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 PENSION FUND MANAGEMENT AND CONDITIONAL INDEXATION

BY
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ABSTRACT

Conditional indexation offers a middle way between defi ned benefi t and 
defi ned contribution pension schemes. In this paper, we consider a fully-funded 
pension scheme with conditional indexation. We show how the pension fund 
can be managed to reduce the risks associated with promised pension benefi ts 
when declared benefi ts are adjusted regularly during the working life. In particular, 
we derive an investment strategy that provides protection against underfunding 
at retirement and which is self-fi nancing on average. Our results are illustrated 
in an extensive simulation study.

KEYWORDS

Conditional Indexation, Fully Funded Pension, Pension Fund Management, 
Quadratic Hedging.

1. INTRODUCTION

In many developed countries, traditional pension schemes are defi ned benefi t 
(DB) schemes where pension benefi ts are linked to fi nal salaries, general wage 
infl ation or other personal and economic variables rather than contributions 
made during the working life. While these pension schemes provide a high 
degree of  security for the retirement income of  workers, they also form a 
substantial risk for employers or other pension providers. The demographic 
change in the last few decades due to increased life expectancies and low fertil-
ity rates combined with low interest rates has driven up the costs of  DB 
schemes signifi cantly. In the UK, toughening government legislation and new 
accounting standards have put further pressure on DB schemes. In their 
“Accounting for Pensions 2009” report, Lane Clark and Peacock estimate that 
the total pension defi cit of the FTSE 100 companies stood at £96 billion in 
July 2009, which is about 25 percent of the total pension liabilities of £388 billion. 
The increasing costs of DB schemes have resulted in a large number of employ-
ers to close their fi nal salary schemes for new employees as these become to 
expensive to run. Lane Clark and Peacock report that “Only four FTSE 100 
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companies reported defi ned benefi t schemes open to new UK employees in their 
2008 reports.”

Where DB schemes are closed, new employees are often offered to partici-
pate in a defi ned contribution (DC) scheme where pension benefi ts are explic-
itly related to contributions. These schemes have substantial advantages for 
employers who will usually pay a fi xed percentage of salary into a fund. This 
fund is invested on the fi nancial market and the pension benefi ts paid at retire-
ment are the fi nal value of  the fund. While such a scheme provides a high 
degree of  cost stability for employers, employees are facing a substantial 
investment risk resulting in a high degree of  uncertainty in either pension 
benefi ts or the age of retirement as shown by MacDonald and Cairns (2007). 
For further discussions on the benefi ts and drawbacks of DB and DC schemes 
see, for example, Barr and Diamond (2006).

These developments have encouraged a discussion among politicians, 
 pension fund managers, academics and others about the design of pension 
schemes. On the one hand, this discussion focuses on the funding of pensions: 
fully-funded pensions versus pay-as-you-go pensions. This aspect of pensions 
is not considered in this paper. We assume that the proposed pension scheme 
is fully funded. On the other hand, one aims to fi nd a middle way between DB 
and DC schemes to achieve a balance between the advantages and disadvan-
tages of these schemes for employers and employees.

One way to keep some of the advantages of DB schemes for employees 
while linking pension benefi ts explicitly to contributions is the conditional 
indexation (CI) of benefi ts. In such a scheme pension benefi ts to be received 
at retirement are increased regularly during the working life according to some 
formula but only under the condition that suffi cient funding is available.
CI has been discussed in the academic literature by several authors, see for 
example de Jong (2008) and Dai and Schumacher (2009a, b). The basic element 
of a pension plan with CI is that the guaranteed pension benefi t is increased 
regularly until retirement according to some indexation procedure and starting 
from some initial guaranteed benefi t level. In this respect, a CI scheme is sim-
ilar to a DB pension. The difference between DB and CI is that the increase 
in guaranteed pension benefi ts (indexation) is conditional on the availability 
of suffi cient funds. In the case of a single contribution, indexation at any time 
before retirement is therefore conditional on the performance of the pension 
fund until that time. CI pension schemes have been implemented, for example, 
in the Netherlands, see Ponds and van Riel (2009) and Bikker and Vlaar (2007).

The contribution of  this paper to the literature on the conditional index-
ation of pensions is twofold. Firstly, a CI scheme which is slightly different 
from those considered in the existing literature is suggested. In particular,
we propose to adjust declared benefi ts at the end of every year according to 
an indexation formula which takes the growth rate of an index and the per-
formance of the pension fund during the preceding year into account rather 
than the fund value at the end of the year. The considered index might or 
might not be related to fi nancial markets, for example, an infl ation index or 
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some index related to salaries. This form of CI is similar to a profi t-sharing 
agreement found in With-Profi ts life insurance policies. These policies have 
been studied by many authors, see for example Ballotta (2005), Bauer et al. 
(2006) and Kleinow and Willder (2007).

Secondly, we show how the pension fund can be managed to reduce the 
risk of  underfunding at retirement. Since the adjustment of  guaranteed
benefi ts in CI schemes depends on the performance of the pension fund there 
exists a feedback effect between the investment strategy used to hedge the 
liabilities of  the fund and the value of  these liabilities. Since most pension 
funds are actively managed, we assume that the fund managers have full dis-
cretion about the investment strategy of the fund, and that they use this discre-
tion to minimise the shortfall risk at retirement. To obtain a risk-minimising 
strategy for the pension fund similar arguments as those developed by Kleinow 
(2009) for With-Profi ts policies are used. One of the main results there is that 
equity plays no role in the optimal With-Profi ts fund as long as given guaran-
tees are not related to equity-returns. Motivated by these results, we will con-
sider a stochastic interest rate environment, and we will ignore equity in this 
paper. This is in contrast to the approach by Dai and Schumacher (2009b) 
who assumed constant interest rates and used a geometric Brownian motion 
to model equities. To keep our arguments simple we consider a complete mar-
ket model for interest rates. However, since the index used for the adjustment 
of pension benefi ts in our CI scheme might involve non-hedgeable risks, like 
infl ation or changing salaries, the resulting pension fund liabilities cannot be 
hedged perfectly by a self-fi nancing pension fund portfolio. Instead, the pro-
posed investment strategy is shown to be self-fi nancing between indexation times 
and mean self-fi nancing overall, compare defi nition 10.7 in Föllmer and Schied 
(2004). Loosely speaking, this means, that although positive and negative con-
tributions will be required at indexation times, the expected value of these addi-
tional contributions is zero. It should be possible to either re-insure or securitise 
the risk associated with these contributions, as we further discuss at the end of 
section 4 after the investment strategy for the pension fund has been developed.

For the remainder of the paper we assume that a worker makes a single 
contribution now to be entitled to receive a lump-sum pension payment at 
retirement. Regular contributions are not explicitly considered. However, the 
design of the fund allows for the sequential purchase of additional pension 
rights throughout the working life. One could also adjust the pension plan 
design to consider regular payments of benefi ts by adding a guaranteed annuity 
option, as in Kleinow (2009).

