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ABSTRACT

We investigate the question how the development pattern in the Bornhuetter-
Ferguson method should be estimated and derive the corresponding conditional
mean square error of prediction (MSEP) of the ultimate claim prediction.
An estimator of this conditional MSEP in a distribution-free model was given
by Mack [9], whereas in Alai et al. [2] this conditional MSEP was studied in
an over-dispersed Poisson model using the chain ladder development pattern.
First we consider distributional models and derive estimators (maximum like-
lihood) for the development pattern taking all relevant information into
account. Moreover, we suggest new estimators of the correlation matrix of
these estimators and new estimators of the conditional MSEP. Our findings
supplement some of Mack’s results. The methodology is illustrated at two
numerical examples.

KEYWORDS

Claims Reserving, Bornhuetter-Ferguson Method, Mean Square Error of Pre-
diction, Claims Development Pattern.

1. INTRODUCTION

The chain ladder (CL) and the Bornhuetter-Ferguson (BF) method [3] are still
the most frequently used claims reserving methods in practice. For both meth-
ods it is assumed that there exists a development pattern y;, which is the same
for all accident years. For the BF method there are, in addition compared
to the CL method, given estimates ji; of the expected ultimate claim of each
accident year 7, and the BF reserve of accident year i is obtained by multi-
plying /i; with the ‘still to come percentage’ of accident year i according to the
development pattern y;. Thus, one essential difference between the CL and the
BF philosophy is that the BF method incorporates £; in the reserve estimate.
Often, the CL development pattern is used for the development pattern in the
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BF method. However, this is not consistent with the BF philosophy, as the CL
development pattern disregards any information contained in the ;’s.

Originally, both methods were established as purely pragmatic methods
without an underlying stochastic model. Such a pragmatic approach allows to
determine a point estimate of the claims reserve. However, in order to assess
the uncertainties in this point estimate one needs an underlying stochastic
model.

For the CL method Mack [8] presented such a stochastic model and a
corresponding estimator for the conditional mean square error of prediction
(MSEP) in 1993. For the BF method such models and estimators are com-
paratively new. In 2008, Mack [9] introduced a distribution-free model under-
lying the BF method and suggested estimators for the corresponding MSEP.
Estimators of the MSEP for models related to BF were already derived earlier
as, for instance, in England-Verrall [5] or in Neuhaus [10]. However, Mack’s
model is probably the most general distribution-free model underlying the BF
method. But this generality has also a drawback, namely, that many results in
Mack [9] cannot be obtained in a stringent mathematical way and that one
has to resort to pragmatic considerations and approximations.

Another approach was used by Wiithrich-Merz [13] and by Alai et al. [2].
Both studied the conditional MSEP in an over-dispersed Poisson (ODP) model
where the development pattern is estimated by the CL development pattern.

In this paper we investigate the question how the development pattern
in the BF method should be estimated considering all relevant information
and how the corresponding correlation matrix looks like. For this purpose we
consider stochastic BF models with parametric model assumptions for incre-
mental claims. In these models we are able to derive the maximum likelihood
estimators (MLEs) as well as the correlation matrix of the MLEs and derive
estimators of the corresponding conditional MSEP. In contrast to the usual
approach in which the chain ladder development pattern is used, we implement
the BF philosophy in the estimates of the development pattern by incorporating
the a priori knowledge in this estimation. In our opinion the new estimates for
the development pattern, the correlation matrix and the conditional MSEP
should generally be used for the BF method.

Moreover, we show how the variance of the a priori estimates can be esti-
mated from the data. Finally, we apply our methods to real data from practice.

ORGANISATION OF THE PAPER

In the next section we introduce the notation and data structure. In Section 3
we give the basic assumptions underlying the BF method and recall the model
of Mack [9]. In Section 4 we introduce three distributional models under-
lying the BF method and derive estimates for the conditional MSEP in these
models. Conclusions and numerical examples are given in Sections 5 and 6.
Technical proofs of the statements are provided in Appendix A.
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2. NOTATION AND DATA STRUCTURE

We denote the cumulative claims (cumulative payments or incurred losses) in
accident year i € {0, ..., I} at the end of development year j€ {0, ..., J} by

C; ;> 0 and we assume that J=<I Let X;;=C;; - C;; , denote the incremen-
tal claims, where we set C; | = 0. In the sequel it is also useful to define
k .
Xyg; = Z HO0<Sk<ILO0O<j<J.

In general we denote the summation over an index starting from 0 with a square
bracket. We assume that all claims are settled after development year J and there-
fore the total ultimate claim of accident year i is given by C; ;. At time / we have
information

DO, ={C;:i+j=1I j=J},

and our goal is to predict D; = {C;; :i+j>1 i <1 j<J}. The outstanding
loss liabilities for accident year 7 at time / are given by

R=C,—Cypnl-J+1<i<I, (2.1)

and the total outstanding loss liabilities of all accident years are given by
R = Zl 1— J+1R

Remark 2.1. The ‘true’ outstanding loss liabilities are given by formula (2.1) only
if C; ; denote cumulative payments. For incurred losses C; ; the outstanding loss
hab1ht1es are given by

R=C,-C,;+Cp, Czp?ldt ) (2.2)

with C/ ;"d denoting the cumulative payments of accident year i up to devel-

opment year j. Note that the additional term C;; ;, — C/; is observable at

time 7/ and has no impact on the claims prediction problem and uncertainty.
Therefore we only consider the outstanding loss liabilities as defined in (2.1).
For incurred losses, (2.1) is often referred to as IBNR.

3. BF RESERVING METHOD

3.1. BF Reserving Method

The BF method goes back to Bornhuetter-Ferguson [3]. There are a priori
estimates of the expected ultimate claim C; ; given by

i = Vi 4, (3.1)
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where v; denotes the premium of accident year i and where ¢; is an estimate of
the expected ultimate loss ratio. The BF reserve is then given by

k\i = ;1 —/)914)» (3.2)

where 1 — /?,,i is the estimated still to come factor at the end of development
year I —i. In this paper we assume that the estimates /i, are independent of the
observations 9, which is for instance the case, if these estimates represent an
external expert opinion or if they come from a pricing which is mainly based
on common statistics of pooled industry-wide data. Note that z; is identical
to an a priori estimate of the ultimate claim C; ;, but that it is not its current
predictor, which at time 7 is given by

Ciy=C i *R, =Cy; + ﬁi(l =B

3.2. Basic Assumptions Underlying the BF Method

From the fundamental properties of the BF method we derive some basic
assumptions, which an underlying model should satisfy. These assumptions are
motivated in Mack [9]. The independence assumption between the current
claim amount C;; ; and the reserve estimate suggests that incremental claims
within the same accident year i are independent. The independence between
different accident years is a standard assumption which we also adopt here.
Moreover, from the BF reserve estimate (3.2) it follows that a stochastic model
for the BF method has to be cross-classified of the type

E[C; ;1= w;p; orequivalently E[X;;]= w7,

with f; = o V- Since u;y; = (u;¢) (y;/c) for any constant ¢ > 0, the param-
eters u; and y; are only unique up to a constant factor. Without loss of gener-
ality one can therefore assume that y, + ... +y,=1. The sequence (f;); then
denotes the (cumulative) development pattern and (y;); is the (incremental)
development pattern. Further, we assume that the a priori estimates f,; are
unbiased for E[C; ;]. Hence we make the following basic assumptions for a
stochastic model underlying the BF method.

Model Assumptions 3.1. (Basic Underlying Assumptions)

BF1 Incremental claims X;; are independent and there exist parameters

05 s gy Yo -5 Vy» With 27_¢ 7; = 1 such that
E[X,;1=wy;, 0<i<I and 0<;<J.

