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ABSTRACT

In this paper we propose an additive mixture model, where one component is 
the Generalized Pareto distribution (GPD) that allows us to estimate extreme 
quantiles. GPD plays an important role in modeling extreme quantiles for the 
wide class of distributions belonging to the maximum domain of attraction 
of  an extreme value model. One of  the main diffi culty with this modeling 
approach is the choice of the threshold u, such that all observations greater 
than u enter into the likelihood function of the GPD model. Diffi culties are 
due to the fact that GPD parameter estimators are sensible to the choice of u. 
In this work we estimate u, and other parameters, using suitable priors in a 
Bayesian approach. In particular, we propose to model all data, extremes and 
non-extremes, using a semiparametric model for data below u, and the GPD 
for the exceedances over u. In contrast to the usual estimation techniques for u, 
in this setup we account for uncertainty on all GPD parameters, including u, 
via their posterior distributions. A Monte Carlo study shows that posterior cred-
ible intervals also have frequentist coverages. We further illustrate the advantages 
of our approach on two applications from insurance.
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1. INTRODUCTION

In the past two decades there has been an increasing interest in statistical 
modeling for estimating the probability of rare and extreme events. These mod-
els are of interest in numerous disciplines such as environmental sciences, engi-
neering, fi nance and insurance, among others (see for instance Coles (2001) 
and Smith (2003)). In this paper, we mainly focus on insurance applications, 
see for instance Mikosh (2003), Chavez-Demoulin and V. Embrechts (2009), 
Donnelly and Embrechts (2010) and references therein. The Generalized Pareto 
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88 S. CABRAS AND M.E. CASTELLANOS

distribution is the most used statistical model to fi t extreme exceedances, 
X  –  u  >  0, over a high threshold, u. Pickands (1975) showed that if  X is a 
continuous random variable with cumulative distribution function (cdf) F (x), 
and F(x) belongs to the maximum domain of  attraction of  some Extreme 
Value distribution, then P(X  #  x  +  u  |  X  >  u) can be approximated, for u " 3, 
by the GPD, with cdf G(x | z, s,  u), with shape z, scale s  >  0 and density (df)
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Note that the support is X  –  u  >  0 for z  $  0 and 0  <  X  –  u  <  – s / z for z  <  0, 
meaning that X  –  u is upper bounded for negative values of the shape parameter 
z, while z  >  0 corresponds to a heavy tail distribution. A property of the GPD 
is that if Y  =  X  –  u  +  G (· |  z,  s,  u) and u�  >  0 then Y  –  u�  |  Y  >  u�  +  G (· |  z,  s�,  u�), 
where s�  =  s  +  z(u�  –  u). This produces a lack of identifi cation addressed later 
in the paper.

In practical data analyses two steps are performed: fi rst a threshold u is 
selected and then a GPD is fi tted to the exceedances over u. Once u is selected 
there are different methods to estimate z and s, for example maximum likeli-
hood estimators (MLE) have been considered by many authors, including 
Davison (1984), Smith (1984) and Grimshaw (1993). Alternative methods have 
been considered due to likelihood irregularities (Smith, 1984), among these we 
have the probability-weighted moment and the elemental percentile method 
(Hosking and Wallis, 1987; Castillo and Hadi, 1997). In de Zea Bermudez and 
Turkman (2003) and Castellanos and Cabras (2007) Bayesian methods have 
been explored using default priors. In this paper, we are mainly interested in 
estimating extreme quantiles of X, qp   : Pr(X  #  qp )  =  p, p  .  1. Such quantiles 
may be used to estimate the Value At Risk and to compute the premium based 
on the amount of the damage, qp, that an insurance company may want to 
assure and want to face with probability 1  –  p.

Some papers show how estimates of z, s and qp depend signifi cantly on the 
choice of u, see for example McNeil (1997) and Embrechts et al. (1997). The 
choice of u is a diffi cult task unless expert elicitation is available. In order to hold 
the conditions of the Pickand’s Theorem, large values of u are usually selected, 
increasing the uncertainty on z and s because few extreme observations are 
involved. One of the most popular tool for estimating u is the Mean Excess 
plot, see for instance Coles (2001), in which the empirical mean excess function 
is studied for different values of the threshold, looking at the minimum one 
that makes this function almost linear in u. The method in Reiss and Thomas 
(2007) considers the order statistics for a sample x(1)  <  x(2)  <  …,  x(k)  <  …,  x(n) 
of  size n and then set u  =  u*  =  xk where

 , ,fi – , 0 1/2z z zarg mink k median j1
k n i k

i k
1

1 # #=
# #

#

j
^ hV V V V/  (1.2)
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and zi is the MLE of z based on the i upper order statistics. This method, that 
depends on the choice of j (Neves and Fraga Alves, 2004), provides a point 
estimation of  u, but not an evaluation of  the corresponding uncertainty.
On the contrary, such uncertainty is considered with the Bayesian approach 
proposed in this paper. In fact, under a Bayesian perspective all parameters 
are regarded as random variables and their posterior distribution accounts for 
the uncertainty conditionally on the observed data.

In de Zea Bermudez et al. (2001) selection of u is based on the number of 
upper order statistics within a Bayesian predictive approach.