The paper is organised as follows. In section 2 the fi nancial market in which 
the pension fund operates is introduced. The particular pension scheme with 
CI is proposed in section 3 and relationships to the existing literature are dis-
cussed there. In section 4 an investment strategy for the pension fund that 
minimises the risk of underfunding based on a quadratic criterion is developed. 
A numerical example is provided in section 5 for illustration. We fi nish with a 
short conclusion.
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2. THE FINANCIAL MARKET AND NON-HEDGEABLE RISKS

As mentioned in the introduction, a stochastic interest rate model is consid-
ered. To keep arguments simple, we use a one-factor model for interest rates 
with a fi xed time horizon T� !  �. As usual in one-factor models, the dynamics 
of the short interest rate r are specifi ed under the risk-neutral measure Q. For 
a comprehensive overview of one-factor models see, for example, Cairns (2004).

Let (W,  F,  Q) denote a probability space, and let W  =  {W(t)}t  !  [ 0,T�] be a 
standard Brownian motion defi ned on (W,  F,  Q). The fi ltration generated by 
W is denoted by �  =  {Ft}t  !  [ 0,T�], and we assume that FT�  1  F. In the considered 
model the short term interest rate r  =  {r(t)}t  !  [ 0,T�] is the solution of

 ( ) ( ( )) ( ( )) ( ), (0)dr t a r t dt b r t dW t r r0= + =

where a and b are deterministic functions such that a unique strong solution r 
exists. Note that in this model r is a Markov-process.

The available assets are a bank account and a zero-coupon bond maturing 
at time T�, called the T�-bond. The value process B of  the bank account is 
given by

 ( ( ) ( ) , (0) 1.d t B t t dt B =)B r=

We assume that Q is the risk-neutral measure. The price Y(s) at time s of any 
Ft-measurable contingent claim Y(t) is given by the risk-neutral pricing formula

 s( ,s T�) (
(

( ) | [0, ] .Y s B
B

Y t tE 6 != t)
)s

F< F

In particular, the price process P of  the T�-bond is given by

 (t !) (
( )

| [ ] .P B T
B t

t TE t 6=
�) �0,F< F

We remark that it might be unrealistic to assume that a bond with maturity 
T� always exists. However, since a one-factor model is considered we could 
alternatively assume that a “rolling bond” exists as in Boulier et al. (2001). This 
would not change our results.

It is well known that this fi nancial market is complete: for any Ft-measur-
able contingent claim Y(t) there exists a self-fi nancing portfolio strategy z(t)  =   
(z0(t), z1(t)) such that Vz(t)  = Y(t), that is, there exists a previsible process z 
such that for all t  !  [0, T�] holds

 
(

t

( ( ( (

) ( ( (

t

u dB u u

( ) ) ) ( ) ) )

( ) ) ) ) .

z z

z z

Y t V t t B t P t

Y u dP0

z 0 1

0 100

= = +

=
t

++ # #
 (1)

94352_Astin41-1_03_Kleinow.indd   6494352_Astin41-1_03_Kleinow.indd   64 12/05/11   14:2812/05/11   14:28



 PENSION FUND MANAGEMENT AND CONDITIONAL INDEXATION 65

To include non-hedgeable risks, we consider a discrete-time stochastic process 
L  =  {L(t)}t   =  0,  …, T�. The growth factor of this process during the period [t  –  1, t] 
is denoted by

 ( (L –( ) ) 1) 1, , .l t t t T6 fL =/ t= �

We assume that the growth factor in each period depends on the short rate r(t) 
at the end of the period and a sequence g(t)  =  {g(t)}t   =  1,  …, T� of  independent 
and identically distributed random variables with values in �n that are defi ned 
on (W,  F,  Q). Furthermore, we assume that the sequence g is independent of 
the Brownian motion W. The model for l is therefore:

 ( ) ( ( ), ( ))l gt L r t t=  (2)

where L   :   �n  +  1 "  � is a known function. The discrete-time fi ltration gener-
ated by L is denoted by �  =  {Lt}t  !  [0, T�]. We think of L as an index that might 
be related to the fi nancial market but which also includes non-tradable risks, 
like mortality, infl ation or other demographic and economic quantities that 
are important for pensions. The growth factor l of  this index will serve as the 
basis for the indexation of  pension benefi ts as discussed in the following 
 section. Since L is driven by some non-tradable risks, contingent claims 
depending on L can, in general, not be hedged, which makes the fi nancial 
market incomplete.

3. CONDITIONAL INDEXATION

To introduce CI, we consider a worker who wishes to retire at time T  !  � with 
T  <  T� (in T years time from now). As mentioned in the introduction, we 
assume that she decides to make a single contribution now, denoted by V(0), 
to become a member of a pension fund and to be entitled to a lump-sum pay-
ment, denoted by X(T ), at retirement. The initial contribution is invested into 
a portfolio consisting of the available fi nancial assets B and P, and the pension 
fund is then managed on her behalf.

Depending on the design of the pension plan, the received payments at 
retirement will vary signifi cantly. On the one hand a defi ned contribution plan 
(DC) provides a pension payment X(T ) that is equal to the value of the pension 
fund V(T ) at retirement. Since we consider a single contribution now, V(T ) 
will usually be the fi nal value of  a self-fi nancing strategy z. The pensioner 
therefore faces the investment risk, that is, the risk of a bad performance of 
the pension fund resulting in a low value of pension benefi ts X(T )  =  V(T ).

On the other hand, a defi ned benefi t plan (DB) will provide a defi ned 
 payment at retirement, which is usually linked to some index. For example,
a defi ned benefi t pension linked to an infl ation index would provide a fi xed real 
value rather than a fi xed nominal value of the benefi ts X(T ) paid at retirement. 
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However, the pension payment of a DB scheme is usually not linked to the 
fi nal fund value V(T ).

As mentioned in the introduction, CI has been discussed in the literature 
as an alternative to pure DC or DB schemes. de Jong (2008) considers a CI 
scheme where indexation is conditional on the asset-liability ratio (funding ratio) 
of the fund to be larger than 1. He points out: “As the funding ratio depends on 
the investment policy, we now get a complicated interaction between investment 
policy and the value of the pension deal”. He does not explicitly address this 
interaction but considers a number of possible investment policies for the pen-
sion fund to study the effect of investment decisions on the value of pension deals.

Dai and Schumacher (2009b) consider a Black-Scholes fi nancial market 
and a stylized CI scheme. In their setting there is no non-hedgeable risk.
To build a CI scheme they consider a digital option where the lower payout is 
adjusted continuously according to the stock market performance. If  we 
assume that the pension fund actually invests into these digital options, then 
we observe again a feedback effect that is similar to the one that de Jong 
(2008) mentions, since any change in the stock-market index results simultane-
ously in a change of the fund value and the liabilities. Rather than adjusting 
benefi ts continuously, we assume that indexation takes place at the discrete 
times t  =  1,  …,  T where new information about the index L becomes available.