BF2 The random variables i, are unbiased estimates for x; = E[C, ,].
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Mack’s Model: In addition to Model Assumptions 3.1 Mack [9] makes the
following variance assumption

Var(X, ) = ;07 (33)

Remark 3.2. Note that Mack’s model is a distribution-free model for the BF
method. Since it is a very general model several approximations are used to
estimate the prediction uncertainties.

Alai et al. Model: In addition to Model Assumptions 3.1 Alai et al. [2] assume
that incremental claims X;; are ODP distributed. Prediction uncertainty is
then studied within a MLE and generalized linear model framework, but by
using the CL development pattern.

3.3. Estimation of the Development Pattern

In order to estimate the BF reserve and its conditional MSEP we need to
estimate the development pattern y;, 0 < j < J. In practice one often uses the
CL development pattern

J—1 J—1 C,
ACL 2-1 21 A [I—k—1],k+1
b= T11f"- II f. ., where f, = ———"—. (3.4)
A ko Cuek-nk

However, the use of the CL development pattern is not consistent with the BF
philosophy, as it disregards the information in the a priori estimates ji,. If the
u; were known then the best linear estimate of y; under Model Assumptions 3.1
and under the variance assumption (3.3) would be

Xu-pJ

*

Vi =

Hyu-jy °

with g = PO U;, 0 <k < I. Therefore Mack [9] suggests initial estimates
Xir-j1j
M-

Nx —

b

and then applies manual smoothing such that the final estimators 7, sum up
to 1.

The above estimators are not the only ones consistent with the BF philosophy,
and the restriction to linear estimators is possibly not optimal. An alternative
estimator is obtained with the following reasoning: assume first that we are
given a full rectangle. Then an obvious estimator is

5 = X,
I Gny’
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Note that the J; automatically sum up to 1. As only the upper trapezoid O,
is given, a natural idea is to replace the unknown X; ; in the lower right tri-
angle of O, by the BF predictors /; J; resulting in the following system of
equations

I1—j I A A
5 = Zi:o‘YLJ*‘zi:l—jH”iVj
! Zi:O Ci,J+Z{=1—J+1<CU*i+zlzl—iﬂl‘iyl

3 0<j<J. (3.5)

In order to investigate different estimators and the corresponding conditional
MSEPs more precisely we consider explicit BF models with parametric assump-
tions for incremental claims X; ;. All the models considered in the following will
satisfy Model Assumptions 3.1 and the variance assumption (3.3). Hence they
are all special cases of the model considered in Mack [9]. In these distribu-
tional models we are able to derive estimates (MLEs) of the development
pattern in a stringent mathematical way. Moreover, we find explicit solutions
for the correlation matrices of these estimators, which are needed to calculate
the MSEP of the BF reserves. As we will see, in one of the models, the above
estimator (3.5) turns out to be the estimator corresponding to the MLE, if we
replace the unknown y; by ;.

4. STOCHASTIC BF MODELS BASED ON PARAMETRIC DISTRIBUTIONS

4.1. Over-dispersed Poisson Model with Constant Dispersion Parameter
4.1.1. Model

In Model Assumptions 3.1 we have specified the basic assumptions of the BF
model. In the following model we assume that the X; ; follow an ODP distribu-
tion with constant dispersion parameter.

Model Assumptions 4.1. (Over-dispersed Poisson Model)

P1 Incremental claims X; ; are independent and there exist positive parameters
o, U, ..., 1y and yg, ..., y, with Zf:o 7; = 1 such that X; ;/¢ ~ Poisson
(4;7;1 ). In particular, we have

E[X:;] = Wy,
Var(X; ;) = ¢y,
where ¢ is called dispersion parameter.

P2 The a priori estimates £, for y; = E[C; ;] are unbiased and independent
from X, for0</<10=<j<J.
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Remarks 4.2.

— In the ODP Model the incremental claims X; ; are required to be positive.

— Disregarding the y;, that is considering data 9; only, the MLEs for the claims
reserves and the development pattern are identical to the CL reserves and
the CL development pattern 7%, see for instance Hachemeister-Stanard [6],
Mack [7] or Schmidt-Wiinsche [12].

— Alai et al. [2] used a similar model to derive an estimate for the conditional
MSEP in the BF method.

— Note that we have not made any assumption on the dependence structure
between the z;’s.

4.1.2. Estimation of the Development Pattern

We estimate the development pattern with the MLE method. In order to
calculate the MLEs we first assume that the u; are known and then plug in
the estimates ji;. The MLEs are best calculated using Lagrange multipliers.
Note that in the ODP case the log-likelihood function for X; ; is given by

é <ij (10g,ul. + log Vj) - /‘iyj) —gX; ),

where g(, ¢) is a normalizing function that does not depend on the parameters
u; and ;.

Remark 4.3. Multiplying the log-likelihood function by ¢, we observe that the
MLE:s for the y/’s do not depend on the dispersion parameter.

Neglecting the normalizing function g we obtain the Lagrange function with
Lagrange multiplier « given by

LDI<V0,...,yJ,K> = >, (Xi,j(log,ui+logyj)—,uiyj)+x(1 - io yj>.
iz

i+j<I

Observe that the last term comes from the normalization requirement
}{:0 7; = 1. For the MLEs j; we obtain the following equations

0Ly, IZ‘:J <Xi

ayj B i=0

y
—ul=rk=0
Vi ﬂ’) e

and therefore we find the solutions

Xi_q
~ [1=j1.j
L= 4.1
T g R 4.1)
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From the side constraint it follows that

9Ly, J

oK 21—217]-:0,
j=0

which yields in view of (4.1) an implicit equation for x

J Xir_
I 4.2)

Jj=0

From equation (4.2) it follows that « is the root of a polynomial of degree
J + 1. Since the y; need to be positive in the ODP Model and since u; ;; 1s
decreasing in j we have the constraint x € (—x;_ ;;,00). In this interval there is
a unique solution x by monotonicity (cf. Remarks 4.6).

Remark 4.4. We do not use the partial derivatives with respect to y;. This is
not necessary since we already have the a priori estimates /; and therefore do
not want to use MLEs for the ;.

Then, we replace the true (unknown) u; by the estimates z; and obtain the
estimators
X

|y 43)
T gtk (

where & fulfills the implicit equation

J
1-3%,=0. (4.4)
j=0

Theorem 4.5. The estimates (4.3) satisfy equations (3.5).

Proof. Observe that the J;’s defined in (3.5) satisfy the constraint >i0b =1

Therefore it is sufficient to prove that the estimates 7, defined in (4.3) satisfy
o _ X0
A - I A A
7 X[[fj],_/+2i:17.j+1/uiyj

1<j<J.

Xi-jp.j

From equation (4.3) we have ik = — i, for 0 < j < J and conclude

Yo _< X0 )L _ Xin.o 1 Xino
A - A A A - N X?‘ . ~ A - 1 A A .
7 Pint K] Y; Hin + % — -y Vi X+ 2izi-jr1447

This proves the claim. O
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Remarks 4.6.

— If instead of g, the data of the fully developed rectangular was given, then
the MLE of y; would be

and would not depend on the y; at all. This shows that in the ODP Model
the MLEs are not linear in the observations X; ;. Given 9, the y;’s appear in
the MLEs only to the extent that the entries X; ; in the lower right triangle
are not known and filled up with the BF predictors /; J;.

— From Theorem 4.5 it follows that the estimators ; obtained by replacing the
unknown g, in the MLEs 7; by /; satisfy equations (3.5). However the easiest
way of finding the solution of equations (3.5) is to calculate the estimators
7 by means of equation (4.3). There we only need to calculate &, which can
be done quite easily by starting with & = 0, that is with the raw estimators

500 = Ki-ni

’ )

>

and then by increasing or decreasing « until the side constraint
A J A
f®) =27 =1
Jj=0

is fulfilled. Note hereby that in the interval (—fi; j,o0) the function f(x) is
strictly decreasing and consequently the side constraint /() = 1 has a unique
solution. Of course f3; is then estimated by 5, = 3’/ _(7,, 0 <j < J, and sat-
isfies 5, = 1.

