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ABSTRACT

We investigate the question how the development pattern in the Bornhuetter-
Ferguson method should be estimated and derive the corresponding conditional 
mean square error of  prediction (MSEP) of  the ultimate claim prediction.
An estimator of this conditional MSEP in a distribution-free model was given 
by Mack [9], whereas in Alai et al. [2] this conditional MSEP was studied in 
an over-dispersed Poisson model using the chain ladder development pattern. 
First we consider distributional models and derive estimators (maximum like-
lihood) for the development pattern taking all relevant information into 
account. Moreover, we suggest new estimators of  the correlation matrix of 
these estimators and new estimators of the conditional MSEP. Our fi ndings 
supplement some of  Mack’s results. The methodology is illustrated at two 
numerical examples.
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1. INTRODUCTION

The chain ladder (CL) and the Bornhuetter-Ferguson (BF) method [3] are still 
the most frequently used claims reserving methods in practice. For both meth-
ods it is assumed that there exists a development pattern gj, which is the same 
for all accident years. For the BF method there are, in addition compared
to the CL method, given estimates mi of  the expected ultimate claim of each 
accident year i, and the BF reserve of accident year i is obtained by multi-
plying mi with the ‘still to come percentage’ of accident year i according to the 
development pattern gj. Thus, one essential difference between the CL and the 
BF philosophy is that the BF method incorporates mi in the reserve estimate. 
Often, the CL development pattern is used for the development pattern in the 
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BF method. However, this is not consistent with the BF philosophy, as the CL 
development pattern disregards any information contained in the mi’s. 

Originally, both methods were established as purely pragmatic methods 
without an underlying stochastic model. Such a pragmatic approach allows to 
determine a point estimate of the claims reserve. However, in order to assess 
the uncertainties in this point estimate one needs an underlying stochastic 
model.

For the CL method Mack [8] presented such a stochastic model and a 
 corresponding estimator for the conditional mean square error of  prediction 
(MSEP) in 1993. For the BF method such models and estimators are com-
paratively new. In 2008, Mack [9] introduced a distribution-free model under-
lying the BF method and suggested estimators for the corresponding MSEP. 
Estimators of the MSEP for models related to BF were already derived earlier 
as, for instance, in England-Verrall [5] or in Neuhaus [10]. However, Mack’s 
model is probably the most general distribution-free model underlying the BF 
method. But this generality has also a drawback, namely, that many results in 
Mack [9] cannot be obtained in a stringent mathematical way and that one 
has to resort to pragmatic considerations and approximations.

Another approach was used by Wüthrich-Merz [13] and by Alai et al. [2]. 
Both studied the conditional MSEP in an over-dispersed Poisson (ODP) model 
where the development pattern is estimated by the CL development pattern.

In this paper we investigate the question how the development pattern
in the BF method should be estimated considering all relevant information 
and how the corresponding correlation matrix looks like. For this purpose we 
 consider stochastic BF models with parametric model assumptions for incre-
mental claims. In these models we are able to derive the maximum likelihood 
estimators (MLEs) as well as the correlation matrix of the MLEs and derive 
estimators of the corresponding conditional MSEP. In contrast to the usual 
approach in which the chain ladder development pattern is used, we implement 
the BF philosophy in the estimates of the development pattern by incorporating 
the a priori knowledge in this estimation. In our opinion the new estimates for 
the development pattern, the correlation matrix and the conditional MSEP 
should generally be used for the BF method.

Moreover, we show how the variance of the a priori estimates can be esti-
mated from the data. Finally, we apply our methods to real data from practice.

ORGANISATION OF THE PAPER

In the next section we introduce the notation and data structure. In Section 3 
we give the basic assumptions underlying the BF method and recall the model 
of  Mack [9]. In Section 4 we introduce three distributional models under-
lying the BF method and derive estimates for the conditional MSEP in these 
models. Conclusions and numerical examples are given in Sections 5 and 6. 
Technical proofs of the statements are provided in Appendix A.
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2. NOTATION AND DATA STRUCTURE

We denote the cumulative claims (cumulative payments or incurred losses) in 
accident year i  !  {0,  …,  I } at the end of development year j  !  {0,  …,  J} by 
Ci, j  >  0 and we assume that J  #  I. Let Xi, j  =  Ci, j   –  Ci, j  – 1 denote the incremen-
tal claims, where we set Ci,  – 1  =  0. In the sequel it is also useful to defi ne

 [ j,ik j .X X k I j J0 0
i

k

0
# # # #

=
] ,=, ,/

In general we denote the summation over an index starting from 0 with a square 
bracket. We assume that all claims are settled after development year J and there-
fore the total ultimate claim of accident year i is given by Ci, J. At time I we have 
information

 DI = {Ci, j : i  +  j  #  I,  j  #  J},

and our goal is to predict DI
c  =  {Ci, j :  i  +  j  >  I, i  #  I, j  #  J}. The outstanding 

loss liabilities for accident year i at time I are given by

 Ri = Ci, J  –  Ci, I – i ,  I  –  J  +  1  #  i  #  I, (2.1)

and the total outstanding loss liabilities of  all accident years are given by 
Ri .R = I

i I J 1= - +/

Remark 2.1. The ‘true’ outstanding loss liabilities are given by formula (2.1) only 
if Ci, j denote cumulative payments. For incurred losses Ci, j the outstanding loss 
liabilities are given by

 Ri = Ci, J  –  Ci, I – i + Ci, I – i  –  ,i i-IC paid , (2.2)

with Ci, j
paid denoting the cumulative payments of  accident year i up to devel-

opment year j . Note that the additional term Ci, I – i  –  ,i i-IC paid  is observable at 
time I and has no impact on the claims prediction problem and uncertainty. 
Therefore we only consider the outstanding loss liabilities as defi ned in (2.1). 
For incurred losses, (2.1) is often referred to as IBNR.

3. BF RESERVING METHOD

3.1. BF Reserving Method

The BF method goes back to Bornhuetter-Ferguson [3]. There are a priori 
estimates of the expected ultimate claim Ci, J given by

 mi   =   ni  qi,  (3.1)
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where ni denotes the premium of accident year i and where qi is an estimate of 
the expected ultimate loss ratio. The BF reserve is then given by

 Ri  =  mi (1  –  bI  –  i ), (3.2)

where 1  –  bI  –  i  is the estimated still to come factor at the end of development 
year I  –  i. In this paper we assume that the estimates mi are independent of the 
observations DI , which is for instance the case, if  these estimates represent an 
external expert opinion or if  they come from a pricing which is mainly based 
on common statistics of pooled industry-wide data. Note that mi is identical 
to an a priori estimate of the ultimate claim Ci, J, but that it is not its current 
predictor, which at time I is given by

 Ci, J  = Ci, I – i + Ri  = Ci, I – i + mi (1  –  bI  –  i ).