On the contrary, the majority of the methods used to estimate u, including 
the one here proposed, are based on a mixture model for all data where the 
GPD is a component. Differences among such methods lay on more or less 
restrictive assumptions about the sampling model for non-extreme data, 
referred in the sequel as the central model (Frigessi et al. (2002), Behrens et al. 
(2004), Cabras and Morales (2007), Tancredi et al. (2006)). In particular, Fri-
gessi et al. (2002) introduce a dynamically weighted mixture model in which 
the central model is the Weibull distribution and MLE is used to estimate the 
unknown parameters. In Cabras and Morales (2007) the central model is the 
Normal distribution whose outliers are considered extremes and u is estimated 
as the smallest outlier. In Behrens et al. (2004) the central model is the trun-
cated gamma model with a subjective prior on unknown parameters. In Tan-
credi et al. (2006) the central model is a mixture of uniform distributions and 
a Bayesian approach is implemented using vague priors.

Our proposal consists also in a mixture model, but as we want to make 
inference on extreme quantiles of X, say q0.999 and q0.9999, parameters of inter-
est are those in (1.1), while parameters of the central model are regarded as 
nuisance parameters. In order to eliminate such nuisance parameters we use 
pseudo-likelihoods in an objective bayesian framework as recently proposed 
in Ventura et al. (2009). In particular we distinguish two situations:

  i) the usual one where a parametric central model can be elicited. In this case 
we employ the integrated likelihood to eliminate the nuisance parameters;

ii) otherwise, we propose to use the profi le likelihood estimating, semipara-
metrically, the central model conditionally on u.

The case i) is mainly used for comparison purposes with respect to the second 
situation which is more challenging and where we propose a more general 
approach. In i) we will focus on Normal, Lognormal and Weibull distributions 
by using their corresponding default priors. For both situations we assume a 
uniform prior for u and a default prior for GPD parameters.

The rest of the paper is organized as follows: Section 2 illustrates the model 
approach for situations i) and ii); Section 3 discusses priors and Markov Chain 
Monte Carlo (MCMC) approximation of the posterior distribution; Section 4 
includes two applications to insurance real data sets; Section 5 illustrates, trough 
simulations, coverage and length of  the posterior credible intervals of  qp.
Further remarks and conclusions are contained in Section 6.
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2. MODEL

Let X1,  X2,  …,  Xn be i.i.d. random variables with common probability density 
function f (· | q ) given by:

 ,zq gg +) ) ,s–( ) ( 1 ( ( ,f h H g u1 1{ { }x u x u>; ; ;; =
#

)}x u xx 7 A  (2.1)

where q  =  (g,  z,  s,  u). Our model consists in an additive mixture model in 
which data below u are modeled with a truncated distribution with cdf H(· | g) 
governed by parameters g, while observations above u come from the GPD 
model in (1.1). In (2.1) H(· | g)  and h(· | g) denote cdf  and df, respectively. 
Further discussion of this model can be found in Behrens et al. (2004) where 
H is assumed to be the Gamma distribution.

If  elicitation of a parametric class of models is available for H, then it can 
be estimated within this class. In this paper, and only for seek of comparison of 
our proposal with other methods, we consider the following three parametric 
models: Normal, Lognormal and Weibull. Any other parametric model can 
be used if  it fi ts well the central part of the data. Our proposal is, however, to 
avoid such parametric model assumptions by considering a semiparametric 
estimation of h conditionally on u as described in Section 2.2.

In any case, parametric and semiparametric, the use of H, in (2.1), partially 
solves the identifi cation problem commented in Section 1, because u acts as a 
separation point between the central and the extreme model.

For model (2.1) qp is given by
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where p   =  (p  –  H(u | g))  /  (1  –  H(u | g)).

2.1. Parametric central model

For a random sample x  =  (x1,  x2,  …,  xn) of size n drawn from model (2.1), the 
full likelihood function for all parameters q with z  !  0 is 
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When h is the Normal (Lognormal) density then g  =  (m, t2) represents mean 
(location) and variance (squared scale), otherwise g  =  (a,  b) represents shape 
and scale parameters of the Weibull distribution.

2.2. Semiparametric central model

When we cannot assume a parametric model as the central model, we estimate 
its density h, conditionally on u, using the Lindsey method (Lindsey (1974a), 
Lindsey (1974b)) also discussed in Section 2 of Efron and Tibshirani (1996). 
For a given threshold u, the Lindsey’s method provides a degree d polynomial 
approximation of the truncated df hT(·)  =  h(·) 1{x  #  u} / H(u), through the nu

– 
non extreme data points {xi  :  xi  #  u}.

In this case we may rewrite function (2.3) as a profi le likelihood function 
of u, z and s only. For z  !  0 it takes the form
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while for z  =  0 it is

 x ( su – – –p H h H( , ) ) ( (1 ( )) ( ( ) / ) ,sexpu u x u u1 1
{ , } { , }

{ }s
i u

i
i u

i 0
>

>
i i

; =
#

x, )L
x x

z s % %

where H(u)  =  nu
–  / n is the proportion of observations below u. Note that it is 

necessary to multiply hu by H(u) as hu is the density estimator of hT. In large 
samples we expect Lp to have the same properties of the full likelihood L in 
(2.3) and posterior distributions, based on Lp, can be interpreted as actual 
posterior distributions (Ventura et al., 2009).

2.2.1. Danish fi re loss data

We consider Danish fi re loss data to compare the assumptions of  Weibull, 
Lognormal and the semiparametric density estimation. Danish data consist of 
2157 insurance losses from 1980 to 1990 caused by industrial fi res. Losses 
include damage to buildings, furniture and personal property as well as loss 
of  profi ts. The unit is 1 million DKK and all data have been adjusted to the 
1985 values.

McNeil (1997) analyses this data set using the GPD model, the author 
points out the diffi culty of the selection of an appropriate threshold and several 
thresholds have been considered along with the corresponding MLE of GPD 
parameters.