— From the estimators (4.3) we also see how a mathematically founded smooth-

ing from the raw estimators ?,(0) to the adjusted estimators 7; looks like in
the ODP Model. If we write

then the ‘correction factors’ ¢; are given by

_ Hpu-j
Cj S N E—~
M-t K

Since /fif; ;; is decreasing in j, ¢; is decreasing in j for & >0 and increasing
for k < 0. For instance, if k¥ < 0 then the correction factor is greater for the
late development years than for the newer ones.

— Consider the effect of conservative a priori estimation. If we increase
some of the a priori estimates i; then « is decreasing because of the side
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constraint (cf. (4.3)-(4.4)). We denote the new estimates by £, 7/ and &°.
For the change in the denominator of 7, we then have

A= Ryt R = RS gy — -+ &=k, 0<j<k<J,

and because of the side constraint there must be an index 0 </ < J such that
for all j </ < k we have

g = By ¥ RO — RS OS iy = fiyp + K= &,

It follows that J; =%, for all k> / (in the tail) and for j </ we have J; <7,
This means that more weight is given to the tail and the effect of conservative
a priori estimation is therefore reinforced by the estimates of the development
pattern. Note that in the case where we only increase f; with i < I—J the
estimates of the development pattern remain unchanged (cf. (3.5)).

— The quality of the BF estimators strongly depends on the quality of the a
priori estimates /1;. If >.7_,7{ deviates much from 1 and thus & deviates
much from 0, then this could be an indicator that the a priori estimates
might be biased. As a further check one could estimate the development
pattern and the reserves by disregarding the a priori estimates ;. In the
OPD Model with a full development triangle or trapezoid the resulting
MLE:s are then identical to the CL estimates. If for most accident years the
CL predictors for the ultimate claims were either higher or lower than the
BF predictors, this would be a strong indicator that the a priori estimates /i;
might be biased and that one of the basic assumptions of BF is violated.
Sometimes one then adjusts the a priori estimates /; (see e.g. the Cape Cod
method in Wiithrich-Merz [13] or Radtke-Schmidt [11], which goes back to
BithImann-Straub [4]). There is no problem to calculate the BF reserves with
‘a posteriori’ adjusted /;. But this means that the z; are no longer independ-
ent of the data 9,, which should be taken into account for the estimation
of the MSEP and is beyond the scope of this paper.

— A tail development 7, , can be incorporated by replacing the side constraint
in the Lagrange function by X7 7; =1 =7,41. The estimate J,,, needs
to come from outside together with an estimated covariance structure
Cov(y 7+15 ;) 0= j<J + 1, because there is no data available for the tail.

Finally, we need to estimate the dispersion parameter ¢. As in Wiithrich-Merz
[13] we use Pearson residuals to estimate ¢. The Pearson residuals are given by

R = M

b JH

with E[R? /] = ¢. To estimate R; ; we replace y; and y; by estimates, but we need
to be cautious here. We want to estimate the variance of the X; ; and therefore
we are only interested in the process variance term and not in the parameter
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estimation error. The uncertainty of the external estimate /i, is considered in a
different step. As a consequence we have to estimate x; and y; from the data in
order to obtain an estimate for ¢. We use the MLE method to gain data based
estimates for x; and ;. As mentioned in Remarks 4.6 in the case of ODP data
in a full triangle or trapezoid the MLEs of yx; and y; coincide with the CL
estimates. Therefore we estimate R, ; with

o X - /C\‘IC} j/)jCL

R.. _—
iJ 6CLACL ’
iJ yj

where the CL development pattern yj L was defined in (3.4) and where C
Ci - ,HJ " /;- An estimate for ¢ is then given by

N ZiJr_/SIRi,j
¢ = D, —p 4.5)

where | D;| is the number of observations in D; and where p =1+ J + 1 is the

number of estimated parameters.

In order to quantify the uncertainties in the BF predictors C, 7 and
—I—T+1 Cl ; we consider the conditional MSEP. Given information 7;, the

cond1t10na1 MSEP of a predictor X of a random variable X is defined by

mser‘II(X) = E[(X—X) I7,].

I

If in addition the predictor Xis 7, ;-measurable we obtain

msepy, ;. (X) = Var(X1,) + (E[XIZ,] - X)’.

For the calculation of the conditional MSEP we therefore need to consider
second moments and covariances of the estimates.

4.1.3. Covariance Matrix of the Estimated Development Pattern

In this section we consider the estimation of the covariance matrix of the 7;’s.
A well-known result from statistics is that MLEs are asymptotically unbiased
and multivariate normally distributed. Moreover, the asymptotic covariance
matrix is given by the inverse of the Fisher information matrix. By definition,
the entries of the Fisher information matrix H(y) are given by

Ay, 3y,

, 0<j k<J—1,

where Iy, is the log-likelihood function. In the ODP case the log-likelihood
function is given by
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Lo, (7gs-+es7y-1) = JZI;%(Xg(bgurFMgn)—;aw)
i+j<
j<JI-1

J=1 J-1
(Xl-ﬂ,<log,ui+log<1 - Zo yj>) —,ui<1 - Zo yj>)+ r,
j= j=

where r contains all remaining terms, which do not depend on y = (v, ..., v, ).
Note that the last line of the above equality comes from the normalizing con-
dition ZJJ- —07; = 1. For 0 =j=<J-1 we obtain the diagonal elements

&=

I=J
+ 2
i=0

811)[ 2 [ =iy (X,-,j =1 (X, 2]
Ay, =E ( 97 ) - £ (i_o¢ Vj _'ui)_ i-o¢( Vs _ﬂi»
- X I-J X.
1 i, 1 iJ
=2 5 +2 -5V 4.6
§¢ (yj> =0 ¢ ar( yj) (4.6)
S N TR 0 N TRV O )
Py N N oy Loy

Analogously, for 0 <j <k <J-1, we have the off-diagonal terms

alD alz) ] ‘L[ -7
H(y), .= H(y),, = E|—t 1| = 220 4.7
(y)k,/ (?),,k I 3y, Iy b7, 4.7)
Hence, we write the Fisher information matrix as follows
SRS N 1
/l[l—J]/‘VJ
_ Hr-n/n .
H(y) = Hu-n 1 i) +1 1 c R
d)yj : . :
M-y V-1
1 1 v e, T

For the entries of the inverse of the Fisher information matrix we obtain (see
Appendix A)

_ oy Vel -
(H(y) l)j,k = 7/‘[17]' ljenw—<r—7— —

p I , 0<j, k<J—-1. (4.8)
- 1=071'H1I-1

We now assume that the z; are close to the true u,; and therefore the covari-
ances Cov (), 7;) are close to the covariances of the true MLEs 7, (cf. (4.1)).
With the asymptotic MLE approximation we then obtain
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AA -1
Cov(y;,7,) = (HP) ), 4

and of course the covariances of ), =1 - Z, 07; are obtained by linearity.
Replacing the parameters y;, ¢ and x(; ;; by their estimates ; (see (4.3)), qb(see
(4.5)) and fi; ;; (see Model Assumptlons 4.1) we arrive at the following esti-
mates for the covariances

¢’A JA”k/ﬁu K

COV(V]’ yk) = ﬂ ]‘J ky —

L 0<jk<J (49
(-] o /ig

This is clear for 0 <j, k< J -1 and also holds for 0 <j, k < J.
Note that

)= Xir-p.s
T Mg
are uncorrelated with variance
. ¢y/
Var();) = o

Hence the off-diagonal elements and the second term in (4.9) come from the
side-constraint that the estimators have to sum up to one.

4.1.4. Conditional MSEP

In this section we derive gstimates for the conditional MSEP of the BF predic-
tors C, ;=G it (- ﬂ, )and Y7_ . C under Model Assumptions 4.1.

