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MEASURING COMONOTONICITY IN M-DIMENSIONAL VECTORS

BY

INGE KOCH AND ANN DE SCHEPPER

ABSTRACT

In this contribution, a new measure of  comonotonicity for m-dimensional 
vectors is introduced, with values between zero, representing the independent 
situation, and one, refl ecting a completely comonotonic situation. The main 
characteristics of this coeffi cient are examined, and the relations with common 
dependence measures are analysed. A sample-based version of the comonoto-
nicity coeffi cient is also derived. Special attention is paid to the explanation of 
the accuracy of the convex order bound method of Goovaerts, Dhaene et al. in 
the case of cash fl ows with Gaussian discounting processes.
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1. INTRODUCTION

One of the recurring issues in applications of multivariate systems in the lit-
erature, deals with the dependence in a multivariate system. In the fi rst place 
it is of course necessary to understand, to quantify and to analyse dependence 
structures, but for many applications an important question is actually how to 
manage systems with complex dependence structures.

Broadly speaking, we can distinguish two classes of answers to this ques-
tion in the current research. Firstly, there is an increasing interest in modelling 
the real or unknown dependence structure of multivariate vectors, by means 
of copulas e.g. These models can then be used as starting points toward cal-
culations and estimations for quantities immediately related to the underlying 
dependence structure. Secondly, another group of  researchers make use of 
extreme types of dependencies so as to derive approximate results for related 
quantities, without specifying the maybe complex real underlying dependence 
structure. These two classes of methods both benefi t of course from research 
on the analysis of dependence structures and on dependence measures, see e.g. 
Lehmann (1966), Schweizer & Wolff (1981), Wolff (1980), Drouet Mari & Kotz 
(2001), Scarsini (1984), Joe (1990, 1993, 1997), and many others.
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192 I. KOCH AND A. DE SCHEPPER

In the fi nancial and actuarial research e.g., both approaches are popular and 
widespread, each of  them of  course with its own advantages and disadvan-
tages. On the one hand we have the copula models, most of the time resulting 
in a rather complete description of the dependence structures under investiga-
tion. However, next to the fact that this method can be quite time consuming, 
one of the diffi cult problems is how to determine the optimal copula among all 
alternatives. On the other hand, we can use one of the approximation methods. 
Such a method does not lead to a complete picture of the dependence struc-
ture, but it creates the possibility to derive upper and lower bounds, often by 
means of easy calculations.

An approximation technique which is frequently used in the current 
fi nancial and actuarial research, is based on a method of  Kaas et al. (2000, 
2002) and Dhaene et al. (2002a,b). These authors defi ne bounds in convex 
order sense, calculated by means of  comonotonic vectors. If  this technique 
is applied e.g. to present values of  cash fl ows with stochastic interest rates, 
it turns out that the approximate results are very accurate. In fact this is not 
completely unexpected, since compounded rates of  return for successive peri-
ods are strongly mutually dependent and thus not far away from comonoto-
nicity.

This brings us to the question whether it is possible to measure the degree 
of comonotonicity in an arbitrary multivariate vector. With such a measure it is 
possible to predict whether or not an approximation as suggested by Goovaerts, 
Dhaene et al. would be reasonable for a given vector. If  so, it can also be used 
to quantify how reasonable such an approximation would be.

In this paper, we show how such a measure can be constructed and calcu-
lated for arbitrary m-dimensional vectors, and we will use our comonotonicity 
coeffi cient to explain why in the case of cash fl ows the convex bounds reveal 
such effective approximations. We also present an alternative defi nition of this 
coeffi cient in case the dependence structure can be described by a copula, which 
makes it possible to link the approximations of the second approach to the 
modelling techniques of the fi rst approach. Finally, we demonstrate how the 
comonotonicity coeffi cient can be estimated based on real data.

In order not to complicate the formulae and the calculations, throughout 
this paper we will work in a continuous setting. However, an extension to the 
discrete case is certainly possible.

The paper is organised as follows. In section 2 we recall some defi nitions 
and notions on distributions and copulas, and we repeat the most common 
bivariate dependence measures. Section 3 is the most important part, we intro-
duce our comonotonicity coeffi cient and we discuss its major properties. After-
wards in section 4, we present several numerical illustrations, including the 
situation of a cash fl ow with a Gaussian discounting process. Finally, in sec-
tion 5 we derive a sample based version of the comonotonicity coeffi cient, and 
we present an illustration on empirical data. Conclusions can be found in 
section 6.
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2. PRELIMINARIES

The fi rst topic we briefl y describe in this section is the Fréchet space, which is 
an essential concept when investigating the dependence structure in multi-
variate vectors.

Defi nition 1. (Fréchet space) Let F1,  …,  Fm be arbitrary univariate distribution 
functions. The Fréchet space Rm (F1,  …,  Fm ) consists of all the m-dimensional (dis-
tribution functions FX of) random vectors X  =  (X1,  …,  Xm ) having F1, …,  Fm as 
marginal distribution functions, or Fi (x)  =  Prob(Xi  #  x) for x  !  � and i  = 1,  ...,  m. 
If it is clear from the context, we will use the short notation Rm.

For an unambiguous defi nition of our comonotonicity coeffi cient, we will have 
to restrict ourselves to positive dependent vectors; we will come back to this issue 
in section 3. A weak form of positive dependence in a multivariate context is 
positive lower orthant dependence.