We propose to make the indexation of benefi ts at the end of any period 
dependent on the performance of  the pension fund during the preceding 
period rather than the actual fund value to avoid that possible payments into 
the fund at indexation times affect the calculation of benefi ts. Furthermore, 
indexation of  benefi ts conditionally on the performance avoids any effects
of possible initial mispricing. If  CI is related to the fund value, then benefi ts 
could be low because the initial contribution turns out to be too low years 
after it has been made. We also note that the fund performance and the fund 
value are perfectly dependent on each other when the pension fund is a self-
fi nancing portfolio.

Since we are dealing with non-hedgeable risks we assume that the pension 
fund provider or sponsor is ready to increase or reduce the fund size at times 
t  =  1,  …,  T when new information about L becomes available and guaranteed 
pension benefi ts are adjusted. However, since the fi nancial market is complete 
during each period [t,  t  +  1) we assume that the portfolio process V is self-fi nanc-
ing during each period, and, given the fi nancial market model, V is almost surely 
continuous during [t,  t  +  1). This allows us to introduce the notation

 (t)
,s t"

= 1, ,limV t T6 f=- s t<
( )sV

for the value of the fund just before t, that is, the value of the fund at the end 
of  the period [t  –  1,  t) before any extra payment is made at time t. We then 
obtain that

 (
( –) ( )

)
( ) | 0, , 1V t B

B t
t T1 1E Lt t 6 f= + + =-t tV< F
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where Et denotes the conditional expectation under Q given Ft, that is, the 
information generated by the fi nancial market not including the information 
generated by the index L, which is captured by Lt.

To make the concept of CI precise, we consider the growth factors l(t) of 
the index process L introduced in section 2. As mentioned there, indexation 
of pension benefi ts will be based on l, which might be the growth factor of a 
consumer price index, wage index, mortality index or a combination of these.

For a given pension fund V and a process l defi ned in (2) we now defi ne 
the process {X(t), t  =  0,  …,  T} by

 
H( (t –

(0)

( ) ) )
( )

, , ,

X x

X X V t t T1
1

0 1

0

6 f

=

+ = =-t
+t

,
V

( )l t 1+c m
 (3)

for a positive real valued function H   :   �2  7  �+  and a constant x0  !  �+. We will 
call H the CI-function and x0 the nominal initial pension benefi t. The actual 
pension benefi t paid at retirement is the fi nal value X(T ) of X. Note that the 
CI-function H is similar to the contract function of a With-Profi ts contract as 
used in Kleinow (2009) which we would obtain if  l was constant rather than 
random.

Our economic interpretation of H is the following: A worker who invests an 
amount V(0) into a pension fund today will initially be guaranteed to receive a 
benefi t of x0 at the time of retirement T. For the next T years, this guaranteed 
benefi t is then adjusted at the end of each year according to the CI-function 
H, and the growth factor l of the underlying index and the performance of the 
fund during the preceding year. As mentioned earlier an increase or decrease 
of the fund size at indexation times 1,  …,  T due to payments into or out of the 
fund has no impact on indexation, since H is a function of the growth factor of 
the fund calculated before any payments at the end of a period. To illustrate 
this idea further we provide the following examples.

Example 1. In a DB scheme, the benefi t paid at retirement is independent of the 
performance of the pension fund. Full indexation would mean that the CI-function 
is of the form H1(v, l )  =  l and the amount paid at time T is X(T )  =  x0 L(T ) / L(0).

Example 2. In a pure DC scheme, the benefi t paid at retirement is independent 
of the index L. In this case we have H2(v, l )  =  v and X(T )  =  V(T ) where V is a 
self-fi nancing portfolio.

Example 3. Another example for a CI-function is

 H3(v,  l )  =  min{v d, l }  with  d  !  (0, 1).

In such a CI scheme benefi ts grow with the same rate as the index L if the per-
formance of the fund in the preceding year was suffi ciently good. Choosing d  < 1 
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means on one hand that the growth rate of guaranteed benefi ts is less than the 
return on the fund if this return was positive. On the other hand a negative return 
on the fund reduces the value of guaranteed benefi ts but that reduction is less 
than in the case of d  =  1.

Example 4. In our framework we can also allow for an indexation scheme where 
full indexation is guaranteed until retirement (DB pension), and in addition the 
pension fund member participates to some extent in the success of the investment 
strategy applied by the pension fund. This arrangement is obtained by choosing

 H4(v,  l )  =  max{v d, l }  for  d  !  (0, 1).

These examples are not exclusive and the CI-function could have many dif-
ferent forms. However, we have to restrict the set of possible CI-functions to 
make them economically meaningful and to be able to prove the results in the 
remainder to this paper. Therefore, we make the following two assumptions 
about the CI-function H.

(A1) H(v,  l ) is continuous and non-decreasing in v for all l  !  �,

(A2) v /H(v,  l ) is strictly increasing, limv " 0 v /H(v,  l )  =  0 and limv " 3 v /H(v,  l )  =  3 
for all l > 0.

The fi rst assumption, (A1), says that a relatively large return on the pension 
fund during one period will result in a higher growth rate of guaranteed pen-
sion benefi ts at the end of that period than a lower return.

The methods we apply later require the second assumption, (A2), to hold. 
For an economic interpretation, we argue that v /H(v,  l ) should not be decreas-
ing since relatively high returns on the pension fund assets should improve the 
solvency of the fund rather than resulting in an over-proportional increase in 
the liabilities which would weaken the solvency of the fund. Note, that the 
CI-function H2 in example 2 does not fulfi l assumption (A2). However, this 
particular CI-function is not relevant for this paper since the sponsor or the 
management of a DC pension scheme faces no shortfall risk. Assumption (A2) 
is also the reason for restricting d to (0,1) in examples 3 and 4.

Since we focus on the fi nancial risks related to fi nal pension payments, we 
assume that the only liability of the pension fund is the benefi t payment X(T ) at 
retirement. We therefore ignore surrender options or other options and guaran-
tees embedded in some pension products. Note, however, that various risk factors 
affecting pension funds, in particular mortality and infl ation, can be considered 
by choosing an appropriate model for l in (2) as mentioned in section 2.

