
Astin Bulletin 41(1), 131-155. doi: 10.2143/AST.41.1.2084389 © 2011 by Astin Bulletin. All rights reserved.

 MAXIMUM LIKELIHOOD AND ESTIMATION EFFICIENCY
OF THE CHAIN LADDER

BY

GREG TAYLOR

ABSTRACT 

The chain ladder is considered in relation to certain recursive and non-recursive 
models of claim observations. The recursive models resemble the (distribution 
free) Mack model but are augmented with distributional assumptions. The non-
recursive models are generalisations of Poisson cross-classifi ed structure for 
which the chain ladder is known to be maximum likelihood. The error distri-
butions considered are drawn from the exponential dispersion family.

Each of these models is examined with respect to suffi cient statistics and 
completeness (Section 5), minimum variance estimators (Section 6) and max-
imum likelihood (Section 7). The chain ladder is found to provide maximum 
likelihood and minimum variance unbiased estimates of loss reserves under a 
wide range of recursive models. Similar results are obtained for a much more 
restricted range of non-recursive models.

These results lead to a full classifi cation of this paper’s chain ladder models 
with respect to the estimation properties (bias, minimum variance) of  the 
chain ladder algorithm (Section 8).
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Chain ladder, cross-classifi ed model, completeness, exponential dispersion family, 
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1. I NTRODUCTION 

The chain ladder was originally introduced into actuarial practice as a heuris-
tic loss reserving algorithm. Prior to Hachemeister & Stanard (1975) it did not 
even have a formulation as a stochastic model.

In more recent years some stochastic formulations have been achieved and 
some statistical properties of the models deduced. It is desirable to explore the 
major properties of these models as fully as possible.
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132 G. TAYLOR

Such major properties include:

– whether the application of conventional statistical inference criteria, such 
as maximum likelihood, lead to the chain ladder algorithm as the formal 
estimator of loss reserve;

– whether the algorithm generates biased estimators; and

– the effi ciency of the estimators, i.e. whether their variances are low or high.

Unbiasedness may not always be of central importance in statistical inference. 
In some fi elds of endeavour a biased but effi cient estimator might be preferred 
to an unbiased but less effi cient one. However, unbiasedness lies at the heart 
of much actuarial estimation. 

Consider pricing and liability valuation as examples. Any premium is based 
on an attempted estimate of the long-run cost of the insured risk. If  all such 
estimates are unbiased, then the total risk premium collected, taken over all 
the risks and over a suffi ciently long period, will be correct.

Subject to this requirement, it is evident that an effi cient estimate is prefer-
able to an ineffi cient one, though with one qualifi cation mentioned at the end 
of the present section.

Over recent years, two families of model underlying chain ladder estimates 
of  loss reserves have been identifi ed. These are (using the terminology of 
Verrall (2000)) the recursive models, in which the expectations of observations 
are conditioned by earlier observations, and the non-recursive models, in which 
no such conditioning occurs.

Some statistical properties of  these models are known. For example,
it has been known for many years that the non-recursive model of  claim 
observations consisting of  multiplicative row and column effects is maximum
likelihood (ML) if  the distribution of those observations is Poisson (Hachemeis-
ter & Stanard, 1975), or over-dispersed Poisson (ODP) (England & Verrall, 
2002).

The recursive models were placed on a formal statistical footing by Mack 
(1993). He showed that the chain ladder was minimum variance unbiased among 
those algorithms that estimate age-to-age factors as linear combinations of 
empirical age-to-age factors. However, Mack’s formulation was distribution-
free and so relatively few statistical properties followed from it.

The present paper considers both forms of model with particular reference 
to the circumstances under which the chain ladder is maximum likelihood, 
unbiased and/or minimum variance.

In the case of  a predictive model (such as the chain ladder), one is ulti-
mately concerned with the size of prediction error rather than simply the error 
in the model parameter estimates. This issue is also discussed at the end of  the 
paper.
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2. FRAMEWORK AND NOTATION

2.1. Claims data

It will be convenient to follow the framework and notation of Buchwalder, 
Bühlmann, Merz & Wüthrich (2006). They consider a K ≈ J rectangle of claims 
observations Ykj with:

– accident periods represented by rows and labelled k  =   1,  2,  …,  K ;

– development periods represented by columns and labelled by j  =  1,  2,  …,
J   ≤  K.

Within the rectangle they identify a development trapezoid of past observations

 kjK = –: ,minY k K j J kand1 1 1D # # # # +K^ h" ,

By convention, D0  denotes the empty set of observations.

The complement of KD , representing future observations, is

 
k

k

K j

j

Y

Y +– –J

–c : ,

: .

mink K J k j J

k K K k j J

and

and

1 1

1 1

<

< <

D # # #

# #

= +

= +K

K^ h#

#

-

-

Also let

 D DDK K Kj=+ c

In general, the problem is to predict KD
c  on the basis of observed KD .

The usual case in the literature (though often not in practice) is that in which 
J  =  K, so that the trapezoid becomes a triangle. The more general trapezoid 
will be retained throughout the present paper.

Defi ne the cumulative row sums
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And the full row and column sums (or horizontal and vertical sums)
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Also defi ne, for k = K – J + 2, …, K, 
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Note that R is the sum of the (future) observations in KD
c . It will be referred 

to as the total amount of outstanding losses. Likewise, Rk denotes the amount 
of outstanding losses in respect of accident period k. The objective stated earlier 
is to forecast the Rk and R.

Let (R )k/ summation over the entire row k of KD , i.e. 
( , )min

j

J k

1

1-K
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/  for fi xed k.