Defi nition 2. (PLOD)  The random vector X  =  (X1,  …,  Xm ) is said to be positive lower 
orthant dependent (PLOD) if Prob(X1  #  x1,  …,  Xm  #  xm )  $  i 1 Probm

=% (Xi  #  xi ),
6(x1,  …,  xm )  !  �m.

Starting from this defi nition we defi ne the qualifi ed Fréchet space as the subset 
of the Fréchet space with all positive lower orthant dependent vectors.

Defi nition 3. (qualifi ed Fréchet space) Let F1,  …,  Fm be arbitrary univariate dis-
tribution functions. The qualifi ed Fréchet space R+

m (F1,  …,  Fm ) consists of all the 
m-dimensional (distribution functions FX of) random vectors X  =  (X1,  …,  Xm ) 
having F1,  …,  Fm as marginal distribution functions and which are PLOD.
If it is clear from the context, we will use the short notation R+

m
  .

Two important and at the same time extreme elements of a Fréchet space are 
the comonotonic and the independent vector.

Defi nition 4. (Comonotonic vector and independent vector) For every Fréchet 
space Rm (F1,  …,  Fm ), we defi ne the independent vector X I  =  ( X1

I,  …,  Xm
I  ) as the 

vector with distribution FX
I
 (x1,  …,  xm )  =  ii 1 i ( ),F xm

=%  and the comonotonic vector 
XC  =  (X1

C,  …,  Xm
C  ) as the vector with distribution FX

C(x1,  …,  xm )  =  minm
i  =  1 i(F xi ). 

Both vectors belong to the qualifi ed Fréchet space.

In Denneberg (1994) and Dhaene et al. (2002a), an alternative characterisation 
is presented for comonotonicity, by showing that a vector X  =  (X1,  …,  Xm) is 
comonotonic if  for non-decreasing functions t1,  …,  tm and for a random vari-
able Z it is true that X  =d   (t1(Z),  …,  tm(Z)). Note that with the inverse func-
tion defi ned as Fi

  – 1( p)  =  inf{x  !  � | Fi  (x)  $  p}, p  !  [ 0,1], the comonotonic vec-
tor can be easily constructed as XC  =  (F1

 – 1(U ),  …,  Fm
– 1(U )), with U a random 

variable, uniformly distributed on [0,1].
For the construction of our comonotonicity coeffi cient, we will rely on the 

following lemma.
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Lemma 1. (Bounds for the Fréchet space) For any vector X  =  (X1,  …,  Xm) with 
distribution FX of a given qualifi ed Fréchet space R+

m
  , it is true that FX

I  #  FX  #  FX
C. 

For arbitrary vectors of the larger Fréchet space Rm , only the upper bound holds.

In recent fi nancial research, copulas have grown into a very popular tool
for dependence modelling issues. In its essence, a copula is nothing else than 
a multivariate distribution function with uniform marginal distributions.
Or, alternatively, it is the result of the multivariate distribution after rescaling 
the marginals to uniform distributions. As such, copulas are mostly seen as 
that part of the joint distribution which captures the dependence structure.
In this section, we only provide some of the most important facts on copulas. 
For a more comprehensive study, we refer to Nelsen (2006) and Cherubini
et al. (2004).

Defi nition 5. (Copula) An m-dimensional copula C is a function C  :  [0,1]m " [0,1], 
non-decreasing and right-continuous, with the following properties:

– C(u1,  …,  ui  –  1,  0,  ui  +  1,  …,  um)  =  0

– C(1,  …,  1,  ui, 1,  …,  1)  =  ui

– Da1, b1 
Da2, b2

  …  Dam, bm
 C(u1, …,  um )  $  0 if (a1, …,  am)  <  (b1,  …,  bm)  !  [ 0,1]m, where 

the differences are defi ned as
Dai, bi

C(u1,  …,  um)  =  C(u1,  …,  ui  –  1,  bi,  ui  +  1,  …,  um)
                    –  C(u1,  …,  ui  –  1,  ai,  ui  +  1,  …,  um),

and this for all (u1,  …,  um)  !  [ 0, 1]m, and for all i  =  1,  …,  m.

One of the most fundamental results about copulas is summarised in the fol-
lowing theorem.

Theorem 1 (Sklar’s Theorem) For any m-dimensional distribution function H 
with marginals F1,  …,  Fm, there exists an m-dimensional copula C for which
H(x1,  …,  xm)  =  C(F1(x1),  …,  Fm (xm )). Conversely, this copula C can be calculated 
as C(u1,  …,  um)  =  H(F1

– 1(u1),  …,  Fm
– 1(um)).

Remark that the copula C of Theorem 1 is unique if the functions F1,  …,  Fm are 
all continuous; if not, C is only uniquely determined on Ran F1  ≈  …  ≈  Ran Fm.