3.2. Basic Assumptions Underlying the BF Method

From the fundamental properties of  the BF method we derive some basic 
assumptions, which an underlying model should satisfy. These assumptions are 
motivated in Mack [9]. The independence assumption between the current 
claim amount Ci, I – i and the reserve estimate suggests that incremental claims 
within the same accident year i are independent. The independence between 
different accident years is a standard assumption which we also adopt here. 
Moreover, from the BF reserve estimate (3.2) it follows that a stochastic model 
for the BF method has to be cross-classifi ed of the type

 E [Ci, j ] = mi bj   or equivalently   E [Xi, j ] = mi gj ,

with = k 0=

j
.j kb g/  Since mi gj   =  (mi c) (gj  /c) for any constant c  >  0, the param-

eters mi and gj are only unique up to a constant factor. Without loss of gener-
ality one can therefore assume that g0  +  …  +  gJ  =  1. The sequence (bj)j then 
denotes the (cumulative) development pattern and (gj) j is the (incremental) 
development pattern. Further, we assume that the a priori estimates mi are 
unbiased for E [Ci, J ]. Hence we make the following basic assumptions for a 
stochastic model underlying the BF method.

Model Assumptions 3.1. (Basic Underlying Assumptions)

BF1 Incremental claims Xi, j are independent and there exist parameters 
m0,  …, mI, g0,  …,  gJ, with j =j 0= 1J g/  such that 

 E [Xi, j ] = mi gj ,  0  #  i  #  I  and  0  #  j  #  J.

 
BF2 The random variables mi are unbiased estimates for mi  =  E [Ci, J ].
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Mack’s Model: In addition to Model Assumptions 3.1 Mack [9] makes the 
following variance assumption

 Var(Xi, j )   =   mi  sj
2. (3.3)

Remark 3.2. Note that Mack’s model is a distribution-free model for the BF 
method. Since it is a very general model several approximations are used to 
estimate the prediction uncertainties.

Alai et al. Model: In addition to Model Assumptions 3.1 Alai et al. [2] assume 
that incremental claims Xi, j are ODP distributed. Prediction uncertainty is 
then studied within a MLE and generalized linear model framework, but by 
using the CL development pattern.

3.3. Estimation of the Development Pattern

In order to estimate the BF reserve and its conditional MSEP we need to 
estimate the development pattern gj, 0  #  j  #  J. In practice one often uses the 
CL development pattern

 j =
[

[

C
C

]

]

I k k

I k k

1

1 1

- -

- - +
f f f, where .k

k j

J

k
k j

J1

1

1
g - =

=

-

= -

-

,

,

k
CL 1-1-% %  (3.4)

However, the use of the CL development pattern is not consistent with the BF 
philosophy, as it disregards the information in the a priori estimates mi. If  the 
mi were known then the best linear estimate of gj under Model Assumptions 3.1 
and under the variance assumption (3.3) would be

 j
[ ]I j j-

[I j-

X
m

,

]
=g) ,

with m[k]  =  i 0= ,i
k m/  0  #  k  #  I. Therefore Mack [9] suggests initial estimates

 j
[ ]I j j-

[I j-

X ,

]
g m=) ,

and then applies manual smoothing such that the fi nal estimators gj sum up 
to 1. 

The above estimators are not the only ones consistent with the BF philosophy, 
and the restriction to linear estimators is possibly not optimal. An alternative 
estimator is obtained with the following reasoning: assume fi rst that we are 
given a full rectangle. Then an obvious estimator is

 
[ ]

[ ]

I

I j,

,
.C

X
j =

J
g
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Note that the gj automatically sum up to 1. As only the upper trapezoid DI 
is given, a natural idea is to replace the unknown Xi, j in the lower right tri-
angle of  DI by the BF predictors mi  gj resulting in the following system of 
equations

     
,

,

i

i j j

i

i

+

+
j

J ,i I i- l

, .
C C

X
j J0

i
I J

l I i
J

i I J
I

i
I j

i I j
I

0 11

0 1

m

m
# #=

+
=

-

= - += - +

=

-

= - +

g

g
g

` j/ //

/ /
 (3.5)

In order to investigate different estimators and the corresponding conditional 
MSEPs more precisely we consider explicit BF models with parametric assump-
tions for incremental claims Xi, j. All the models considered in the following will 
satisfy Model Assumptions 3.1 and the variance assumption (3.3). Hence they 
are all special cases of the model considered in Mack [9]. In these distribu-
tional models we are able to derive estimates (MLEs) of  the development 
pattern in a stringent mathematical way. Moreover, we fi nd explicit solutions 
for the correlation matrices of these estimators, which are needed to calculate 
the MSEP of the BF reserves. As we will see, in one of the models, the above 
estimator (3.5) turns out to be the estimator corresponding to the MLE, if  we 
replace the unknown mi by mi.

4. STOCHASTIC BF MODELS BASED ON PARAMETRIC DISTRIBUTIONS

4.1. Over-dispersed Poisson Model with Constant Dispersion Parameter

4.1.1. Model

In Model Assumptions 3.1 we have specifi ed the basic assumptions of the BF 
model. In the following model we assume that the Xi, j follow an ODP distribu-
tion with constant dispersion parameter.

Model Assumptions 4.1. (Over-dispersed Poisson Model)

P1 Incremental claims Xi, j are independent and there exist positive parameters 
f, m0,  …,  mI  and g0,  …,  gJ with j =j 0= 1J g/  such that Xi, j / f  +  Poisson
(mi gj / f). In particular, we have

  E [Xi, j ] = mi gj , 

  Var(Xi, j )   =   fmi gj ,

 where f is called dispersion parameter.

P2 The a priori estimates mi for mi  =  E [Ci, J ] are unbiased and independent 
from Xl, j for 0  #  l  #  I, 0  #  j  #  J.
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Remarks 4.2. 

– In the ODP Model the incremental claims Xi, j are required to be positive.
– Disregarding the mi, that is considering data DI only, the MLEs for the claims 

reserves and the development pattern are identical to the CL reserves and 
the CL development pattern gj

CL, see for instance Hachemeister-Stanard [6], 
Mack [7] or Schmidt-Wünsche [12].

– Alai et al. [2] used a similar model to derive an estimate for the conditional 
MSEP in the BF method.

– Note that we have not made any assumption on the dependence structure 
between the mi’s.

4.1.2. Estimation of the Development Pattern

We estimate the development pattern with the MLE method. In order to 
 calculate the MLEs we fi rst assume that the mi are known and then plug in
the estimates mi. The MLEs are best calculated using Lagrange multipliers. 
Note that in the ODP case the log-likelihood function for Xi, j is given by

 , ,i j i jjjf
f( ,logX X1

i i+ -log g- )mg g ,m`` j j

where g(·, f) is a normalizing function that does not depend on the parameters 
mi and gj. 

Remark 4.3. Multiplying the log-likelihood function by f, we observe that the 
MLEs for the gj’s do not depend on the dispersion parameter.