Similarly, let ( jC )/ summation over the entire column j of  KD , i.e. 
j

k 1

- 1K
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/ for
fi xed j. For example, (2.2) may be expressed as
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Finally, let T/ denote summation over the entire trapezoid of (k, j ) cells, i.e.
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2.2. Families of distributions

2.2.1. Exponential dispersion family

The exponential dispersion family (EDF) (Nelder & Wedderburn, 1972) con-
sists of those variables Y with log-likelihoods of the form

 ,y(–f f f, , ( ) ( ) )y y b a c, q q= +/q^ h 7 A  (2.5)

for parameters q (canonical parameter) and f (scale parameter) and suitable 
functions a, b and c, with a continuous, b differentiable and one-one, and c 
such as to produce a total probability mass of unity.

For Y so distributed,

 E [Y ]   =   b�(q) (2.6)
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 Var [Y ]   =   a(f)  b�(q) (2.7)

If  m denotes E [Y ], then (2.6) establishes a relation between m and q, and so 
(2.7) may be expressed in the form

 Var [Y ]   =   a(f)V(m) (2.8)

for some function V, referred to as the variance function.

The notation Y  +  EDF(q, f;  a, b, c) will be used to mean that a random vari-
able Y is subject to the EDF likelihood (2.5).

2.2.2. Tweedie family

The Tweedie family (Tweedie, 1984) is the sub-family of the EDF for which

 a(f)   =   f (2.9)

 V(m)   =   mp, p  #  0  or  p  $  1 (2.10)

For this family,

 ( )q qb p p ( )/( )p p1 2 1= - - -–– 12^ ^h h7 A  (2.11)

  p1m qp /( )1= -– 1
^ h7 A  (2.12)

 p1 -y c/ pyf f; , / ,m m mp p y1 2, = +2 -– – – f/^ ^ ^ ^h h h h9 C  (2.13)

 – f/ /m m my p,2 2 = - p1 -^ h  (2.14)

The notation Y  +  Tw(m, f, p) will be used to mean that a random variable Y 
is subject to the Tweedie likelihood with parameters m, f, p. The abbreviated 
form Y  +  Tw( p) will mean that Y is a member of the sub-family with specifi c 
parameter p.

2.2.3. Over-dispersed Poisson family

The over-dispersed Poisson (ODP) family is the Tweedie sub-family with p = 1. 
The limit of (2.12) as p  "  1 gives

 E [Y ]   =   m   =   exp q (2.15)
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136 G. TAYLOR

By (2.8)–(2.10),

 Var [Y ]   =   fm (2.16)

By (2.14),

 – f/ /m m my,2 2 = ^ h  (2.17)

The notation Y  +  ODP (m, f) means Y  +  Tw(m, f, 1).

3. CHAIN LADDER

The chain ladder was originally (pre-1975) devised as a heuristic algorithm for 
forecasting outstanding losses. It had no statistical foundation. The algorithm 
is as follows.

Defi ne the following factors:

 X ,k kj / , , ...,f X j J1 2j j
k

K j

k

K j

1
11

= =+

--

==

–, 1//  (3.1)

Note that jf  can be expressed in the form

 ,kk Xw Xkj j /f
k

K j

j
1=

-

j 1+= ^ h/  (3.2)

with

 kk k /w X Xj j j
k

K j

1
=

=

-

/  (3.3)

i.e. as a weighted average of factors kXX ,k j/j 1+  for fi xed j.
Then defi ne the following forecasts of k K!Y Dj

c :

 k –...f f f fX 1,j K k K k K k j jk 1 1 2 2 1= - + - + - +Y - -a k (3.4)

Call these chain ladder forecasts. They yield the additional chain ladder forecasts:

 k ...fXX ,j K k K k jk 1 1 1= - + - + f -  (3.5)

 k=R X X ,k J k– K k 1- +  (3.6)

 .R Rk
k K J

K

2
=

= - +

/  (3.7)
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4. MODELS ADAPTED TO THE CHAIN LADDER

The present section defi nes two families of models for which the maximum 
likelihood estimates (MLE) of outstanding losses are given by the chain ladder 
forecasts (3.6) and (3.7).

In the fi rst of  these families, the model, called a recursive model, takes the 
general form

 ,k kXE X jj 1+7 A = function of +Dk j 1-  and some parameters (4.1)

where +Dk j 1-  is the data sub-array of KD  obtained by deleting diagonals on 
the right side of DK  until Xkj is contained in its right-most diagonal.

In the second family, the model, called a non-recursive model, takes the 
unconditional form

 kXE j7 A = function of some parameters. (4.2)

The terminology of recursive and non-recursive models is due to Verrall (2000).

4.1. Recursive models

Consider the following model, subsequently referred to as the EDF Mack model:

(EDFM1) Accident periods are stochastically independent, i.e. 
1k j k j1 2 2

,Y Y  are 
stochastically independent if  k1   !   k2.

(EDFM2) For each k = 1,  2,  …,  K, the Xkj (  j varying) form a Markov chain.

(EDFM3) For each k = 1,  2,  …,  K and j = 1, 2,  …,  J – 1,
(a) Y ,k k kj kf, ; , ,qX EDF a b cj j j1 ++ ^ h for some functions a,  b,  c that 

do not depend on j and k; and

(b) k jXX ,k kE fj j j1 = X+7 A  for some parameters fj > 0.

