the bootstrapped IBNR predictions, m*

ij  N*
J1

(w*)), from a gamma 
distribution with shape parameter Nij 

*ibnrl* and scale parameter k*, 
exactly as in algorithm RBNS.

Step 5. Monte Carlo approximation. Repeat steps 2-4 B times and get the 
empirical bootstrap distribution of the IBNR reserve, mij (N), from the 
bootstrapped {mij 

*(b) (N), b  =  1,  …, B}, for each ((i,  j)  !   J1  ,  J2  ,  J3.

 TABLE 7

DISTRIBUTION FORECASTS OF RBNS, IBNR AND TOTAL RESERVE, IN THOUSANDS. THE THREE FIRST COLUMN 
GIVE THE SUMMARY OF THE DISTRIBUTION FROM THE PROPOSED BOOTSTRAP METHOD WHICH TAKES INTO 

ACCOUNT THE UNCERTAINTY OF THE PARAMETERS. THE LAST COLUMN PROVIDES THE RESULTS FOR THE TOTAL 
RESERVE FOR THE BOOTSTRAP METHOD OF ENGLAND AND VERRALL (1999) AND ENGLAND (2002).

Bootstrap predictive distribution

RBNS IBNR Total BCL

mean 3134 274 3408 3314
pe  327  60  340  345

 1% 2464 148 2714 2588
 5% 2646 183 2895 2780
50% 3105 272 3390 3287
95% 3722 378 4002 3911
99% 3987 435 4275 4061
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An intuitive representation of the above bootstrap algorithms are given in Fig-
ures 2 and 3.

Considering the motor data, the summary statistics from the RBNS and IBNR 
cash-fl ows, estimated by the just presented bootstrap method are reported in 
Table 7.

6.3. A comparison with bootstrap estimation for the chain ladder technique

For the chain ladder model, bootstrap methods have been considered in Eng-
land and Verrall (1999), England (2002) and Pinheiro, Andrade e Silva and 
Centeno (2003), amongst others. These methods are nonparametric bootstrap-
ping using the residuals in a GLM framework, and a key issue for nonpara-
metric bootstraps is the proper defi nition of the residuals for bootstrapping. 
Since the methods consider resampling with replacement, it is necessary to ensure 
that these residuals are independent and identically distributed. This contrasts 
with the bootstrap method described above, which is a parametric bootstrap 
exploiting an assumed distributional form and defi ning the resampling scheme 
from the parametric distributions. Other parametric bootstrap methods have 
been considered recently by Björkwall, Hössjer and Ohlsson (2009a, 2009b).

FIGURE 2: Bootstrapping scheme to approximate the RBNS predictive distribution.
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For comparison purposes with the results from the model described in this 
paper, we consider the bootstrap approach for estimating derive the predictive 
distribution of chain ladder forecasts described in England and Verrall (1999) 
with the modifi cation suggested by England (2002). This constructs the predictive 
bootstrap distribution by resampling with replacement from the Pearson resid-
uals and then simulating the process distribution using a gamma distribution 
(or an overdispersed Poisson) with the parameters estimated from the empiri-
cal bootstrap distribution from the fi rst stage.

Table 7 reports results from the England and Verrall (1999) and England 
(2002) bootstrap method using an R package of Gesmann (2009), together 
with the results from the new method. The resulting reserves are similar to the 
chain ladder estimate of outstanding claims (3, 315, 779). Hence, as also noted 
in Verrall, Nielsen and Jessen (2010), for this data set the new method does not 
imply a change in the estimation of the total outstanding claims. We would 
note, however, that the new model includes a tail, whereas this would have to 
be added separately for the chain ladder model (thereby increasing the esti-
mate of outstanding claims). The new model is able to generate full cash fl ows 
split into two parts, one for the RBNS reserve and one for the IBNR reserve. 
We also see that the volatility (as measured by the prediction error) is also 

FIGURE 3: Bootstrapping scheme to approximate the IBNR predictive distribution.
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similar to that from the bootstrap distribution for the chain ladder method. 
Again, we note that the new model includes the tail and we would expect that 
the prediction error for the chain ladder model would increase once this is taken 
into account. Also shown are some percentiles of the bootstrap estimates of the 
predicitive distributions for the new model and the chain ladder model. In order 
to assess the performance of the new model, the following section contains a 
simulation study to compare the results with the classical chain ladder.