These data are also analyzed in Frigessi et al. (2002) using a dynamic mix-
ture model with the Weibull distribution as central model. As in Frigessi et al. 
(2002), we also translate data by – 1 in order to have the minimum value at 0, 
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92 S. CABRAS AND M.E. CASTELLANOS

FIGURE 1: Density estimation for data below threshold u  =  2 using Weibull model (dashed line), 
Lognormal (dotted line) and the semiparametric model (continuous line).

FIGURE 2: QQ plots comparing the observed data below threshold u  =  2 and the theoretical quantiles for 
the Weibull model (a), Lognormal model (b) and the semiparametric model (c).
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and we compare our results with those obtained in that article. Results reported 
in Table 12 and equation 4 from Frigessi et al. (2002) show that observations 
between 1.5 and 2 have probability between 0.95 and 0.98 of coming from the 
GPD, while the observation of 1 million DKK has probability 0.33. Although 
Frigessi et al. (2002) do not consider a point estimation for u, thresholds 
between 1.5 and 2 are appropriate according to their approach. We analyze the 
goodness-of-fi t of the truncated Weibull and Lognormal for all observations 
below u  =  2, using MLE of g. We can see in Figures 1 and 2 a poor fi t of both 
parametric models that affects also the fi t of the complete mixture model (2.1). 
Instead, we consider the semiparametric model in (2.4) with d  =  3. The fi t of 
the semiparametric density estimator is considerably better than Weibull or 
Lognormal ones, as shown in Figures 1 and 2. Using u  =  1.5 the comparison 
is even more favorable to the semiparametric density estimator.

3. PRIOR DISTRIBUTION AND POSTERIOR INFERENCE

We use a Bayesian approach based on L or Lp to make inference on stochastic 
functionals of model (2.1) with particular attention to qp. We assume that we 
have not information about the behavior of extreme and non-extreme data and 
thus we use minimum informative priors for all parameters. In particular, we 
assume for parametric models

 u (u(, , g( , ) ( ) ),p z s p p pug ;=) ,z s

and the reduced prior

 u (u( , ) ( , ) ),p z p z p;=,s u s

for the semiparametric model with the profi le-likelihood Lp.

3.1. Prior for GPD parameters

For parameters z and s given u, we consider the prior distribution proposed 
in Castellanos and Cabras (2007),

 u 1- ,z 2 –( , ) ( ) (1 ) 1/ 0,p z z z s> >/1 2
; ? + + - 2,11-ss

derived by the application of the Jeffreys’ rule for the regular case of z  >  – 1/2 
and that leads to a proper posterior distribution (Castellanos and Cabras, 
2007, Theorem 1).

As prior for u, we use p(u) \ 1[a, b], where a and b are suitable limits in order 
to obtain a proper posterior distribution over the parameters when using a 
mixture model, see Roeder and Wasserman (1997). In particular, to satisfy such 
condition it must be a  $  x(m  +  1), where m is equal to d or the dimension of g. 
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94 S. CABRAS AND M.E. CASTELLANOS

To obtain a proper posterior using the default prior on GPD parameters, it 
suffi ces b  #  x(n  –  2). We recommend that, if  expert elicitation is available, other 
priors on the range  [x(m  +  1), x(n  –  2) ] should be used. In this paper we always set 
a  =  x(m  +  1) and b  =  x(n  –  2) because we do not have prior information. Therefore, 
we are assuming, a priori, that we have observed at least two extreme observa-
tions, say x(n  –  1) and x(n), and also m non-extreme values. It is worth to mention 
here that uniform prior is compatible with the usual default prior on location 
parameters and it has been also used in Tancredi et al. (2006).

3.2. Priors for parameters of the central model

In this paper we consider three parametric families of models: Normal, Log-
normal and Weibull along with their corresponding usual default priors. In 
particular we have:

Normal (Lognormal) model: g  =  (m, t2) representing mean (location) and vari-
ance (squared scale). The usual default prior for the Normal and Lognormal 
coincides (see Padgett and Johnson (1983) for the Lognormal case) in both 
models with p(g) \ t  – 2;

Weibull model: parametrizing the Weibull model as follows H(x | a, b)  =  1  –
exp( – (x / b)a), the reference prior for g  =  (b, a) is p(g) \ b  – 1 (Sun and Berger 
1994).

However, the main advantage of  our semiparametric approach is that we
do not need to specify such priors that can affect the fi nal inference on qp.
Of  course, we still have to use the priors for the GPD, p(u) and p(z, s), as 
specifi ed above.

3.3. Posterior distribution

The posterior distribution for all parameters in (2.1) is

 x x u (u( , ) ( , ) ( ) ( ) ),g g gp p p pL? ;; ;, , , , ,z z zu us s s

for the parametric case. When we cannot assume a parametric model for non 
extremes, then model h constitutes, itself, an infi nite dimensional nuisance 
parameter and we eliminate it through an estimator hu conditionally on u. 
Therefore, our posterior is the following pseudo-posterior

 ux x (u( ) ( , ) ( , ) ) .p p z pL up? ;; ;, s, z su ,z s

Both posteriors are approximated using MCMC, specifi cally a Metropolis-
Hastings within Gibbs sampling. We update each parameter individually, 
using as proposals a Normal distribution for m and truncated Normal distribu-
tions for all other parameters. The mean of each proposal distribution is the 
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last state of the chain, while standard deviations are fi xed in order to provide 
a good mix of the chain. Conditional distributions of each parameter given 
the rest, needed for the Gibbs sampling, are provided in the Appendix.