The parameters fj in (EDFM3b) are referred to as age-to-age factors.
A special case of  the EDF Mack model arises when a and b take the 

respective forms (2.9) and (2.11), i.e. (EDFM3a) takes the form:

     Y X,k k ( )Tw pj j1+ +  for some p that does not depend on j and k. (4.3)

The resulting model will be referred to as the Tweedie Mack model.
A further special case is that of the Tweedie Mack model with p = 1, i.e. 

the member of the Tweedie family is ODP. This model will be referred to as 
the ODP Mack model.

Mack (1993) defi ned a model that included assumptions EDFM1, 2, and 3b. 
It did not include the distributional assumption EDFM3a, but did include a 
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138 G. TAYLOR

further assumption concerning Y ,k kVar Xj j1+7 A. That model, which was dis-
tribution free, has subsequently come to be known as “the Mack model”.

Lemma 4.1. The following hold for any of the above Mack models:

(a) The estimators jf  are unbiased for fj .

(b) The estimators jf  are uncorrelated.

(c) The estimators Xkj, Rk and R defi ned by (3.5) – (3.7) are unbiased for
k ,E X Dj k7 A  kE R Dk7 A and E R Dk7 A respectively.

Proof. These results were proved by Mack (1993) for the distribution free 
Mack model. The assumptions (EDFM1-2) and (EDFM3b) defi ning that model 
apply also to the EDF, Tweedie and ODP Mack models.

As mentioned above, the Mack model also included an assumption con-
cerning Y ,k kVar Xj j1+7 A. However, this was not used by Mack in the proof of 
propositions (a) – (c) for his model. These propositions therefore also hold for 
the EDF, Tweedie and ODP Mack models. ¡

Mack (1993) points out implicitly (p. 217) that jf  is the minimum variance 
estimator of fj among those that are weighted averages of the empirical age-
to-age factors ,k /X j k1+ jX , as in (3.1).

4.2. Non-recursive models

Consider the following model, subsequently referred to as the EDF cross-classifi ed 
model:

(EDFCC1) The random variables KkY Dj !
+  are stochastically independent.

(EDFCC2) For each k = 1, 2,  …,  K   and  j  =  1, 2,  …,  J,

(a) EDFk k f ; , ,qY a b cj j kj+ ,^ h for some functions a, b, c that do not 
depend on j and k;

(b) kY aE j k j= b7 A  for some parameters ak, bj  >  0; and

(c) .1jj 1 =
=

J b/

The EDF cross-classifi ed model may be specialised to the Tweedie cross-classifi ed 
model and the ODP cross-classifi ed model in the same way as for the Mack model 
of Section 4.1.

A version of  the Tweedie cross-classifi ed model appears in Wüthrich & 
Merz (2008, p. 191). Here a member of the Tweedie family is generated by the 
assumption that Ykj represents claim payments and is compound Poisson with 
gamma severity distribution. Such compound Poisson distributions are known 
to coincide with the Tweedie sub-family for which 1  <  p  <  2 (Jorgensen & Paes 
de Souza, 1994).
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The following result is due to Taylor (2009). A similar result appears in Peters, 
Shevchenko & Wüthrich (2009).

Lemma 4.2. In the case when fkj = f, independent of k and j, the maximum 
likelihood (ML) equations for the Tweedie cross-classifi ed model are:

 mY –kkj 0, 1, 2, ...,m k K
( )

p
R k

j kj
1 = =-

^ h/  (4.4)

 mY –kkj , , , ...,m j J0 1 2
( )

p
j kj

C j
1 = =-

^ h/  (4.5)

where k ( )Y Tw pj +  and

 k jm j k= a b  (4.6)
 ¡

A special case of Lemma 4.2 that can be found in Hachemeister & Stanard 
(1975), Renshaw & Verrall (1998) and Schmidt & Wünsche (1998) is as follows, 
though these authors considered only Poisson, rather than ODP, Ykj .

Lemma 4.3. In the case when fkj = f, independent of k and j, the ML equa-
tions for the ODP cross-classifi ed model are the marginal sum equations

 0=mY –k

( )

j kj

R k

^ h/  (4.7)

 mY –k 0
( )

j kj

C j

=^ h/  (4.8)

The solution of  these equations is the chain ladder algorithm set out in
Section 3. ¡

4.3. Relation between recursive and non-recursive models

The models described in Sections 4.1 and 4.2 are represented diagrammatically 
in Figure 4.1.

 EDF  Tweedie  ODPRecursive  g  g
 Mack  Mack  Mack

 EDF cross-  Tweedie cross-  ODP cross-Non-recursive  g  g
 classifi ed  classifi ed  classifi ed

FIGURE 4.1: Families of recursive and non-recursive models.
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None of the Mack models except distribution free appears to have been dis-
cussed in the literature previously, although Mack (1999) did consider the special 
case of a gamma distribution in (EDFM3a). Neither does the general EDF 
cross-classifi ed case appear in the literature.

Wüthrich (2003) introduced the Tweedie cross-classifi ed model, which was 
elaborated by Taylor (2009).

As indicated in Sections 4.1 and 4.2, the ODP cross-classifi ed and distribution 
free Mack models have been discussed by a number of authors.

The relation between these last two categories of model was discussed by 
Verrall (2000), Mack & Venter (2000) and Verrall & England (2000). The present 
sub-section is not an attempt to reproduce the whole of that discussion but con-
centrates of the part that considers how the forecasts are conditioned by the data.

The Mack model has an inherently conditional form (see (EDFM3)) whereas 
the ODP cross-classifi ed model does not (see (EDFCC2)). However, Verrall (2000) 
points out that, when conditioned on all past observations, the ODP cross-
classifi ed forecasts have the same dependency on those observations as do the 
Mack forecasts.