Let @ = (y, ..., fi;) and let 7, = J(Z),,,u) denote the o-field containing the
1nformat10n at time 1. Due to the J;-measurability of z; and ﬂ, ; we have

2
~ J .
mepe,n @ = B 5 x,-a0-h) |1

j=I-i+1

I,

2
+( Z iy — ﬂi(l_ﬁl_i))-

—i+1

=E(j > X /w,>2

I—-i+1

With the independence of the X;; and the definition > j=r-iv17;,=1— Br_;
we obtain
msepc,,,u,(a-,J) = Zj: 1—iv1 Var(X; ;) + ‘(ﬁi(l _ﬂAI—i) —u,;(1- ﬂ]—i))z'

Estimation Error (EE))

Process Variance (PV;)
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The process variance reflects the randomness of the X;; and the estimation
error describes the uncertainty in the parameter estimates.

Process Variance. For the estimation of the process variance recall that
Var(X; ;) = ¢u,;7; according to Model Assumptions 4.1. If we plug in the
parameter estimates we obtain the estimator

— J A A N
PV; = Z Var( /) = Z d’ﬂif’j =¢ﬁ,~(1_ﬁ175)-

j=I-i+1 j=I—i+1

Estimation Error. Given 7}, the term (z;(1 — ﬁA,, ) —p; (1= p;;))* is an unknown
constant. In order to estimate this constant we rewrite it as follows

(2,(1=B,_ ) =1 =B D) = (@ =)A= B ) + ;B = By )
= (1 _B\I_i)2 (//21 _,u,')z + :uz?(ﬂ]—j _ﬁA]_i)z + 2(1 _ﬂAj_i):ui(/ji - /‘i)(ﬁI_,' _B}_,’)’

and estimate the unknown terms (7, — )% (B;_;— Br_)* and (& — ) (Br_i—Br_,)
by taking the mean over all possible 7, that is, we study the fluctuation of £
and f;_; around the true values u; and 8, ;, respectively. If we neglect the
dependencies of the fz; and the ﬂj we obtain with the unbiasedness of the /;
and the (approximate) asymptotic unbiasedness of the /)’] the following estima-
tor for the estimation error

— A 2= A AT P
EE, = (1—f,_,)" Var(z,) +,u,'2 Var(f;_,),

where @(ﬂi) and @(ﬁl_ ;) are estimates for the variances Var(z;) and
Var(f;_;), respectively. The variance of the f;_; is estimated using the Fisher
information matrix

Var(f,_) = > Cov(i; 5, (4.10)

0<j,k<I-i

where the covariances Cov(y],yk) are given in (4.9).

It remains to estimate the variances of the a priori estimates z;. An actuary
being able to deliver a priori estimates /i; is often also able to make a statement
about the precision of these estimates. In this case beside the i;’s there are also
given a priori estimates of Var(#;). If this is not the case we show how Var (4;)
can be estimated from the data. To this end we assume that the ji; have a con-
stant coefficient of variation CoVa(i;) = ¢ and that the correlation Corr (4;, i)
can be estimated by

n-li=k - 0<j k<] and |i—k|<n,

Corr(f, i) =1 " (4.11)
0, else

where 0 <n<1.
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Remark 4.7. In the case where the premiums v; and the variances of the ulti-
mate loss ratios are constant, we obtain the above formula for the correlation
Corr (f;, i) if the a priori loss ratios are estimated with a moving average of
the ultimate loss ratios over n years (cf. Appendix A). Observe that we do not
assume that the a priori estimates /; are independent.

In the numerical examples we will use formula (4.11) with » = 10, assuming
that information more than 10 years ago does not contribute to the new fore-
cast. We define the aggregated claim amount at time / by

ZC1J+ Z C

i=I-J+1

The corresponding pure risk premium is given by

I, = E[C]] = Zﬂ,+ Z Br-ib;- (4.12)

i=I-J+1

Moreover, we define the observed loss ratio at time / by

¢ _ G I

o= fi, H,

where f[, is obtained from (4.12) by replacing all x; by the a priori estimates
i;. With a first order Taylor approximation around IT, we obtain

E[N,/f,] ~ 1 and Var(Il,/fl,) ~ CoVa’(il)),

and therefore with the independence of f rand C; we conclude that E[Q;] = 1.
For the variance Var(Q,) we use the following general decomposition for the
product of independent random variables X and Y

Var(XY) = E[X]*Var(Y) + E[Y]* Var(X) + Var(X) Var(Y).
Henceforth we have with the Taylor approximation

Var(Q,) ~ Var(C,)/TI} + CoVa®({l,) + Var(C,/T1,) Var(I1, /T1,).

Neglecting the last term and asserting positivity we arrive at the following
estimator

Cova’(l)) = max{0,Var(Q,) - Var(C))/ i3},

where
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- =J I ~
HI = H; + Z ﬂlfiluja
i=0 i=I-J+1
Var(Q,) = (Q,—1)°, with Q, = C,/11,,
-J I oA
Var(C)) = .65+ > [:65_4. with 3[2/] = ¢f;, in the ODP Model.

)
=

i=1-J+1

Note that if the z1; were fully correlated then CoVa(g;) = CoVa(f[,). In general
we obtain with the calculation provided in Appendix A

CoVa’(j1) = ¢?

= max{0, CoVa’(fl )| 1 - 2 0<§<Iﬁ,_iﬁ,_kuiuk(1 —Corr ({1, i1))| 1
<_Z:0:uiﬂl—i> S
B (4.13)
where we set ;= 1 if j > J. The variance is then estimated by
Var (i) = ¢* i, (4.14)

where ¢? is obtained from (4.13) by replacing the unknown CoVaz(fI,),
Corr ({1, 11;) and the parameters by their estimates.

__ Thus, we have derived the following estimate for the conditional MSEP of
G

Estimate 4.8. (MSEP single accident year) Under Model Assumptions 4.1 the
conditional MSEP of the BF predictor C; ; is estimated by

A~

— ~ J
msepe, () = 2 AP+ Var(i) (1=, )+ il Var(f,_),

j=I—i+1

where Var(ﬁ ;_,) is given in (4.10) and Var (&;,) is given in (4.14). For the estimates
. y; and qS see Model Assumptions 4.1, equation (4.3) and (4.5), respectively.

Our next goal is the derivation of an estimate of the conditional MSEP for
aggregated accident years. We have

1

I I\
( > C,— X Cy

i=I-J+1 i=I-J+1

! ~
msepy. s+1C; JlII( Z Ci’J) =E

= Z msep, |I(C,J)+2 > E[<Ci,J_a,J)<Ck,J_6k,J>‘II]'

i=1-J+1 I-J+1<i<k<I
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As above using the J; measurability of ﬁ; and ji; we obtain for i < k

E[(c,-,,—@,1)(ck,f—6k,1)\f,]=C<>v< S X, Y X,

j=I—-i+1  j=I-k+1

+ (,(0=B,_ ) = i, (L= B D) (2, (L= B ) = e (1= B,_0).