All computations have been implemented under the open source software R 
(R Development Core Team (2009)) using some functions from the library POT 
(see Appendix).

4. APPLICATIONS

In this section we apply the proposed semiparametric mixture to two data-
sets from insurance. We compare our approach to that based on parametric 
assumption on the central model and with the usual one based on MLE for 
u fi xed.

4.1. Danish fi re loss data (cont.)

This data has been used in Subsection 2.2.1 to show that Weibull and Lognor-
mal densities do not fi t non-extreme data, for this reason we relax parametric 
assumptions by using the semiparametric density estimator introduced in Sub-
section 2.2. Summaries of the posterior distribution for parameters u, z and 
s in model (2.1) appear in Table 1. The 95% credible interval for the shape 
parameter refl ects a heavy tail behavior. The median of  u is 5.29 millions of 
DKK while its mean is 7.48 and it is interesting to notice that the marginal 
posterior distribution for u is multimodal, as we can see in Figure 3. The main 
modes are around 5 and 9 millions of DKK, refl ecting that several subsets of 
exceedances are compatible with the GPD. This result is consistent with fi nd-
ings in McNeil (1997), where it appears that several thresholds make compat-
ible the GPD model with the observed data. For this data McNeil (1997) and 
Frigessi et al. (2002) showed that the predicted quantiles are very sensible to 
the choice of u. In our approach uncertainty on u is automatically accounted 
through its posterior distribution. Table 2 reports the posterior median of some 
extreme quantiles using the mixture with semiparametric model. For compari-
son purposes, Table 2 shows the estimated quantiles according to: the Lognor-
mal-GPD mixture, the Dynamic Mixture Model (DMM) in Frigessi et al. 
(2002) (very similar to those obtained with the Weibull-GPD mixture), the 
POT-MLE model for the value u* in Reiss and Thomas (2007) and the two 
pointed thresholds in McNeil (1997), namely u  =  4 and u  =  9. As we can see, 
the estimated quantiles q0.95 and q0.99 are similar, while much higher quantiles 
tend to diverge and are generally larger than those based on MLE with u  =  9. 
This is due to the fact that the choice of u affects the estimation of z, namely 
z in Table 2, which represents, with an abuse of notation, the posterior median 
for the semiparametric approach and Lognormal-GPD while these are the MLEs 
for the rest. Very large values of u, say u  =  9, tend to produce less thick tails 
(z  =  0.5) and consequently smaller extreme quantiles and vice versa. In fact, 
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96 S. CABRAS AND M.E. CASTELLANOS

TABLE 1

POSTERIOR ESTIMATES OF THE PARAMETERS BASED ON 200000 SIMULATIONS WITH A BURN-IN OF

50000 DRAWS AND SAVING ONE MCMC STEP EVERY 10 STEPS.

Parameter Median Mean q0.025 q0.975

u 5.296 7.476 0.991 23.345

s 5.921 5.63 1.5 11.007

z 0.583 0.601 0.298  1.138

TABLE 2

QUANTILE PREDICTION FOR THE DANISH LOSS DATA, USING OUR BAYESIAN SEMIPARAMETRIC- GPD MIXTURE, 
THE LOGNORMAL-GPD MIXTURE, THE MIXTURE MODEL IN FRIGESSI ET AL. (2002), THE POT-ML MODEL 

IN MCNEIL (1997) FOR u  =  u*, ACCORDING TO REISS AND THOMAS (2007), AND u FIXED AT 4 AND 9.
z REPRESENTS THE POSTERIOR MEDIAN FOR THE SEMIPARAMETRIC AND LOGNORMAL GPD MIXTURES

AND THE MLE FOR THE OTHER APPROACHES.

Quantile Semiparametric Lognormal Frigessi POT-MLE

p GPD mixture GPD mixture DMM u*  =  2 u  =  4 u  =  9

0.95 9 9 8 8 8 9

0.99 26 30 25 26 26 26

0.999 106 156 112 125 120 93

0.9999 412 798 474 574 521 304

0.99999 1572 4091 1987 2619 2238 965

z 0.58 0.71 0.62 0.68 0.63 0.50

FIGURE 3: Histogram of simulations from the marginal posterior distribution for u.
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according to u* we obtain the largest estimations of qp for fi xed u. The approach 
in Frigessi et al. (2002) tends to estimate lower values of  u and it is much 
similar to the MLE approach conditionally on u  =  4. However, the estimation 
of z, reported in Frigessi et al. (2002), is slightly greater refl ecting a heavier 
tail than the one estimated with our model. Although differences seems to be 
not dramatic, 0.62 against 0.58, they matter in extreme quantiles estimation. 
On the contrary, our estimation of qp is based on averaging over all parameters 
according to the posterior distribution and our results are in between u  =  2 
and u  =  9.

However, using the Bayesian approach with the Lognormal-GPD mixture, 
results are sensible to this choice of the central model. In fact, the poor fi t of 
this mixture induces a severe underestimation of u, the posterior median is 
about 0.73 million DKK meaning that more than 50% of the data are extremes. 
This underestimation of u produces similar results to that commented for u*, 
namely large values of z and qp.

Figure 4 shows the quantile-quantile plot comparing the empirical ones 
with the posterior predicted values of our semiparametric-GPD fi tted model, 
the plot refl ects a good fi t of the semiparametric mixture model. In fact, the 
Anderson Darling (AD) test statistic to check the goodness-of-fi t of the GPD 
to a sample (Choulakian and Stephens (2001)) is 0.55, for observations above 
u  =  5.29, with z  =  z and s  = s (fi rst column in Table 1). The observed AD is 
smaller than 0.83, which is the 0.05 upper-tail asymptotic point for z  =  0.5 
(Table 2 of Choulakian and Stephens (2001)).

