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ABSTRACT

This paper introduces a new framework for modelling the joint development over 
time of mortality rates in a pair of related populations with the primary aim of 
producing consistent mortality forecasts for the two populations. The primary aim 
is achieved by combining a number of recent and novel developments in stochas-
tic mortality modelling, but these, additionally, provide us with a number of side 
benefi ts and insights for stochastic mortality modelling. By way of example,
we propose an Age-Period-Cohort model which incorporates a mean-reverting 
stochastic spread that allows for different trends in mortality improvement rates 
in the short-run, but parallel improvements in the long run. Second, we fi t the 
model using a Bayesian framework that allows us to combine estimation of the 
unobservable state variables and the parameters of the stochastic processes driv-
ing them into a single procedure. Key benefi ts of this include dampening down 
of the impact of Poisson variation in death counts, full allowance for paramater 
uncertainty, and the fl exibility to deal with missing data. The framework is 
designed for large populations coupled with a small sub-population and is applied 
to the England & Wales national and Continuous Mortality Investigation assured 
lives males populations. We compare and contrast results based on the two-
population approach with single-population results.
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1. INTRODUCTION

Recent years have seen considerable developments in the modelling and fore-
casting of  mortality rates. Pioneering work by Lee and Carter (LC, 1992)
has been supplemented by a variety of alternatives that might be considered 
improvements on the single-factor LC model according to a variety of criteria 
(see, for example, Brouhns et al. 2002; Booth et al. 2002a,b; Currie et al. 2004; 
Renshaw and Haberman 2003, 2006; Cairns et al. 2006a,b, 2009, 2011a; Hynd-
man and Ullah 2007; Li et al. 2009).

Most work has focused on stochastic mortality models for single popula-
tions, but, for a variety of reasons, however, it is important to be able to model 
two or more populations simultaneously. First, we might simply want to impose 
consistency between forecasts for two populations. For example, governments 
will want to have consistent forecasts of  mortality improvements between 
males and females (see, for example, Carter and Lee, 1992). But, if  forecasts 
for the two populations are made in isolation, then there is the possibility that 
they cross over or diverge over time in an unreasonable way that only becomes 
apparent when the two populations are placed side by side. Second, the use of 
a good stochastic mortality model is important in a number of fi nancial appli-
cations (see, for example, Blake et al. 2006; Olivieri and Pitacco 2009; and 
Pitacco et al. 2009). In a number of cases, the application requires the use of 
a model for mortality in two (or more) populations, with a critical factor being 
the need to investigate the degree of correlation in mortality improvements 
between the two populations over different time horizons (see, for example, 
Cairns et al. 2006a, 2008; Loeys et al. 2007; Dahl et al. 2008, 2009; Coughlan 
et al. 2007a,b, 2011; Coughlan 2009; Jarner and Kryger 2011; Li and Hardy 
2009; and Plat, 2009).

A good two-population mortality model might be an essential element in 
making signifi cant fi nancial decisions relating, for example, to longevity risk. 
A number of  authors have considered multi-country comparisons. Oeppen 
and Vaupel (2002) chart the progress of period life expectancy (PLE) in devel-
oped countries over the last 100 or more years. The headline observation is the 
near linear growth of the maximum PLE over time (maximised over the coun-
tries considered). From time to time, one country drops out of the lead position 
and another comes in when it manages to stumble upon the current optimal 
combination of lifestyle factors, healthcare and medical advances. Macdonald 
et al. (1998), Tuljapurkar et al. (2000) and Booth et al. (2006) make some 
qualitative comparisons of various countries using single-population models, 
with the latter focusing on the robustness of  conclusions based on the LC 
model applied to different countries. Li et al. (2004) consider countries that 
have limited data availability and introduce the important idea that parameter 
estimates might be imported from countries with better quality data.

Full joint modelling of two or more populations has been considered by 
Li and Lee (2005), Jarner and Kryger (2011) and Biatat and Currie (2010)
(Plat 2009 also considers two populations with the second measuring mortality 
rates by amounts rather than lives). Li and Lee (2005) extend the LC model 
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by introducing the idea of a global improvement process plus idiosyncratic 
variations for each country that are mean reverting. In the long run, the global 
improvement process dominates, resulting in consistent long-term develop-
ments in different countries. Jarner and Kryger (2011) focus on modelling a 
small national population’s mortality (Denmark) alongside a much larger 
supranational (Europe-wide) population. The concept of modelling two pop-
ulations jointly can also be seen in the much earlier paper by Carter and
Lee (1992) where bivariate models for the two populations’ period effects are 
briefl y touched upon. Biatat and Currie (2010), building on earlier ideas of 
Currie et al. (2004), introduce the idea of similarity between two populations, 
using P-splines. Populations that are similar involve one standard two-dimen-
sional P-splines surface (that is, one that is relatively rich in terms of  detail) 
for death rates underpinning the two (or more) populations, plus a further 
much more parsimonious P-splines surface describing the relationship between 
the two populations. Their method has, so far, been applied in situations 
involving populations of equal status, but it could be easily adapted to situations 
(as we have in this paper) where we have one large population and a smaller 
second population with modest amounts of data.

1.1. Bayesian framework

A key element of the proposed framework is our single-stage approach to model 
fi tting and process parameter estimation.

In much of the existing stochastic-mortality literature (see, for example, the 
detailed account in Pitacco et al. 2009), a two-stage approach is taken to 
model fi tting. In the fi rst stage, the underlying state variables are estimated 
without reference to their assumed dynamic properties. The second stage then 
fi ts a time-series model to the stochastic period and cohort effects. These two 
stages can be combined in either a likelihood-based setting or by adopting the 
Bayesian paradigm. Both of these single-stage approaches result in improved 
(i.e., more consistent) estimates of the unobservable (latent) period and cohort 
effects. The benefi ts of this improved consistency are greatest for small popula-
tions where the single-stage approach dampens the impact of small population 
noise in the crude mortality data.

Of the two, we choose to adopt the single-stage Bayesian approach for three 
reasons. First, it helps us to take account of parameter uncertainty in a natu-
ral and coherent way. Second, the careful specifi cation of a limited number of 
prior distributions helps us to avoid unreasonable model parametrisations: an 
issue that we discuss in more detail later on. Third, the Bayesian setting allows us 
to deal simply and effectively with small populations, possibly with substantial 
quantities of missing data. For example, if the larger population 1 has data from 
1961 to 2007, while the smaller population 2 only has data from 1991 to 2005,
the Bayesian approach allows us to use the full period from 1961 to 2007, treating 
the years 1961 to 1990 and 2006 to 2007 as missing data for population 2.

We implement the Bayesian approach using Markov chain Monte Carlo 
(MCMC).
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The use of Bayesian methods is not new in this general context. Czado et al. 
(2005) and Pedroza (2006) provided the fi rst Bayesian analyses using MCMC 
of the LC model, with further work by Kogure et al. (2009), and Kogure and 
Kurachi (2010). Prior to this, Bray (2002) used the Age-Period-Cohort (APC) 
model in a medical statistics context with an ARIMA(0, 2, 0) model under-
pinning each of the age, period and cohort effects. More recently, Reichmuth 
and Sarferaz (2008) have applied MCMC to a version of  the Renshaw and 
Haberman (2006) model, while Girosi and King (2008) have developed models 
in a Bayesian setting that incorporate covariates, and analysis by cause of 
death. All of  these studies considered the modelling of  a single population.
So far as we are aware, this paper represents the fi rst attempt to model jointly 
two populations within a Bayesian setting.