4. MANAGING THE FUND

From the defi nition of the pension benefi ts X(T ) in (3) it is obvious that X(T ) 
is the payoff of a path-dependent contingent claim with underlying risk processes 
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V and L. A market-consistent value of X(T ) at any time t < T could therefore 
be obtained by applying risk-neutral valuation. This would, however, require 
to know the probability law of the pension fund process V under Q. We could 
proceed by assuming a particular form for V, for example a geometric Brownian 
motion. However, this approach is not consistent with our assumption that
the pension fund is actively managed. Also, pricing is not the only issue here. 
The pension fund management is also interested in hedging their risks. Assum-
ing a particular model for V and then using risk neutral valuation would imply 
that pension fund members are charged a risk premium which is not invested 
into the fund but in a separate hedge portfolio. We want to avoid an additional 
hedge portfolio and assume that the full contribution V(0) is invested into the 
pension fund. In the following we aim to fi nd an investment strategy for the 
pension fund such that the shortfall risk of the fund is reduced according to 
a quadratic criterion. We therefore consider risk management objectives for 
making investment decisions. There are alternative methods of fi nding an optimal 
strategy for a pension fund. These are mainly based on utility maximization, 
for example Cairns et al. (2006) for a DC pension, or prospect theory, for 
example Dai and Schumacher (2009b), rather than risk management.

Instead of assuming a particular model for V we will proceed by construct-
ing the pension fund V such that the shortfall risk associated with the liabilities 
X(T ) is reduced as far as possible. To eliminate the risk completely we would 
need to fi nd a self-fi nancing portfolio z with value process Vz, such that Vz  /B 
is a Q-martingale and

 z ( ) ( ) 1.T X TQ =[ =]V  (4)

Such a portfolio z exists if  L is deterministic as shown in Kleinow (2009). 
However, since we assume that the index L depends on some non-tradable 
risks, such a self-fi nancing portfolio will, in general, not exist in the situation 
we consider here. We choose instead to apply a quadratic hedging approach in 
each period [t, t  +  1), starting with the last period and then working backwards. 
This leads to the following defi nition.

Defi nition 1. We call a process V an optimal, or risk-minimizing, pension fund if

 (i) Q [V (T )  =  X (T )]  =  1,

 (ii) V (t) is Ft   7  Lt-measurable for all t  =  0,  …,  T,

and for all t  =  1,  …,  T holds

 (iii) V–(t)  =  arg minY  !  Ft  7  Lt  –  1
  Et [{Y  –  V(t)}2  |  Lt  –  1 ].

 (iv) V(s)  =  ( )t(
(

|E B
B

s t 1- -

)
t
s

L) V< F  for all  s  !  [t  –  1, t)

Part (i) in this defi nition means that the pension fund provider wishes to hedge 
the risks associated with the pension benefi ts X(T ) by choosing an appropriate 
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investment strategy for the fund with V(T )  =  X(T ) rather than setting up a 
separate hedge portfolio. Since r is Markovian and due to our model for l in 
(2), the second part (ii) of the above defi nition says that the required value of 
the pension fund at time t is a deterministic function of the index value L(t) 
and the short rate r(t) at that time. Part (iii) says that the investment strategy 
in each period is chosen such that the hedging error at the end of the period 
is minimized given the information about the index at the beginning of the 
period. Note that V–(t) is by defi nition Ft   7  Lt  – 1 measurable. Again, since r 
is Markovian and due to (2) we obtain that V–(t) is a function of r(t) and 
L(t  –  1). Also note that (iii) is equivalent to

 (t) (V= ) |V tE Lt t 1- -7 A (5)

since for every Y  !  Ft   7  Lt  – 1 we have

 
– –Y Y( ( ) |V V tt
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E E E

E E
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t t t t t t
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2
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1
2

1
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Since the fi rst term in the above equation is non-negative, the minimum in part (iii) 
of defi nition 1 is obtained by the conditional expection in (5). Since the fi nan-
cial market is complete during each period, V–(t) is attainable. Finally, part (iv) 
refl ects the fact that the investment strategy should be self-fi nancing during 
each period and, therefore, the available funds V(t  –  1) at the beginning of a 
period should be the risk-neutral price of the fund value V–(t) at the end of 
that period before any extra payments are made.

Defi nition 1 motivates the following economic interpretation of V(t) and 
V–(t). We think of V(t) as the required funding at time t, and V–(t) represents 
the available funding at that time. In particular, at retirement the required 
funding is V(T )  =  X(T ). However, X(T ) depends on the available funds V–(T ) 
through equation (3). This feedback effect is not only observed at retirement 
but at any indexation time. The aim of the fund management is now to mini-
mize the squared difference between required and available funds by choosing 
an appropriate investment strategy.

Before we can show that an optimal pension fund exists and how it can be 
obtained we need to introduce some notation. The notation here is similar to 
the notation used in Kleinow (2009). We fi rst defi ne the functions

 (t) t t �( , ) ( , ( )) ( , ( )) |l lh v r H v t H v t vE E Lt 1 6 != = -7 7A A  (6)

and

 0
0

( , , ) ( / ,g x v v xh v v
v=,r )r  (7)

94352_Astin41-1_03_Kleinow.indd   7094352_Astin41-1_03_Kleinow.indd   70 12/05/11   14:2812/05/11   14:28



 PENSION FUND MANAGEMENT AND CONDITIONAL INDEXATION 71

where the second equality in (6) holds due to our model for l in (2), and since 
g is a sequence of independent and identically distributed random variables. 
Note that g has an economic interpretation:

 (
(

(t
t

X t
– –( ( ), ( ), ( ), )) ) |

)
g X V r t1 1 Et t 1

=-
-

-t t
L

V
V

7 A

is the ratio of available funds at time t (before extra payments) and the expected 
guaranteed benefi ts X(t) at t, where the expectation is conditional on X(t  –  1) 
and the information generated by the fi nancial market up to time t. It now fol-
lows from assumption (A2) that g is invertible with respect to its last argument:

 0( , , , ) ( , , , ) , , , , .r r rc g x v v v g x v c x v v c 0>1
0 0, 6= = -  (8)

Note that g(ax,  av0,  r,  av)  =  g(x,  v0,  r,  v) for all a  !  0 and therefore g – 1 as 
defi ned in (8) has the property

 x0
0, , , , , , , , .r r rg x v c g x

v
c x v c1 0>1

06= -1- ,` cj m  (9)

With these defi nitions we can now formulate our main result about hedging 
CI pension schemes.

Theorem 1.  1. There exists a �-adapted process C which is independent of the 
sequence g such that 

(C1) C(T )  =  1 a.s.  and 

(C2) C(t)  =  (
(

( )
)

, ), ( ), ( )E B
B t

g C t r C1 1 1 1t
1

+ + +-

t t t^ h< F   for all t  =  0,  …,  T  –  1. 

2. Given this process C an optimal pension fund as defi ned in defi nition 1 is given 
by

a) V(0)  =  x0 C(0),

b) for all t  =  1,  …,  T:

 (t – –) ( 1), ( 1), ( ), ( )g X V r t C t1=-
- t tV ^ h (10)

 (t –) / ( 1), ( )lV tt( V–) ( 1)X t X H= -t ^ h (11)

 ( ) ( ) ( )V t X t C t and=  (12)

c) (ts( (
(

)V E B
B

= -)
)

t
s

)s V< F for all s  !  [t  –  1,  t) and all t  =  1,  …,  T.