With the independence of the incremental claims X; ; we see that the covari-
ance term is equal to zero and given 7, the last expression is an unknown
constant. In order to estimate this unknown term we proceed as above and
define

EE;, = (ﬂi(l _ﬁAI—i>_lui(l _ﬂl—i))(ﬁk<1 - ﬁAI—k) _ﬂk(l _ﬂl—k)>
= ((1 _ﬁl—i)(ﬁi — 1) _iui(ﬁl—i _ﬁl—i))((l _ﬁl—k)(ﬁk — ) _luk(ﬁl—k_ﬁ]—k)>a

which is estimated by

EE, . = (1= B,_) (1= B,_) Cov(fi, fi) +it: ft,, Cov(B,_;, Br_i),

where
Cov(fi. i) = Corr(fi;, i) Var(fi;) Var(i1,). (4.15)
and

A ~ I—il—k
Cov(Broinfis) = X 3 Covpi) =+ 1= k<L (416

(see (4.14) and (4.9)).
Putting everything together we obtain the following estimate for the con-
ditional MSEP:

Estimate 4.9. (MSEP aggregated accident years)
Under Model Assumptions 4.1 the conditional MSEP for aggregated accident
years is estimated by

—— ~ 1 [ ~
msepz{_,,ﬂcmz,( Z Ci,J>: Z msepC,-,JII,<Ci,J)

i=I-J+1 i=1-J+1

+2 X (=B =By Covlii i) + Ay Cov(Br_in Br_r))-

I-J+1<i<k<I

Remark 4.10. In the literature one often calculates the conditional MSEP
given D, instead of 7;. This corresponds to a different interpretation. If the z;
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are considered as observations one should condition on 7; otherwise if the z;
are considered as a priori information one should condition on 9,. That is, in
the latter case we are in a Bayesian framework, where y; are random variables
with an a priori distribution and £, is the expected value of y;. In the first case
i, is treated as an ‘expert observation’. In the case where we condition on 9O,
we obtain for single accident years

msepe, iy (Cr)) = X7y pei Var (X)) + E[(2,(1 =B, = 1,(1= B, )| D, ].

PV, EE;

i

In order to estimate the last term we consider the mean over all possible D,
(we could also use this procedure when we condition on J; and the resulting
estimates differ slightly). .

With the approximation E [z,(1 -, )] =~ u;(1 - B, ;) we obtain

E[(ﬁl(]‘ _B\lfi) — (1= ﬂl*")>2] =~ Var(ﬁ,(l _ﬁA’*i))
= E[Var(d,(1-§,_)1a)]+ Var(E[a,(1-B,_)

i),

and estimating the last term we obtain the following estimate for the estima-
tion error

EE; = (47 + Var(@)) Var(1 =, )+ (1 =f,_)* Var(@).

We therefore have the additional term @(/il) Var(l - ﬁA ;_;) In the estimation
error. Similarly we have for aggregated accident years

EEi,k = E[(ﬁ[(l _ﬁlﬂ‘) — (1 _ﬂl—i))(ﬁk(l _B\Ifk) — (1 _ﬁlfk))"i)l]’

which is estimated by

EE,, = (1 _ﬁAf—i>(1 _/§1—k) Cov (1, /1) + <6&(ﬁiaﬁk) +ﬁiﬁk> Cov(By_iBi_p)-

The resulting formulas for the conditional MSEP have the same form as
the estimates derived in Mack [9] (but the estimates of the parameters and
covariances are, of course, different).

4.2. General Over-dispersed Poisson Model
4.2.1. Model

In Model Assumptions 4.1 we have assumed that the dispersion parameter ¢ is
constant over all development years. The assumption of a constant dispersion
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is quite restrictive and often not appropriate in practical applications. Therefore
we consider in this subsection the general case, where the dispersion parameter
varies between development years.

Model Assumptions 4.11. (General Over-dispersed Poisson Model)

GP1 Incremental claims X; ; are independent and there exist positive param-
eters g, ..., by, Hos ..., iy and p, ..., y; with Z/:O y; =1 such that
X, /b~ P01sson( ,u,-yj-/ ¢,). In particular, we have

E[X; ;1= ;7
Var( i,j) = o Vs
where ¢; is the dispersion parameter for development year j.

GP2 The a priori estimates ; for y; = E[C; ;] are unbiased and independent
from X, for0</<1,0<;<J.

4.2.2. Estimation of the Development Pattern

As in Section 4.1 we estimate y; with the MLE method using Lagrange multi-
pliers. The Lagrange function is given by

L@,(Vo’ oo Vs K) = H;}%_ (X,-,_,- (log g + log yj) — 1 Vj) + K(l - éo y,»),
(4.17)

where « is the Lagrange multiplier. For 0 < < J the MLE j; is the solution of

— — = 4.1
o= B\ m) =0 .
and hence
1—j 1
~ 20 ¢> _ Xu-pld;
Ve TRy P (4.19)
Zl 0 ¢ ,ut [1—J] J

Remark 4.12. Note that (4.19) has the same structure as (4.1) with respect to
the normalized random variables Z; ;= X; ;/¢;.

With the side constraint we obtain the following implicit equation for x

Lo, _ | _ 5 Xi-jpi 1 ¢;

e U AR B
o o tu-pldyt K
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It remains to estimate x; and ¢;.
For u; we use the a priori estimates 4;. In order to estimate the dispersion

parameters d), we consider Y; Y; = l." i X. ./ I; with
— Vi 0'2

ElY. 1= _ J j
[ i,j] Vi and Var(Yi,j) = d)/T 71',

where ajz = ¢;y;. An unbiased estimate for (7]»2 is given by

G} = Zul(Y,] V), 0<j<J j#1, (4.20)

with Y =y Y, ;. If J = I we use an extrapolation to obtain an estimate

i= 0 ﬂ I /]
for UJ, see Mack [8]. The dispersion parameter ¢, can then be estimated by
. 8]2
¢, = 4.21)
VJ

where g 0', is obtained from & O' by replacing the unknown w,’s by the a priori

estimates z; and where
s Xu-jild

110 422
Hy-jyld;+ & (422

ir-pn

with ke(— min { .
b;

,min, }, oo) given by the implicit equation
<j<

1- i —AX“”‘]’Z/‘!’Q = 0.
j=0 Hy-plé;+x

Note that (4.21) is an 1mp1101t equation since ¢; ; also appears in the equation
for ;. If we plug in d’/ i /yl in (4.22) we obtain

~ VjXI J]//‘7
Vi T A A A2 A
Vil 157+ K

and solving for ), we get

A2

a _ Xu-jjj . 0j
y]‘ = —= — K =X .
M- M-

With the side constraint Zfz 09; =1 we arrive at the following explicit solution

5 - Xu-ng 67 fuy - (1 _ ZJ: X["””>‘ (4.23)

- J A2
Hi-p 2207 -n
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The cumulative development pattern is estimated by ; = > _ 7, 0=/=<J.

Remarks 4.13.

— For the case of a constant dispersion parameter ¢ we cannot use the above
estimation procedure for ¢. In that case sz/ 7; = ¢ but &,»2/ 7; might not be
constant over all j. Moreover, if ¢ is constant over all development years,
it does not make sense to consider the development years j separately for
the estimation of ¢.

— The estimators (4.23) do not fulfill equations (3.5) anymore.

— Contrary to the ODP Model, the MLEs based only on the observed data
Dy, and disregarding the y; are no longer identical to the CL forecasts Instead,
the MLEs iM'E and the modified ‘development pattern’ ﬁj’”"" = Xi—o ]k
are proportional to the CL forecasts and the CL development pattern
obtained from the modified data X; ;/¢;.

— Denote again by

Xir-i.s

ﬂ[l -l

'\0_
PO

the raw estimates. Then we again see how the smoothing from these raw
estimates to the adjusted estimates 7, looks like. Here the smoothing correc-
tions are additive.

— A big deviation of ¥ 7-¢7(” from 1 could be an indicator that the a priori
estimates might be biased.

— A tail development 7, , can be incorporated in the same way as described
in Remarks 4.6.