Neglecting the normalizing function g we obtain the Lagrange function with 
Lagrange multiplier k given by

 
 ,i j ( j j0 iL , , .log logX 1D J j i

i j I j

J

0
I

+ - + -
#+ =

g g m k),f k m g g=g` ` ej j o/ /

Observe that the last term comes from the normalization requirement 
j 1j 0= .=

J g/  For the MLEs gj we obtain the following equations 

 
,i j

jj
i

DL X
0

i

I j

0

I

2

2
- =

-

m k-
=

= ,gg
e o/

and therefore we fi nd the solutions

 
[ ]I j-

= +
[ ]I j-

.
X

jg m k
, j

 (4.1)
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From the side constraint it follows that

 j

DL
1 0

j

J

0

I

2

2
= - =

=

,k g/

which yields in view of (4.1) an implicit equation for k

 
[ ]I j- +m

[ ]I j-
1 0

X

j

J

0
- =

=
k .

, j/  (4.2)

From equation (4.2) it follows that k is the root of  a polynomial of  degree 
J  +  1. Since the gj need to be positive in the ODP Model and since m[I  –  j ] is 
decreasing in j we have the constraint k  !  (– m[I  –  J ], 3). In this interval there is 
a unique solution k by monotonicity (cf. Remarks 4.6).

Remark 4.4. We do not use the partial derivatives with respect to mi. This is 
not necessary since we already have the a priori estimates mi and therefore do 
not want to use MLEs for the mi .

Then, we replace the true (unknown) mi by the estimates mi and obtain the 
estimators 

 =
[ ]I j-

[ ]I j-m
X

jg k+

,
,

j
 (4.3)

where k fulfi lls the implicit equation 

 0j1 .
j

J

0
=

=

- g/  (4.4)

Theorem 4.5. The estimates (4.3) satisfy equations (3.5).

Proof. Observe that the gj’s defi ned in (3.5) satisfy the constraint j 1j 0= .=
J g/  

Therefore it is suffi cient to prove that the estimates gj defi ned in (4.3) satisfy 

 
j

0

j

[ ]I

i

,

i I j 1= - +

1 .
X

X
j J

[ ]I j
g
g

m
# #=

-

I
,

0

+ g
,

j /

From equation (4.3) we have k  = 
j

[I j-

g
X ], j  –  m[I  –  j ] for 0  #  j  #  J and conclude

 
j j j

j

0

[ ],I j j- j

[ ] [ ] [ ]I I I

i
[I j-

=
i I j 1= - +

, , ,

[ ] [ ]I I

.
X X

X

X1 1

g [ ]

X

I j
],g

g
m g m m g mk+

=
+

=
+

-

I
-

0 0 0

gj
e fo p /

This proves the claim. ¡
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Remarks 4.6.

– If  instead of mi the data of the fully developed rectangular was given, then 
the MLE of gj would be

  
[ ],

[ ]

I

I
j

, j

J

X
g = C

MLE ,

 and would not depend on the mi at all. This shows that in the ODP Model 
the MLEs are not linear in the observations Xi, j. Given DI, the mi’s appear in 
the MLEs only to the extent that the entries Xi, j in the lower right triangle 
are not known and fi lled up with the BF predictors mi  gj.

– From Theorem 4.5 it follows that the estimators gj obtained by replacing the 
unknown mi in the MLEs gj by mi satisfy equations (3.5). However the easiest 
way of fi nding the solution of equations (3.5) is to calculate the estimators 
gj by means of equation (4.3). There we only need to calculate k, which can 
be done quite easily by starting with k  =  0, that is with the raw estimators

  j
[ ]

[ ],

I j

I j

-

-

m
jX

g =( )0 ,

 and then by increasing or decreasing k until the side constraint

  j = 1f
j

J

0
g

=

( )k = /

 is fulfi lled. Note hereby that in the interval (– m [ I  –  J ], 3) the function f (k) is 
strictly decreasing and consequently the side constraint f (k)  =  1 has a unique 
solution. Of course bj is then estimated by bj   =  k 0= ,gk

j/  0  #  j  #  J, and sat-
isfi es bJ  =  1.

– From the estimators (4.3) we also see how a mathematically founded smooth-
ing from the raw estimators gj

(0) to the adjusted estimators gj looks like in 
the ODP Model. If  we write

  j jj c ( )0g g=

 then the ‘correction factors’ cj are given by

  j

m

[

[

I j

I j

-

-

m ]

]
= .c k+

 Since m [ I  –  j ] is decreasing in j, cj is decreasing in j for k  >  0 and increasing 
for k  <  0. For instance, if  k  <  0 then the correction factor is greater for the 
late development years than for the newer ones.

– Consider the effect of  conservative a priori estimation. If  we increase
some of the a priori estimates mi then k is decreasing because of the side 
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constraint (cf. (4.3)-(4.4)). We denote the new estimates by mi
c, gj

c and kc. 
For the change in the denominator of gj we then have 

  [ ]I k- [ ] [I j I j- -[ ]I k- 0 ,j k J<
cm m k k m m k k# # #- + - - + -] ,cc c

 and because of the side constraint there must be an index 0  #  l  <  J such that 
for all j  #  l  <  k we have

  [ ] [ ] [ ] [ ]I k I k I j I j- - - -0m m k k m k k# #- + - - + -c cm .c c

 It follows that gk
c  $  gk for all k  >  l (in the tail) and for j  #  l we have gj

c  #  gj. 
This means that more weight is given to the tail and the effect of conservative 
a priori estimation is therefore reinforced by the estimates of the development 
pattern. Note that in the case where we only increase mi with i  #  I  –  J the 
estimates of the development pattern remain unchanged (cf. (3.5)).

– The quality of the BF estimators strongly depends on the quality of the a 
priori estimates mi. If  jgJ

j 0=
( )0/  deviates much from 1 and thus k deviates 

much from 0, then this could be an indicator that the a priori estimates 
might be biased. As a further check one could estimate the development 
pattern and the reserves by disregarding the a priori estimates mi. In the 
OPD Model with a full development triangle or trapezoid the resulting 
MLEs are then identical to the CL estimates. If  for most accident years the 
CL predictors for the ultimate claims were either higher or lower than the 
BF predictors, this would be a strong indicator that the a priori estimates mi 
might be biased and that one of the basic assumptions of BF is violated. 
Sometimes one then adjusts the a priori estimates mi (see e.g. the Cape Cod 
method in Wüthrich-Merz [13] or Radtke-Schmidt [11], which goes back to 
Bühlmann-Straub [4]). There is no problem to calculate the BF reserves with 
‘a posteriori’ adjusted mi. But this means that the mi are no longer independ-
ent of the data DI, which should be taken into account for the estimation 
of the MSEP and is beyond the scope of this paper.

– A tail development gJ + 1 can be incorporated by replacing the side constraint 
in the Lagrange function by jj 0=

J g/   =  1  –  gJ + 1. The estimate gJ + 1 needs
to come from outside together with an estimated covariance structure
Cov\(gJ + 1,  gj ), 0  #  j  #  J  +  1, because there is no data available for the tail.