1.2. The Age-Period-Cohort model

In this paper we develop, by way of example, a two-population version of the 
Age-Period-Cohort (APC) model (see, Osmond and Gardner 1982; Osmond 
1985; Bray 2002; Jacobsen et al. 2002; Renshaw and Haberman 2006; Cairns 
et al. 2009). The relative simplicity of this model allows us to focus on the key 
contribution of this paper, namely combining Bayesian methods, smoothing, 
and coupling of  two populations that are subject to stochastic period and 
cohort effects. The series of papers by Cairns et al. (2009, 2011a) and Dowd et al. 
(2010 a, b) found that other models might be preferred, depending on the data-
set being considered and the criteria used for model selection. However,
the effort in dealing with the additional factors in these models might cause
too much distraction from the key contributions mentioned above, so we have 
chosen to avoid this.

1.3. Outline of the paper

The remainder of this paper is as follows. Section 2 outlines the England & 
Wales and Continuous Mortality Investigation (CMI) assured lives datasets 
that we will use to investigate two-population mortality modelling. In Section 3, 
we outline the core hypothesis concerning non-divergence of  death rates.
In Section 4, we outline the two-population APC model, and this is followed, 
in Section 5, by a detailed account of the Bayesian estimation approach used to 
fi t this model. In Section 6, we fi t the model to the EW and CMI datasets, and 
discuss aspects of the initial MCMC output before going on to analyse forecasting 
results incorporating full parameter uncertainty. Section 7 concludes.

2. DATA

In general terms, our datasets will have a three-dimensional structure: two 
populations, ny calendar years of observation, and na ages. The age range will 
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be x0,  …,  x1  =  x0  +  na  –  1, and the range of years covered will be y0,  …,  y1  =  
y0  +  ny  –  1. The corresponding cohort years of birth are c0,  …,  c1, where c0  = 
y0  –  x1 and c1  =  y1  –  x0.

Our data will consist of deaths, Di(t, x), and (central) exposures, Ei(t, x), 
for each population, i, calendar year, t, and age, x last birthday. From this,
we derive the crude (central) death rates, mi(t, x)  =  Di(t, x) / Ei(t, x).

2.1. Missing data

For the MCMC approach described in this paper, we have the option of allow-
ing for missing data in certain circumstances. Specifi cally, we allow for par-
tially or completely missing calendar years or cohorts in either of the popula-
tions’ data. Individual cells might be deemed missing if  data are considered to 
be unreliable (as is the case for the EW 1886 cohort, see Cairns et al., 2009) 
or unrecorded (for example, data for one population might be available for 
fewer years than the other population).

The possibility to record some cells as missing data allows us to make 
greater use of other data either in the same population or in the second pop-
ulation: data that otherwise might have to be excluded entirely. In some cases, 
being able to use this additional data allows us to improve, refi ne or make 
more accurate forecasts of mortality.

2.2. Specifi c datasets

We focus on this paper on data from 1961 to 2005 for ages 60 to 89 for Eng-
land and Wales (EW) males (186 million life-years) and the UK Continuous 
Mortality Investigation’s (CMI) assured lives, males (21 million). The second 
population is (mostly) a sub-population of  the larger and about 10% in size. 
The CMI assured lives datasets are made up of people who are willing and 
able to buy life assurance. These will generally be wealthier and healthier
than the typical EW male or female. The methodology has also been applied 
successfully to EW and CMI females, to USA and California males, and to 
EW and Scotland males.

2.3. Age defi nitions

Most of the national datasets with which we might work, report deaths during 
a calendar year grouped by age last birthday. Similarly, exposures are also 
recorded by age last birthday. In contrast, the CMI dataset records deaths
and exposures according to age nearest birthday. Strictly, therefore, CMI death 
rates for age x should be compared with, for example, the average of the EW 
death rates at ages x and x  +  1. In acknowledging this difference, we note
that it does not cause us any problems, because (a) of  the non-parametric 
nature of the model, and (b) we treat the forecast and historical death rates in 
a consistent way within each population and between populations.
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3. TWO-POPULATION MODELLING: CORE HYPOTHESIS

Before we focus on a two-population analysis of  a specifi c dataset, we will 
introduce the key idea that underpins two-population modelling. We have two 
populations i  =  1, 2. Let mi  (t, x) be the underlying death rate at age x in cal-
endar year t for population i.

We know from numerous papers and analyses that genuine differences exist 
between populations. Often, one population has signifi cantly lower mortality 
than another. For example, the CMI assured lives dataset consists of a subset 
of the UK population that, as previously mentioned, is, on average, wealthier 
and healthier than the UK average. We expect that this sub-population to 
remain wealthier and healthier in the future. It seems reasonable, therefore,
to assume that the CMI mortality (and, also, central forecasts) will remain 
correspondingly lower in the future than that of  the national population. 
Developing this idea to be applied in a wider context, we would expect the 
death rates in two related populations not to diverge over time (see, for example, 
Li and Lee (2005), and Jarner and Kryger (2011)). We translate this qualitative 
expectation into the following mathematical hypothesis: for each age x, the 
ratio m1(t, x) /  m2(t, x) will not diverge as t " 3.

The above hypothesis allows the CMI death rates to remain at a steady 
level below the EW rates in the long term, while at the same time allowing for 
random fl uctuations. However, whatever the model for random fl uctuations is, 
it needs to involve some form of mean reversion.

4. THE TWO-POPULATION AGE-PERIOD-COHORT MODEL

In this paper we use a two-population version of the APC model:
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for given age, period and cohort effects, bx
(1i), kt

(2i) and t x-g i(3 ) . x is the age,
t the calendar year of observation, t  –  x is the cohort year of birth and na the 
number of  ages. Although cohort effects do not appear to be signifi cant in 
some countries, they are a well established feature in some populations such 
as England & Wales. So the inclusion of  a cohort effect is necessary in some 
cases and, in the present context, enriches the two-population modelling 
problem.

We do not claim that this model is necessarily the best model for the data-
sets to be considered in this paper based on a particular model selection cri-
terion: other models such as ‘‘M7’’ in Cairns et al. (2009) or the Renshaw and 
Haberman (2006) (‘‘M2’’) model might fi t better. Instead, the objective here
is to illustrate the process of developing and fi tting a two-population model, 
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FIGURE 1: Single population estimates for age (left), period (centre) and cohort (right) effects for
England & Wales males (lines) and CMI males (dots) using the single-population APC model 

discussed by Cairns et al. (2009). Data from 1961 to 2005 and ages 60 to 89.

and it was felt that the greater complexity of either the Cairns et al. (2009) or 
Renshaw and Haberman (2006) models would signifi cantly complicate the 
main message that is trying to be conveyed in this paper. We choose to use the 
APC model because of its relative simplicity on the one hand, while on the 
other it is know to compete reasonably well alongside other models (Cairns et 
al., 2009) as well as incorporate a cohort effect. In a similar vein, the detailed 
elements of  the stochastic model laid out in equations (1) to (4) could be 
 generalised, but again that would result a loss of clarity in the discussion of 
the key messages.

To satisfy the core hypothesis, it is suffi cient to assume that both t tk k–( ) ( )2 221  
and t x t x- -g g–( ) ( )31 32  are mean reverting.

4.1. Empirical fi ndings

Our experiences in modelling mortality point to the following empirical fi nd-
ings where we have two closely linked populations (see, for example, Figure 1):

– Period effects contain signifi cant year-on-year randomness refl ecting current 
environmental fl uctuations. The random effects in linked populations have 
signifi cant positive correlation.

– Cohort effects are relatively smooth processes (compared to period effects) 
around a random trend. This smoothness refl ects a gradual build up of 
lifestyle, medical and environmental factors over time resulting in high cor-
relation between adjacent cohorts. Over longer time horizons we see strong 
correlation between two populations’ cohort effects (Figure 1, right).

– Where we use a two-stage approach to model fi tting with single populations, 
estimated cohort effects for small populations contain signifi cant noise 
resulting from Poisson randomness in death counts (Figure 1, right).