4.2.3. Covariance of the Estimated Development Pattern
As in Section 4.1 the covariance matrix of the ;s can be estimated using the
Fisher information matrix. The log-likelihood function [y, is given by

Ioy(Yos-oos?y_y) = 2. %()G,j(loguﬁlogyj)—myj)
i+j<I1 *J

< (4.24)
1-J 1 J—=1 J—=1

+ 2 ¢(Xf.1<10gﬂi+10g<1 -2 Vj))‘ﬂi(l -2 Vj)>+V
i=0 *J j=0 j=0

where r contains all remaining terms, which do not depend on y = (3, ..., 7, ).
Analogously to (4.6) we obtain for 0 <;j<J-1
)]

o= e[S ()
(ay] IZO J ; d)
Hir-j) n Hir-n

;v by

E =FE

H(?’)j,j
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and for 0 <j <k <J-1 we get analogously to (4.7)

dlp, alDr] _ Hu-n
9y Ik by

H(J’)k,j = H(J’)j,k =E

The inversion of the Fisher information matrix is provided in Appendix A and
we obtain for 0 < j, k < J -1 the approximation

5.5 b7 brevic | -
Cov(33) = (H() ) = ,,( oy — Dl P

. (4.25)
Hir-j Z{—O(blyl/ﬂ[l—l])

By linearity we obtain analogous formulas for 5, = 1 — >/ i= o 7;. Replacing
the unknown parameters M-y v and ¢; by their estimates /i, ; (see Model
Assumptions 4.11), 7, (see (4.23)) and q.’>] (see (4.21)) we obtain the following
estimates for the covariances

(Abk ?k/ﬁ[l—k]
Zf:o &) /ﬁ[l—z]

Cov(31,51) = i’ﬁ (1{] = ),Oﬁj,kSJ. (4.26)
Hir-j)

For ,BA,,i we get

1—il—

Cov(Br_n Bri) = 2. Z Cov(§, ), I=J+1<i, k<L (427)
j=01I=

In the next section we give estimates for the conditional MSEP of the BF
predictors C,J Copitu(1- ﬁ, Dand X7, JHC,J under Model Assump-
tions 4.11.

4.2.4. Conditional MSEP

The derivation of an estimate of the conditional MSEP for the BF predictor
C; ;in the General ODP Model is analogous to Section 4.1.4. We obtain the
following estimate for single accident years:

Estimate 4.14. (MSEP single accident year)

Under Model Assumptions 4.11 the conditional MSEP of the BF predictor a 7
is estimated by

- ooy J 1A A X7 /A N 2 AT /H
msepc, ,7,(Ciy) = > by + Var(@)(1 =)+ fi; Var(B;_,),

j=I—i+1

where @(ﬁ,_i) is given in (4.27) and Veﬁ(ﬂi) is given in (4.14).



THE STOCHASTIC BORNHUETTER-FERGUSON CLAIMS RESERVING METHOD 301

Using the same ideas as in the derivation of Estimate 4.9 we obtain the fol-
lowing estimate for aggregated accident years:
Estimate 4.15. (MSEP aggregated accident years)

Under Model Assumptions 4.11 the conditional MSEP for aggregated accident
years is estimated by

I I —~
msep-; >  Cisj|= 2, msepe (C- J>
! Ci 11 > JI L\
2izi-y41Cidl 1<i—1J+1 i= g+l iJ14p

+2 2 (a1 —Br- (1 =B1_1) Cov(fu fix) + i fix Cov (B, ﬁl—k)),

I-J+1<i<k<I
where Cov(B_;, Bi_x) is given in (4.27) and Cov(fi, fiy) is given in (4.15).

4.3. Normal Model
4.3.1. Model

As mentioned in Remarks 4.2 the ODP Model can only be used if the incre-
mental claims X; ; are positive, which is often appropriate for claims payments.
In contrast, incurred losses increments are sometimes negative and therefore
an ODP model is not suitable in this case. The following model does not have
these restrictions.

Model Assumptions 4.16 (Normal Model)

N1 Incremental claims X; ; are independent and normally distributed and there

exist parameters Ly, ..., iy, 03, ..., 67 and g, ..., 7, with X797, = 1 such
that

E[X}J] = MY,
Var(X;)) = a7,

where sz is strictly positive.

N2 The a priori estimates j; of y; = E[C; ;] are unbiased and independent
from X, ;for0</<10=<;<J.

In the following we derive the MLEs and the corresponding conditional MSEP
under Model Assumptions 4.16.
4.3.2. Estimation of the Development Pattern

As in the ODP Model we first assume that the x; are known and calculate the
MLE:s for the y; using Lagrange multipliers. In the Normal Model this procedure
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allows us to find explicit solutions for the estimates. The Lagrange function is
given by

(X, — i)’ !
LDI(yOH"'vva K) = z - ; 2 ’ +K<1 - ‘ZO Vj)n
j=

i+j<I 2u0;

where « is the Lagrange multiplier. For 0 <; < J we have

0Lp, I Xij— iy

= — K= O,
ayj ig() 0'12
and therefore
X, . — ko2
~ [1=jl.j J
L=t 4.28
7 Hir-j) ( )
With the side constraint
1:é~_ L Xu-j. J./2
=07 =0 Hu- Hyi-
it follows that
J X[I—/]J
)
K =
e
=0 M-y

We insert x in equation (4.28) and obtain the MLE for ;

2
5 o X, 9Ky (1_ / Xu—l],l)
j Hu-p YT ot =0 Hu-n )

(4.29)

The y; and a in formula (4 29) are unknown and have to be replaced by esti-
mators. For u; we insert fi; and aj can be estimated analogously as in the
General ODP Model, that is, by replacing the x, in formula (4.20) by z;.

Remark 4.17. Using MLEs for af results in a system of equations for y; and
o, that is only iteratively solvable.

We arrive at the final estimate

o Xu-p il ( L
= SR K e , 4.30
T > o6t iy ; ﬂu 11 (430)
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which is exactly the same estimator as in the General QDP Model (see (4.23)).
The cumulative development pattern is estimated by [5’, o 05j<J.

Remark 4.18. A tail development },,, can be incorporated as described in
Remarks 4.6.

4.3.3. Covariance Matrix of the Estimated Development Pattern

Since the estimated development pattern is the same as in the General ODP
Model we could use the estimated covariance matrix of the 7, derived in
Section 4.2.3. However, the ﬁj are estimated with the MLE method and
for consistency with the derivations in the other models we use the Fisher
information matrix to estimate the covariance matrix of the 7. The likelihood
function for the Normal Model is given by

J-1 2
Xy =)’ el (X —w(1-2720%))
ZD]<y0""’yJ_1)= Z - 12 ’ Z ’ t+r
i+j<I ﬂiaj i=0 2#1“71
Jj<T-1

where r contains all remaining terms, which do not depend on y = (yy, ..., 7, ).
For the entries of the Fisher information matrix we get analogously to Sec-
tion 4.1.2.

/o2

Hii-n! 0y
lat |’

Hi-p10j

Hir-j)
HO = =2 (L/’—kﬁ
J

where 0 < j, k < J— 1. With the calculation provided in Appendix A we obtain

the entries of the inverse of the Fisher information matrix and for 0 <,
k < J -1 we get the approximations

2 2

A _ ag; Uk / /1[1 K

Cov(hip)~(Hp) ™). =21 — =

(77i0) () ik -1 {j=k} [ [0 //1[1 )

). 4.31)

By linearity we obtain the same formulas for the variance and covariances
of 7,. By replacing the unknown parameters y; ; and ajz by their estimates
we obtain exactly the same formulas as in the General ODP Model, that is,

0] /ﬂ[l—l]

A2 A A
PPN gj o] - .
Coviin b :m—].(l{j=k}—w+), 0<jk<J. (432
J I=

The covariances of the ﬁ’,, ; are estimated by
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A N I—iI—k ____
Cov(fr_nfr) = X X Cov(39), I=J+1<i, k<1 (4.33)
j=01=0

Remark 4.19. The coincidence of the estimated covariance matrices in the
General ODP Model and the Normal Model is of course meaningful, however
not obvious because of the approximations used.

In the next section we give an estimate for the conditional MSEP of the BF
predictor in the Normal Model.