Finally, we need to estimate the dispersion parameter f. As in Wüthrich-Merz 
[13] we use Pearson residuals to estimate f. The Pearson residuals are given by 

 
j

j,i j

i

i
=R

X
,i

-

m g
m g

j ,

with E [R2
i, j ]  =  f. To estimate Ri, j we replace mi and gj by estimates, but we need 

to be cautious here. We want to estimate the variance of the Xi, j and therefore 
we are only interested in the process variance term and not in the parameter 

94838_Astin41-2_01_Saluz.indd   28894838_Astin41-2_01_Saluz.indd   288 2/12/11   08:192/12/11   08:19



 THE STOCHASTIC BORNHUETTER-FERGUSON CLAIMS RESERVING METHOD 289

estimation error. The uncertainty of the external estimate mi is considered in a 
different step. As a consequence we have to estimate mi and gj from the data in 
order to obtain an estimate for f. We use the MLE method to gain data based 
estimates for mi and gj. As mentioned in Remarks 4.6 in the case of ODP data 
in a full triangle or trapezoid the MLEs of  mi and gj coincide with the CL 
estimates. Therefore we estimate Ri, j with

 
j

j,i j

,

,

i J

i J-
R

C

CX
,i j g

g
=

CL CL

CL CL

,

where the CL development pattern gj
CL was defi ned in (3.4) and where ,i JC =CL  

i, j I i= -
J 1-

j .C I i- f%  An estimate for f is then given by

 f1  
i j I#+ ,i

I

R
= pe e -

2
j

D
,

/
 (4.5)

where | DI  | is the number of observations in DI and where p  =  I  +  J  +  1 is the 
number of estimated parameters.

In order to quantify the uncertainties in the BF predictors Ci, J and 
,ii I J 1= - +

I C J/  we consider the conditional MSEP. Given information II , the 
conditional MSEP of a predictor X of  a random variable X is defi ned by

 
X ( 2X Xmsep [(E II

e= -e X) ) .I ]I

If  in addition the predictor X is II -measurable we obtain

 2(X I IX Xmsep ar( ) ( [ ] ) .V X E X
I

e e= + -e )I I I

For the calculation of the conditional MSEP we therefore need to consider 
second moments and covariances of the estimates.

4.1.3. Covariance Matrix of the Estimated Development Pattern

In this section we consider the estimation of the covariance matrix of the gj’s. 
A well-known result from statistics is that MLEs are asymptotically unbiased 
and multivariate normally distributed. Moreover, the asymptotic covariance 
matrix is given by the inverse of the Fisher information matrix. By defi nition, 
the entries of the Fisher information matrix H(g) are given by 

 ,j

D D

j
k

k

I I( , 0 , 1,H E
l l

j k J
2

# #
2 2

2
= -g) g g

= G

where lDI
 is the log-likelihood function. In the ODP case the log-likelihood 

function is given by 
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/

/ / /

where r contains all remaining terms, which do not depend on g  =  (g0,  …,  gJ  –  1). 
Note that the last line of the above equality comes from the normalizing con-
dition jj 0= 1.=J g/  For 0  #  j  #  J  –  1 we obtain the diagonal elements
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i j i

i j i
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J

J
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J
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=
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=
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=
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=
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=
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 (4.6)

Analogously, for 0  #  j  <  k  #  J  –  1, we have the off-diagonal terms

 ( , ,k j
j J

D D [ ]I J-

f
) .gH Ej k

k

I I
2

2 2

2
= = =

ml l
g( g gH )g = G  (4.7)

Hence, we write the Fisher information matrix as follows
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1

1

1
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[ ]

[ ]
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-

-

-

-
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+
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+
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For the entries of the inverse of the Fisher information matrix we obtain (see 
Appendix A)

     
l

,j {
k

-
j

/k = 1
[ ]I l-

}j k=
[ ]I j-

[ ]I k-f
( ( )

/
, , .j k J0 1

l

1

0

# # -
-

=
m g m

g m
JH g

g
) f p

/
 (4.8)

We now assume that the mi are close to the true mi and therefore the covari-
ances Cov (gj,  gk) are close to the covariances of the true MLEs gj (cf. (4.1)). 
With the asymptotic MLE approximation we then obtain 
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 j ,j
1-

kov( , ) ( ( ) ,C Hkg g . )g

and of course the covariances of gJ  =  1  –  jj 0=
J 1 g-/  are obtained by linearity. 

Replacing the parameters gj, f and m[I  –  j ] by their estimates gj (see (4.3)), f1 (see 
(4.5)) and m[I  –  j ] (see Model Assumptions 4.1) we arrive at the following esti-
mates for the covariances

 j
j

/
k

k {, -m [ ]I j-

g }
l 0=

1
f

( ) , 0 , .Cov j k J
[ ]

[ ]

l I l

I kg
g

g m
g m

# #=
-

-

Jj k=

/t

f p\
/

 (4.9)

This is clear for 0  #  j, k  #  J  –  1 and also holds for 0  #  j, k  #  J.
Note that

 j
[ ]

[ ]

I j

I j

-

-

m
,

=
jX

g)

are uncorrelated with variance

 j
[ ]I j-m

jf
Var( =)g )

g

Hence the off-diagonal elements and the second term in (4.9) come from the 
side-constraint that the estimators have to sum up to one.

4.1.4. Conditional MSEP

In this section we derive estimates for the conditional MSEP of the BF predic-
tors Ci,J  =  Ci,I  –  i  +  mi (1  –  bI  –  i) and ,i

I
i I J 1= - + C j/  under Model Assumptions 4.1. 

Let m 1  =  (m0,  …,  mI ) and let II  =  s(DI, m 1) denote the s-fi eld containing the 
information at time I. Due to the II-measurability of mi and bI  –  i we have

b
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msep ( ) ( )

( ) .

E X

E X

j I

J

I i I

j I i

J

i
j I i

J

i I i

1

2

1

2

1

2

J
m

m

= -

= - + - -

= -
-

= - + = - +
-m g

+
I 1
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With the independence of the Xi, j and the defi nition jj I i 1= - + 1 I i
J b= - -g/  

we obtain 

 2
I i-b,i j,i JC

i

e,i I
biarVj I i 1= - + I i-msep ( ) ( ) ( ( ) )) .X

Process Variance ( Estimation Error (EE )

iJ

i

m= + - - -mI (

)

J 1
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C 1
1 2 344444 44444 1 2 34444444 4444444
/
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The process variance refl ects the randomness of the Xi, j and the estimation 
error describes the uncertainty in the parameter estimates. 

Process Variance. For the estimation of  the process variance recall that 
Var(Xi, j)  = f mi gj according to Model Assumptions 4.1. If  we plug in the 
parameter estimates we obtain the estimator

 j,i ji .bf f( ) ( )P VarV X
j I i

J

j I i

J

i i I i
1 1

g = -
= - + = - +

-1m m= = t t\ \/ /

Estimation Error. Given II, the term ( mi (1  –  bI  –  i )  –  mi (1  –  bI  –  i))
2 is an unknown 

constant. In order to estimate this constant we rewrite it as follows

b

b bi i

I i I i

I i I i

- -

- -

2

i

i i i+
2 b-

m

i

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ),2 1

i I i i i i I i I i

I i I i I i I i

2 2

2 2

m m b b

m m b

- - - = - - + -

= - - + - - -

- - -

- - - -

m b m

m m m m

1 11

1 b

b

b

_ _i i

and estimate the unknown terms ( mi  –  mi )
2, ( bI  –  i  –  bI  –  i )