– Correlation between mortality improvements in the two populations rises 
with the time horizon.
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4.2. Desirable criteria

In this section, we list potential criteria to add to our core hypothesis in
Section 3 which seem reasonable from a biological/environmental point of 
view. These criteria are subjective in nature and are only partly supported by 
our empirical fi ndings:

C1: kt
(21) and kt

(22) should have similar conditional 1-year-ahead variances. 
C2: gc

(31) and gc
(32) should have similar conditional 1-year-ahead variances.

C3: gc
(31) and gc

(32) (both covariance-stationary processes) should have similar 
unconditional variances.

C4: In the long-run, gc
(31) and gc

(32) should be positively correlated.

Each of  these needs some justifi cation. C1-C3 are included on the basis of 
subjective judgement. From a biological and environmental perspective it is 
diffi cult, under normal circumstances, to envisage how the level of variability 
in the underlying death rates and period effects could be substantially different 
in two populations.

Substantially different levels of short-term variability in two populations 
would mean that one population was somehow much more vulnerable to short 
term shocks. The degree to which this is possible depends on the detailed 
characteristics of the two populations, but where the characteristics are broadly 
comparable, especially in terms of geography and access to medical facilities, 
we would not expect to see substantial differences in variability in the period 
effect (C1). A similar argument applies to the cohort effects (C2), particularly 
where the two populations have some important shared characteristics.

Looking, now, to the longer term: period effects will be underpinned by a 
random-walk model so it is diffi cult to specify any particular long-term rela-
tionship between the variances of kt

(21) and kt
(22). However, we can remark that 

for the datasets considered the absence of a long-term criterion was not found 
to cause any diffi culty. In contrast, the cohort effects (might) involve some 
element of mean reversion, so long term variance is a meaningful quantity
to consider (C3). Again, we might consider under what circumstances the 
long-term variance of two population’s cohort effects might differ signifi cantly. 
And again we might take the view that signifi cant differences would be diffi cult 
to justify where the two populations share key characteristics. If  the two pop-
ulations differ in terms of their socio-economic background then we might see 
some differences: differing exposures over individual lifetimes to various med-
ical, environmental and lifestyle factors might result in different accumula-
tions of  the benefi ts or adverse effects of  these factors. However, again we 
would not expect these differences to be very large. Criterion C4 also concerns 
the long term. In part, this is supported by empirical evidence (Figure 1, right). 
However, it is backed up by similar subjective arguments to those concerning 
long term variability. Typically, equivalent cohorts in the two populations
will be exposed to a similar range of  ‘‘random’’ medical, environmental and 
lifetyle factors over their lifetimes and so we would expect the combination of 
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these factors to result in positive correlation between the two populations’ 
cohort effects.

These criteria are incorporated into our model fi tting process through the 
use of enhanced priors, as discussed in Section 5.4.

4.3. Alternative cohort effect hypothesis

Instead of having two distinct, but highly-correlated cohort effects the right-
hand plot in Figure 1 suggests that it might be possible to have just a single 
common cohort effect. For these particular datasets, imposing the EW cohort 
effect on the CMI population was considered, and we found that there was 
only a small deterioration in the quality of fi t, leading to a conclusion that the 
cohort effects were not signifi cantly different. However, there is no a priori 
reason why the two populations’ cohort effects should be identical and, there-
fore, we chose, in the present work, to keep the two cohort effects as distinct 
processes.

4.4. Population 1 dominant

The approach adopted in this paper is infl uenced by a typical scenario where 
we wish to model, say, a pension fund’s mortality alongside the national pop-
ulation. We focus, therefore, on situations where one population (say popula-
tion 1) is much larger than the other (population 2). Hence, we choose to 
model population 1 using a standard one-population model, and then tackle 
the second population by modelling the spreads between it and population 1. 
We, therefore, defi ne

 .t ct t c c( (–( t c –, , ) , ( )k k g g gR t S R S cand( ) ( ) ( ) ( ) ( ) ( )21
2

21 22
3

31
3

31 32= = = =)2 ) k

Our core hypothesis in Section 3 indicates that we require the spreads, S2 (t) 
and S3 (c), to be mean reverting.
The models used will be as follows:

– R2 (t) is modelled as a random walk. S2 (t) is modelled as an AR(1) time 
series. Innovations for R2 (t) and S2 (t) are modelled as i.i.d. bivariate normal 
from one year to the next, allowing for non-zero correlation.

– R3 (c) is modelled as an AR(2) process around a deterministic linear trend. 
S3 (c) is modelled as a mean-reverting AR(2) time series. Innovations for 
(R3 (c),  S3 (c)) are modelled as i.i.d. bivariate normal from one year to the 
next, allowing for non-zero correlation.

The random walk for the central period effect, R2 (t), mimics what has been 
done elsewhere (for example, Lee and Carter, 1992, and Cairns et al., 2011a). 
For the central cohort effect, R3 (c), Renshaw and Haberman (2006) and Cairns 
et al. (2011a) previously used an ARIMA(1,1,0) model. However, the AR(2) 
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model around a linear trend has been found to work just as well, and, indeed, 
incorporates the ARIMA(1,1,0) model as a limiting case. From a qualitative 
point of view, also, an AR(2) model with autoregressive coeffi cients that are 
relatively large in magnitude can produce results that mimic the large-scale 
patterns that we see in the data (e.g. Figure 1, right), with relative smoothness 
in the short term and occasional shifts in the trend. This smoothness was 
considered a desirable property in our section on empirical fi ndings. For the 
spread between the period effects, S2 (t), the AR(1) model is a pragmatic choice 
that works well when applied to the single-population period effects using the 
two-stage approach. The AR(1) model, of  course, also incorporates mean 
reversion. The AR(2) model for the spread between the cohort effects, S3 (c), 
is again a choice that works well when applied to the single-population period 
effects using the two-stage approach. However, choosing AR(2) rather than 
AR(1) (which in any event is a special case of AR(2)) allows us to model the 
central cohort effect, R3 (c), and the spread, S3 (c), in a more consistent way.

Previous papers dealing with the APC model (Renshaw and Haberman 2006; 
Cairns et al. 2009, 2011a) have discussed the need to incorporate iden tifi ability 
constraints. Here, we use constraints that are equivalent, but nevertheless dif-
ferent in concept and that have been developed to facilitate convergence of the 
MCMC algorithm: namely, that

– R2 (1)  =  0,
– S2 (t) is mean reverting to zero
– R3 (c) is AR(2) around zero, and
– S3 (c) is AR(2) around zero.

All of these constraints can be achieved by shifting and tilting R2 (t), bx
(11) and 

bx
(12), without having an impact on the Poisson log-likelihood function for 

deaths (Section 5.2). For example, we indicated that R3 (c) should be modelled 
as an AR(2) model around a deterministic linear trend. However, the linear 
trend can be subtracted from R3 (c), with compensating adjustments to R2 (t) 
and bx

(11). It is important also to remark that the particular choice of  con-
straints does not impact in any way on the forecast dynamics of future death 
rates.

All of  the above equates to the following mathematical statement of  the 
model:

R( 1) ( ) ( 1)R t R t C Z tm2 2 2 211 21+ = + + +  (1)

  mSS S2 –( 1) ( ( ) ) ( 1) ( 1)m cS t S t C Z t C Z t2 2 2 2 221 21 222 22+ = + + + + +  (2)

      ( R R( – – –3 ) ) ( )m cR c R c cd3 3= 3

      ( ( S–3 3 mS c S c 3=) )

f+ (cR R R R– –f f f( 1) ( ) ) ( 1) ( 1)R R R C Z3 31 32 3 31 32 3 311 31+ = + +c cc  (3)
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f+ (cS S S S– –f f f( ) ( ) ) ( ) ( )

( 1) .

S S S C Z

C Z

1 1 13 31 32 3 31 32 3 321 31

322 32

+ = + +

+ +

c c c

c
 (4)

The details of these equations are as follows:

– mR2 is the drift in the random walk R2 (t).