7. SIMULATION STUDY

In order to study the performance of the model described in this paper, in 
comparison with the standard chain ladder technique, this section considers a 
simulation study and examines the reserve estimates and capital requirements 
based on each approach. We generate the data using the assumptions of the 
new model, but (since the assumptions are deliberately free of  any specifi c 
structure in terms of the shape of the run-off) we do not believe that this has 
any affect on the conclusions reached.

7.1. The simulation settings

A scenario for the simulations close to that described in section 6 has been 
constructed. We consider data triangles with dimension k  =  10, and generate 
999 data sets using the following distribution specifi cations:

1. The reported counts Nij are defi ned over a square matrix (with dimension 
m  =  10) with the upper triangle being exactly the data entries in Table 1, 
and the lower triangle completed by generating the entries from a Poisson 
model with the chain ladder parameters

2. The delay is generated from a multinomial distribution with probability 
parameters pk estimated from the empirical study in section 5.

3. The individual payments are generated from a gamma distribution with 
fi rst two moments, m  =  163.6158 and s2  =  2070821 (estimated again from the 
empirical study).

4. A new triangle of aggregated payments is formed from the data generated 
in step 3, to which the new method and the classical chain ladder method 
are applied.

7.2. Distribution forecasts

We study the performance of the new bootstrap method (described through 
algorithms in Section 6.2) in estimating the predictive distribution. Also we make 
comparisons with the results achieved by applying the standard bootstrap 
method to the chain ladder method. As in the empirical study in Section 6, we fi x 
the number of bootstrap samples to be B  =  999 for all the bootstrap methods.
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TABLE 8

SIMULATION OF DISTRIBUTION FORECASTS OF TOTAL RESERVE BY CALENDAR YEAR:
95%, 99% QUANTILES OVER 999 REPETITIONS. COLUMN 2-3 GIVE ACTUAL NUMBERS;

COLUMN 4-5 CASH FLOW BOOTSTRAP USING ANALYTIC DELAY ESTIMATION AND TAKING INTO ACCOUNT THE 
UNCERTAINTY PARAMETERS; COLUMN 6-7 BOOTSTRAP CHAIN LADDER.

Future
Actual Cashfl ow Bootstrap CL Bootstrap

95% 99% 95% 99% 95% 99%

 1 1649 1759 1659 1776 1709 1847

 2 992 1085 1001 1094 1018 1115

 3 686 765 698 778 707 789

 4 482 550 492 562 494 564

 5 319 375 326 386 323 381

 6 226 276 231 284 224 274

 7 157 203 161 210 150 193

 8 112 154 117 163 103 140

 9 41 76 48 87 24 41

10 9 23 10 25 0 0

11 3 14 3 13 0 0

12 0.8 10 1.4 9 0 0

13 0.2 7 0.4 5 0 0

14 0 3 0.1 3 0 0

15 0 0.8 0 1 0 0

16 0 0.1 0 0.4 0 0

17 0 0 0 0.1 0 0

18 0 0 0 0 0 0

TABLE 9

SIMULATION OF DISTRIBUTION FORECASTS OF TOTAL RESERVE BY CALENDAR YEAR:
MEDIANS (50%) OVER 999 REPETITIONS. COLUMN 2 GIVES ACTUAL NUMBERS; COLUMN 3 CASHFLOW 

BOOTSTRAP USING ANALYTIC DELAY ESTIMATION AND TAKING INTO ACCOUNT THE UNCERTAINTY 
PARAMETERS; COLUMN 4 CHAIN LADDER BOOTSTRAP.

Future Actual Cashfl ow Bootstrap CL Bootstrap

 1 1396 1406 1400

 2 793 802 799

 3 523 530 528

 4 343 350 345

 5 203 209 204

 6 124 129 124

 7 69 74 68

 8 38 42 36

 9 4 7 3

10 0 0 0
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In order to assess the performance of  the new method, we require the 
“actual” predictive distribution, which we simulate using steps 1-4 of the sim-
ulations described above. This was done as follows: for each of the 999 simu-
lated data sets we estimate the parameters in the model. These estimates are 
used to produce the RBNS and IBNR reserves, and from these 999 reserves 
we calculate the desired quantile of the distribution. This process is repeated 
999 times and the simulated “actual” quantiles are defi ned as by taking the 
average of the 999 resulting quantiles.