4.3.4. Conditional MSEP

Since the estimates in the Normal Model coincide with the estimates in the
General ODP Model we also obtain the same estimates for the conditional
MSEP:

Estimate 4.20. (MSEP single accident year)

Under Model Assumptions 4.16 the conditional MSEP of the BF predictor a’,
is estimated by

msepqﬂjl(ci,J) = Z 1/11'0']'2 + Var(u;)(1—p,-;)" + /hz Var(f;-,),
' j=I—-i+

where W(ﬁ,_,—) is given in (4.33) and W(ﬁi) is given in (4.14).
For aggregated accident years we obtain in the Normal Model:

Estimate 4.21. (MSEP aggregated accident years)

Under Model Assumptions 4.16 the conditional MSEP for aggregated accident
years is estimated by

1 ~ 1 — ~
msepzflzl—/H Ci,Jlll( Z Ci’J) B Z msepcuuz(ci"])

i=I-J+1 i=I-J+1

+2 Y (=B =B Covif i) + fifu Cov (Br— s Br—i)),

I-J+1<i<k<I

where Cov(By_;, Bi_i) is given in (4.33) and Cov (i, i) is given in (4.15).

Remark 4.22. Analogous estimators can be derived in the more general Tweedie’s
exponential dispersion family models, similar to Alai-Wiithrich [1].
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5. CONCLUSIONS AND REMARKS

In this paper we have investigated the question how the development pattern
should be estimated in the BF method and we have derived the corresponding
MSEP of the ultimate claim prediction. For this purpose we have considered
three distributional models. For these models we have been able to find estimators
for the development pattern y; which are consistent with the BF philosophy.
Moreover, we have found formulas for smoothing from the raw estimates 37}0)
to the final estimates ); and we have been able to find explicit formulas for the
correlation matrix of these estimates in terms of the inverse Fisher information
matrix.

The ODP Model is presumably not an adequate model for most practical
cases. The General ODP Model is a reasonable model for claims payments
modelling and the Normal Model can be used for incurred claims studies. For
the latter two models we have found the same estimators. But also in the case
where the distributional assumptions are not fully satisfied, we suggest applying
these estimators because currently there are no estimators available from which
we know that they perform better. Therefore we suggest

— to estimate the development pattern by means of formula (4.30)

— to estimate the correlation matrix of these estimates by means of formula
(4.32)

— to estimate the conditional MSEP of the ultimate claim by means of Estimate
4.20 (single accident year) and Estimate 4.21 (aggregated accident years).

6. NUMERICAL EXAMPLES

The data for the numerical examples are from a Swiss insurance company and
for confidentiality purposes the figures are scaled with a constant. The a priori
estimates are obtained from pricing. To be more precise {i; corresponds to the
initial forecast of the expected ultimate claim at the end of year i — 1 and there
is not done any repricing afterwards. We consider claims payments data from
industrial property insurance and incurred losses data from motor liability
insurance. Industrial property insurance is a short tailed line of business mean-
ing that the development is usually finished after short time. On the contrary,
motor liability is a long tailed line of business, that is, we have longer settlement
periods.

For comparison we also give the results obtained with the CL method.
The conditional MSEP for the CL method is calculated according to the dis-
tribution-free model by Mack [8].

6.1. Industrial Property Insurance

Let us first consider data from industrial property, which is given in Table 5 in
Appendix B. We apply the estimators suggested in Section 5 and refer to them
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as BF in the following tables. In this example we additionally give the results
obtained in the ODP Model (BF ODP) and the results obtained using Mack’s
model [9] (BF Mack). With the trapezoid of claims payments we obtain esti-
mated coefficients of variation of the a priori estimates of CoVa (i) = 5.25%
in the ODP Model and CoVa(i;) = 4.56% for BF. The resulting development
patterns and the reserves are given in Table 1. The development patterns are
obtained from formulas (4.3) and (4.30) without manual smoothing. Note that
all three BF development patterns are close to the CL development pattern.
Moreover, we calculated the ‘usual’ BF reserves, which are obtained with the
BF method using the CL development pattern. Due to the rather small value
on the diagonal in the newest accident year the BF reserves are higher than

TABLE 1

INDUSTRIAL PROPERTY, CLAIMS PAYMENTS:
ESTIMATED DEVELOPMENT PATTERN AND RESERVES.

Dev. pattern ﬁA’,, ; Estimated reserves
. BF BF BF BF ‘usual’
" loop BY mMak CF | opp  BY mak L BF

9 99.77% 99.78% 99.77% 99.78% 268 257 261 230 246
10 99.55% 99.57% 99.56% 99.59% 505 481 492 290 467
11 99.25% 99.29% 99.27% 99.29% 766 731 751 636 725
12 98.45% 98.48% 98.47% 98.50% | 1°501 1’468 1’479 1’313 1’454
13 94.08% 94.24% 94.13% 94.14% | 5830 5677 57786 5946 5774
14 60.21% 60.59% 60.31% 60.40% | 38°611 38240 38520 34’502 38°426

Total 47481 46’854 47°288 42’916 47°091

TABLE 2

INDUSTRIAL PROPERTY, CLAIMS PAYMENTS:
ESTIMATED CONDITIONAL MSEP"2 AND COEFFICIENT OF VARIATION.

msep'”? CoVa
i obe BF amk L | obp PP g CL

9 410 373 373 341 152.6%  145.1%  143.3%  148.3%
10 560 435 435 325 110.9% 90.3% 88.4% 112.1%
11 685 508 509 457 89.3% 69.5% 67.8% 72.0%
12 953 1’097 1’099 1’064 63.5% 74.7% 74.3% 81.0%
13 1’886 1’861 1’876 1’946 32.3% 32.8% 32.4% 32.7%
14 5133 6257 6’516 6’073 13.3% 16.4% 16.9% 17.6%
Total 5’875 6’829 6’988 6’587 12.4% 14.6% 14.8% 15.3%
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TABLE 3

INDUSTRIAL PROPERTY, CLAIMS PAYMENTS:
ESTIMATED PROCESS STANDARD DEVIATION AND SQUARE ROOT OF THE ESTIMATION ERROR.

Process std. dev. (Estimation error)'?
i obp BF amk  CL | obp PP ahgo  CL
9 385 351 351 323 139 126 127 111
10 529 410 410 313 185 146 146 86
11 651 483 483 438 211 160 160 133
12 911 1°053 1’053 1’024 279 310 312 286
13 1°796 1777 1788 1’869 575 554 567 542
14 4622 5874 6’067 5’885 2°232 2’156 2’377 1’501
Total | 5126 6268 6453 6291 | 2871 2710 2682 1952

the CL reserves. In Table 2 the conditional MSEP and the corresponding coef-
ficient of variation are given. In BF Mack we applied the coefficient of varia-
tion CoVa(i;) = 4.56% from the Normal Model. The process standard devia-
tion and estimation error are given in Table 3. Note that the difference between
the conditional MSEP in the ODP Model and in BF in the newest accident
year comes from the process variance. More precisely, it is due to the rather small
value ¢7, = 187 compared to 6 = 323 appearing in the corresponding process
variances. Similarly we have 57 = 347 for the corresponding term in Mack’s
model. The assumption of a constant dispersion parameter seems therefore
questionable.

The results of BF are very close to the results of BF Mack, especially for
older accident years. For newer accident years the process variance term con-
tains more parameter estimates 8j2 and fvf, respectively. The differences in the
estimation error are mainly due to the different estimation of the variances
Var(f,_,). The additional term Var (i) Var(f,_;) in Mack’s formula for the
estimation error is negligible compared to the other terms.