This theorem and its proof are similar to results obtained in Kleionow (2009). 
The main difference is that we now face some non-hedgable risks. The proof 
is provided in the appendix.
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Similar to our economic interpretation of  g and motivated by (12), we 
think of  the process C(t) as the required “asset-liability ratio” at time t 
although X(t) does not represent the full liabilities of  the fund at that time. 
Alternatively, we can consider C(t) to be the relative value of  the pension 
scheme. Similarly, V(t) can be thought of as the required value or target value 
of  the fund at t. A particular consequence of  theorem 1 is that the initial 
contribution paid into the pension fund should be V(0)  =  x0 C(0). Further-
more, given this initial contribution the fund managers will invest V(0) into 
the replicating (self-fi nancing) portfolio of a contingent claim with maturity 1 
and payoff function

 ( x1 0) , ( ), ( ), ( ) .g V r C0 1 11=-
-V _ i

At time 1 the management will then declare X(1) according to the CI-function, 
adjust the fund size from V– (1) to V(1)  =  X(1) C(1) and invest it into a self-
fi nancing portfolio with value function

 ( ) (1), ( ), ( ), ( )1 2 2g V r CX2 1=-
-V ^ h

at time 2. They will then follow this procedure until retirement at time T.
It should be noted that for a given fi nancial market model, the investment 

strategy is completely determined by the CI-function and the objective to 
invest into an optimal pension fund as defi ned in defi nition 1. This can be com-
pared to a strategy which is determined by a utility function and the objective 
to maximize expected utility. In that sense the CI-function describes prefer-
ences of pension fund members in terms of guarantees or profi t-participation 
rules rather than utility. The link between the choice of a CI-scheme and prefer-
ences has been discussed by Dai and Schumacher (2009b) to some extent.

The payment to be made into the fund at any indexation time t  =  1,  …,  T 
is V(t)  –  V– (t), which could be negative (a surplus) or positive (a defi cit). The 
conditional expected value of the payment at the next indexation time given 
the information one year earlier is

 ( (t t(t(t – –) ) | ) ) | .V V 0E E EL Lt t t t t1 1 1 1= =- - - - - -V V7 78A AB

Although the proposed strategy is not self-fi nancing, it is therefore self-fi nanc-
ing on average. The economic question arising here is then: Who should pay 
in case of  a defi cit or a surplus at any time t ? This could be the company 
managing the pension fund, a sponsor (employer) or a pension fund member 
(employee). It is not the aim of this paper to provide a detailed discussion of 
this issue. However, the risk associated with a potentially high defi cit arising 
at some point should have implications on the initial contribution made by the 
pension fund member, as there might be extra charges necessary to compen-
sate for this risk. It should be noted that this issue refl ects the incompleteness 
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of  the market, since risks associated with the index L cannot be hedged 
completely.

Alternatively, the risk of large additional contributions can also be re-insured 
or securitized as mentioned in the introduction. As these additional contribu-
tions are the result of non-hedgable risks, they are not related to other risks 
in the fi nancial market. This would mean that the premium for a re-insurance 
contract covering any additional contributions should be approximately the 
expected value of these contributions, which is zero. The proposed strategy 
therefore reduces the risk associated with CI to the “residual risk” that cannot 
be hedged.

Let us also mention that in the particular case in which a perfect hedge is 
possible, that is, V(t)  =  V– (t) for all indexation times t, we recover the results 
obtained by Kleinow (2009) for With-Profi ts life insurance policies.

5. EXAMPLE

We consider two examples for CI, namely examples 3 and 4 in section 3. The 
CI-functions are therefore

 ( , ) { , } ( , ) { , }min maxH v l v l H v l v land d
3 4= =d  (13)

with d  !  (0, 1).
To model the index L we assume a simple relationship between the short 

term interest rate and the growth rate of the index, given by

 g(–( ) ( ( ) ( )) ) ( )l g gexpt r t t t Nwith 2
+= ,m s  (14)

where we think of g(t) as the real interest rate, and of log l(t) as the infl ation 
rate.  Note that we always assume that g is a sequence of independent random 
variables, and that this might not be a good model for the real interest rate. 
However, it is our aim in this section to illustrate our main results, rather than 
to provide a realistic model for interest rates.

Our model for the short interest rate r is a Vasicek-model:

 –( ) ( ( )) (dr t a b r t dt s= + dW )t  (15)

where a, b and s are positive constants and W is a Brownian motion under Q 
as in section 2.

To obtain the optimal pension fund we have to fi nd the process C in theo-
rem 1 fi rst. Therefore, we have to solve equation (C2) in that theorem numer-
ically. To this end we consider a discrete state space by defi ning a sequence
of equidistant points r1,  …,  rK  !  � and e  =  (ri  + 1  –  ri ) / 2 as in Kleinow (2009). 
We then defi ne the intervals R1  =  ( – 3, r1  +  e], Rk  =  (rK  –  e, 3) and Ri  =  (ri  –  e, 
ri  +  e] for i  =  2,  …,  K  –  1.

94352_Astin41-1_03_Kleinow.indd   7394352_Astin41-1_03_Kleinow.indd   73 12/05/11   14:2812/05/11   14:28



74 T. KLEINOW

Since C(T )  =  1 and the interest rate model is Markovian, C(t) will be a 
deterministic function of r(t) for all t  =  0,  …,  T  –  1. We are therefore using the 
notation C(t)  =  C(t, r(t)).

Using the sequence r we now approximate C(t, r(t)):

 1( ( )) ( , ( )) ( , ) .C rC r t t r t C t { ( )
i

K

i r t R
1 i

. =
!

,t }
=

/

For t  =  T we set C(T,  ri  )  =  1 for all ri , and we use the following approximation 
for (C2) in theorem 1

 

j

i

j

i

,

r

1 ij

(( , ) )

, ( ), ( ), ( ) | ( )

, ( ), ( )

r

r r

r r

expC t s ds

g C r C r t

g C C

1 1 1

1

E
t

t

i

j

K

i ij

1

1
.

=

+ + =

+

+

1-
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, ,

t t t

t
=
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_

`
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i
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;

C

/

#

 (16)

with

 jir ( ) | ( ) , ( 1)rexp s ds r t rEij t

t 1
= = + =

+
t– r ,w a k< F#  (17)

for i,  j  =  1,  …,  K, and

 Q (i = j i( 1) | ) 1, ,r R r t j Kj 6 f!+ =t = .rp 7 A

We now have to solve (16) for every t and every i. The derivation of an explicit 
formula for wij can be found in the appendix.