– mS2 and cS2 are the mean-reversion level and the AR(1) parameter respec-
tively of  the period-effect spread, S2 (t). For the process to be stationary 
(mean reverting), we require – 1 < cS2 < 1.

– Defi ne C (2)  =  
C
C C

0211

2 1 22 22
e o, and V (2)  =  C (2) C (2)�. V (2) is the 1-year-ahead con-

 ditional covariance matrix of (R2(t), S2(t))�.

– c is defi ned as (c0  +  c1  +  2) / 2, where (c0, c1) is the complete range of years 
of birth covered in the dataset.

– mR3  +  dR3 (c  –  c) is the linear trend, which R3(c) is reverting to.

– mS3 is the mean-reversion level of the cohort-effect spread, S3 (c).

– R3 (c) and S3 (c) are AR(2) processes that are mean reverting to 0.

– Defi ne C (3)  =  
C
C C

0311

321 322
e o, and V (3)  =  C (3) C (3)�. V (3) is the 1-year-ahead con-

 ditional covariance matrix of (R3 (t), S3 (t))� (and of (R3 (t),  S3 (t))�).

– ƒR31, ƒR32, ƒS31 and ƒS32 are the AR(2) parameters for the processes R3 (c) 
and S3 (c). For the processes to be stationary, we require each of ƒR31, ƒR32, 
ƒS31 and ƒS32 to lie between – 1 and + 1.

– The identifi ability constraints used in our specifi c MCMC algorithm require 
that mS2  =  mR3  =  mS3  =  dR3  =  0.

Death rates and death counts are then modelled as follows. First, reconstruct 
the period and cohort effects:

 t t t t– –( ), ( ) ( ), ( ), ( ) ( )k R t R t S t R t R t S tk g g( ) ( ) ( ) ( )21
2

22
2 2

31
3

32
3 3= = = = .

Second, calculate the underlying death rates:
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C
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where bx
(11) and bx

(12) are the populations 1 and 2 age effects. Third, given the 
matrices of exposures, Ek (t, x), actual numbers of deaths, Dk(t, x), at age x last 
birthday during year t are assumed to be independent Poisson random variables 
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with mean mk (t, x) Ek (t, x) (Brouhns et al. 2002). (For alternatives to the Pois-
son assumption, see, for example, Lee and Carter 1992; Li et al. 2009; and 
Pitacco et al. 2009).

4.5. Equal populations

This paper focuses on the case described above where population 2 can be 
considered to be a small sub-population of  or subsidiary to population 1.
In other applications, we might have two populations which carry equal status, 
such as males and females, or two different national populations. In this case, 
we suggest adapting the model above as follows. In contrast to the previous 
section, R2 (t) is redefi ned as the mean of  kt

(21) and kt
(22). Similarly, R3 (t) is 

redefi ned as the mean of gc
(31) and gc

(32). S2 (t) and S3 (c) retain the same defi ni-
tions as being the difference between the period and cohort effects. We then 
have

 
t

t

t

t

( ( (

( ( (

–

–

( ) ), ) ),

( ) ), ) ).

k k

g g

R t S t R t S t

R t S R t S tc

2
1

2
1

2
1

2
1

( ) ( )

( ) ( )

21
2

22
2

1 23
3

3
3

= + =

= + =

2

3

2

3

This redefi nition acknowledges the equal status of  the two populations by 
imposing symmetry in the relationship between, for example, R2 (t) and S2 (t) 
on the one hand and kt

(21) and kt
(22) on the other. This is just one of a number 

of  variants that could be considered, but it is one that would require only 
modest changes to the estimation method (and programs) that is discussed in 
the next section. A different variant could model: (a) the vector (kt

(21),  kt
(22)) as 

a vector autogregressive (VAR) process, integrated of order 1, with the addi-
tional constraint that the spread is autoregressive of order 0; and (b) (gc

(31),  gc
(32)) 

is VAR of order 0.

5. ESTIMATION METHOD

In previous work (see, for example, Lee-Carter 1992; Brouhns et al. 2002; 
Booth et al. 2005; Cairns et al. 2009, 2011a), most researchers have employed 
a two-stage, non-Bayesian approach to modelling: stage 1 estimating age, 
period and cohort effects without reference to their underlying dynamics;
and stage 2 fi tting a suitable stochastic process to the period and cohort effects. 
A good general account of this including iterative schemes for parameter esti-
mation can be found in Pitacco et al. (2009). This approach only works well 
if  the population size is large. More recently, some authors (e.g., Bray 2002; 
Czado et al. 2005; Reichmuth and Sarferaz 2009; Kogure and Kurachi 2010), 
when considering single populations, have sought to combine these two stages 
in a Bayesian setting.
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For smaller populations, sample variation affects death counts, which, in 
turn, can have a non-negligible impact on estimates of age, period and cohort 
effects, with signifi cant noise obscuring the true signal (as, for example, in 
Figure 1, right).

This provides one motivation for combining stages 1 and 2. A likelihood-
based approach, therefore, would combine the Poisson likelihood for the death 
counts with the ARIMA likelihood functions for the latent random period and 
cohort effects. With a large population, the Poisson component will dominate, 
so that the impact of combining stages 1 and 2 will have little impact. For a 
smaller population, the ARIMA likelihood functions will compete with the 
Poisson likelihood to produce estimates for the latent period and cohort effects 
that look more like the proposed ARIMA (p, d, q) models.

The combined fi tting procedure allows us to include cohorts with only one 
observation (a problem with the two-stage approach: see Cairns et al. 2009), 
since the low level of information provided by one data point will be balanced 
by the ARIMA likelihood for that observation. In the Bayesian setting,  estimates 
for cohorts with fewer observations will have wider posterior distributions. For 
the youngest cohorts, use of the limited amount of data gives us some precious 
information about the most recent values for the two populations’ cohort effects 
that would otherwise be unavailable to us. This in turn helps us to make improved 
forecasts of what will happen to the cohort effects in the future.

5.1. Markov chain Monte Carlo (MCMC)

Bayesian statistics and MCMC methods (specifi cally the Metropolis-Hastings, 
MH, algorithm) provide a framework within which we can tackle the estimation 
problem in a single stage (see, for example, Gilks et al. 1996).

– MCMC will produce a Bayesian posterior distribution for the forecasting 
model parameters and for the latent age, period and cohort effects.

– The method can deal effectively with missing data in our mortality dataset, 
or, for example, the removal of data points that are considered to be unreli-
able or out of line for some unknown reason. The MCMC output will allow 
us to derive a posterior distribution for the relevant parameters and for the 
underlying death rate for the missing cells.

5.2. Likelihood, prior and posterior

The complete parameter vector is denoted by q, and consists of subvectors for 
the period and cohort effect process parameters, and subvectors for each of 
the latent age, period and cohort effects. The log-likelihood function is made 
up of several components: 

– l (q)  =  l1 (q)  +  l21 (q)  +  l22 (q)  +  l31 (q)  +  l32 (q)
– l1 (q)  =   Poisson log-likelihood for the observed deaths given the bx

(1i), kt
(2i),

gc
(3i) vectors. Cells, (i, t, x), with missing data are given a weight of  zero, 

Wi  (t, x)  =  0, otherwise Wi  (t, x)  =  1.

94352_Astin41-1_02_Cairns.indd   4194352_Astin41-1_02_Cairns.indd   41 12/05/11   14:2712/05/11   14:27



42 A.J.G. CAIRNS, D. BLAKE, K. DOWD ET AL.

– l21 (q)  =   unconditional log-likelihood for (R2(1),  S2(1))  =  (0,  S2 (1)).
– l22 (q)  =   conditional log-likelihood for (R2(t),  S2 (t)) for t  =  2,  …,  ny .
– l31 (q)  =   unconditional log-likelihood for X  =  (R3 (2),  S3 (2), R3 (1),  S3 (1))�.
– l32 (q)  =   conditional log-likelihood for (R3 (c),  S3 (c)) for c  =  3,  …,  nc .