6.2. Motor Liability Insurance

The data from motor liability are given in Table 6 and Table 7 in Appendix B.
Note that the observations C,, C,,and C,; are missing. But Table 7 is not
really an incomplete triangle because C,;, j=2 and C;;, j= 1 contain all
claims of accident years 0 and 1, respectively, that is, also the closed one’s.
The results obtained with the data from Table 7 are given in Table 4. We apply
the estimators suggested in Section 5 and obtain the estimate CoVa () = 9.47%.
The reserves are calculated using formula (2.2) with the diagonal claims pay-
ments given in Table 6. The BF reserves are rather high compared to the CL
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TABLE 4

MOTOR LIABILITY, INCURRED LOSSES:
ESTIMATED DEVELOPMENT PATTERN, RESERVES, CONDITIONAL MSEP!? AND COEFFICIENT OF VARIATION.

Dev. pattern ﬁ,f ; Estimated reserves msep'”? CoVa

i BF CL BF CL ‘usual’ BF BF CL BF CL
5 99.98% 100.01% 7236 7130 7130 948 926 | 13.1% 13.0%
6 99.90%  99.93% 11’504 11’337 11358 1’159 1’100 | 10.1% 9.7%
7 100.08% 100.12% 14’520 14’341 14’326 1322 1283 9.1%  8.9%
8 100.05% 100.12% 9’141 8’837 8’804 1952 1914 | 21.4% 21.7%
9 99.80%  99.93% 22’902 22274 22°297 2°931 2°847 | 12.8% 12.8%
10 99.80%  99.94% 26’574 25’870 25’888 3’166 3079 | 11.9% 11.9%
11 99.66%  99.83% 39’181 38’354 38’357 3°638 3’690 9.3%  9.6%
12 99.71%  99.90% 42’358 41°487 41°519 3’687 3’599 8.7% 8.7%
13 99.54%  99.78% 43398 42296 42’303 4’500 4’553 | 10.4% 10.8%
14 99.49%  99.79% 64401 63’116 63°092 5126 5275 8.0% 8.4%
15 99.57%  99.93% 71’833 70258 70°253 5765 5’897 8.0% 8.4%
16 99.29%  99.69% 90’656 88’897 88’864 6’373 6’549 7.0% 7.4%
17 98.91%  99.44% 102’764 100’412 100°425 7707 7824 7.5% 7.8%
18 98.72%  99.41% 90343 87°150 87°332 9092 8906 | 10.1% 10.2%
19 98.67%  99.53% 142’365 138’381 138’445 | 10693 10°738 7.5% 7.8%
20 98.36%  99.60% 142’585 136460 136’744 | 13’654 12’774 9.6% 9.4%
21 98.40% 100.04% 126’460 118°925 118’880 | 157938 14291 | 12.6% 12.0%
22 98.48% 100.48% 1257213 116’434 115704 | 18’159 15146 | 14.5% 13.0%
23 99.69% 102.21% 153’111 144’103 1417922 | 19740 17725 | 12.9% 12.3%
24 100.66% 101.41% 205’725 203’149 202’454 | 24’655 26’502 | 12.0% 13.0%
25 102.59% 101.49% 262’721 267’507 2677278 | 28535 33753 | 10.9% 12.6%
Total 1794990 1°746°719 1°743°375 | 61°926 64’813 | 3.4% 3.7%

and to the ‘usual’ BF reserves. Interestingly, the reserves obtained by the
‘usual’ BF method using the CL development pattern are close to the CL
reserves and even slightly lower. This means that the reason for the higher
reserves obtained with BF cannot be conservative a priori estimates ;, but is
rather the new BF consistent estimate of the development pattern. This exam-
ple shows, that the way how the development pattern is estimated in the BF
method can have a big impact on the resulting reserves. As already pointed
out previously, the usual way of simply using the CL development pattern is
not consistent with the BF philosophy.
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APPENDIX

A. Proofs

Inversion of the Fisher Information Matrix. In order to calculate the inverse
of the Fisher information matrix in (4.8), (4.25) and (4.31) we need to invert
a matrix of the form

ap+1 1 | 1
I agq+1 1 - 1
A = 1 1 a2+1 1 s
S
where ay, ay, ..., a;_; € R\ {0}. We number the rows and columns of A start-

ing from 0 and denote the entry in row j and column k by 4;,, 0<j, k< J -1,
thatis, 4;, =1+ a;1;;-,. We claim that

(A_lj,k:aij<]{j=k} da ) 0<],k<.]—1

where d = q, <1 +ZJ:1L).

Jj=0 a;

Proof. For 0 <j, k <J-1 we have

(A-A7Y, = :i 1+aj'1{_/:1}>ai<]{l=k}_da7?k>
aL_ 2 dak L= k}_%
=1y n +alk(1 —ff(jiiéﬁ 1))
= L=
where we used the definition of 4 in the last equation. 0

Proof of Equation (4.13). With g, =1 for j > J we have
Vaf(zi[:oﬁiﬂl—i)
2
(z{:oﬂiﬁkl‘)
X o Bl Var(@) + 2%, BioiBr-x Corr (i i) s CoVa (fi) s CoVa (fiy)
= 2
<Zf:0 ﬂiﬁlﬂ‘)

N I
CoVa’(Il;) = CoVa’ ( > ﬁ,ﬁ,,-) =
i=0
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62<25=0 B+ 22k ﬁl—iﬂl—kﬂi#kcorf(ﬁi,ﬂk))

(Z{:oﬂiﬁhz’)z
_ 2 (X0 Bri) =22 ek Bresbr-s st (1 = Corr (7 1))
(ZfzoﬂiﬁI—i)z . O

Proof of Remark 4.7. Estimating the a priori loss ratios with a moving aver-
age of the ultimate loss ratios over n years and assuming that v; = v and
Var(U;/v) = ¢%/v? yields the following formulas

n+i—1 []]

A~ A~ I=i

fi=vg ==L 0<is,

where U; denotes the ultimate claim amount for accident year i. For i < k it
follows with the independence of accident years

A 1 n+i—1 n+k—1 1 n+i—1 2 n+l_k 2
Cov<ui,uk>=QCov( > U Y u)=L'y pantizky
n I=i I=k nT o=k n

and since Var(z,;) = a’/n we obtain

Corr (i, i) = n-li—kl o> n—li—kl

n’c’ln n
O
B. Data
TABLE 5
INDUSTRIAL PROPERTY, CUMULATIVE PAYMENTS AND A PRIORI ESTIMATES ﬁ,-,

ilj 0 1 2 3 4 5 ultimate I

0 52’572 76’651 80°044 80’524 80’870 81°459 81°587 81°552

1 58’623 89’190 94°040 95°592 95’637 95’765 95’898 87°138

2 71°086  108°235 110’410 110’917 110’883 111°092 111°049 | 100°276

3 58’236 86’079 91°586 90°303 90’490 90’507 90’372 99°319

4 66’661 108’829 113’347 114’785 115656 115756 116’481 | 102°035

5 56’059 90’688 96’389 96’661 97°015 97’160 97°542 | 100’963

6 52’443 87°856 91’063 91’846 92’414 92’855 92’920 | 101’178

7 67’307 102’881 107’783 108’279 108’644 108’844 109’599 | 102’764

8 67°829 98’815 102°008 102’374 102’775 102868 102’792 | 111°570

9 69°259 100’684 104’879 106’717 106’602 106’668 114284
10 41714 66’880 69’390 69’697 69’869 113’055
11 54’717 82’924 86’781 89°270 102’519
12 46’429 79°564 86’174 96’879
13 55’001 95’511 98’517
14 52’630 97°041
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TABLE 6

MOTOR LIABILITY, DIAGONAL PAYMENTS.

i v,
0 268’392
1 286’310
2 2727781
3 341’679
4 337’137
5 381’388
6 399724
7 424’117
8 419°528
9 411°082
10 410’387
11 435’980
12 372’513
13 411°770
14 380’622
15 384’000
16 364’883
17 336’143
18 317’801
19 300’874
20 262’034
21 242’768
22 206’808
23 199°872
24 185’856
25 132’116
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