We now consider the function h defi ned in (6). As shown in the appendix, 
we obtain for our particular examples

 

g g

(t (l t

g

gs

s
– –

– –
– – –

( , )) ( , )) , ( )
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( ) 1
( ) (
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m
d
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exp

h v r H v v t

v
r t v

r t
r t v
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E E

d

t t3 3

F
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= =

=

+ +
s s

d
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ln2 2m )
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>

A C
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 (18)
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where F is the distribution function of the standard normal distribution.
We now proceed by defi ning g3 and g4 as in (7),

 0 0( , , , ) ( / , ) ( , , , ) ( / ) .r r r rg x v v x v v
v g x v v x v v

vand3
3 0

4
4 0

= =h h ,

Although g3 and g4 are invertible with respect to v, we cannot fi nd an explicit 
formula for the inverse functions. In our examples we will therefore invert 
them numerically.

For our numerical illustrations we choose the following parameters for the 
short rate:

 0.1, 0.05, 0.02,sa b= = =

and

 i = –[ 10 /200] 0,r i i100
1 for+ = ,f 80

which corresponds to possible value of r(t) between –10% and 30%. For the 
index L and its growth rate defi ned in (14) we only have to choose the param-
eters for g, which are

 m  =  0.02  and  sg = 0.01.

Furthermore, we consider a pension payable in T  =  40 years, and choose 
d  =  0.9 in (13). Figure 1 shows the functions h and g for our examples.

We now numerically solve (16) for t  =  T  –  1 using C(t  +  1, rj  )  =  1 for all 
j  =  0,  …,  80. We then go backwards until t  =  0. In each step we solve (16) for 
each value of r0 ,  …,  r80. In this way we obtain the values of C(t,  ri ) for all 
t  =  0,  …,  40 and i  =  0,  …,  80. In Figure 2 we have plotted C(0, r) and C(5, r) as 
a function of the short rate r(0) and r(5) respectively. The left plot shows the 

FIGURE 1: The functions h and g for the two examples H3 and H4.
The value of the short rate is r  =  0.05, and x  =  v0  =  1.
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values for the CI-function H3. The corresponding functions for H4 are plotted 
in the right plot.

It is apparent from that fi gure that the relative value of the pension deal, 
or the relative “asset-liability ratio”, C  =  V / X is a decreasing function of the 
interest rate. However, the change in C due to a change in the remaining time 
to retirement depends on the particular CI function H. For H3, the relative 
value of the pension deal is increasing during the working life starting on a 
relatively low level, while the relative value of a pension deal with CI function 
H4 is actually decreasing starting on a relatively high level. This refl ects the 
guarantee given by the CI function H4 where guaranteed benefi ts can not 
decrease in contrast to H3 where there is no lower limit to benefi ts.

When the two relative value functions C, corresponding to H3 and H4 in 
fi gure 2 are compared, one should also look at the levels of C. It is apparent 
that a CI pension scheme with CI-function H4 is about three to four times as 
expensive as a scheme with CI-function H3. The reason is, that H4 provides a 
guarantee: the increase in benefi ts is at least equal to the increase in the index. 
On the other hand, the increase in the index is an upper bound for the increase 
in benefi ts in schemes with CI-function H3. Therefore, H4 provides a larger 
payoff than H3 for the same initial pension promise X(0), and we expect the 
value of H4 to be higher.

As an illustration for the proposed management strategy we fi rst consider one 
particular interest rate scenario and a particular realisation of the “real interest 
rate” process g before turning to a simulation study with 10,000 scenarios.
For this scenario we plot the realised paths of the index L, the required fund 
value V and the corresponding declared benefi ts X. We set X(0)  =  1, L(0)  =  1 
and r(0)  =  0.04. For the CI-function H3 we obtain V(0)  =  C(0)  =  0.3659, see 
the left plot in fi gure 2, and V(0)  =  C(0)  =  1.3292 for H4.

In the top row in fi gure 3 we fi nd the trajectories of  V, X and L for the 
two CI-functions. It can be seen from these plots that the benefi ts paid at 
retirement are equal to the target fund value V(T ) for both CI-functions. This 

FIGURE 2: The functions C(0, r) and C(5, r) as a function of the short term interest rate r at time 0 and 
time 5, respectively. On the left-hand side C3 is considered, corresponding to the CI function H3.

Results for H4 are shown on the right-hand side.

94352_Astin41-1_03_Kleinow.indd   7694352_Astin41-1_03_Kleinow.indd   76 12/05/11   14:2812/05/11   14:28



 PENSION FUND MANAGEMENT AND CONDITIONAL INDEXATION 77

refl ects part (i) of defi nition 1. We also see that due to the particular CI-func-
tions, the fi nal benefi ts corresponding to H3 (left plot) are lower than the fi nal 
value of the infl ation index L, while benefi ts for H4 are higher.

The middle row in Figure 3 shows the growth rates of V, X and L. Let us 
fi rst consider H3 (left plot). It can be seen that the growth rate of declared 
benefi ts X is equal to the infl ation rate in years in which the return on the fund 
is suffi ciently high. However, there are years where the fund has performed 

FIGURE 3: The processes X, V and L for a particular path of interest rates and a particular realisation of 
g (1),  …,  g (40). The plots in the bottom row show the hedging error in percent.
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78 T. KLEINOW

badly as compared to the index L, see for example year 12. In those years
the increase in declared benefi ts is limited by the fund performance according 
to H3. The picture is different for H4 (right plot). In that plot we see that the 
growth rates of X and L are equal whenever the fund underperforms relative 
to L, while X grows faster than L if  the fund performs suffi ciently well.

The bottom row in fi gure 3 shows the hedging error at indexation times as 
a percentage of the available funds V– (t) at time t, that is, the hedging error 
E(t) as shown in that fi gure is defi ned by

 
(

(
t

t
( ) )

( ) )
, .E t

V t
100 1 40for= =

-

-–
t ,fV

V

It is apparent from that fi gure that the mismatch between available funds V– (t) 
and required funds V(t) is rather small, and that our strategy appears indeed 
to be self-fi nancing on average as discussed at the end of section 4.

To shed further light on the behaviour of the proposed investment strategy 
we simulate 10000 scenarios for the next forty years. Each scenario consists
of a trajectory for the short rate process r and the index L. In this simulation 
study we are particularly interested in the hedging errors E(t) and the annual 
return achieved by pension fund members. We therefore calculate the following 
quantities for each simulated scenario:

– the average return rV per annum over the forty years in percent,

 (40)V –
100

(0)
.

log V
40V =

log
r

 Note that this is the return obtained for an initial investment of V(0) ignor-
ing surpluses or defi cits at indexation times. Assuming that the pension fund 
member makes the initial contribution V(0) and receives the pension benefi t 
X(T ), the average return rV is the annual return obtained by the member. 
However, rV is not the return of a self-fi nancing portfolio.