More specifi cally:

 iW –( ) ( , ) ( , ) ( , ) ( , ) ( , )ql t x D t x m t x m t x E t x constant
,i x
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where X  = (R3 (2),  S3 (2),  R3 (1),  S3 (1))� and W is the solution to the equation
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While it is not possible to solve equation (5) using standard matrix algebra, 
the equation is linear in all elements of W and can be solved by writing W as 
a 16  ≈  1 vector. Finally,

 VY
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5.3. The prior distribution

In general, we aim to use prior distributions in our study that are as unin-
formative as possible, and therefore allow the data to speak for themselves.
Therefore, unless otherwise stated below, all parameters (for example, the bx

(11) ) 
have improper uniform prior distributions.

Our basic prior distribution assumes:

– V (2) has a relatively uninformative inverse-Wishart prior with density proportional

 to |V | – 2.5  exp [ – trace (CV  – 1)] where the inverse scale matrix C  =  10
0

0
10c m.

– The prior for V (3) is made up of two components, the second being des  -
cribed in more detail in Section 5.4. The fi rst component is also a rela-
tively uninformative inverse-Wishart prior with density proportional to 

 |V | – 2.5 exp[ – trace (CV  – 1)] where the inverse scale matrix C  =  .
.

0 2
0

0
0 02c m.

– mR2   +   N (– 0.9, 0.92);

– logit (ƒR31)   +   N (2, 0.52) distribution.

– logit (ƒR32)   +   N (2, 0.52) distribution.

– logit (ƒS31)   +   N (2, 0.52) distribution.

– logit (ƒS32)   +   N (2, 0.52) distribution.

– logit (cS2)   +   Gumbel (2,0.5) distribution.1

For V (2) and V (3), the choice of  prior means that the conditional posterior 
distribution is approximately inverse Wishart, and this is used as the candidate 
distribution in the MH algorithm to good effect (see Appendix A). The use of 
a non-zero, inverse scale matrix C was found to be necessary to avoid singu-
larities in the log-posterior distribution at V (3)  =  0. (The fact that the cohort 
effects are not directly observable means that the optimiser might achieve an 
infi nite maximum likelihood if  R3 (c) and S3 (c) are linear and V (3)  =  0.) A zero 
scale matrix for the inverse Wishart prior for V (2) was not found to cause any 
problems for this pair of datasets. However, a slightly stronger, but still relatively 
uninformative prior might be needed for V (2) for other pairs of populations.

A normal prior for mR2 ensures a normal conditional posterior. Again the 
prior is weak, but not completely uninformative. Specifi cally, we wish to avoid 

1 Let y  =  logit (cS2 ). The density for the Gumbel (m, s) distribution is exp [ – (y  –  m)  / s] exp ( – exp
[ – (y  –  m) / s] ).
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mR2 being too negative since this might result in decreasing cohort death rates 
over time (that is, decreasing m (t, x  +  t)): something that we regard as being 
biologically unreasonable in the long run. In practice, bx

(1i) increases roughly 
linearly at higher ages with a gradient of around 0.1 in most developed coun-
tries. It follows that we aim to avoid mRS / na being less than – 0.1, with na  =  30 
as we have later on. The prior of N(– 0.9, 0.92) assigns only a small prior prob-
ability of around 0.01 that mR2 / na  <   – 0.1. As will be seen in Section 6, this 
prior does not seem to have a strong infl uence on the posterior distribution 
for mR2, which has a signifi cantly different mean and a substantially smaller 
standard deviation.

As noted in Appendix A, the exponentials of the age effects, bx
(1i), all have 

a gamma conditional posterior distribution, since the bx
(1i) have no time series 

structure and a uniform prior. The same would be true for the period and 
cohort effects. However, the interplay of  the exponential-gamma structure 
with the time series structure of these effects means that there is no analytical 
form for the conditional posterior distribution. Fortunately, the exponential-
gamma structure is well approximated by a multivariate normal resulting in a 
multivariate normal being a good approximation overall to the conditional 
posteriors for the period and cohort effects. This again is used to good effect as 
the proposal distribution for the period effects and the cohort effects in turn.

The priors for the mean reversion parameters cS2, ƒR31, ƒR32, ƒS31 and ƒS32 
all required some experimentation. All needed moderately informative priors: 
with limited time-series data and uninformative priors, the Markov chain typ-
ically spent too much time close to 1 (no mean reversion) to be comfortable 
with the core hypothesis in this paper. The normal priors for the logit (ƒ)’s 
were found to solve this problem without being too prescriptive apart from 
avoiding values close to 1.

The double exponential in the Gumbel prior density for cS2 was required 
to provide a stronger push away from cS2  =  1 than the logit-normal priors 
used for the other parameters, but otherwise the Gumbel prior is not too 
strong through the choice of 2 and 0.5 for the Gumbel parameters.

In practical applications, the impact of these moderate priors for the auto-
regressive parameters tends to be modest except for long time horizons.
For shorter time horizons, it is the correlations embedded in V (2) and V (3) that 
matter.

5.4. Enhanced priors

Recall from Section 4.2 that it would be desirable to have similar short- and 
long-term volatility in period and cohort effects and to have long-term cor-
relation in the cohort effects. With the basic priors above we found that the 
short- and long-term volatility of the cohort effects in the two populations 
were not consistent with these criteria. As a consequence we strengthened the 
priors by multiplying the basic prior density by further prior density functions 
as follows:
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– A Gamma (100, 100) prior for the ratio of the conditional 1-step-ahead vari-
ance of gc

(32) to the conditional 1-step-ahead variance of gc
(31).

– A Gamma(100,100) prior for the ratio of the unconditional (i.e. long-term) 
variance of gc

(32) to the unconditional variance of gc
(31). 

– A Beta (20,2) prior (scaled to cover the interval (– 1,  + 1)) for the unconditional 
correlation between gc

(32) and gc
(31).

These might seem relatively strong, but their inclusion or exclusion was not 
found to have a signifi cant impact on headline outputs such as the distribution 
(central trend and spread) of future death rates. For each prior, the important 
elements are the mean and standard deviation of the prior, and the domain. 
Thus, for example, the Gamma priors properly restrict variances to be positive 
real numbers, and have a mean of 1 and standard deviation of 0.1. The log-
normal as a prior with the same mean and standard deviation is almost iden-
tical to the Gamma and would give similar results. The scaled Beta properly 
restricts the unconditional correlation to the range ( – 1,  + 1), and has mean of 
0.82 and standard deviation of 0.06.

These particular parameterisations for the basic and enhanced priors might 
need to be adjusted to suit the specifi c characteristics of a given pair of popu-
lations. However, all pairs of populations considered so far in this paper (EW 
versus CMI males) and elsewhere (EW versus CMI females, and EW versus 
Scottish males) work with the same priors as listed.

5.5. Metropolis-Hastings algorithm

Details of how the MH algorithm is implemented are given in Appendix A. 
As before, we consider q to be the complete vector of process parameters, and 
age, period and cohort effects. The algorithm generates a sequence of values for 
the parameter vector q(1), q(2),  …,  q(t) (the Markov chain). With a properly 
implemented MH algorithm the empirical distribution of the q(i) will con-
verge to the full posterior distribution of the unknown q.

6. RESULTS AND DISCUSSION

Our analysis focuses on EW versus CMI males using data from 1961 to 2005 
and ages 60 to 89. This analysis includes the enhanced priors discussed in 
 Section 5.4.