Note that we don’t need copula functions for the defi nition of our como-
notonicity coeffi cient in the next section, but we will use them for illustration 
purposes, and also in order to compare our (multivariate) dependence measure 
with the commonly used (bivariate) measures. In particular, we will use two 
extreme copulas and three Archimedean copula families, which are commonly 
used in fi nancial applications:

– Independent copula

(u)C ui
i

m

1
=

=

I %

94352_Astin41-1_08_Koch.indd   19494352_Astin41-1_08_Koch.indd   194 12/05/11   14:3112/05/11   14:31



 MEASURING COMONOTONICITY IN M-DIMENSIONAL VECTORS 195

– Comonotonic copula

(u) minC
i

m

i1
= u

=

C

– Clayton copula family (dependence is concentrated in the lower tails)

( ,u
-

-
a i – a) 0C u n 1 >a a

i

m

1

1

= +
=

c m/

– Gumbel copula family (dependence is concentrated in the upper tails)

(a u i– – a) ( , 1exp lnC a a

i

m

1

1

$=
=

u )a k< F* 4/

– Frank copula family (symmetry between the dependence in lower and upper 
tails)

(
a-

a u a

m
1i–

–
�a)

( 1)

1
,lnC

e

e1 1 a m

u

1

i

!= + --

= –_
f

i
p

%

with u  =  (u1, …, um )  !  [0,1]m.
A copula family {Ca  :  a  !  A} is called positively ordered, if for all u  !  [0,1]m 

and for all a1  #  a2  !  A it is true that Ca1
(u)  #  Ca2

(u).

Finally, we recall here the most common bivariate dependence measures, written 
by means of copulas.

– Pearson correlation coeffi cient

1( (C 2p , (u( (1 u d,
( ) (

) ) )r X X
X X

u u u1
Var Var2

1 2
1 2 1 2

1
1

1
20

1

0

1
= ) u - -–

)
d F) ;F##

– Spearman rank correlation coeffi cient

;( (C C(, ,( u1s u u– –, )r X X u d du u u du du12 3 122 1 2 1 2 1 2 1 2 1 20

1

0

1

0

1

0

1
= =) )u) ## ##

– Kendall’s t

( (C , ,( 1 u C u –, 4 1;X X u d ut 2 1 2 1 20

1

0

1
= ) )) ##

– Gini’s correlation coeffi cient

( ,u C1( 1 u– – –, 2G X X u d u2 1 2 1 2 1 20

1

0

1
= + )) ;u u` j##

– Blomqvist’s correlation coeffi cient

( 1 –, 4 (1/2, 1/2) 1X X Cb 2 =)
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– Coeffi cient of upper tail dependence

(
2

1 –
–

, 1
1 ( , )

.limX X u
u C u u

lU u2 1
=

+
"

)

All of these measures were originally limited to two dimensions, but possible 
extensions to a more-dimensional setting for some of them can be found e.g. 
in Wolff  (1980), Joe (1990, 1997) and Schmidt (2002).

3. THE COMONOTONICITY COEFFICIENT

We will now introduce our measure that accounts for the degree of comonoto-
nicity, the strongest possible positive dependence, in an arbitrary random vector. 
As mentioned before, copulas receive much attention nowadays. Although there 
is no doubt about the importance of this concept, we may not forget that not 
all the information on the multivariate distribution function is incorporated in 
the copula. Therefore we have chosen to build our measure on the joint dis-
tribution function rather than solely on the copula function. As such we
use all the available information from the margins and the dependence struc-
ture, and not the limited and partial information provided by the copula.
This means that our coeffi cient does not defi ne a concordance measure, but 
the choice to include information about the margins can be very relevant e.g. 
in fi nancial questions such as the Value-at-Risk, where a good comprehension 
of  the complete dependence structure, including the marginals, is of  great 
importance.

Note that we will return to copulas and their merits when it turns to prop-
erties and illustrations.

3.1. Defi nition

As it will be clear from the defi nition below, the comonotonicity coeffi cient k 
will be defi ned as the ratio of two hypervolumes. The numerator describes the 
hypervolume between the distribution of the vector under investigation and 
the distribution of the independent case, while the denominator, inserted to 
normalise the coeffi cient, corresponds to the (maximum possible) hypervolume, 
i.e. between the distributions of the comonotonic and the independent case, 
which are the two extremes. As we are interested in the ratio of the two hyper-
volumes and not in the particular values of both hypervolumes, we suggest to 
work with principal value integrals in case the hypervolumes are diverging 
when considered separately.

Defi nition 6. (Comonotonicity coeffi cient) Let FX
C and FX

I be the distribution
of the comonotonic and independent vector of the qualifi ed Fréchet space 
R+

m
  (F1, …,  Fm). For any vector X of R+

m
  (F1, …,  Fm) with joint cdf FX, the como-

notonicity coeffi cient k(X ) is defi ned as:
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where the integration is performed over the whole domain of X. If the hypervolumes 
diverge when taken separately, k(X ) is defi ned as
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provided the limit exist, and with G(a) depending on the domain of X as follows: 

– if X is defi ned on �m, then G(a)  =  [ – a, a]m;

– if X is defi ned on �+n, then G(a)  =  [1/a, a]m;

– if X is defi ned on [A1, +3 [≈  ...  ≈  [Am, +3 [, then G(a)  =  [A1, a]  ≈  ...  ≈  [Am, a];

– if X is defi ned on a fi nite domain, then G(a) equals the whole domain.

Note that, when both numerator and denominator converge separately, expres-
sion (2) reduces to (1).

In the case of continuous distribution functions, there exists a unique copula 
CX for which FX (x1, …,  xm)  =  CX (F1 (x1),  …,  Fm(xm)). Inserting this into the 
formula for k in (1) or in (2) results in the following equivalent expression for 
the comonotonicity coeffi cient:

 

m

m

1
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or

 

m

m

1
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u u dF u dF u
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a
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m
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m
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=
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f

c

p

m

%

%
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 (4)

with H(a)  1  [0,1]m depending on the domain of X.
E.g. for G(a)  =  [– a, a]m, the integration now must be performed over the 

area H(a)  =  [F1( – a),  F1(a)]  ≈  …  ≈  [Fm( – a),  Fm(a)].
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3.2. Basic Characteristics

In general, a concordance or dependence measure should satisfy a number of 
desirable characteristics, as mentioned e.g. in Schweizer & Wolff  (1981), Scar-
sini (1984), or Drouet Mari & Kotz (2001). In the next theorem, we summarise 
the results for k with regard to these axioms. A proof is straightforward.