– the maximal hedging error Emax  =  max{E(t), t  =  1,  …,  40},

– the minimal hedging error Emin  =  min{E(t), t  =  1,  …,  40},

– the empirical correlation Corr (E(t), E(t  –  1)), and

– the accumulated value Eaccu of all hedging errors as a percentage of the fi nal 
fund size V(40),

 
(t–

( ) ( , )
( ) )

E V P t
V t

40
100

40t 1

40

accu = -

=

V/

 where P(t, 40) is the price at time t of  a zero-coupon bond with maturity 
T  =  40.

These quantities are all random variables since their obtained values in a par-
ticular scenario depend on the path of r and the path of L observed in this 
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scenario. Using the 10000 values that we obtain for each of the above quantities 
we calculate their averages and standard deviations over all scenarios, and 
report these in table 1. These numbers provide estimates for the corresponding 
expected values, for example E[rV ], and standard deviations.

From table 1 we would estimate that the expected value E[rV ] of  the aver-
age annual return over the next forty years for CI function H3 is 4.71 percent 
per annum, and the standard deviation of rV is 2.37 percent. The standard 
error of the estimator for E[rV] is therefore approximately 2.37 / 1000   =  0.0237.

We fi nd that the average return obtained in a CI scheme with indexation 
function H3 (4.71) is slightly higher than the one obtained from using H4 (4.60). 
However, the same applies to the standard deviations of the average returns. 
These returns should also be compared to the yield of a zero-coupon bond. 
Using the Vasicek-model given in (15) with the parameters specifi ed in (20) 
and r(0)  =  0.04 we fi nd that the annual yield of a zero-coupon bond with a 
maturity of  40 years is 3.49%, which is lower than the average return we 
obtained for the pension funds in our simulation.

From a risk management point of view, the maximal hedging error is of par-
ticular importance. For the average scenario we fi nd that this is less than 4% of 
the available funds at any indexation time during the next 40 years. This seems to 
be a rather small value indicating that the hedging strategy works well. This con-
clusion is also supported by the minimum hedging error and the accumulated 
value Eaccu of all hedging errors. In particular, Eaccu is not signifi cantly different 
from zero refl ecting the fact that the proposed hedging strategy is self-fi nanc-
ing on average. A further consequence of  this property is that the hedging 
errors are virtually uncorrelated as documented in the last column of table 1.

We will now compare the two indexation schemes with respect to the return 
to pension fund members obtained in different interest rate scenarios. To this 
end we consider the average value r of  the short rate at indexation times in 
each scenario, that is

 (r r t40
1

t 1

40
= )

=

/

and compare it to the value of the average return rV in each scenario. Figure 4 
shows the scatter plots for the two considered CI-functions together with the 

TABLE 1

RESULTS FOR THE HEDGING ERROR AND THE RETURN OBTAINED BY PENSION FUND MEMBERS

FROM 10000 SIMULATED SCENARIOS.

rV Emax Emin Eaccu Corr(E(t), E(t  –  1))

H3 Mean 4.71 2.94 – 3.96 – 1.17 – 0.0206
St. dev. 2.37 0.61 0.93 12.41 0.2197

H4 Mean 4.60 3.66 – 2.50 – 0.66 – 0.0247
St. dev. 1.96 1.06 0.63 8.43 0.1707
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identity function (straight line). From this fi gure we notice that the average 
short rate during the next forty years varies between values just below 0 and 
about 12%. In particular, there are several scenarios among the 10000 simu-
lated paths of r in which the average short rate r is negative. This is due to the 
model chosen for the short rate process, and we will not exclude these scenarios 
from our analysis. As we can see in Figure 4, the return to members seems to 
be approximately the same as the average short rate. However, the variability 
of returns seems to be larger for CI-function H4 than for H3. Although we fi nd 
a larger standard deviation of returns resulting from H3 in table 1, it seems 
that variation of returns for a given average interest rate r is larger for CI-
function H4. Another interesting feature is that for H4, the return rV seems to 
be higher on average than r for rather low values of r and smaller for rather 
high values. This feature is less pronounced in schemes with CI-function H3. 
The study of these and other properties of particular CI-functions is beyond 
the scope of  this paper, but some further simulation studies are needed to 
investigate these in more detail.

6. CONCLUSION AND FURTHER RESEARCH

The purpose of  this paper was to introduce a new conditional indexation 
scheme for pensions and to show how the resulting risks can be managed by 
choosing an appropriate investment strategy for the pension fund. It appeared 
that no perfect match of pension fund assets and liabilities is possible with a 
self-fi nancing portfolio since non-hedgeable risks have to be taken into account. 
However, it has been shown that a mean self-fi nancing portfolio can be found 
that produces a perfect match between assets and liabilities on the cost of 
regular adjustments of the fund. The results show, in particular, how the feedback 
effect that is often found in CI schemes can be addressed, and can actually be 
used to reduce the risk of underfunding of pensions.

FIGURE 4: Scatter plots of the average return rV to pension fund members and the average
short rate at indexation times.
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Our fi nancial market model as well as the CI schemes considered in our 
simulation study are both very simple. Future research could be focused on 
deriving similar results for more realistic models. Since equity is an important 
asset class, “market rates of return should increasingly play a large role in the 
retirement patterns of individuals”, (MacDonald and Cairns, 2009). Therefore, 
it might be of particular interest to include equity into either the CI-function 
H or the function L that was used to model the growth rate of the index L.

As already discussed at the end of section 4 there is also the issue of surpluses 
and defi cits at indexation times. Although we have shown that the proposed 
strategy minimizes the quadratic hedging error, the incompleteness of  the 
 market prevents us from fi nding a perfect hedge. This means that someone has 
to pay for defi cits or receives surpluses associated with the proposed investment 
strategy, and that the existence of this hedging error should have an impact 
on contributions made by pension fund members. This question is left for future 
research.

REFERENCES

BALLOTTA, L. (2005) A Lévy process-based framework for the fair valuation of participating life 
insurance contracts. Insurance: Mathematics and Economics 37(2), 173-196.

BARR, N. and DIAMOND, P. (2006) The Economics of Pensions. Oxf Rev Econ Policy 22(1), 15-39. 
BAUER, D., KIESEL, R., KLING, A. and RUSS, J. (2006) Risk-neutral valuation of participating 

life insurance contracts. Insurance: Mathematics and Economics 39(2), 171-183.
BIKKER, J.A. and VLAAR, P.J.G. (2007) Conditional indexation in defi ned benefi t pension plans 

in the netherlands. The Geneva Papers 32, 494-515(22).
BOULIER, J.-F., HUANG, S. and TAILLARD, G. (2001) Optimal management under stochastic 

interest rates: the case of a protected defi ned contribution pension fund. Insurance: Math-
ematics and Economics 28(2), 173-189.