Let q (i,  j) be the j’th element of the Markov chain q(i) after i iterations. 
The burn-in period is the initial phase of the iterative scheme where we move 
from the initial q(0) towards the posterior distribution of q. After iB iterations, 
we consider the burn-in period to be complete and that further iterations are 
cycling around the posterior distribution. After iB, we record every 50th iteration 
q(iB  +  50), q(iB  +  100),  …. Taking every 50th observation results in effi cient use 
of  memory, but it also reduces substantially the degree of  autocorrelation 
between successive recorded observations.
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When we wish to simulate one future sample path of the two-population 
APC model we choose one of the q(iB  +  50k) at random and then use this to 
specify the process parameters and historical state variables for simulating that 
sample path. Further details are given in Appendix B.

We now illustrate the results in a series of fi gures, and comment as follows:

– Figure 2 provides fan charts (with 5% quantile bands) for historical and 
forecast mortality at ages 65, 75 and 85 for EW and CMI males. For the 
years 1961 to 2005, the outer limits of the fans provide us with 90% credibility 
intervals for the underlying mortality rate, qi (t, x)  =  1  –  exp[ – mi (t, x)], in each 
year. The 90% credibility interval is bounded by the 5% and 95% quantiles 
of the marginal posterior distribution for each qi (t, x).

 The left-hand plots show forecasts generated using the original single-
population APC model, fi tted using the two-stage approach and with no 
parameter uncertainty (PC), as in Cairns et al. (2011a). The right-hand plots 
show forecasts generated using the new joint 2-population model with full 
parameter uncertainty (PU).

 In contrast to the original two-stage approach to model fi tting and projec-
tion, the underlying historical qi (t, x) are no longer simply point estimates. 
Instead, we can see the degree of uncertainty that is associated with each 
qi (t, x) between 1961 and 2005. In particular, we can see that the credibility 
intervals for the CMI data up to 2005 are signifi cantly wider than for the 
EW data, refl ecting the smaller size of the CMI dataset.

 For age 85, the EW fan widens out slightly in the 1960’s. This refl ects the 
fact that we do not have data for ages 85-89 for 1961-1970, and so what we 
see here is a backwards extrapolation to age 85 that learns from EW ages 
85-89 after 1970 and from ages 60-84 between 1961 and 1970.

 Looking beyond 2005, the fans are based on Monte Carlo simulations and 
spread out refl ecting growing future uncertainty. We can see that the CMI fans 
(especially at age 65) move closer to the EW fan, but the spread between the 
EW and CMI populations is maintained and stabilises after 30 years. The aver-
age gap in 2050 (right-hand end) is similar to what it was in 1961 (left-hand end).

– In Figure 3, we compare fan charts produced using the MCMC two-popu-
lation model with fan charts produced individually for the two populations 
using the old two-stage approach, with no allowance for parameter uncertainty, 
and an ARIMA (1,1,0) model for the cohort effect.

 The left-hand plots (EW top; CMI bottom) show fans for age 75 using the 
MCMC approach. We can see the relatively smooth central forecasts in
each case. The left hand plots illustrate the impact of including parameter 
uncertainty (PU). The parameter certain (PC) case (B: upper, narrower fans) 
takes the means of all process parameters and state variables from the MCMC 
output and takes these as point estimates for conducting simulations. Central 
forecasts are about the same, but the PU fans (A) are signifi cantly wider.

 In the right-hand plots, the underlying fans A and B are the same as on
the left. These now have superimposed on them fans (C) produced using the 
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 FIGURE 2: Mortality fan charts for ages 65, 75 and 85 for EW males (upper fans) and CMI males
(lower fans). Left-hand plots: fan charts constructed using the single-population models with no

parameter uncertainty (PC). Right-hand plots: fan charts constructed using the joint-population model 
(MCMC) with parameter uncertainty (PU).
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FIGURE 3: Comparison of fan charts based on A: the new MCMC algorithm with full parameter 
uncertainty (PU) (rear fans), B: the new MCMC algorithm with parameters certain (PC) (upper (left hand 
plots) or middle (right hand plots) fans), C: the original two-stage method with parameters certain using 
ARIMA(1,1,0) models for the cohort effect (upper fans in the right-hand plots). Left-hand plots compare 

A and B. Right-hand plots compare A, B and C.

single-population models (Cairns et al., 2011a). For the EW data, fan A is 
reasonably smooth and the results are reasonably consistent with the single-
population EW forecasts. However, fan A is wider, refl ecting the allowance 
for parameter uncertainty (parameter uncertainty being a by-product of the 
MCMC output). For the EW data, both of the PC cases (B and C) have 
fans of similar width.
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 The CMI plot (bottom right) differs in three important ways. First, the 
single-population fan C is much less smooth. For age 75, the fi rst 15 years 
of projections include values for the cohort effect that have been inferred 
from the historical data. The small size of the CMI population results in 
noisy estimates of the cohort effect and this feeds through, in an unreason-
able way, to the forecasts. Fans A and B, by contrast (bottom left), are 
smoother and much more plausible, and refl ect the use of  a single-stage 
rather than a two-stage estimation process. Second, for the CMI data there 
is a greater difference between the central trends in fans A and C. This 
refl ects mean reversion in the spread between the two populations when 
modelled simultaneously. The greater size of the EW population means that 
the mean-reversion has a greater impact on the CMI projections. With the 
single-population projections, CMI mortality rates with a faster improve-
ment rate were gradually diverging from EW rates, whereas, here, mean 
reversion pulls the CMI forecasts back towards the EW population. Third, 
consider the width of the parameter certain fans (B and C). For EW, these 
were about the same width, while, for the CMI data, the fan B is slightly 
narrower. In Figure 1, we saw that the single-population model resulted
in rather noisy estimates for the cohort effect for the CMI data. This fed 
through to greater noise in the forecasts. A key contribution of the approach 
to modelling two populations using a single-stage estimation procedure is 
that it substantially dampens the noise observed in Figure 1 which results 
in narrower fans and hence more ‘‘confi dent’’ predictions.

– In Figure 4, we have plotted fans (90% credibility intervals) for age, period 
and cohort effects for the two populations. Before plotting, outputs from 
the MCMC program were adjusted to satisfy the following identifi ability 
constraints: Sc R3 (c)  =  0, Sc R3 (c) (c  –  c)  =  0, Sc S3 (c)  =  0, St R2 (t)  =  0 and 
St  S2 (t)  =  0. This involves shifting and tilting relevant outputs, and also 
making corresponding adjustments to the random process parameters. For 
example, shifting and tilting R3(c) to satisfy the fi rst two constraints means 
that we must make a corresponding tilt to R2(t), an identical shift and tilt 
to bx

(11) and bx
(12), and adjustments to mR2 , mR3 and dR3.

 For each of  the age, period and cohort effects, we can see that the CMI 
credibility intervals are rather wider, refl ecting the smaller size of the CMI 
population.

 For the cohort effects, we see that both the EW and CMI fans widen out 
towards both ends. This refl ects the number of cells available for estimating 
a given cohort effect: for example, we have just one cell linked to the 1945 birth 
cohort, compared with 30 cells for the 1915 cohort. The EW fan widens out 
more on the left than on the right, refl ecting the missing data for ages 85-89 
in years 1961-1970.

 In the bottom right plot, we consider the central cohort effect, R3 (c), and 
its linear trend, mR3  +  dR3 (c  –  c ). The upper fan provides credibility intervals 
for R3 (c) (a repeat from the bottom left plot). The wide fan in the back-
ground provides credibility intervals for the trend, mR3  +  dR3 (c  –  c ). Clearly, 
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FIGURE 4: Age, period and cohort effects for EW males (upper fans) and CMI males (lower fans).
Bottom right: EW cohort effect (upper, narrow fan) and its underlying linear trend (rear, wide fan).
Age, period and cohort effects have been adjusted to satisfy identifi ability constraints: Sc R3 (c)  =  0,
Sc R3 (c) (c  –  c)  =  0, Sc S3 (c)  =  0, St R2 (t)  =  0, St S2 (t)  =  0. R3 (c) is modelled as an AR(2) process

around the linear trend mR3  +  dR3 (c  –  c).

there is considerable uncertainty in this trend, refl ecting the relatively mod-
est number of (latent) observations of R3 (c). In the short run, this does not 
cause signifi cant problems as there is only gentle mean reversion to this 
long-term linear trend. In the long run (say, 40 or 50 years), this will result 
in some additional uncertainty in the overall level of mortality.