Theorem 2. The comonotonicity coeffi cient as defi ned in Defi nition 6 satisfi es the 
following properties:

1. k(X ) is defi ned for any vector X of a qualifi ed Fréchet space R+
m

  .

2. k(X ) takes values in the range [0,1].

3. k(X ) is symmetrical in the components Xi, i  = 1, …, m, of the vector X.

4. k(X )  =  0 if and only if X  =  (X1, X2, …, Xm) has independent components.

5. k(X )  =  1 if and only if X  =  (X1, X2, …, Xm) has comonotonic components.

The second item in this theorem is responsible for the restriction in the defi ni-
tion of our comonotonicity coeffi cient to vectors that are PLOD, or positive 
lower orthant dependent. Indeed, if  vectors belonging to Rm minus R+

m are 
allowed, both positive and negative results are possible for k. This will cause 
a twofold problem. Firstly, the range of values for k is not fi nite anymore at 
the lower side, since the normalising hypervolume of  the denominator no 
longer corresponds to extreme cases, the independent vector only making up 
a lower bound for elements of R+

m. Secondly, and this seems to be much more 
important, the interpretation of k is no longer unambiguous. If we allow for 
vectors outside the qualifi ed Fréchet space, a positive value no longer exclusively 
belongs to globally positive dependent vectors. If  e.g. one of the components 
of a multivariate vector is negatively dependent on the other components, the 
overall result could still be positive. Note that also many other dependence 
measures suffer from this drawback, since they all measure some kind of aver-
age dependence.

3.3. Properties of the Comonotonicity Coeffi cient

Next to the basic characteristics, we now investigate a few other properties of 
the comonotonicity coeffi cient k, related to the performance of the measure. 
For more details, we refer to Koch & De Schepper (2006).

Proposition 1. For any qualifi ed Fréchet space R+
m and for any vector X  =

(X1, …, Xm) of R+
m, for which the dependence structure can be described by a 

copula belonging to a positively ordered copula family, the comonotonicity coef-
fi cient k(X ) increases with the parameter of the family.

This follows immediately from equation (3) or (4), and it guarantees that k
is a consistent dependence measure. An illustration can be found in Table 1, 
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where for different dimensions the values of k are compared with the values 
of the parameter for three different copulas.

Proposition 2. For any (bivariate) vector X  =  (X1, X2) of R2
+ with both marginals 

Uniform [0,1] distributions, the comonotonicity coeffi cient k(X1, X2) equals the 
Spearman’s correlation coeffi cient rs(X1, X2).
For any (m-variate) vector X  =  (X1, …, Xm) of R+

m with all marginals Uniform [0,1] 
distributions, the comonotonicity coeffi cient k(X ) equals the multivariate Spear-
man’s correlation coeffi cient rJ

m(X ) as mentioned in Joe (1990).

Proof:  For m = 2, with  ( u u( , ) ) /min u u du du 1 12–
11

1 2 1 2 1 2 =
00
## , this immedia-

tely follows from a comparison of  equation (3) with the defi nition of  the Spear-
man’s correlation coeffi cient in section 2.
For m  >  2, a combination of  iu(g mi i1 ) ...min u du du–

( )
m

i
m

m
m1 1

11 2 1
2 1

m

m

=
+

- -
= =0 0

%# #

and the coeffi cient J Cg ( m m( ) , , )Xr u u du du –
( )m

m
2 1
2 1 1

1 1 2
11

m

m

mf f=
+

- -m
0 0a k# #  

leads to the result. Q.E.D.

As a consequence, the coeffi cient k can be seen as an extension of the Spearman’s 
correlation coeffi cient, in the situation where the ‘‘true’’ marginal distributions 
are not taken into account. 

Proposition 3. For any (bivariate) vector X  =  (X1, X2) of R2
+ for which it is true 

that

 1–{ , ( ) ( ( ) ( ) ,u v uv dF u dF v X XMin Var Var1 20

1

0

1
=2} )1 1- -

^ h##

the comonotonicity coeffi cient k(X1, X2) equals the Pearson correlation coeffi cient 
rp(X1, X2).

TABLE 1

EVOLUTION OF k FOR INCREASING VALUES OF a

n  =  2, Gumbel copula, standard normal marginal distributions

a 1 1.01 1.1 1.5 2 3 4 3

k(X ) 0 0.0165 0.148 0.501 0.701 0.858 0.917 1

n  =  3, Clayton copula, exponential marginal distributions

a 0 0.1 1 8 10 20 50 3

k(X ) 0 0.0399 0.290 0.753 0.791 0.881 0.947 1

n  =  4, Frank copula, uniform [0,1] marginal distributions

a 0 0.01 1 3 5 10 15 3

k(X ) 0 0.00121 0.128 0.389 0.593 0.837 0.917 1
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200 I. KOCH AND A. DE SCHEPPER

Proof: This result can be demonstrated by comparing the expression for the 
comonotonicity coeffi cient in the bivariate case (see equation (3)) with the 
defi nition of the Pearson correlation coeffi cient (see section 2). Q.E.D.