The specifi cs of this follow.
By Lemma 4.1(c), the Mack model estimator of kXE Dj K7 A is 

 k , jk 1...f f fXX j K k K k K k1 1 2= - + - + - + -  (4.9)

for K  –  k  +  1  <  j  ≤  J. Note that ,kX K k 1- +  is the sum of  all observations in
row k of  Dk .

Now, by (EDFCC2b), in the absence of data, 

 kX aE Dj k i
i

j

1
0 = b

=
7 A /  (4.10)

However, Verrall (2000) shows that the MLE of ,k KXE DK k 1- +7 A is ,kX K k 1- + , 
and that the MLE of k KXE Dj7 A is kX j  for K  –  k  +  1  <  j   ≤   J.

Thus, while (4.10) gives the expectation of Xkj prior to the collection of any data, 
the MLE of that quantity changes as it is conditioned by accumulating data. This 
occurs in such a way that, while the distribution free Mack and ODP cross-classifi ed 
models are quite distinct, their forecasts (MLE in the latter case) are identical.

5. SUFFICIENCY AND COMPLETENESS

5.1. Suffi ciency

5.1.1. Recursive models

Let K
+D  be subject to an EDF Mack model. By (EDFM2-3), the only informa-

tion on parameter fj will be contained in the observations in column j  +  1 of 
KD , conditional on column j.
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Denote the partial conditional log-likelihood for column j  + 1 by , j + 1(y, q,
f, X ) where y, q, f, X are the following vectors:

 

j K j-

f f f

, ...,

, ...,

, ...,

, ...,

q q q

y y y

X X X

, ,

, ,

, ,

,

j K j j

j K j j

j K j j

j

1 1 1

1 1 1

1 1 1

1

=

=

=

=

-

-

-

+ +

+ +

+ +

Then, by (2.5),

 ,k fy , ,k k a ,k–; q q

q

y b

terms independent of

j j j
k

K j

1 1 1
1

=

+

+
=

-

, + +f /, ,q X j 1j 1 ++^ ^ ^h h h7 A/
 (5.1)

By (2.6) and (EDFM3b),

 ,k ,k km1 1- - X jq j j1 = =+ � �b bj 1 f+^ ^ ^ ^h h h h (5.2)

where m ,k j 1+  has been used to denote ,k kXE X j j1+7 A.

Substitution of (5.2) into (5.1) yields

 

,k

b

k

k

f

f

1

1

-

-

X a

X a

,

,

k

k

j

j

j

y

terms independent of

j j
k

K j

j

j
k

K j

1 1
1

1

, =

+

+

-

-

=

=

–

�

�

b

b

+ /

/

j

j

1

1

f

f

f

+

+

^ ^ ^

^ ^ ^

h h h

h h h9 C

/

/  (5.3)

Now call b(.) separable if  it satisfi es the following two conditions:

(i) 1- kXf X f1 1=�b l^ ^ ^ ^h h h h

(ii) 1- kb Xf X f0 0=�b l^ ^ ^ ^h h h h9 C

for some functions k0, k1, l0, l1.
If  these conditions hold, then (5.3) may be re-written as

 
fj ,1 0j

j

f, ,

terms independent of

l lg y X g y X–j j j1 1 0, =

+

,+ f f

f

^ ^ ^ ^h h h h
 (5.4)
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where

 ,k fky1 f,g y X aX ,j kj
k

K j

j1
1

1= +
=

-

, /k j 1+^ ^ ^h h h/  (5.5)

 fk0 f,g y X X a ,j j k
k

K j

1
0=

=

-

, /k j 1+^ ^ ^h h h/  (5.6)

Application of the Fisher-Neyman factorisation theorem to (5.4) shows that 
,Y f X1 ,g j ^ h is a suffi cient statistic for fj .

Theorem 5.1. Let K
+

D  be subject to an EDF Mack model. Then ,Y f X1 ,g j ^ h 
is suffi cient for fj  if  any one of the following conditions holds:

(a) ,k ( );Y Tw pj 1 ++

(b) ,k kj j( , );Y XBinj 1 ++ f

(c) ,k kj j( , ),Y in XNegBj 1 ++ a  i.e. ,k
kY j

k
–

a1y
y X

y
1

Prob j
j

1
j= = –

+
+

X
c ^m h7 A , 

y = 0, 1, 2, etc. with j jj 1 + =/a a f^ h .

Proof. Suffi ciency will be proven if  b(.) is shown to be separable in each case.

(a) By (2.6) and (2.12),

 1- / 1m pp1= -m�b –^ ^ ^h h h (5.7)

 Then

 jk k
1- X /j 1X f pj j= -f p�b –p-1 1

^ ^ ^h h h9 C (5.8)

 By (2.11) and (5.7),

 1- /mb p2p2= -m�b –^ ^ ^h h h9 C

 Then

 jkXk j
1- X f /jb p2j =f p�b - –p2 -2

^ ^ ^h h h9 9C C

 which proves separability of b(.).

(b) In this case

 kXq lnb e1j= + q
^ ^h h

 from which
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k

k1-

X
X

1m m
m

ln
j

j=�b – /
/

^ ^h h

 Then

 k
1- X j j jlnj =f� 1b f–/f^ ^ ^h h h7 A (5.9)

 which proves separability.