2 and ( mi  –  mi ) ( bI  –  i  –  bI  –  i ) 
by taking the mean over all possible II, that is, we study the fl uctuation of mi 
and bI  –  i around the true values mi and bI  –  i, respectively. If  we neglect the 
dependencies of the mi and the bj we obtain with the unbiasedness of the mi 
and the (approximate) asymptotic unbiasedness of the bj the following estima-
tor for the estimation error

 i
2 bb i( ) ( ) ( )EE Var VarI i I im m= - +- -i

2 ,1\ \ \

where i( )Var m\  and b( )Var I i-
\  are estimates for the variances Var (mi) and 

Var(bI  –  i), respectively. The variance of the bI  –  i is estimated using the Fisher 
information matrix

 jb kI i-( )Var Cov
0 ,j k I i# # -

( ,g g ,)=\ \/  (4.10)

where the covariances j k,Cov ( )g g\  are given in (4.9).
It remains to estimate the variances of the a priori estimates mi. An actuary 
being able to deliver a priori estimates mi is often also able to make a statement 
about the precision of these estimates. In this case beside the mi’s there are also 
given a priori estimates of Var (mi). If  this is not the case we show how Var (mi)
can be estimated from the data. To this end we assume that the mi have a con-
stant coeffi cient of variation CoVa(mi)  /  c and that the correlation Corr(mi, mk) 
can be estimated by

 
e

i k( )
, and

0, else
Corr

i k I k n0 <n
n i k

# #

=

e- -

,
,i

m m
-,

*\  (4.11)

where 0  #  n  #  I.
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Remark 4.7. In the case where the premiums ni and the variances of the ulti-
mate loss ratios are constant, we obtain the above formula for the correlation 
Corr\( mi,  mk) if  the a priori loss ratios are estimated with a moving average of 
the ultimate loss ratios over n years (cf. Appendix A). Observe that we do not 
assume that the a priori estimates mi are independent.

In the numerical examples we will use formula (4.11) with n  =  10, assuming 
that information more than 10 years ago does not contribute to the new fore-
cast. We defi ne the aggregated claim amount at time I by 

 ,i ,iI J C I i- .C C
i

I J

i I J

I

0 1
=

-

= - +=

+/ /

The corresponding pure risk premium is given by

 .b mI i-[ ]E
1

I I i
i

I J

i I J

I

0
P = =

=

-

= - +
iC m +/ /  (4.12)

Moreover, we defi ne the observed loss ratio at time I by

 I
I

I I I

P P
Q

P
= =

PI I

C C
,

where PI is obtained from (4.12) by replacing all mi by the a priori estimates 
mi. With a fi rst order Taylor approximation around PI we obtain

 I I IP P P[ / ] 1 and Var( / ) ( ),VE 2
P PI I. . aCo

and therefore with the independence of PI and CI we conclude that E [QI ]  . 1. 
For the variance Var(QI) we use the following general decomposition for the 
product of independent random variables X and Y

 .Var( ) [ ] Var( ) [ ] Var( ) Var( )Var( )E X Y E Y X Y2 2
= + +XXY

Henceforth we have with the Taylor approximation

 I I II II PVar( ) Var( ) / a ( ) Var( / )Var( / .VQ C CI I
2 2

P P P+ +PCo ).

Neglecting the last term and asserting positivity we arrive at the following 
estimator 

 IIP P( ) , ( ) ( )Co a Var VarmaxV Q C0I = - I/ 2 ,2
& 0\ \ \ X

where 
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Note that if  the mi were fully correlated then CoVa(mi)  =  CoVa(PI ). In general 
we obtain with the calculation provided in Appendix A
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 (4.13)

where we set bj  =  1 if  j  >  J. The variance is then estimated by

 ( i $ ic)Var 2= 2m m ,\  (4.14)

where c2 is obtained from (4.13) by replacing the unknown CoVa2 (PI ), 
Corr (mi, mk) and the parameters by their estimates. 

Thus, we have derived the following estimate for the conditional MSEP of 
Ci, J :

Estimate 4.8. (MSEP single accident year) Under Model Assumptions 4.1 the 
conditional MSEP of the BF predictor Ci, J is estimated by

 +
2b b-,i i j iC JI if( ) ( ) (1 ) Var( ),msep Var

1j I i

J

I i I i,i
m+e

= - +
- -mm

J

2C g=I
t\ \ \/

where bVar( )I i-
\  is given in (4.10) and i( )Var m\  is given in (4.14). For the  estimates 

mi,  gj and f1 see Model Assumptions 4.1, equation (4.3) and (4.5), respectively.

Our next goal is the derivation of an estimate of the conditional MSEP for 
aggregated accident years. We have
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As above using the II measurability of bj and mi we obtain for i  <  k
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With the independence of the incremental claims Xi, j we see that the covari-
ance term is equal to zero and given II the last expression is an unknown 
constant. In order to estimate this unknown term we proceed as above and 
defi ne

 b
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which is estimated by 

 b b- - b bi ikI k I k- -I i-( ) ( ) ( , ) ( , ),EE Cov Covk I im m= + -,i 1 m mk 1\ \ \

where 

 i i ik k k( , ) ( , )Cov Corr Var Varm m=m m m m ,^ ^h h\ \ \ \  (4.15)

and

 j lbI i- I k- 1 , ,Cov Cov I J i k I
l

I k

j

I i

00
# #= - +

=

-

=

-

, ( , ),g gb` j\ \//  (4.16)

(see (4.14) and (4.9)).
Putting everything together we obtain the following estimate for the con-

ditional MSEP:

Estimate 4.9. (MSEP aggregated accident years) 
Under Model Assumptions 4.1 the conditional MSEP for aggregated accident 
years is estimated by
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Remark 4.10. In the literature one often calculates the conditional MSEP 
given DI instead of II. This corresponds to a different interpretation. If  the mi 
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are considered as observations one should condition on II otherwise if  the mi 
are considered as a priori information one should condition on DI. That is, in 
the latter case we are in a Bayesian framework, where mi are random variables 
with an a priori distribution and mi is the expected value of mi. In the fi rst case 
mi is treated as an ‘expert observation’. In the case where we condition on DI 
we obtain for single accident years
 

2
I i-b,i j,i JC
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e I,i
biVarj I i 1= - + I i- Dmsep ( ) ( ) ( ( ) )) .X ED
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/

In order to estimate the last term we consider the mean over all possible DI 
(we could also use this procedure when we condition on II and the resulting 
estimates differ slightly).
With the approximation E [ mi(1  –  bI  –  i)]  .  mi (1  –  bI  –  i  ) we obtain
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and estimating the last term we obtain the following estimate for the estima-
tion error

 b bi ii ( ) Var( ) (1 ) Var( ) .EE Var I i I i
2m m m= - + -- -i + 12

` j\ \ \ \

We therefore have the additional term i bI i-Var( ) Varm (1 )-\ \  in the estimation 
error. Similarly we have for aggregated accident years

 b bi i I k- IbkbI i I- - D( ) ( ) ( ) ( )EE E 1 1 1,i k I i k k= - - - - - -- m m1m m ,_ _i i8 B

which is estimated by

b b b bi i ik k kI i- I k- ( , ) ( , ) ( , ) .EE Cov Cov Cov1 1 I i I km m m= - - + + - -,i k m m m` ` `j j j\ \ \ \

The resulting formulas for the conditional MSEP have the same form as
the estimates derived in Mack [9] (but the estimates of  the parameters and 
covariances are, of course, different). 