The condition mentioned in Proposition 3 is satisfi ed e.g. if  both marginal 
distributions are uniform, normal or exponential distributions, not necessarily 
with the same distribution parameters. The condition is not satisfi ed e.g. in the 
case of lognormal marginal distribution functions.

Proposition 4. For any random variable X and for any set of monotone increas-
ing and invertible real functions g1, …, gm, the comonotonicity coeffi cient k of the 
vector (X,  g1(X ),  ···,  gm(X )) is equal to 1.

Proof: Starting from the alternative defi nition of comonotonicity, see section 2, 
this result is straightforward. Q.E.D.

This property establishes an important difference between the Pearson correla-
tion coeffi cient and the comonotonicity coeffi cient k, the latter being capable 
of capturing the dependence between a variable X and its transformed value 
g(X ) for a broad class of functions g, and not only for linear transformations 
as it is the case for the Pearson correlation. A striking example is the situation 
where X and X2 are compared. Indeed, while in general rp(X1, X2)  !  1, the 
desirable result does hold for the comonotonicity coeffi cient, or k(X, X2)  =  1.

Proposition 5. For any vector X  =  (X1, …, Xm) of R+
m  for which all the marginal 

distributions are exponential distributions, Xi   +  (li), or for which all the marginal 
distributions are normal distributions, Xi   +  N [ mi, si

2], and where the copula C as 
defi ned in Theorem 1 is functionally independent of the parameters of the mar-
ginal distributions, the comonotonicity coeffi cient k(X ) is also independent of the 
parameters li or mi and si .

Proof: This result can be verifi ed by means of a substitution of the marginal 
distributions into equation (3). Q.E.D.

Combining this proposition with proposition 3, we see that for certain classes 
of marginal distribution functions, the comonotonicity coeffi cient k can also 
be seen as a kind of multivariate extension of the Pearson correlation.

Proposition 6. For any set of random vectors X and X1,  …,  Xk belonging to the 
same qualifi ed Fréchet space R+

m
 (F1, …,  Fm), for which the distribution function 

of X can be written as a convex sum of the distribution functions of X1,  …,  Xk, 
FX  =  a Xi 1 i F

i=
k ,/  ai  !  [0,1] and ai 1 i 1== ,k/  the comonotonicity coeffi cient of X 

equals the convex sum of the corresponding comonotonicity coeffi cients, k(X )  =  
ai 1 i ( .Xi= kk )/

Proof: The decomposition as mentioned in property 6 can be rewritten as FX   – 

iX X XFai 1 i [ ] .F F
i

= =
k – II /  A substitution in equation (2) proves the result. Q.E.D.
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Corollary 1. For any vector X  =  (X1, …, Xm) of R+
m  for which the joint distribution 

function FX can be written as a convex sum of FX
C and FX

I, or FX  =  aFX
C  +  (1  –  a)

FX
I, a  !  [0,1], the comonotonicity coeffi cient k(X) is equal to a.

This last corollary states a crucial result, since it demonstrates that our como-
notonicity coeffi cient is completely in harmony with how one would interpret 
the value of a in the decomposition of an arbitrary distribution into a convex 
combination of the independent and comonotonic extremes. Note that if  in a 
bivariate case the joint distribution function can be decomposed in this way, 
the comonotonicity coeffi cient is also equal to the coeffi cient of  upper tail 
dependence.

4. NUMERICAL ILLUSTRATIONS

4.1. Gaussian Discounting Processes

The fi rst illustration refers to the investigation of present values with stochas-
tic interest rates, which in fact was the immediate cause of the development of 
our comonotonicity coeffi cient. Consider a cash fl ow of future payments with 
present value

 i(( i) ,zV t t
i

m
Y

1
=

=

) -e/

with time points 0  <  t1  <  t2  <  …  <  tm  –  1  <  tm  =  t, with z(ti ) the deterministic 
payment at time ti, and with e –Yi the stochastic discounting factor over the time 
period [0, ti ]. If  the discounting process is modelled by means of  Gaussian 
processes, we start with a random vector X  =  (X1, X2, …, Xn) with independent 
and normally distributed components Xi , each representing the rate of return 
for a (small) time period [ti  –  1, ti ]. The compounded rate of  return for the 
whole period [0, ti ] can then be written by Yi   =  X1  +  …  +  Xi . Although all com-
ponents in these sums are independent, the random vector Y  =  (Y1, Y2, …, Yn) 
clearly consists of strongly dependent variables.

The calculation of the exact distribution of the (stochastic) present value 
above is very hard, and in most cases even impossible. Goovaerts et al. (2000), 

FIGURE 1: Evolution of k(Y ) with increasing dimension n.
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202 I. KOCH AND A. DE SCHEPPER

Kaas et al. (2000), Dhaene et al. (2002a) suggested to work with an upper 
bound in convex order sense, replacing the vector Y by its comonotonic coun-
terpart, which corresponds to the strongest possible dependence structure. The 
calculations needed for this upper bound are much easier than they are for the 
exact distribution, and yet the upper bound turns out to be a very accurate 
approximation in case the payments z(ti ) are all non-negative (see Kaas et al. 
(2000) and Goovaerts et al. (2000)). We will show now that this good result 
can be explained by quantifying the dependence in the vector Y by means of 
the comonotonicity coeffi cient k.