(c) In this case,

 kX –q lnb e1j= q–^ ^h h (5.10)

 with q ln= a

 Then

 
k

k1-

X
X

1m m
m

ln
j

j= +�b /
/

^ ^h h

 and

 k
1- X j j jlnfj = +�b f1/f^ ^ ^h h h7 A (5.11)

 proving separability. ¡

5.1.2. Non-recursive models

Let K
+

D  be subject to a Tweedie cross-classifi ed model. Condition EDFCC2(a) 
then becomes

 kj ( )Y Tw p+  (5.12)

and the log-likelihood for DK  is, by (2.13),

 
y fk k /k

p
k/f; , ,m m m

m

p y p p1 2

terms independent of

T

j j
p

j j
1 2, =

+

- -– – – /^ ^ ^h h h9 C/
 (5.13)

where ,y f,m  denote vectors in the same way as in Section 5.1.1, and p is 
constant over K

+
D .

Substitute for km j  according to (EDFCC2b):

/jkj fka 1y pbk
p p

j

t
1, = - - –1

^ h/

     + terms independent of y + terms independent of m
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With the last two members on the right side ignored, , may be written in the 
alternative forms

 jykj f/
1

a 1 p bp

k

K

kj
p1

R

, = -

=

- /k –
( )k

1
^ h/ /  (5.14)a

 j ykj f/ /
1

p
ab p1p

j

J

k kj
1, = -

=

-
C

–
( j

1
)

^ h/ /  (5.14)b

A special case arises when p = 1 (ODP case). Since kj/ 1 ,m mlim lnp
p kj

p

1

1 =
"

- –^ h

(5.13) becomes

 
j

k j

f

f f

k k

k k k

R

j

j j

ln ln

ln ln
( (

j

k
k

K

j
j

J

j

j

k

t

1 1

C

, = +

= +
= =

/ /

y

y y
)k

a

a b

b

)

/^ h/

/ / / /
 (5.15)

where only the terms of interest in (5.13) have been retained here.

Theorem 5.2. Let K
+

D  be subject to a Tweedie cross-classifi ed model. Then 

(a) If  p  =  1 (ODP case), fYk k/j j
( )kR/  is a suffi cient statistic for ka , and

 fYk k/j j
( jC )/  for jb .

(b) If  p ! 1, there is no minimal statistic for any of the parameters j,ka b  that 
is a proper subset of .DK

Proof.

(a) This follows immediately from (5.15) and the Fisher-Neyman factorisation 
theorem.

(b) Consider the parameter ka  for arbitrary k. The partial log-likelihood 
involving this parameter is, from (5.14a), 

 y j
-

k
p

f/ k
1

R

ja bp1
(

p
j

- /1–k

)k

^ h/  (5.16)

It is evident that DK  is a suffi cient statistic for ka .
If  a suffi cient statistic of Ya ( )kt  for ka  existed for Y a strict subset of DK , 

then, again by the factorisation theorem, it would be possible to express (5.16) 
in the form
 l;k Kk k +a a Dt^ ^h h

for suitable functions k, l and specifi cally with k independent of  the para-
meters bj .
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This is evidently not the case since every ykj appearing in (5.16) has a mul-
tiplier that depends on bj . It follows that there is no minimal suffi cient statistic 
for ka  that is a proper subset of .DK  By a similar argument, there is also no 
minimal suffi cient statistic for any bj that is a proper subset of .DK  ¡

A Tweedie cross-classifi ed model contains K  +  J parameters, but subject to 
constraint (EDFCC2c). Hence there are K  +  J  –  1 independent parameters.

Theorem 5.2 identifi ed K  +  J suffi cient statistics, one for each parameter. 
However, the fact that there are only K  +  J  –  1 independent parameters suggests 
that not all of the K  +  J suffi cient statistics are required. Theorem 5.3 confi rms 
this.

First, however, some notation. Let s denote the column vector of dimen-
sion K  +  J consisting of the row sums identifi ed in Theorem 5.2(a), followed 
by the column sums. 

Theorem 5.3. Let K
+

D  be subject to an ODP cross-classifi ed model. Let s* be 
the (K  +  J  –  1)-vector obtained by deleting an arbitrary single component of s, 
and let
 smin   =   As*

where A is any non-singular (K  +  J  –  1) ≈ (K  +  J  –  1) matrix. Then smin is min-
imal suffi cient for the parameter set {a1, …,  aK, b1, …,  bJ }.

Proof. By Theorem 5.2, s is suffi cient for the parameter set {a1, …,  aK, b1, …,  bJ }. 
Let the components of s be s1 …,  sK, sK + 1 …,  sK + J . By the relations at the end 
of Section 2.1,
 s1  +  …  +  sK   =   sK + 1  +  …  +  sK + J (5.17)

whence any component of s can be expressed in terms of the other components. 
This means that s* contains the same information as s and is therefore suffi -
cient for {a1, …,  aK, b1, …,  bJ }

Since A is a one-one transformation, smin is also a suffi cient statistic. Its 
minimality is indicated by its dimension K  +  J  –  1. Note that {a, b} has dimen-
sion K  +  J  –  1, but after allowance for constraint (EDFCC2c), contains only 
K  +  J  –  1 independent parameters.

In any event, smin is shown to be a complete suffi cient statistic in Theorem 5.5 
and so is immediately minimal suffi cient (Lehmann & Casella, 1998). ¡

Examples of minimal suffi cient statistics

Example 5.1. Construct s* by deleting sK + 1 from s and select A  =  I. Then smin 
consists of all row sums and a ll column sums except the fi rst.