4.2. General Over-dispersed Poisson Model

4.2.1. Model

In Model Assumptions 4.1 we have assumed that the dispersion parameter f is 
constant over all development years. The assumption of a constant dispersion 
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is quite restrictive and often not appropriate in practical applications. Therefore 
we consider in this subsection the general case, where the dispersion parameter 
varies between development years. 

Model Assumptions 4.11. (General Over-dispersed Poisson Model)

GP1 Incremental claims Xi, j are independent and there exist positive param-
eters f0,  …,  fJ, m0,  …,  mI and g0,  …,  gJ with jj 0= 1=J g/  such that
Xi, j /fj  +  Poisson ( mi  gj / fj ). In particular, we have 

  
j i

,

,

i j

i j

i j

jf
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E X

X

=

=

m

,

,

m

g

g
  
 where fj is the dispersion parameter for development year j.

GP2 The a priori estimates mi for mi  =  E [Ci, J ] are unbiased and independent 
from Xl, j for 0  #  l  #  I, 0  #  j  #  J.

4.2.2. Estimation of the Development Pattern

As in Section 4.1 we estimate gj with the MLE method using Lagrange multi-
pliers. The Lagrange function is given by

j
,i j i ij j jJ kDL

f
, , log logX1 1

i j I j

J

0
0

I
+ - + -

#+ =

g k m,f m= g g g ,g` `` ej j j o/ /

 (4.17)

where k is the Lagrange multiplier. For 0  #  j  #  J the MLE gj is the solution of
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and hence
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 (4.19)

Remark 4.12. Note that (4.19) has the same structure as (4.1) with respect to 
the normalized random variables Zi, j  =  Xi, j / fj.

With the side constraint we obtain the following implicit equation for k
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It remains to estimate mi and fj. 
For mi we use the a priori estimates mi. In order to estimate the dispersion 

parameters fj we consider Yi, j  =  Xi, j / mi with 

 
j

, ,i j i j j
i i

fYj
j

Y and Var( )E
2

= = =m m[ ]
s

g
g

,

where sj
2  =  fj  gj. An unbiased estimate for sj

2 is given by

 ,i jj i YY -ms ( ) , 0 ,I j j J j I1
0i

I j

j
2

!# #=
-

=

-

,2 /  (4.20)

with ,i jjY mi
I j

0=
- .

[

i=
m Y
I j- ]

/  If  J  =  I we use an extrapolation to obtain an estimate 
for sJ

2, see Mack [8]. The dispersion parameter fj can then be estimated by

 
j

j
jf g

s
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2

,t  (4.21)

where sj
2 is obtained from sj

2 by replacing the unknown mi’s by the a priori 
estimates mi and where
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with 
m
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tc m' 1  given by the implicit equation 
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Note that (4.21) is an implicit equation since jft  also appears in the equation 
for gj. If  we plug in jft  =  sj

2 / gj in (4.22) we obtain
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and solving for gj we get
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With the side constraint jj 0= 1J g =/  we arrive at the following explicit solution
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The cumulative development pattern is estimated by kj k 0= ,gb =
j/  0  #  j  #  J.

Remarks 4.13.

– For the case of a constant dispersion parameter f we cannot use the above 
estimation procedure for f. In that case sj

2 / gj   /  f but sj
2 /  gj might not be 

constant over all j . Moreover, if  f is constant over all development years, 
it does not make sense to consider the development years j separately for 
the estimation of f.

– The estimators (4.23) do not fulfi ll equations (3.5) anymore.
– Contrary to the ODP Model, the MLEs based only on the observed data 

DI and disregarding the mi are no longer identical to the CL forecasts. Instead, 
the MLEs mi

MLE and the modifi ed ‘development pattern’ bj
mod  = kk 0= f/ kgj/  

are proportional to the CL forecasts and the CL development pattern 
obtained from the modifi ed data Xi, j  / fj.

– Denote again by

  
[ ]I j-

j
, j

m[ ]I j-

X
g =( )0

 the raw estimates. Then we again see how the smoothing from these raw 
estimates to the adjusted estimates gj looks like. Here the smoothing correc-
tions are additive.

– A big deviation of jj 0= gJ ( )0/  from 1 could be an indicator that the a priori 
estimates might be biased. 

– A tail development gJ  +  1 can be incorporated in the same way as described 
in Remarks 4.6.

4.2.3. Covariance of the Estimated Development Pattern

As in Section 4.1 the covariance matrix of the gj’s can be estimated using the 
Fisher information matrix. The log-likelihood function Dl I  is given by
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 (4.24)

where r contains all remaining terms, which do not depend on g  =  (g0,  …,  gJ  –  1). 
Analogously to (4.6) we obtain for 0  #  j  #  J  –  1
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and for 0  #  j  <  k  #  J  –  1 we get analogously to (4.7)

 ( ,k ,j
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D D
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) ( .H H E [ ]
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I J
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2

2

2
= = =

-ml l
)g g g g= G

The inversion of the Fisher information matrix is provided in Appendix A and 
we obtain for 0  #  j, k  #  J  –  1 the approximation
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.
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 (4.25)

By linearity we obtain analogous formulas for jJ j 0=1 .J 1g = -
- g/  Replacing 

the unknown parameters m [I  –  j ], gj and fj by their estimates m [I  –  j ] (see Model 
Assumptions 4.11), gj (see (4.23)) and jft  (see (4.21)) we obtain the following 
estimates for the covariances
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 (4.26)

For bI  –  i we get

 jb lb( , ) ( , ), 1Cov Cov I J i k II i I
l

I k

j

I i

k
00

g g # #= - +- -
=

-

=

-

.,\ \//  (4.27)

In the next section we give estimates for the conditional MSEP of  the BF 
predictors Ci, J  =  Ci, I  –  i  +  mi (1  –  bI  –  i ) and ,i Ji I J 1= - + CI/  under Model Assump-
tions 4.11.

4.2.4. Conditional MSEP

The derivation of an estimate of the conditional MSEP for the BF predictor 
Ci, J in the General ODP Model is analogous to Section 4.1.4. We obtain the 
following estimate for single accident years:

Estimate 4.14. (MSEP single accident year)

Under Model Assumptions 4.11 the conditional MSEP of the BF predictor Ci, J 
is estimated by

 j b 2
+,i i i bJ jC f( ) Var( )(1 ) Var( ),msep

1
C

j I i

J

I i i I i,i I
m m m= -e

= - +
- -J

g + 2
I

t\ \ \/

where bVar( )I i-
\  is given in (4.27) and iVar( )m\  is given in (4.14).
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Using the same ideas as in the derivation of Estimate 4.9 we obtain the fol-
lowing estimate for aggregated accident years:

Estimate 4.15. (MSEP aggregated accident years)

Under Model Assumptions 4.11 the conditional MSEP for aggregated accident 
years is estimated by

 
b b
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where bb( , )Cov I i I k- -
\  is given in (4.27) and i k( )Cov , mm\  is given in (4.15).