In the case where all the components Xi are (independent and) standard 
normally distributed, the components Yi correspond to normal distributions 
with zero mean and with variance equal to i, and analytical results for the 
comonotonicity coeffi cient are possible. Note that in this case Proposition 5 is 
not applicable since the joint distribution function is not independent of the 
parameters of the marginal distributions.

When n is equal to 2, the comonotonicity coeffi cient of the vector Y  =  (Y1,Y2 ) 
can be calculated as:

 , Y2Y( ) 0.707107.k
2

1
1 .=

For n  =  3, the calculations are much more lengthy, fi nally resulting in

 , Y1 3Y, ) 0.714828.k Y
6

2
1

3
1

4
2

$
.=

+ +
(

1d n

Figure 1 indicates how k(Y ) increases with the dimension of the vector Y.
In the case where the components Xi are (independent and) identically but 

more generally normally distributed, Xi  +  N [ m, s2], the analytical calculations 
become extremely complex. However, numerical calculations suggest that the 
values of the normal parameters do not have any effect on the resulting como-
notonicity coeffi cient of the vector Y.

In any case, the high value of k for the vector Y confi rms that due to the 
construction of  the cumulative discounting process, the components of  the 
vector Y indeed are very strongly positive dependent. This explains why in such 
discounting issues an approximation of the original vector by its comonotonic 
counterpart indeed makes up a very good approach.

4.2. Contourplots

For the interpretation or visualisation of  k, contourplots constitute a nice
and effi cient tool. A fi rst advantage is that they can be used to get an idea 
about the meaning of the absolute numerical value of k, just by comparing 
the contourplots for the vector under investigation with the contourplots for 
the independent and comonotonic counterparts.
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In Figure 2, we present contourplots for a bivariate example. Consider a vec-
tor X  =  (X1, X2), with uniform marginal distributions. Part (a) and (b) of the 
fi gure refer to the extreme situations (k  =  0 and k  =  1), while in part (c) and (d) 
we show the contourplot in case the dependence structure is modelled by 
means of a Clayton copula with different parameters. Comparing the different 
pictures, we see that the situation with a rather low value of k is clearly more 
similar to the independent situation, whereas the situation with a rather high 
value of k much more resembles the comonotonic situation. In order to show 
the infl uence of the marginals, Figure 3 repeats the same type of contourplots, 
but now for a vector with lognormal [0, (0.2)2 ] marginals. As in Figure 2, for 
a large value of k, the picture tends to the comonotonic picture, while for a 
small value of k, the similarity with the independent picture is apparent.

FIGURE 2: Contourplots for n  =  2 – uniform [0,1] marginal distribution.

FIGURE 3: Contourplots for n  =  2 – Lognormal [0, (0.2)2 ] distributions.

This technique is also workable in more than 2 dimensions, by looking at 
all possible two-dimensional projections. This is illustrated in Figure 4, for a 
vector X  =  (X1, X2, X3), with standard normal marginal distributions. In this 
second example, the extremes are compared to a Clayton copula dependence 
structure. Note that with a Clayton copula, the dependence is concentrated in 
the lower tails. Graph (c) indeed reveals that in the lower tails the situation is 
tending towards a more comonotonic situation, while for the upper tails the 
contours are more similar to the independent case.
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204 I. KOCH AND A. DE SCHEPPER

Secondly, contourplots can also be used to analyse different dependence 
structures ending up with the same value of the comonotonicity coeffi cient k. 
An elaborated illustration is provided in Figure 5, where contourplots are 
depicted for 15 different joint distributions, with fi ve different marginal distribu-
tions (uniform on [0,1], standard normal, exponential [1], lognormal [0,(0.2)2], 
gamma [5,1] ), and three copula families (Clayton, Frank and Gumbel), all 
corresponding to a situation with k equal to 0.80. It can be observed that there 
is a large degree of similarity in these plots, although they are created by means 
of rather different models.

FIGURE 4: Contourplots for n  =  3 – standard normal marginal distributions.
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FIGURE 5: Contourplots for different bivariate dependence structures with k(X )  =  0.80.
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4.3. Comparison of the Comonotonicity Coeffi cient with Classic Bivariate 
Measures

Assume now that we are working in a bivariate environment, investigating the 
dependence structure in a vector X  =  (X1, X2). We already mentioned some 
connections between our comonotonicity coeffi cient and classic association 
measures in the propositions in section 3. If  the marginal distributions of X1 
and X2 are both uniform [0,1], k is equal to the Spearman rank coeffi cient rs 
(see Proposition 2); if  the marginal distributions satisfy a special condition, 
then k is equal to the Pearson correlation rp (see Proposition 3).

In Table 2 we compare k with the classic dependence measures in a particu-
lar bivariate example not satisfying the previous specifi cations. The fi rst variable 
is assumed to be lognormally distributed, X1  +  LogN [0.04, (0.2)2], for the
second one we have chosen a normal distribution, X2  +  N [0.04, (0.2)2]; the depend-
ence is modelled by means of a Frank copula with parameter a. As expected,
all the dependence measures increase with the parameter value of the copula 
a, but for each of them this occurs in a distinct way. This is of course a con-
sequence of the defi nitions of each of these dependence measures, all measur-
ing another aspect of the actual dependence.

Let us examine in particular the relation between the comonotonicity coef-
fi cient k and Kendall’s t on the one hand and between k and Spearman’s rank 
coeffi cient on the other hand.