– In Figure 5, we plot the empirical correlation between the simulated 
improvement factors at ages 65, 75 and 85 as a function of the time horizon. 
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For reference, we also plot the correlation between the period effects, kt
(21) 

and kt
(22) (the uppermost line in both plots).

 Correlations that refl ect full allowance in the simulations for parameter 
uncertainty are given in the left-hand plot of Figure 5. To help understand 
the structure in the left-hand plot, however, it is more straightforward to 
consider, fi rst, the PC case (right-hand plot). In this case, we took the MCMC 
output and used the mean of each process parameter and also the mean of 
each of the latent effects. For time horizons of up to 5 years, the age 65, 75 
and 85 correlations are all equal: since randomness in each depends only on 
randomness in the period effects. After 5 years, the age 65 mortality rate 
includes randomness in the cohort effect that requires simulation beyond 
the cohorts in our historical dataset. This additional randomness results
in a different and, here, lower correlation for age 65 compared with ages 75 
and 85. (The additional randomness contributed by the cohort effect could 
push the overall correlation being measured here up or down. Here, it goes 
down because the short-term correlation between the EW and CMI cohort 
effects is lower than the short-term correlation between the respective period 
effects). After 15 years, the age 75 mortality also includes simulated cohort 
effects, so the age 75 and 85 correlations also diverge. In the long run, the 
correlation between kt

(21) and kt
(22) dominates as mean reversion in the cohort 

effects reduces their relative impact over time. Finally, mean reversion in the 
spread between kt

(21) and kt
(22) means that the correlation between the simulated 

improvement factors will tend to 1 as the forecast time horizon increases. 

FIGURE 5: Correlation between simulated improvement factors in EW males and CMI males mortality 
rates as a function of the time horizon beyond 2005 – Age 65 (solid line), 75 (dashed line) and 85

(dotted line) – and correlation between period effects kt
(21) and kt

(22) as a function of the time horizon 
(dot-dashed line). Left: simulations incorporating parameter uncertainty (PU). Right: simulations

with no parameter uncertainty (PC).
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The right-hand plot also shows us that the correlations follow quite closely 
the correlations between kt

(21) and kt
(22), with deviations only when the cohort 

effect is uncertain.
 The PU case allows for uncertainty in both the process parameters and in 

the values of the historical latent period and cohort effects (left-hand plot). 
For the fi nal year of birth in our historical dataset, we only have one obser-
vation (age 60 in 2005 for the 1945 cohort), leading to a relatively large amount 
of uncertainty in the estimate of the 1945 cohort effect. In more general terms, 
there is growing uncertainty in the cohort effect as we approach 1945 (recall 
Figure 4). The correlation between estimates of the latent cohort effect for 
these years is quite small and has the immediate effect of dragging down 
the age 65 correlation plot (Figure 5, left) relative to its PC counterpart 
(Figure 5, right). In the longer run, this uncertainty in estimates of  his-
torical latent effects is replaced by uncertainty in the process parameters
such as mR2. This can push correlation up or down. Here, the parameter 
uncertainty pushes correlation down initially, but for longer maturities, the 
correlation is slightly higher in the PU plot refl ecting the common depen-
dence of kt

(21) and kt
(22) on the uncertain random-walk drift mR2.

 A signifi cant difference between the left- and right-hand plots in Figure 5 is 
that on the left the correlation between kt

(21) and kt
(22) is substantially above 

the age 65, 75 and 85 correlations. This tells us that uncertainty in estimates 
of the historical age and cohort effects has a signifi cant downwards effect 
on correlation.

 The unambiguous conclusion from this plot is that correlations are rising 
with the time horizon. Additionally, though, the shape of the curve and the 
values that we see here, based on our very specifi c model, are consistent with 
the model-free empirical fi ndings of Coughlan et al. (2011).

– As a fi nal remark, we compared results with and without the enhanced 
priors discussed in Section 5.4. For the plots discussed above, the use of the 
enhanced prior did not result in any signifi cant changes, indicating that our 
conclusions about headline aspects of forecasting are robust relative to this 
feature.

 However, if we plot relevant statistics linked to the enhanced priors (Figure 6) 
we can see that the enhanced priors do exactly what we intend them to do 
by pulling the short- and long-term variances of  the cohort effect closer 
together. In the left-hand panel, we plot the CDFs of the ratio of the short-
term (one-step-ahead conditional) variances (Var(gc

(32)| Gc  –  1,V
(3))  / Var(gc

(31)| 
Gc  –  1,V

(3)), where Gc  –  1 is the history of R3 (u) and S3 (u) up to time c  –  1,
and V (3) is sampled at random from the posterior distribution of q) of the 
population 1 and 2 cohort effects with and without the enhanced prior. 
Without the enhanced prior, population 2 conditional variances are much higher 
suggesting that Poisson sampling variation in population 2 is still having a 
strong infl uence on estimates of  the underlying cohort effect (Figure 1, 
right). With the enhanced prior we can infer that this issue effectively disap-
pears. In the middle panel, we plot the CDF of the ratio of the long-term 
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(unconditional) variances (Var (gc
(32) ) / Var (gc

(31) )) between the two cohort 
effects. The right-hand panel shows the corresponding long-term correlation 
(cor (gc

(32),  gc
(31) )). The inclusion of the enhanced prior can be seen to have 

the desired effect of stabilising the relationship between the variances in the 
two populations.

7. CONCLUSIONS

The Bayesian Markov chain Monte Carlo approach to estimating jointly the 
parameters of  stochastic mortality models for two related populations has 
clear advantages over the individual modelling of the populations. First, the 
difference between the two populations’ death rates is modelled as a mean-
reverting stochastic spread, which allows for different short-term trends in 
improvement rates, but parallel improvements in the long run, thereby prevent-
ing a biologically implausible long-term divergence in death rates. Second, the 
approach permits us to analyse uncertainty in the estimates of the historical 
age, period and cohort effects, and this helps us to smooth out noise in param-
eter estimates, particularly those relating to cohort effects, attributable to small 
populations: the framework is especially valuable when the population of 
interest is smaller with more volatile mortality than the other population. Third, 
the forecasts of mortality rates arising from this framework provide consistent 
central projections, as well as consistent distributions (fans) around these cen-
tral projections. The bottom right-hand panel of Figure 3, for example, shows 
how the fan chart projections for the smaller population (in this case CMI 
males) is ‘‘pulled” towards that of the larger population (in this case EW males 

FIGURE 6: Left: Cumulative posterior distribution function (CPDF) of the ratio of the short-term 
volatility of gc

(32) to the short-term volatility of gc
(31). Middle: CPDF of the ratio of the long-term 

(stationary) variance of gc
(32) to the long-term variance of gc

(31). Right: Long-term correlation
between gc

(32) and gc
(31). Solid lines: without the use of the enhanced prior distributions.

Dashed lines: with the use of the enhanced prior distributions.
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– see top right-hand panel in the fi gure) without any increase in forecast uncer-
tainty – the width of the fans in the two-population case is actually slightly 
less for both populations than the fans in the single-population case. Fourth, 
the correlations between the estimated mortality improvement factors for two 
populations are consistent with the historical data.

However, the approach remains sensitive to the underlying stochastic
mortality models used and will compound any weaknesses in these models. 
For example, the approach might be sensitive to the model used to estimate 
the cohort effect. Finally, the approach is sensitive to the amount of data used, 
although the amount of data is a less signifi cant factor than the fact that two 
related populations are being modelled jointly.