 FIGURE 4: Quantile-quantile comparing Danish loss data with posterior predictive quantiles for model in 
equation (2.1) when the semiparametric estimation is used.
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4.2. Norwegian fi re claims

The Norwegian fi re claims data (Figure 5(a)), presented in the Appendix I of 
Beirlant et al. (1996), represent the total damage done by 142 fi res in Norway 
for the year 1975. As in the previous example, we subtract half  million Krones 
to shift all data towards 0.

According to Brazakauskas and Serfl ing (2003) the Pareto distribution is 
compatible with all observations. Our approach indicates that three values
of u have high posterior probability as shown in Figure 5(b) and also by the 
Mean Excess plot (Figure 5d). The most probable thresholds suggest that dif-
ferent sets of exceedances are compatible with the GPD. This fact is compatible 
with the fi t of this distribution to all observations, as used in Brazakauskas 
and Serfl ing (2003), because of the reproductivity property of the GPD men-
tioned in Section 1. Again, we do not compromise with one u, or one set of 
parameters of the GPD, and averaging over the posterior distribution for all 
parameters leads to the posterior predictive distribution for future observa-
tions. This predictive distribution fi ts quite well the observed data as shown in 
Figure 5(c). In this case, the AD statistic, for observations above the modal 
u  =  7.3 with posterior medians z  =  0.52 and s  =  6.23, is 0.71 smaller than the 
0.05 upper-tail quantile, 0.83. Posterior median of some qp s are reported in 
Table 3 and are compared with the estimated quantiles using the POT-MLE 
model for u  =  0 and u  =  u*  =  1.32 according to Reiss and Thomas (2007). The 

FIGURE 5: (a) Norwegian fi re loss data. (b) Posterior distribution of u. (c) Quantile-quantile plot 
comparing Norwegian loss data with posterior predictive quantiles using the Bayesian semiparametric-

GPD mixture. (d) Mean Excess Plot.
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estimated quantiles using the POT-MLE for u  =  0 and u  =  u*, for large values 
of p, tends to be very large compared to those obtained by averaging over all 
possible values of u, as occurred in the previous example. Also in this case the 
assumption of the GPD mixture with the Weibull, Normal or Lognormal, as 
central models, is not compatible with the data.

5. SIMULATION STUDY

We used a simulation study in order to investigate the frequentist properties 
of the credible intervals for extreme quantiles when these are estimated under 
the true parametric model and with the semiparametric density estimation hu, 
with d  =  2 and d  =  3. We simulated data separately from two types of mixture 
models with 10% of extreme values, z  !  {– 0.4, – 0.2, 0, 0.2, 0.4},  s  =  1, 

  i) Normal-GPD mixture, 0.9  ·  N(m, t2) 1{x  #  u}  +  0.1  ·  GPD(z, s) 1{x  >  u}, where 
m  =  0, t2  =  1;

ii) Weibull-GPD mixture, 0.9  ·  Wei (a, b) 1{x  #  u}  +  0.1  ·  GPD(z, s) 1{x  >  u}, where 
a  =  2, b  =  1/G(1.5) in order to have unit mean and variance.

The value of  u is such that H(u | g)  =  0.9, where H can be the Normal or 
Weibull cdf. We consider two reasonable sample sizes for usual applications, 
say n  =  500 and n  =  1000. Note that Normal as well as Lognormal distribu-
tions belong to the POT-domain of attraction of the exponential df, therefore, 
as we are mainly interested in tail behavior, we only provide results of  the 
simulation study for the mixture Normal-GPD model.

The actual coverages of  the (nominal) 95% credible intervals calculated 
over 500 Monte Carlo (MC) replications along with their respective median 
length appear in Table 4. Results under the Normal-GPD model are shown in 
the fi rst four columns, while the corresponding ones with hu in the remaining 
columns.

We can see that the actual coverages are between 0.93 and 0.97 and these 
values are compatible with the nominal 95% if  considering the MC standard 
error. The median length of  the obtained intervals increases with z as the 

TABLE 3

POSTERIOR MEDIAN OF EXTREME QUANTILES FOR THE NORWEGIAN LOSS DATA, USING OUR BAYESIAN

SEMIPARAMETRIC-GPD MIXTURE, AND ESTIMATED QUANTILES USING POT-MLE FOR u  =  0 AND u  =  u*  =  1.32 
ACCORDING TO REISS AND THOMAS (2007).

p 0.95 0.99 0.999 0.9999 0.99999

qp | x 6 26  96  303  987

qp POT-MLE, u  =  0 5 22 153 1041 7075

qp POT-MLE, u*  =  1.32 6 21 115  625 3369
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TABLE 5

COVERAGES (ODD COLUMNS) AND MEDIAN LENGTH INTERVAL (EVEN COLUMNS) FOR 500 95% CREDIBLE 
INTERVALS FOR POSTERIOR QUANTILES WITH n  =  500 AND n  =  1000 SAMPLES WITH p  =  0.9. THE TRUE h IS THE 
WEIBULL DENSITY WITH a = 2 AND MEAN 1. TRUE QUANTILES ARE BETWEEN 4 (z  = – 0.4) AND 15 (z  =  0.4) 

FOR q999 AND BETWEEN 4 AND 39 FOR q9999. COVERAGE STANDARD ERRORS ARE AROUND 0.01.