The popularity of  Archimedean copulas (e.g. Clayton, Frank, Gumbel) 
causes Kendall’s t to be the dominant dependence measure in a copula setting. 
This is due to the nice mathematical connection that exists between the 
 generator of  the Archimedean copula and t (see Genest & MacKay (1986)). 
Although t is undeniable mathematical convenient, t is not necessary suitable 
for measuring comonotonicity. Furthermore, Kendall’s tau is a concordance 
measure and k is not, since we take the marginal distributions into account. 
Clearly both measures are not equal. In the example used in Table 2, we see 
that k is smaller than t for small values of a, corresponding to situations with 

TABLE 2

COMPARISON OF k(X ) WITH CLASSIC DEPENDENCE MEASURES

a k(X1, X2) Pearson Spearman Kendall Blomqvist

0.01 0.00167 0.00144 0.00746 0.00498 0.00125

0.5 0.0830 0.0719 0.295 0.200 0.0623

1 0.164 0.142 0.478 0.333 0.124

2 0.316 0.274 0.682 0.500 0.240

3 0.447 0.387 0.786 0.600 0.344

10 0.850 0.736 0.958 0.833 0.725

20 0.949 0.822 0.987 0.909 0.861
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a weak dependence between X1 and X2, and that k dominates t for higher values 
of a and thus for a stronger dependent vector.

FIGURE 6: Relation between comonotonicity coeffi cient k and Kendall’s t.

 FIGURE 7: Relation between comonotonicity coeffi cient k and Spearman’s rank.

In Figure 6, the relation between k (on the horizontal axis) and t (on the 
vertical axis) is displayed for a few different situations. Five types of marginal 
distributions are combined with the Frank copula, which is symmetric in the 
upper and lower tail, and with the Clayton copula, for which the dependence 
is concentrated in the lower tails. As it can be observed from both pictures, 
there is no general relationship between both measures.

As mentioned earlier, k can be seen as an extension of  Spearman’s rank 
taking into account the effect of  the marginals. In Figure 7, the relation 
between k (on the horizontal axis) and Spearman’s rank (on the vertical axis) 
is depicted, for the same set of  models as in fi gure 6. Note that for uniform 
marginals, both measures are identical (cf. Proposition 2).
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5. THE COMONOTONICITY COEFFICIENT – SAMPLE VERSION

5.1. Calculation

Suppose we want to estimate the comonotonicity coeffi cient for m variables, 
for which we have N coupled observations, not necessarily independent, sum-
marized in a data matrix Y (dimension N  ≈  m).

The empirical distribution can be written as

 ij jm(X , , ) ( )x N Y x1 I
j

m

i

N

1
11

f #=x
==

;F %/

for the empirical versions of the distribution for the independent and como-
notonic vectors of the same Fréchet space, we have
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Now, defi ne mj :=  minN
i  =  1Yij and Mj :=  maxN

i  =  1Yij , and denote Yj
(k) for the k-th 

ordered observation for the j-th variable. As a consequence, Yj
(1)  =  mj and 

Yj
(N)  =  Mj for any j  =  1, ..., m, and  ij

j
j

M

j
xY #I ( )

m
# d xj  =  Mj  – Yij for any i  =  1, 

..., N,  j  =  1, ..., m.
If  we replace the distribution functions in Defi nition 6 by their empirical 

versions, we get a sample-based version for the comonotonicity coeffi cient.

Defi nition 7. (Sample-based Comonotonicity coeffi cient) For a given data matrix 
Y with N observations for m variables, and with the notations above, the sample-
based comonotonicity coeffi cient k(X ) is defi ned as:
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 (5)

Note that, as the empirical distribution function is a consistent estimator of 
the real cumulative distribution function, the sample-based comonotonicity 
coeffi cient k is also a consistent estimator of the comonotonicity coeffi cient k.

In practical applications, it is necessary to test whether the data are pos-
itive lower orthant dependent, before the calculation of the estimate for the 
 comonotonicity coeffi cient is performed. We suggest to rely on the results of 
Denuit & Scaillet (2004) or Scaillet (2005) for this purpose. A bootstrap procedure 
can be used in order to estimate the error on the sample-based comonotonicity 
coeffi cient.
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5.2. Empirical illustration

In order to illustrate the possibilities of  the sample-based comonotonicity 
coeffi cient in more dimensions, we consider seven world market indices: 

– S&P 500 (U.S.);
– Dow Jones Industrial Average (U.S.);
– Nikkei index (Japan);
– FTSE 100 index (U.K.);
– CAC index (France);
– DAX index (Germany);
– SMI index (Switzerland).

We included several European indices so as to create a meaningful subset. We look 
at the monthly values, particularly at the closing prices at the last trading day 
of  each month, for the period January 2000 to November 2009 (119 data 
points). In Figure 8, the evolution of time is shown for the 7 rescaled indices; 
Table 3 summarizes some descriptive statistics for these indices.

FIGURE 8: Rescaled values of the 7 investigated indices.