Some of the details internal to the model should not be regarded as
cast in stone. The 0/1 weights in the spreads model might be varied if  the
two populations are more similar in size compared to those considered here. 
The prior distributions might be varied from those considered here if  initial 
results produce results that are implausible in some way (for example, priors 
might be required to ensure that the age effects, bx

(1i), are reasonably smooth). 
So users of the approach must always be vigilant, analyse results carefully, and 
not use the model as a black box.

Overall, we can conclude that the MCMC framework is a very useful one 
for modelling related populations, particularly the basis risk between them. 
This is especially important when we are interested in hedging the longevity 
risk in the smaller population using an index hedging contract related to the 
larger population. Such a hedge analysis will be the subject of future work 
(Cairns et al., 2011b).
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A. THE METROPOLIS-HASTINGS ALGORITHM

A popular approach to tackling Bayesian model fi tting problems uses the 
Metropolis-Hastings (MH) algorithm:

– Vector q(i)  =  current set of parameter and latent variable values after i itera-
tions.

– D  =  observed data.

– p(q |D)  =  posterior density for q. The posterior distribution is suffi ciently 
complex that direct simulation from p(q |D) is impossible.
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– Iteration i  + 1 proceeds in a series of substeps, j  =  1, 2,  …

• Substep j updates a single element or a block of the vector q.
• q   =  latest q including accepted substep updates.
• Generate a candidate q from a candidate distribution with density f (q|q)
• Accept the candidate q to replace the current q with probability

  
D

D q
q q

a
q q

q

( | ) ( | )

( | ) ( | )
, ,min

p f

p f
= 1* 4  (6)

 otherwise stick with q.

• At the end of this cycle of substeps, record the updated q (i  +  1).

The MH algorithm is such that although the q(i) are highly autocorrelated, 
their stationary distribution is equal to the posterior distribution p(q |D). It fol-
lows that if we run the MH algorithm for a long time, then the empirical distribu-
tion of the observed q(i) for i  =  1,  …,  N will be a good approximation to the 
true posterior.

A.1. The Gibbs sampler

The Gibbs sampler is a special case of the MH algorithm under which the 
candidate distribution is exactly equal to the conditional posterior distribution 
for a subset of the parameters, conditional on the current values of all other 
parameters in the model. Typically, it is not possible for us to know, or at least 
to be able to sample from the full posterior distribution (if we could, we would 
not need to use the MH algorithm). However, the conditional posterior for sub-
sets of parameters is often a standard distribution from which we can simulate.

Under the Gibbs sampler, the acceptance probability, a (see equation 6), is 
always equal to 1. This is an advantage if  it is computationally expensive to 
compute the full log-likelihood function: if  it is known that the acceptance 
probability is 1, then the log-likelihood does not need to be computed. A bigger 
advantage of the Gibbs sampler in this study, though, is that the Markov chain 
mixes more quickly through the full posterior distribution. We can, therefore, 
obtain a more reliable sample from the posterior in less time.

A.2. Pseudo-Gibbs sampler

Often, the conditional posterior is not in a form that can be matched to a 
standard distribution that can be easily simulated from. In some of these cases, 
however, we can simulate from a simpler distribution that is still a good 
approximation to the true conditional posterior. The acceptance probability 
(equation 6) will now be different from 1, and so the full likelihood needs to 
be evaulated. If  such an approximation can be found then it often results in 
effi cient mixing.
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A.3. Outline of the Metropolis-Hastings (MH) implementation

A full run of the MH algorithm consists of a large number of iterations (typ-
ically 50,000 or more). As described above, within each iteration we carry out 
a number of substeps to update, or leave unchanged, the various parameters. 
In our description of the substeps below we will label each step as Gibbs or 
pseudo-Gibbs or MH according to whether the candidate distribution is, respec-
tively, the exact conditional posterior distribution, an approximation to the 
conditional posterior distribution, or a simpler candidate distribution.

1. Update the vectors bx
(11) and bx

(12) (Gibbs). In both cases, the exp (bx
(1k) ) can 

be shown to have a Gamma conditional posterior distribution. This is 
 simple to generate, and so we can use the Gibbs sampler to update the bx

(11) 
and bx

(12) with each candidate vector having an acceptance probability that 
is always exactly 1.

2. Update simultaneously the vectors R2 (t) and S2 (t) (pseudo-Gibbs). Due to 
the infl uence of the Poisson likelihood, the conditional posterior distribution 
cannot be identifi ed exactly. However, we can derive a good multivariate 
approximation to the conditional posterior and we use this to generate 
candidate vectors for R2 (t) and S2 (t). Since this is a pseudo-Gibbs step an 
acceptance probability must be calculated and a random decision made to 
accept or reject the candidate.

3. Update simultaneously the vectors R3 (c) and S3 (c) (pseudo-Gibbs). The 
same remarks for R2 (t) and S2 (t) apply.

4. Update individually and in sequence cS2, ƒR31, ƒR32, ƒS31 and ƒS32 (MH). 
None of these have a straightforward exact or approximate conditional pos-
terior. For each, the candidate distribution is an independent normal distri-
bution for the logit transform of the parameter centred on the current value.

5. Update V (2) (pseudo-Gibbs). For the approximation we use the inverse-
Wishart distribution based on the annual changes in (R2 (t),  S2 (t)). The 
approximation results from the exclusion of the initial (R2 (1),  S2 (1)).

6. Update mR2 (Gibbs). The conditional posterior is a normal distribution.
7. Update V (3) (pseudo-Gibbs). For the approximation we use the inverse-

Wishart distribution based on the annual changes in (R3 (c),  S3 (c)). The 
approxi mation results from the exclusion of the initial (R3 (c),  S3 (c)) for c  =  1,  2.

8. Apply a (small) random shift and tilt to the vector of R3 (c)’ s with com-
pensatory adjustments to R2 (t), bx

(11) and bx
(12) in such a way that the under-

lying death rates are unchanged (MH). The Poisson likelihood is unaltered, 
but there is an impact on the time-series likelihoods.

9. Apply a (small) random shift and tilt to the vector of S3 (c)’s with compen-
satory adjustments to S2 (t) and bx

(12) in such a way that the underlying death 
rates are unchanged (MH). The Poisson likelihood is unaltered, but there 
is an impact on the time-series likelihoods.

The fi nal two substeps, 8 and 9, are not necessary for the MH algorithm to 
work. However, it was found that these additional randomisations helped the 
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Markov chain to mix more quickly, and, therefore, for the results to converge 
more quickly to a satisfactory solution. Identifi ability constraints mean that 
mS2  =  mR3  =  dR3  =  0 remain fi xed and do not need updating.

B. SIMULATION OF FUTURE SAMPLE PATHS

Let q (k), for k  =  1,  …,  N be the k’th recorded value of the parameter vector 
q out of the original Markov chain q(i) (here, every 50th value was recorded 
after completion of  the burn-in phase). Suppose that we wish to generate M 
sample paths of future death rates and mortality rates. For scenario j we pro-
ceed as follows:

– Select K( j) at random from the integers {1, …, N} independently of  all 
other values of K(1),  K(2),  ….

– Let qj  =  q(K( j)).
– Generate a random sample path for future values of  (R2 (t),  S2 (t)) using 

values for mR2, mS2, cS2, V (2), and historical values for (R2 (t),  S2 (t)) extracted 
from the relevant elements of qj .

– Generate a random sample path for future values of  (R3(c),S3(c)) using 
values for mR3, dR3, mS3, ƒR31, ƒR32, ƒS31, ƒS32, V(3), and historical values for 
(R3(c),S3(c)) extracted from the relevant elements of qj .

– Extract values for bx
(11) and bx

(12) from the relevant elements of qj .
– Use the simulated and extracted values of the age, period and cohort effects to 

construct the future arrays of death rates m1(t, x) and m2(t,x) for scenario j.
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