z
Weibull model d  =  2 d  =  3

q999 | x q9999 | x q999 | x q9999 | x q999 | x q9999 | x

n  =  500

0.4 0.93 55 0.93 519 0.92 64 0.93 795 0.94 66 0.95 868 

0.2 0.94 19 0.93 108 0.92 23 0.93 156 0.94 26 0.95 241 

0 0.93  7 0.93  24 0.92  8 0.92  35 0.93 10 0.96  59 

–0.2 0.94  3 0.95   6 0.93  3 0.94   7 0.94  4 0.96  19 

–0.4 0.96  1 0.97   2 0.96  1 0.97   2 0.96  2 0.97   6 

n  =  1000

0.4 0.95 26 0.96 177 0.96 27 0.95 197 0.95 29 0.95 235

0.2 0.94 10 0.94  43 0.93 10 0.93  49 0.94 10 0.94  49

0 0.94  4 0.94  11 0.94  4 0.94  11 0.93  4 0.94  13

–0.2 0.93  1 0.93   3 0.93  1 0.93   3 0.93  1 0.93   3

–0.4 0.94  1 0.96   1 0.96  1 0.96   1 0.94  1 0.96   1

TABLE 4

COVERAGES (ODD COLUMNS) AND MEDIAN LENGTH INTERVAL (EVEN COLUMNS) FOR 500 95% CREDIBLE 
INTERVALS FOR POSTERIOR QUANTILES WITH n  =  500 AND n  =  1000 SAMPLES WITH p  =  0.9. THE TRUE h IS THE 

STANDARD NORMAL DENSITY. TRUE QUANTILES ARE BETWEEN 3 (z  = – 0.4) AND 15 (z  =  0.4) FOR q999
AND BETWEEN 4 AND 38 FOR q9999. COVERAGE STANDARD ERRORS ARE AROUND 0.01.

z
Normal model d  =  2 d  =  3

q999 | x q9999 | x q999 | x q9999 | x q999 | x q9999 | x

n  =  500

0.4 0.94 43 0.94 347 0.93 58 0.94 805 0.93 59 0.95 853

0.2 0.93 17 0.94 85 0.94 21 0.93 173 0.93 21 0.94 206

0 0.93  7 0.93 22 0.94  9 0.94  54 0.94 10 0.95  60

–0.2 0.94  2 0.96  6 0.95  3 0.97   7 0.93  4 0.94  16

–0.4 0.97  1 0.97  3 0.97  1 0.96   2 0.96  2 0.97   6

n  =  1000

0.4 0.93 25 0.94 161 0.93 27 0.93 215 0.94 29 0.95 246

0.2 0.93 10 0.93 43 0.95 11 0.95  57 0.94 11 0.95  61

0 0.94  4 0.95 11 0.93  4 0.94  14 0.93  4 0.93  16

–0.2 0.93  2 0.93  3 0.93  2 0.95   4 0.93  2 0.93   4

–0.4 0.95  1 0.95  1 0.95  1 0.96   1 0.96  1 0.97   1
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process is more extreme. Their length also increases with polynomial degrees 
while coverages seems to be robust with respect to z. Comparing the interval 
length obtained with the parametric Normal model against the corresponding 
ones obtained with the semiparametric mixture, we can see that the latter are 
larger than the former. This is due to the greater model fl exibility when con-
sidering the semiparametric estimation instead of a fi xed parametric model. 
Using large samples, say n  =  1000, the usual case in fi nance and actuarial 
problems, the length of posterior intervals signifi cantly decreases with respect 
to the case of  n  =  500. Moreover, as expected, the semiparametric and the 
Normal model tend to provide credible intervals that share the same features.

Similar results appear in Table 5, where we consider the Weibull model to 
generate the data, instead of the Normal one. In this case coverages are slightly 
smaller than in the Normal model, also when we use the parametric mixture 
model. With larger values of n differences tend to vanish.

6. CONCLUDING REMARKS

Estimation of  extreme quantiles is of  great interest in many applied fi elds.
It can be generally dealt with model (2.1). In this setup, the Pickand’s theorem 
allows to fi x the parametric family of extremal component of the mixture, but 
the central model, for non-extreme data, is still unspecifi ed. Elicitation of this 
model affects the fi nal inference as shown in the application examples.

When subjective information is available on the central model, this can be 
used in the proposed setup and extreme quantiles can be estimated with more 
precision. On the contrary, when a parametric model cannot be assumed, as 
in the cases of  fi re claim data here analyzed, one can consider the central 
model a nuisance parameter and use a semiparametric estimation along with 
the profi le likelihood, Lp, as proposed here. With this latter approach is still 
possible to draw Bayesian inference on extreme quantiles without recurring
to a parametric model. We would like to remark that we have used the semi-
parametric estimation method for the central model instead of non-parametric 
density estimators, such as a kernel density estimator for several reasons: 

1. we can control the amount of fi tting of non-extreme observations by fi xing d, 
the degree of the polynomial Poisson regression;

2. it is faster to be calculated;
3. it may solve the identifi ability issue pointed out in the introduction section.

Density estimation, based on kernel methods, fi ts the tail of the data better than 
the GPD and essentially leads to an inferential process that does not account 
for the Pickand’s Theorem and so it is useless for estimating extreme quantiles.