CAIRNS, A.J.G. (2004) Interest rate models: an introduction. Princeton University Press.
CAIRNS, A.J.G., BLAKE, D. and DOWD, K. (2006) Stochastic lifestyling: Optimal dynamic asset 

allocation for defi ned contribution pension plans. Journal of Economic Dynamics and Control 
30(5), 843-877.

DAI, R. and SCHUMACHER, J.M. (2009a) Valuation of Contingent Pension Liabilities and Imple-
mentation of Conditional Indexation, presented at the 13th International Congress on Insur-
ance: Mathematics and Economics.

DAI, R. and SCHUMACHER, J.M. (2009b) Welfare analysis of conditional indexation schemes from 
a two-reference-point perspective. Journal of Pension Economics and Finance 8(3), 321-350.

DE JONG, F. (2008) Pension fund investments and the valuation of liabilities under conditional 
indexation. Insurance: Mathematics and Economics 42(1), 1-13.

FÖLLMER, H. and SCHIED, A. (2004) Stochastic Finance: An Introduction in Discrete Time. de 
Gruyter.

KLEINOW, T. (2009) Valuation and hedging of participating life-insurance policies under manage-
ment discretion. Insurance: Mathematics & Economics 44(1).

KLEINOW, T. and WILLDER, M. (2007) On the effect of management discretion on hedging and 
fair valuation of participating policies with interest rate guarantees. Insurance: Mathematics & 
Economics 40(3), 445-458.

MACDONALD, B.-J. and CAIRNS, A.J.G. (2007) The impact of dc pension systems on population 
dynamics. North American Actuarial Journal 11(1), 17-48.

MACDONALD, B.-J. and CAIRNS, A.J.G. (2009) Getting feedback on defi ned contribution pension 
plans. Journal of Risk and Insurance 76(2), 385-417.

PONDS, E.H.M. and VAN RIEL, B. (2009) Sharing risk: the netherlands’ new approach to pensions. 
Journal of Pension Economics and Finance 8(1), 91-105. 

94352_Astin41-1_03_Kleinow.indd   8194352_Astin41-1_03_Kleinow.indd   81 12/05/11   14:2812/05/11   14:28



82 T. KLEINOW

APPENDIX

Proof of the fi rst part of Theorem 1

Note that this proof is similar to the proof of lemma 1 in Kleinow (2009), and 
only minor modifi cations have been made.

We consider any t  !  {1, 2,  …,  T} and defi ne Qt [A]  =  Et  –  1  [1A] for all A  !  Ft 
where 1 denotes the indicator function. Given Ft  –  1, Qt is a probability measure 
on (W, Ft  ). To prove the fi rst result in the theorem it is suffi cient to show that 
there exists a c0  !  �+ such that  

 (tQ (1, , ), )c Dg c r CE0 0t
= 1-

7 A (21)

where the discount factor D  =  B(t  –  1) / B(t), and the short rate r(t) and C are 
Ft measurable random variables. Equation (21) holds if  and only if

 ( (t tccQ Q
0 0

1 1, , ), , 1, ),D g c r C Dg r C1 1E E0t t
= =1 1- -

_ ci m< <F F (22)

where the second equality follows from (9). Using the notation

 �( , ) ( , )r r rG v h v
v

!=

we get

 /c c1, , ( , ) , 1, , ( )r r rg v c G v g C G C c1 1and
0

0
0

1
0= = -1-, ,rc cm m

where G  – 1(r,  .) is the inverse function of G(r,  .) and g – 1 was defi ned in (8).
It follows from Assumption (A2) that G  – 1(r,  .)   :  �+   7   �+ is strictly increasing 
for every r with

 ( (r r, ,
c"

) ) 0lim limG c G cand3= =
0c"3

1 1- -

for all r. For a strictly increasing sequence {cn}n  =  1, 2, … of positive real numbers 
with cn  "  3 we conclude with the monotone convergence theorem that

 
n/

/

(cQ Q

Q

1, ( ), ( ), )

( ( ), 0

lim lim

lim

Dg r t C DG r t C c

G t C c

1E E

E

c n c

c n

n t n t

t n

=

= =

" "

"

3 3

3

1-1-

)

,

D 1- r

d n> 9

9

H C

C

Similarly, for a strictly decreasing sequence {cn}n  =  1, 2, … of positive real numbers 
with cn  "  0 we fi nd that
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n
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n n
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Dg r C DG r c
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1 1E E
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c

t t

t
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C

Since G  – 1(r,  .) is continuous for every r, ,,Q D 1E c
1

t 0

1- ( ),r t Cg ` j9 C is continuous 
in c0 and an application of the intermediate value theorem completes the proof.

Proof of the second part of Theorem 1

To prove the second part of the theorem we will show that the process V has all 
the criteria of an optimal strategy as defi ned in defi nition 1. Parts (i) and (ii) 
in that defi nition are fulfi lled because of (C1) and (12).

For part (iii) note that it follows from (10) that

 
(t)V /

(

(

t

t

(t – –

– –

) ( 1), ( 1), ( ), )

( 1) ( 1), ( )
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=

=
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and, therefore,
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A

where the third equality holds since C(t) is Ft-measurable. We therefore obtain 
(5) which is equivalent to part (iii) of defi nition 1.

To show part (iv) we note that
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 (23)

This and part 2. c) of the theorem complete the proof.
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Derivation of the weights wij in (17)

It is well-known for the Vasicek-model, see for example Cairns (2004) p. 249, 
that, conditionally on r(t)  =  ri , the random vector (r s ds( )t 1+ )

t
( ),r 1t + #  is nor-

mally distributed with mean
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It follows that the conditional distribution of (r s dst 1+ )
t
#   given r(t)  =  ri and 

r(t  +  1)  =  rj is a normal distribution with mean

 12( ,i j( (
1

i i) ) )m mj V
V

3 2 1= + m–r8 B

and variance

 12–V V V
V

3 2
1

=
2

Using the moment-generating function we obtain

 ij (i– , )mexpw j 2
1

3 3= + Va k

Explicit Form of h3 and h4 in (18) and (19)

Note that we will only consider h4 here. The explicit form of h3 in (18) follows 
with similar arguments. To obtain (19) note that

 
,( (t t

(t1 1

( , )) { )}

)

l

l

maxh v r v

v

E

E E{ ( ) } { ( )

d

l l

t

t t v t t v

4

d

=

=
#

d}>
d +

7

9 7

A

C A

 (24)

and, since l(t)  =  exp(r(t)  –  g(t)), we obtain

 ( (t t –) ) ( ) .l g dv r t v,# $ lnd
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For the fi rst term in (24) we obtain:
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since g( s(t)g N 2,+ )m  and r is a Markov process.
For the second term in (24) we obtain
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With some standard arguments used for calculating the moment-generating-
function of a normally distributed random variable we obtain that
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where sg g,( – sNZ 2 2
+ )m . For a  =  r(t)  –  d  ln v we obtain for the second term in 

(24)
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and fi nally
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as in (19). 
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