Example 5.2. Construct s* by deleting s1 from s and select A  =  I. Then smin 
consists of all row sums except the fi rst and all column sums.
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Example 5.3. Construct s* as in Example 5.1 and select

A  =

1
1  ≈  1

1
1  ≈  (K  –  1)

I
(K  –  1)  ≈  (K  –  1)

I
(J  –  1)  ≈  (J  –  1)

Then smin consists of all row sums except the fi rst, all column sums except the 
fi rst, and the sum of all elements of DK . The last of these is given by the fi rst 
row of A which yields the sum of all row sums.

This particular version of the minimal suffi cient statistic can be found in 
Kuang, Nielsen & Neilsen (2009).

5.2. Completeness

5.2.1. Recursive models

Theorem 5.4. The statistic ,Y1 f,jg X^ h is complete under the hypotheses of 
Theorem 5.1.

Proof. Note that the subject distribution is a member of the EDF and g1j is 
suffi cient for jf , by Theorem 5.1. Note also that dim ( gj ) = dim (  fj ) = 1. These 
are necessary and suffi cient conditions for g1j to be complete (Cox & Hinkley, 
1974, p. 31). ¡

5.2.2. Non-recursive models

Theorem 5.5. The statistic smin is complete under the hypotheses of Theorem 5.3.

Proof. Note that the subject distribution is a number of the EDF and smin is 
suffi cient for {a, b}, by Theorem 5.3. Note also that dim (smin) = dim {a, b} = 
K + J – 1, also demonstrated in the proof of Theorem 5.3. These are necessary 
and suffi cient conditions for smin to be complete. ¡

6. MINIMUM VARIANCE ESTIMATORS

6.1. Recursive models

Consider the three families of models that form the subject of Theorem 5.1 
and the MLEs that derive from them.
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6.1.1. Tweedie family

By (5.8) and the defi nition of k1, l1,

 Xk kX jk j
p

1 = -1
^ h  (6.1)

 jf /j 1 pl p
1 = - –f 1
^ ^h h (6.2)

Then, by (5.5),

 ,Y , ,kf fk1 X ,kg X Y aj j
p

k

K j

1
= -

-

=
j

1
1 / j 1+ +^ ^h h/  (6.3)

6.1.2. Binomial family

By (5.9) and the defi nition of k1,  l1,

 kX 1j1 =k ^ h  (6.4)

 j j j1l ln f1 = / –f f^ ^h h7 A (6.5)

Moreover

 f ,ka 1=j 1+^ h  (6.6)

Then, by (5.5),

 ,Y , ,kf Y1g Xj
k

K j

1
=

-

=
j 1+^ h /  (6.7)

6.1.3. Negative binomial family

By (5.11) and the defi nition of k1,  l1,

 kX 1j1 =k ^ h  (6.8)

 +j j jl ln f11 = /f f^ ^h h7 A (6.9)

Moreover (6.6) holds here also. Then, by (5.5), (6.7) also holds for this case.

6.1.4. Summary

Note that for the special case of the Tweedie family in which

 p   =   1 (ODP) and (6.10)
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jf fkj =  (scale parameter dependent on only column) (6.11)

relation (6.3) reduces to

 ,Y , ,kf1g X Y aj
k

K j

1
=

-

j 1
=

fj 1 ++ /^ ^h h> H/  (6.12)

Lemma 6.1. Let K
+

D  be subject to an EDF Mack model. If

(a) k fX, ,k j k,ODPY j+ f1j j 1+ +^ h subject to (6.11); or

(b) kX,k jjY Bin+ f,j 1+ ^ h; or

(c) k jX,k jY inNegB+ a,j 1+ ^ h with j j j/ 1 + =a a f^ h ;

then there is a one-one correspondence between ,Y ,f1g Xj ^ h and the chain 
ladder age-to-age factor estimator jf .

Proof. The form of  ,Y ,f1g Xj ^ h is given by (6.12), (6.7) and (6.7) for the 
respective cases (a)-(c). The form (6.7) is a special case of (6.12), so consider 
this latter, more general case.

Note that, by (3.1),

 
,Y

,k

,

k

kf1

Y X

Xf

1

1 g X a

k

K j

j
k

K j

j j
k

K j

1
1 1

1

= +

= +

- -

-

j /

/

f
=

j

j 1

+
=

=
+^ ^h h

/ /

/
 (6.13)

which is just a linear transformation of  ,Y ,f1g Xj ^ h depending on just the 
parameters f j 1+  and the Mack model’s conditioning quantities Xkj . ¡

Theorem 6.2. Under the hypotheses of Lemma 6.1, the chain ladder estimates 
kX j kjf , , R  and R defi ned by (3.1) and (3.5) – (3.7) respectively are minimum 

variance unbiased estimators (MVUEs) of  fj , kX ,E Dj K7 A  E R Dk K7 A and 
E R DK7 A.

Proof. Unbiasedness follows from Lemma 4.1. By Theorem 5.1, ,Y ,f1g Xj ^ h 
is suffi cient for fj and so, by Lemma 6.1, jf  is suffi cient for fj . By Theorem 5.4, 

,Y ,f1g Xj ^ h is complete and therefore, by Lemma 6.1, so is jf .
In summary jf  is a complete suffi cient statistic and an unbiased estimator 

of fj . That jf  is an MVUE then follows from the Lehmann-Scheffé theorem.
Now consider kX j  defi ned by (3.5), i.e.
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 k ...XX ,j k K k K k j1 1 1= - + - +f f -  

By (EDFM3b),

 k XX ,kE Dj K K k k j1 1 1= - + + ...K- -f f7 A  (6.14)

Thus, kX j  is a function of  the conditioning information X ,k K k 1- +  and the 
statistic { , ..., }K k j1 1- +f f - , while kX[ ]E Dj K  is a function of the same condi-
tioning information and the parameter { , ..., }K k j1 1- + -f f . As shown immediately 
above, { , ..., }K k j1 1- +f f -  is a complete suffi cient statistic for { , ..., }K k j1 1- + -f f . 
A further application of the Lehmann-Scheffé theorem proves that kX j  is an 
MVUE of kX[ ]E Dj K .