4.3. Normal Model

4.3.1. Model

As mentioned in Remarks 4.2 the ODP Model can only be used if  the incre-
mental claims Xi, j are positive, which is often appropriate for claims payments. 
In contrast, incurred losses increments are sometimes negative and therefore 
an ODP model is not suitable in this case. The following model does not have 
these restrictions.

Model Assumptions 4.16 (Normal Model)

N1 Incremental claims Xi, j are independent and normally distributed and there 
exist parameters m0,  …,  mI, s0

2,  …,  sJ
2 and g0,  …,  gJ with jj 0= 1J

=g/  such 
that 

  
j

,

,

i j

i j

i

i

j ,g[ ]

Var( )

E X

X

=

=

m

m s ,2

 where sj
2 is strictly positive.

N2 The a priori estimates mi of mi  =  E [Ci, J ] are unbiased and independent 
from Xl, j for 0  #  l  #  I, 0  #  j  #  J.

In the following we derive the MLEs and the corresponding conditional MSEP
under Model Assumptions 4.16.

4.3.2. Estimation of the Development Pattern

As in the ODP Model we fi rst assume that the mi are known and calculate the 
MLEs for the gj using Lagrange multipliers. In the Normal Model this procedure 
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allows us to fi nd explicit solutions for the estimates. The Lagrange function is 
given by 

 -
j2

,i j

i

i j
j,DL ( ,

( )
,

X
1J

i j I j

J

0 2

2

0
I

g
-

+
#+ =m s

k) =
g

k
m

,f - gg e o/ /

where k is the Lagrange multiplier. For 0  #  j  #  J we have
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With the side constraint 
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We insert k in equation (4.28) and obtain the MLE for gj
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The mi and sj
2 in formula (4.29) are unknown and have to be replaced by esti-

mators. For mi we insert mi and sj
2 can be estimated analogously as in the 

General ODP Model, that is, by replacing the mi in formula (4.20) by mi . 

Remark 4.17. Using MLEs for sj
2 results in a system of equations for gj and 

sj that is only iteratively solvable.

We arrive at the fi nal estimate 
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which is exactly the same estimator as in the General ODP Model (see (4.23)).
The cumulative development pattern is estimated by bj  =  kgk 0= ,j/  0  #  j  #  J.

Remark 4.18. A tail development gJ  +  1 can be incorporated as described in 
Remarks 4.6.

4.3.3. Covariance Matrix of the Estimated Development Pattern

Since the estimated development pattern is the same as in the General ODP 
Model we could use the estimated covariance matrix of  the gj derived in 
 Section 4.2.3. However, the gj are estimated with the MLE method and
for consistency with the derivations in the other models we use the Fisher 
information matrix to estimate the covariance matrix of the gj. The likelihood 
function for the Normal Model is given by

j
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where r contains all remaining terms, which do not depend on g  =  (g0,  …,  gJ  –  1). 
For the entries of  the Fisher information matrix we get analogously to Sec-
tion 4.1.2.
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where 0  #  j, k  #  J  –  1. With the calculation provided in Appendix A we obtain 
the entries of  the inverse of  the Fisher information matrix and for 0  #  j, 
k  #  J  –  1 we get the approximations
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 (4.31)

By linearity we obtain the same formulas for the variance and covariances
of gJ. By replacing the unknown parameters m[I  –  j ] and sj

2 by their estimates 
we obtain exactly the same formulas as in the General ODP Model, that is,
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 (4.32)

The covariances of the bI  –  i are estimated by
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Remark 4.19. The coincidence of  the estimated covariance matrices in the 
General ODP Model and the Normal Model is of course meaningful, however 
not obvious because of the approximations used.

In the next section we give an estimate for the conditional MSEP of the BF 
predictor in the Normal Model.

4.3.4. Conditional MSEP

Since the estimates in the Normal Model coincide with the estimates in the 
General ODP Model we also obtain the same estimates for the conditional 
MSEP:

Estimate 4.20. (MSEP single accident year) 

Under Model Assumptions 4.16 the conditional MSEP of the BF predictor Ci, J 
is estimated by 

 j +b,i iii
I
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where bVar( )I i-
\  is given in (4.33) and iVar( )m\  is given in (4.14).

For aggregated accident years we obtain in the Normal Model:

Estimate 4.21. (MSEP aggregated accident years) 

Under Model Assumptions 4.16 the conditional MSEP for aggregated accident 
years is estimated by 
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where b b( , )Cov I i I k- -
\  is given in (4.33) and i k( , )Cov m m\  is given in (4.15).

Remark 4.22. Analogous estimators can be derived in the more general Tweedie’s 
exponential dispersion family models, similar to Alai-Wüthrich [1].
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5. CONCLUSIONS AND REMARKS

In this paper we have investigated the question how the development pattern 
should be estimated in the BF method and we have derived the corresponding 
MSEP of the ultimate claim prediction. For this purpose we have considered 
three distributional models. For these models we have been able to fi nd estimators 
for the development pattern gj which are consistent with the BF philosophy. 
Moreover, we have found formulas for smoothing from the raw estimates gj

(0) 
to the fi nal estimates gj and we have been able to fi nd explicit formulas for the 
correlation matrix of these estimates in terms of the inverse Fisher information 
matrix. 

The ODP Model is presumably not an adequate model for most practical 
cases. The General ODP Model is a reasonable model for claims payments 
modelling and the Normal Model can be used for incurred claims studies. For 
the latter two models we have found the same estimators. But also in the case 
where the distributional assumptions are not fully satisfi ed, we suggest applying 
these estimators because currently there are no estimators available from which 
we know that they perform better. Therefore we suggest 

– to estimate the development pattern by means of formula (4.30)
– to estimate the correlation matrix of these estimates by means of formula 

(4.32)
– to estimate the conditional MSEP of the ultimate claim by means of Estimate 

4.20 (single accident year) and Estimate 4.21 (aggregated accident years).

6. NUMERICAL EXAMPLES

The data for the numerical examples are from a Swiss insurance company and 
for confi dentiality purposes the fi gures are scaled with a constant. The a priori 
estimates are obtained from pricing. To be more precise mi corresponds to the 
initial forecast of the expected ultimate claim at the end of year i  –  1 and there 
is not done any repricing afterwards. We consider claims payments data from 
industrial property insurance and incurred losses data from motor liability 
insurance. Industrial property insurance is a short tailed line of business mean-
ing that the development is usually fi nished after short time. On the contrary, 
motor liability is a long tailed line of business, that is, we have longer settlement 
periods.

For comparison we also give the results obtained with the CL method.
The conditional MSEP for the CL method is calculated according to the dis-
tribution-free model by Mack [8]. 