As we mentioned in Section 1 the parameters s and u are related and this 
could cause an identifi ability problem. This can be avoided using subjective 
priors over u as done in Behrens et al. (2004), or a central model that is not 
excessively fl exible, as in  Frigessi et al. (2002) and also in this paper. In order 
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102 S. CABRAS AND M.E. CASTELLANOS

to support this latter statement, we present results of the approximated posterior 
distribution for (u, s) under three scenarios where the central model is increas-
ingly fl exible. In particular for a simulated data set from the Normal-GPD, with 
parameters z  =  0.2, s  =  1, m  =  0, t  =  1 and u  =  F – 1 (0.9)  =  1.28, we fi t the Nor-
mal-GPD mixture and the semiparametric-GPD with d  =  2 and d  =  3. Figure 6 
shows the approximated density of the joint posterior distribution of (u, s). 
Although the three posterior distributions share the same mode, their dispersion 
increases with model fl exibility, but model (2.1) is clearly identifi able.

Other possible approaches for estimating the central model are mixture mod-
els such as that considered in Tancredi et al. (2006). The approach of mixtures, 
however, need always an elicitation of  a prior over the number of  mixture 
components. As we are interested in the fi tting of the tail in order to estimate 
or predict extreme quantiles, we think that the semiparametric-GPD mixture 
model proposed here simplifi es the whole modeling approach.

FIGURE 6: Bivariate density estimation of the approximate posterior distribution of (u, s) for a simulated 
data set: (a) corresponds to posterior simulations obtained with the Normal-GPD model, while (b) and (c) 

correspond to those obtained with the semiparametric-GPD model with d  =  2 and d  =  3 respectively.
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APPENDIX

We show in this section the conditional distributions needed for the Gibbs 
sampling used to simulate from the posterior distribution of q. We consider 
different sets of  conditional distributions depending on the central paramet-
ric model: Normal, Lognormal, Weibull or semiparametric density estimator.
In each case q denotes the vector of parameters of interest, in the case of using 
the semiparametric density estimator, these are only u, z and s. Note that the 
conditional distributions for z and s depend on u only and not on g. In the 
following formulas nu

+ and nu
– denote the number of observations above and 

below u, respectively.
Last subsection is devoted to some comments on the used R code.

Conditional distributions of GPD parameters
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where q  5  z and q  5  s denote all parameters in q without z and s, respectively.

Conditional distributions of Normal parameters
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where F(· |  m, t2) and ƒ(· |  m, t2) denote, respectively, the cdf and df of a Normal 
model with mean m and variance t2. Again, q  5  m and q  5  t2 denote all parameters 
in q without m and t2, respectively.
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Conditional distributions of Lognormal parameters
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where HLN(· |  m, t2) and hLN(· |  m, t2) denote, respectively, the cdf and df of a 
Lognormal model with location m and scale t2. Again, q  5  m and q  5  t2 denote 
all parameters in q without m and t2, respectively.

Conditional distributions of Weibull parameters
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where HWei  (· |  a, b) and hWei  (· |  a, b) denote the cdf and df of a Weibull model 
with shape parameter a and scale parameter b.

Conditional distribution of u

When a parametric model is considered for non extreme data, Normal, Log-
normal or Weibull, the conditional distribution for u is,
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where B  =  {[(z  <  0)  +  (u  >  x(n)  +  s/z) , (z  $  0) ]  +  (a  #  u  #  b)} and h(· |  g) and 
H(· |  g) denote the df and cdf of the parametric model.

Instead, when we use the semiparametric density estimator described in 
Section 2.2, the conditional distribution for u is:
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We replace the estimator of the cdf H(·) by the empirical cdf, and the estima-
tor hu(·) by the semiparametric density estimator described in Section 2.2.
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R implementation

Density hu(x) has been implemented using the glm ( ) function with the orthog-
onal polynomials obtained with the poly ( ) function. The following code pro-
vides an estimation with df degrees of freedom.

# Assume z contains sorted observations below u
zh = hist(z, plot = F)
zb=zh$mids #Middle class points
y   =   zh$counts #Histogram counts
mp=poly(zb, degree = df) #Orthogonal polynomial
mc=glm(y˜mpoly, poisson)$coeff icients # Poisson Regression
kh  =  function(x,mp,mc) exp(cbind(1,predict.poly(mp,x))%*%mc) 
#Kernel of h
nc  =  integrate(kh,lower  =  z[1],upper  =  u,mp  =  mp,mc  =  mc)$value 
#Normalizing constant of kh()
h=function(x,mp,mc,nc) kh(x,mp,mc)/nc #Semiparametric estimation

Density of GPD, g(x | z,  s,  u), is implemented in dgpd ( ) (library POT). The 
implemented MCMC algorithm uses the above conditional distributions that 
use the functions h ( ), dgpd ( ) and the above prior densities. 

REFERENCES

BEHRENS, C.N., LOPES, H.F. and GAMERMAN, D. (2004) Bayesian analysis of extreme events with 
threshold estimation. Statistical Modelling 4, 227-244.

BEIRLANT, J., TEUGELS, J. and VYNCKIER, P. (1996) Practical Analysis of Extreme Values. Leuven 
University Press, Leuven, Belgium.

BRAZAUSKAS, V. and SERFLING, R. (2003) Favorable estimators for fi tting pareto models. A study 
using goodness-of-fi t measures with actual data. ASTIN Bulletin 33(2), 365-381.

CABRAS, S. and MORALES, J. (2007) Extreme value analysis within a parametric outlier detection 
framework. Applied Stochastic Models in Business and Industry 23(2), 157-164.

CASTELLANOS, M. and CABRAS, S. (2007) A default bayesian procedure for the generalized pareto 
distribution. Journal of Statistical Planning and Inference 137(2), 473-483.