The proof  that Rk  and R are MVUEs of  [ ]E R Dk K;  and [ ]E R DK;  are 
similar. ¡

6.2. Non-recursive models

One might consider attempting to show that MLEs are MVUEs for some of 
the EDF cross-classifi ed models. However, the MLE for at least the ODP case 
(where the chain ladder is MLE (Lemma 4.3)) is known to be biased. Theorem 3 
of Taylor (2003) shows that X ,k kJX K k 1; - +  is biased upward as an estimator of

        X X X, , ,k k k kJ j jXE E
1

K k K k K k
j

J

j

K k

1 1 1
1

1
=- + - + - +

- +

= =

bb/ /7 7A A / /  (6.15)

Note that chain ladder estimates are unbiased for the recursive EDF Mack 
models but the same estimators are biased for the ODP cross-classifi ed model.

Consider an EDF cross-classifi ed model as defi ned in Section 4.2. Let 
K:Z D R"
c  and let :Z D RK "  be some predictor of .Z DK;  Defi ne 

 = Z ZZ E Z EDK K;/ D7 7A A (6.16)

Then

 =ZE E DK K; ZD7 7A A (6.17)

and so Z is a bias corrected form of the predictor Z.

Theorem 6.3. Let K
+

D  be subject to an ODP cross-classifi ed model with

 f fkj = , independent of k,  j (6.18)
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Then the bias corrected chain ladder estimates kX j, Rk  and R (derived from 

kX j, Rk  and R defi ned by (3.5)-(3.7) respectively) are MVUEs of kX ,E Dj K7 A  
E R Dk K7 A and E R DK7 A.

Proof. The estimators kX j, Rk  and R are MLE for the ODP cross-classifi ed 
model (Lemma 4.3). They are defi ned in terms of the statistic s, defi ned in 
Section 5.1.2. It is remarked in the proof of Theorem 5.3 that this is expressible 
in terms of smin, as defi ned in Theorem 5.3.

By Theorems 5.3 and 5.5, smin is a complete suffi cient statistic for the 
parameter set {a1, …,  aK, b1, …,  bJ } of the ODP cross-classifi ed model. Thus, 

kX j, Rk  and R are unbiased estimators that are functions of a complete suf-
fi cient statistic. By the Lehmann-Scheffé theorem, they are MVUEs. ¡

The application of Theorem 6.3 is limited by the fact that the bias correction 
factors in kX j, etc. would rarely be known practice. On the other hand, how-
ever, the biases contained in chain ladder estimates are tolerated in practice 
and, in this context, the theorem shows that the chain ladder provides a min-
imum variance estimate of whatever it is estimating.

When the chain ladder bias is small, it provides “minimum variance almost 
unbiased” estimators.

7. MAXIMUM LIKELIHOOD ESTIMATION

7.1. Exponential dispersion family

Consider a sample of stochastically independent observations {Y1, …, Yn} each 
subject to an EDF likelihood (2.5). For the moment, the Yi are general obser-
vations not related to any development trapezoid. It is assumed that b and c 
are the same for all observations but f,q  may vary.

Thus the total log-likelihood is

 f ,b a ci i i i i
i

n

i

n

11
, ,= = +– fq y

==

y /q ^ ^ ^h h h7 A//  (7.1)

Let mi denote E [Yi  ]. Then (2.6) gives 

 mi = b�(qi ) (7.2)

Suppose that mi depends on some vector of parameters a = (a1,…, ap)T, and 
write mi = mi  (a). For ML estimation with respect to a,

 
j j j

0i

i

n

i

i

i

n

i

i i

1 1

2, , ,
2 2

2
2
2

2
2

2
2

= = =
= = m

m
a a aq

q/ /  (7.3)

By (7.2),

 b1 1 Vi i i2 2 = =im q m�/ / /q ^ ^h h (7.4)
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by comparison of (2.7) and (2.8).
Evaluation of (7.3) with (7.1), (7.2) and (7.4) taken into account yields

 
fj ji

–
, , ...,m

m
a

y
j pV 0 1

i

i i

i

n
i

1

,
2
2

2
2

= =
=

m
=

a a^ ^h h
/  (7.5)

7.2. Recursive models

Theorem 7.1. Suppose that K
+

D  is subject to an EDF Mack model and that, 
in addition,

 j 1+,k k kY X X sVar j j1 =j
2

+7 A  (7.6)

for fi xed parameters J2, ...,s s2 2 . Then the chain ladder is ML.