Table 8 shows the distribution forecasts for the total reserve. The bootstrap 
chain ladder method of England and Verrall (2002) and England (2002), as 
implemented by Gesmann (2009) gives higher tail quantiles implying higher 
levels of solvency requirements when using this method. One can consider the 
trade-off  between accepting these extra solvency requirements based on the 
simple unconditional chain ladder method and rather than collecting the tri-
angle data of reported claims and implementing the more complicated model 
considered in this paper.

In Table 9 simulations of the medians of the full cash fl ow are presented 
for the bootstrap forecast distribution for the new model and for the chain 

TABLE 10

SIMULATION OF DISTRIBUTION FORECASTS OF RBNS/IBNR RESERVES BY CALENDAR YEAR:
95% AND 99% QUANTILES OVER 999 REPETITIONS. COLUMN 2-5 GIVE RBNS RESERVE COLUMN 6-9 GIVE 

IBNR RESERVE COLUMN 2-3 & 6-7 GIVE ACTUAL NUMBERS; COLUMN 4-5 & 8-9 GIVE CASHFLOW BOOTSTRAP 
USING ANALYTIC DELAY ESTIMATION AND TAKING INTO ACCOUNT THE UNCERTAINTY PARAMETERS.

Future

RBNS IBNR

Actual Bootstrap Actual Bootstrap

95% 99% 95% 99% 95% 99% 95% 99%

 1 1551 1655 1559 1673 155 194 155 192
 2 906 993 916 1005 137 175 136 170
 3 649 724 660 738 74 102 74 101
 4 454 519 463 531 60 86 60 85
 5 296 351 303 362 52 76 51 75
 6 212 261 216 270 37 60 36 57
 7 146 192 150 199 31 54 30 50
 8 105 147 110 156 21 41 21 39
 9 27 67 35 77 24 45 23 42
10 0 0 0 0 9 23 10 25
11 0 0 0 4 3 14 3 13
12 0 0 0 3 0.8 10 1 9
13 0 0 0 0.5 0.2 7 0.4 6
14 0 0 0 0.1 0 3 0.1 3
15 0 0 0 0 0 0.7 0 1
16 0 0 0 0 0 0.1 0 0.4
17 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
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ladder model. The two methods produce almost identical results for the 
median and it is therefore the distributional properties only that defi ne the 
difference between these models. They produce almost the same best estimates 
of reserves. Table 10 gives a breakdown of distribution forecasts for the RBNS 
and IBNR method and we can see that almost all the upwards bias comes 
from the RBNS reserve. The chain ladder method does not give such an RBNS/
IBNR split and we see the ability to make this split as one of the advances of 
the new approach. When comparing Table 6 and Table 10 it can be seen that 
the relative volatility of the IBNR part of the reserve is much bigger than the 
volatility of the RBNS reserve. This is because of the RBNS is conditional on 
known counts, whereas the counts of the IBNR contain volatility, and have to 
be estimated before the fi nal IBNR reserve can be predicted.

8. CONCLUSIONS

This paper has examined the properties of the claims reserving method pro-
posed by Verrall, Nielsen and Jessen (2010), and has shown how the full pre-
dictive distribution may be obtained using bootstrap methods. In this paper, 
the structure of the model is identical to Verrall, Nielsen and Jessen (2010) 
although the detailed assumptions differ in some respects. We believe that this 
general approach has a great deal to offer: it is essentially as simple to apply 
as methods such as the chain-ladder technique, but it uses a little more data. 
We believe that by adding the information regarding the claim counts, much 
better estimates should be obtained (in general) for the outstanding liabilities 
and for the predictive distributions. Although the results for the set of data 
used in this paper did not show any great improvements over the standard 
chain ladder results, we believe that the general approach has a lot of potential 
for further development and improvement. We also believe that the coherent 
approach to the underlying mechanism generating the data, the split between 
RBNS and IBNR reserves, and the natural and consistent inclusion of the tail 
in the forecasts are specifi c advantages of  this methods over the ad hoc 
approach of the chain ladder technique.
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