CASTILLO, E. and HADI, A. (1997) Fitting the generalized pareto distribution to data. Journal of 
the American Statistical Association 92, 1609-1620.

CHAVEZ-DEMOULIN and EMBRECHTS, P.V. (2009) An EVT primer for credit risk. Oxford University 
Press.

CHOULAKIAN, V. and STEPHENS, M. (2001) Goodness-of-fi t tests for the generalized pareto dis-
tribution. Technometrics 43(4), 478-484.

COLES, S. (2001) An Introduction to Statistical Modeling of Extreme Values. New York: Springer-
Verlag.

DAVISON, A. (1984) Statistical extremes and Applications, Chapter Modelling excesses over high 
thresholds, with an application, pp. 461-482. Reidel, Dordrecht.

DE ZEA BERMUDEZ, P. and TURKMAN, M.A. (2003) Bayesian approach to parameter estimation 
of the generalized pareto distribution. Test 12, 259-277.

DE ZEA BERMUDEZ, P., TURKMAN, M.A. and TURKMAN, K. (2001) A predictive approach to tail 
probability estimation. Extremes 4, 295-314.

DONNELLY, C. and EMBRECHTS, P. (2010) The devil is in the tails: actuarial mathematics and the 
subprime mortgage crisis. ASTIN Bulletin 40(1), 1-33.

EFRON, B. and TIBSHIRANI, R. (1996) Using specially designed exponential families for density 
estimation. The Annals of Statistics 24(6), 2431-2461.

94352_Astin41-1_04_Cabras.indd   10594352_Astin41-1_04_Cabras.indd   105 12/05/11   14:2912/05/11   14:29



106 S. CABRAS AND M.E. CASTELLANOS

EMBRECHTS, P., KLÜPPELBERG, C. and MIKOSCH, T. (1997) Modeling extremal events for insurance 
and fi nance. New York: Springer.

FRIGESSI, A., HAUG, O. and RUE, H. (2002) A dynamic mixture model for unsupervised tail 
estimation without threshold selection. Extremes 5, 219-235.

GRIMSHAW, S.D. (1993) Computing maximum likelihood estimates for the generalized pareto 
distribution. Technometrics 35(2), 185-191.

HOSKING, J. and WALLIS, J. (1987) Parameter and quantile estimation for the generalized pareto 
distribution. Technometrics 29(3), 339-349.

LINDSEY, J. (1974a) Comparison of probability distributions. Journal of the Royal Statistical Society, 
Series B 36, 38-47.

LINDSEY, J. (1974b) Construction and comparison of  statistical models. Journal of the Royal 
Statistical Society, Series B 36, 418-425.

MCNEIL, A.J. (1997) Estimating the tails of loss severity distributions using extreme value theory. 
ASTIN Bulletin, 117-137.

MIKOSCH, T. (2003) Modeling dependence and tails of fi nancial time series. In B. Finkenstaedt 
and H. Rootzen (Eds.), Extreme Values in Finance, Telecommunications, and the Environment, 
pp. 185-286. Chapman & Hall/CRC.

NEVES, C. and FRAGA ALVES, M.I. (2004) Reiss and thomas’ automatic selection of the number 
of extremes. Computational Statistics and Data Analysis 47, 689-704.

PADGETT, W. and JOHNSON, M. (1983) Some bayesian lower bounds on reliability in the lognormal 
distribution. The Canadian Journal of Statistics 11, 137-147.

PICKANDS, J. (1975) Statistical inference using extreme order statistics. The Annals of Statistics 3, 
119-131.

R DEVELOPMENT CORE TEAM (2009) R: A Language and Environment for Statistical Computing. 
Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

REISS, R.D. and THOMAS, M. (2007) Statistical Analysis of Extreme Values with Applications to 
Insurance, Finance, Hydrology and Other Fields (Third ed.). Birkhäuser Verlag.

ROEDER, K. and WASSERMAN, L. (1997) Practical bayesian density estimation using mixtures of 
normals. Journal of American Statistical Association 92, 894-902.

SMITH, R. (2003) Extreme values in fi nance, telecommunications and the environment, Chapter 1. 
Statistics of extremes, with applications in environment, insurance and fi nance. Chapman 
and Hall/CRC Press.

SMITH, R.L. (1984) Statistical extremes and Applications, Chapter Threshold methods for sample 
extremes, pp. 621-638. Reidel, Dordrecht.

SUN, D. and BERGER, J. (1994) Bayesian sequential reliability for weibull and related distributions. 
Ann. Inst. Statist. Math. 46(2), 221-249.

TANCREDI, A., ANDERSON, C. and O’HAGAN, A. (2006) Accounting for threshold uncertainty in 
extreme value estimation. Extremes 9, 87-106.

VENTURA, L., CABRAS, S. and RACUGNO, W. (2009) Prior distributions from pseudo-likelihoods in 
the presence of nuisance parameters. Journal of the American Statistical Association 104(486), 
768-774.

STEFANO CABRAS (Corresponding author)
Department of Mathematics, University of Cagliari (Italy).
Via Ospedale 72, 09124 Cagliari (Italy),
Tel.: +390706758536,
Fax: +390706758511.
E-mail: s.cabras@unica.it

MARÍA EUGENIA CASTELLANOS 
Department of Statistics and Operations Research, 
Rey Juan Carlos University (Spain).
C/ Tulipán, 28933, Móstoles (Spain).
E-mail: maria.castellanos@urjc.es

94352_Astin41-1_04_Cabras.indd   10694352_Astin41-1_04_Cabras.indd   106 12/05/11   14:2912/05/11   14:29