Proof. Apply (7.5) to the sample ,kY{ }DK1 !j +  for fi xed j. By (EDFM3b),

 Y ,k k kX jE 1j j1 = Xj + –f^ h7 A  (7.7)

Note also that in (7.5) (see (2.8))

 if Yi Varma V i =^ ^h h 7 A (7.8)

In the present context, Yi is replaced by ,k kY X j1 ;j +  and so, by (7.6), f ma Vk k^ ^h h 
is replaced by j 1+kX sj

2 .
There is only one parameter fj corresponding to the vector a in (7.5). Thus 

(7.5) yields

 
j 1+

,k

k

k
k

– –

X

Y X
X

j

s

f 1
0

j

j

k

K j

j
1

1
=

=

-
j

2
+ ^ h

/

from which j = jff , as defi ned by (3.1). ¡

The condition (7.6) was imposed by Mack (1993). The model of Theorem 7.1 is 
that usually referred to in the literature as the Mack model (from Mack, 1993) 
equipped with the additional EDF distributional assumption. The theorem shows 
that, with this distributional extension to the Mack model, the chain ladder is ML.

7.3. Non-recursive models

As noted in Section 4.2, the chain ladder has been known for some time to be 
ML in the case of an ODP cross-classifi ed model. This was stated formally in 
Lemma 4.3.
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Consider other forms of  EDF cross-classifi ed model. Application of  (7.5) 
yields

 k
j

fk j

jY j

a
, , ...,a V j0 1

( )

j k

k
k

C

=
– a

=a
b

Jb^ ^h h
/  (7.9)

 k

fk j

j
j

Y j
kR

a
0, 1, ...,a V k K

( )

j k

k =
– a

=b
b
b^ ^h h

/  (7.10)

In the ODP case, j jaV k k= a bb^ h , cancelling the multiplier ka  in (7.9) and the 
multiplier jb  in (7.10), and leading to the marginal sum equations (4.7) and (4.8), 
in the case when fkj = f, independent of k and j. According to Lemma 4.3, 
these equations yield a chain ladder solution.

In EDF cases other than ODP, ( mV !m) , and so these cancellations do not 
occur, the solution is not given by (4.7) and (4.8) and so is not chain ladder. 

This reasoning allows the statement of Lemma 4.3 to be extended as follows.

Theorem 7.2. Suppose that K
+

D  is subject to an EDF cross-classifi ed model. 
Chain ladder estimates are ML if  and only if  the model is ODP with weights 
fkj = f, independent of k and j. ¡

8. PARAMETER ERROR AND PREDICTION ERROR

The models of Rk considered in this paper are generally of the form

 Rk = a(q) + e (8.1)

where

q is a parameter vector;
a(.) is some function; and
e is a centred stochastic error.

The vector q is estimated by q and Rk by 

 Rk = a(q) (8.2)

The mean square error of prediction of Rk is defi ned as

 MSEP [ Rk ] = E [Rk  –  Rk ]
2 (8.3)

The MSEP may be decomposed as follows:

 MSEP [ Rk ] = E [a(q) – a(q)]2 + E [Rk  –  a(q)]2 (8.4)

where the two components on the right are referred to as parameter error and 
process error respectively (see e.g. Taylor, 2000, pp. 192-194).
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Now the process error is independent of the estimator q, and so minimisation 
of the parameter error is equivalent to minimisation of the MSEP. This type 
of proof leads to the following general result.

Theorem 9.1. If  a forecast of some function of KD
c  is MVUE, then its MSEP 

is minimised among unbiased forecasts.
Functions of KD

c  include Ykj , Rk and R.

9. CONCLUSION

This paper set out to consider the question of  for which claim models the 
chain ladder is maximum likelihood or minimum variance. The models con-
sidered are the recursive and non-recursive models. In each case, stochastic 
error terms drawn from the EDF are considered.

The model that has come to be known as the Mack model (Mack, 1993) is 
distribution free. However, if it is equipped with EDF stochastic errors, the chain 
ladder becomes ML. This means that the chain ladder is ML for a wide range 
of distributions, eg Poisson, binomial, negative binomial, normal, gamma, etc.

The negative binomial case is of some interest here. Verrall (2000) consid-
ered the case of a Bayesian version of the Poisson Mack model (defi ned in 
Section 4.1) in which the chain ladder factors fj are subject to a gamma prior. 
Verrall shows that the posterior distribution of ,k kY X j1 ;j +  is negative binomial.

The chain ladder also provides MVUEs of loss reserves under the same 
wide range of Mack models. In fact, Mack’s variance assumption (7.6) is not 
required here. MVUE loss reserves are shown to be equivalent to MSEP among 
unbiased forecasts.

In the case of  the ODP cross-classifi ed model with uniform weights, the 
chain ladder is also found to be ML and to provide MVUEs. However, parallel 
results do not hold when the ODP distribution is replaced by any other member 
of the EDF.

These results provide a full classifi cation of this paper’s chain ladder models 
with respect to the main estimation properties of the chain ladder algorithm. 
The classifi cation appears in the following table.

CLASSIFICATION OF CHAIN LADDER MODELS

Model
Chain ladder algorithm is

Unbiased? Minimum variance?

Mack:
Distribution free Yes N/A
EDF Yes Yes

EDF Cross-classifi ed:
ODP No Yes(b)

Other No Not necessarily(a)

(a) The statistics on which the chain ladder algorithm rests are not suffi cient for the model parameters.
(b) Provided weights are uniform across D+

K.
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The fact that the chain ladder possesses optimal estimation properties in a 
wider range of Mack models than cross-classifi ed models derives from the greater 
parametric simplicity of the former family. In the Mack models each column 
is parametrically isolated from the others in the sense that it depends (condi-
tionally on prior data) on just parameters jj( , )sf 2  specifi c to that column.

The cross-classifi ed models, on the other hand, involve a more complex 
parametric structure that includes both row and column parameters. Conse-
quently, each column depends on not only its column-specifi c parameters but 
also those of the rows involved.
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