TABLE 3

DESCRIPTIVE STATISTICS OF MONTHLY INDEX VALUES 

S&P DJIA Nikkei FTSE CAC DAX SMI

Jan 2000 1394.46 10940.5 19539.7 6228.5 5659.81 6835.6 6894.7

Nov 2009 1095.63 10344.8 9345.55 5190.7 3680.15 5625.95 6261.0

minimum 735.09 7062.93 7568.42 3567.4 2618.46 2423.87 4085.6
(Feb 2009) (Feb 2009) (Feb 2009) (Jan 2003) (Mar 2003) (Mar 2003) (Mar 2003)

maximum 1549.38 13930.0 20337.3 6721.6 6625.42 8067.32 9450.8
(Oct 2007) (Oct 2007) (Mar 2000) (Oct 2007) (Aug 2000) (Dec 2007) May 2007)
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Figure 8 nicely illustrates the (well-known) fi nding that there is a high level of 
dependence between the different market indices. This is confi rmed by the 
correlation matrix, which is given in 4 below. Testing for positive lower orthant 
dependence (see Scaillet (2005)) results in a p-value of 1., reassuring that the 
calculation of the comonotonicity coeffi cient is allowed.

TABLE 4

CORRELATION MATRIX OF SELECTED INDICES

S&P DJIA Nikkei FTSE CAC DAX SMI

S&P 1 0.91482 0.91409 0.94679 0.92462 0.87668 0.90716

DJIA 0.91482 1 0.78688 0.83333 0.74581 0.80178 0.87109

Nikkei 0.91409 0.78688 1 0.90553 0.89684 0.83294 0.88158

FTSE 0.94679 0.83333 0.90553 1 0.96923 0.94816 0.95479

CAC 0.92462 0.74581 0.89684 0.96923 1 0.89914 0.90455

DAX 0.87668 0.80178 0.83294 0.94816 0.89914 1 0.91584

SMI 0.90716 0.87109 0.88158 0.95479 0.90455 0.91584 1

This correlation matrix refers to pair-wise correlations, and it does not give a 
global measure for the group of indices; it also measures solely the linear correla-
tions. The advantage of calculating the sample-based comonotonicity coeffi cient 
for the whole group or for a subset, is the fact that this approach makes it possible 
to get a much completer idea about the real dependence between the seven indices.

The calculation of k results in the following values:

– for the whole group: k  =  0.87578;
– for the US selection (S&P,  DJIA): k  =  0.93629;
– for the European selection (FTSE,  CAC,  DAX,  SMI): k  =  0.95334.

Note that the value for k(S&P,  DJIA) is slightly higher than the correlation 
between the two indices. This is due to the fact that the comonotonicity coef-
fi cient not only measures the linear interdependence, but that it measures the 
degree of (overall) comonotonicity, see also Proposition 4.

It is also interesting to compare the estimated value for the comonotonicity 
coeffi cient for the whole period 2000-2009, with the results for subperiods, e.g. 
the periods before and after the 2007 fi nancial crisis:

– for the whole period: k  =  0.87578;
– for the period until June 2007: k  =  0.93982;
– for the period starting from July 2007: k  =  0.97982.

It can be observed that the estimated values for the comonotonicity coeffi cients 
are rather high in all cases, illustrating again the high degree of  (positive) 
dependence between the different market indices.
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An estimate for the error of the sample-based comonotonicity coeffi cients 
can be found through a bootstrap procedure. As we are faced with time series 
data with serial correlation and possibly also with heteroskedasticity, we use
a block bootstrap in order to improve the performance. We illustrate the reli-
ability of the k estimate for the 7 market indices over the period 2000-2009 by 
means of  a block bootstrap with 5000 subsamples, where each of  the sub-
samples is composed of 24 overlapping blocks with block length 5 for the fi rst 
simulation, and of 40 overlapping blocks with block length 3 for the second 
simulation1. Figure 9 shows the histogram of the bootstrapped k estimates, 
together with the normal approximation. The left panel corresponds to a block 
length of 5, the right panel to a block length of 3. Results for the mean and 
standard deviation and for 90% confi dence intervals can be found in Table 5.

1 The choice of the block length is in line with the numerical examples in Hall et al. (1995); as our 
sample consists of 119 data points, a block length of 5 implies a number of blocks equal to 24, and 
an block length of 3 implies a number of blocks equal to 40.

FIGURE 9: Histogram of bootstrap estimates for k for the index data.

TABLE 5

DESCRIPTIVE STATISTICS FOR THE BOOTSTRAP SUBSAMPLES TO BE COMPARED TO A VALUE FOR THE 
SAMPLE-BASED COMONOTONICITY COEFFICIENT k  =  0.87578.

block length of 5 block length of 3

mean value mk  =  0.87716 mk  =  0.87988
standard deviation sk  =  0.03488 sk  =  0.02702

non parametric C.I. (0.82070; 0.93498) (0.83594; 0.92435)
normality based C.I. (0.80879; 0.94553) (0.82693; 0.93284)

Note that a smaller block length results in a lower standard deviation (but 
higher bias) and that a larger block length results in a lower bias (but higher 
standard deviation).
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6. CONCLUSION

In this paper we introduced a new measure of positive dependence, the como-
notonicity coeffi cient k. We proved that this coeffi cient is well-defi ned in any 
dimension, we derived some properties, and we showed that an interpretation 
of the result is unambiguous. Applying this comonotonicity coeffi cient to sto-
chastic interest rates in discounting processes, we were able to give quantitative 
arguments why the approximation method with convex bounds, developed by 
Goovaerts et al. (2000); Kaas et al. (2000); Dhaene et al. (2002a) performs so 
well in the case of  present values of  cash-fl ows with Gaussian discounting 
processes. We also showed how to construct a sample-based comonotonicity 
coeffi cient, which gives an estimate for the comonotonicity coeffi cient based 
on empirical data. The calculation of the suggested estimator turns out to be 
straightforward, even for high-dimensional data, which is demonstrated for a 
7-dimensional example.
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