6.1. Industrial Property Insurance

Let us fi rst consider data from industrial property, which is given in Table 5 in 
Appendix B. We apply the estimators suggested in Section 5 and refer to them 
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as BF in the following tables. In this example we additionally give the results 
obtained in the ODP Model (BF ODP) and the results obtained using Mack’s 
model [9] (BF Mack). With the trapezoid of claims payments we obtain esti-
mated coeffi cients of variation of the a priori estimates of i( )CoVa m\  =  5.25% 
in the ODP Model and i( )CoVa m\   =  4.56% for BF. The resulting development 
patterns and the reserves are given in Table 1. The development patterns are 
obtained from formulas (4.3) and (4.30) without manual smoothing. Note that 
all three BF development patterns are close to the CL development pattern. 
Moreover, we calculated the ‘usual’ BF reserves, which are obtained with the 
BF method using the CL development pattern. Due to the rather small value 
on the diagonal in the newest accident year the BF reserves are higher than 

TABLE 1

INDUSTRIAL PROPERTY, CLAIMS PAYMENTS:
ESTIMATED DEVELOPMENT PATTERN AND RESERVES.

Dev. pattern bI  –  i Estimated reserves

i BF
ODP BF BF 

Mack CL BF
ODP BF BF 

Mack CL ‘usual’ 
BF

 9 99.77% 99.78% 99.77% 99.78% 268 257 261 230 246

10 99.55% 99.57% 99.56% 99.59% 505 481 492 290 467

11 99.25% 99.29% 99.27% 99.29% 766 731 751 636 725

12 98.45% 98.48% 98.47% 98.50% 1’501 1’468 1’479 1’313 1’454

13 94.08% 94.24% 94.13% 94.14% 5’830 5’677 5’786 5’946 5’774

14 60.21% 60.59% 60.31% 60.40% 38’611 38’240 38’520 34’502 38’426

Total 47’481 46’854 47’288 42’916 47’091

TABLE 2

INDUSTRIAL PROPERTY, CLAIMS PAYMENTS:
ESTIMATED CONDITIONAL MSEP1/2 AND COEFFICIENT OF VARIATION.

msep1/2 CoVa

i BF
ODP BF BF

Mack CL BF
ODP BF BF

Mack CL

 9 410 373 373 341 152.6% 145.1% 143.3% 148.3%

10 560 435 435 325 110.9% 90.3% 88.4% 112.1%

11 685 508 509 457 89.3% 69.5% 67.8% 72.0%

12 953 1’097 1’099 1’064 63.5% 74.7% 74.3% 81.0%

13 1’886 1’861 1’876 1’946 32.3% 32.8% 32.4% 32.7%

14 5’133 6’257 6’516 6’073 13.3% 16.4% 16.9% 17.6%

Total 5’875 6’829 6’988 6’587 12.4% 14.6% 14.8% 15.3%
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TABLE 3

INDUSTRIAL PROPERTY, CLAIMS PAYMENTS:
ESTIMATED PROCESS STANDARD DEVIATION AND SQUARE ROOT OF THE ESTIMATION ERROR.

Process std. dev. (Estimation error)1/2

i BF
ODP BF BF

Mack CL BF
ODP BF BF

Mack CL 

 9 385 351 351 323 139 126 127 111 

10 529 410 410 313 185 146 146 86 

11 651 483 483 438 211 160 160 133 

12 911 1’053 1’053 1’024 279 310 312 286 

13 1’796 1’777 1’788 1’869 575 554 567 542 

14 4’622 5’874 6’067 5’885 2’232 2’156 2’377 1’501 

Total 5’126 6’268 6’453 6’291 2’871 2’710 2’682 1’952

the CL reserves. In Table 2 the conditional MSEP and the corresponding coef-
fi cient of variation are given. In BF Mack we applied the coeffi cient of varia-
tion i( )CoVa m\   =  4.56% from the Normal Model. The process standard devia-
tion and estimation error are given in Table 3. Note that the difference between 
the conditional MSEP in the ODP Model and in BF in the newest accident 
year comes from the process variance. More precisely, it is due to the rather small 
value f1 g1  =  187 compared to s1

2  =  323 appearing in the corresponding process 
variances. Similarly we have s1

2  =  347 for the corresponding term in Mack’s 
model. The assumption of  a constant dispersion parameter seems therefore 
questionable. 

The results of BF are very close to the results of BF Mack, especially for 
older accident years. For newer accident years the process variance term con-
tains more parameter estimates sj

2 and sj
2, respectively. The differences in the 

estimation error are mainly due to the different estimation of the variances 
bVar( )I i-

\ . The additional term i bVar( ) Var( )I im -
\ \  in Mack’s formula for the 

estimation error is negligible compared to the other terms.

6.2. Motor Liability Insurance

The data from motor liability are given in Table 6 and Table 7 in Appendix B. 
Note that the observations C0,0, C1,0 and C0,1 are missing. But Table 7 is not 
really an incomplete triangle because C0, j, j  $  2 and C1, j, j  $  1 contain all 
claims of accident years 0 and 1, respectively, that is, also the closed one’s.
The results obtained with the data from Table 7 are given in Table 4. We apply 
the estimators suggested in Section 5 and obtain the estimate i( )CoVa m\   =  9.47%. 
The reserves are calculated using formula (2.2) with the diagonal claims pay-
ments given in Table 6. The BF reserves are rather high compared to the CL 
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and to the ‘usual’ BF reserves. Interestingly, the reserves obtained by the 
‘usual’ BF method using the CL development pattern are close to the CL 
reserves and even slightly lower. This means that the reason for the higher 
reserves obtained with BF cannot be conservative a priori estimates mi, but is 
rather the new BF consistent estimate of the development pattern. This exam-
ple shows, that the way how the development pattern is estimated in the BF 
method can have a big impact on the resulting reserves. As already pointed 
out previously, the usual way of simply using the CL development pattern is 
not consistent with the BF philosophy.

TABLE 4

MOTOR LIABILITY, INCURRED LOSSES:
ESTIMATED DEVELOPMENT PATTERN, RESERVES, CONDITIONAL MSEP1/2 AND COEFFICIENT OF VARIATION.

Dev. pattern bI  –  i Estimated reserves msep1/2 CoVa

i BF CL BF CL ‘usual’ BF BF CL BF CL 

 5 99.98% 100.01% 7’236 7’130 7’130 948 926 13.1% 13.0% 

 6 99.90% 99.93% 11’504 11’337 11’358 1’159 1’100 10.1% 9.7% 

 7 100.08% 100.12% 14’520 14’341 14’326 1’322 1’283 9.1% 8.9% 

 8 100.05% 100.12% 9’141 8’837 8’804 1’952 1’914 21.4% 21.7% 

 9 99.80% 99.93% 22’902 22’274 22’297 2’931 2’847 12.8% 12.8% 

10 99.80% 99.94% 26’574 25’870 25’888 3’166 3’079 11.9% 11.9% 

11 99.66% 99.83% 39’181 38’354 38’357 3’638 3’690 9.3% 9.6% 

12 99.71% 99.90% 42’358 41’487 41’519 3’687 3’599 8.7% 8.7% 

13 99.54% 99.78% 43’398 42’296 42’303 4’500 4’553 10.4% 10.8% 

14 99.49% 99.79% 64’401 63’116 63’092 5’126 5’275 8.0% 8.4% 

15 99.57% 99.93% 71’833 70’258 70’253 5’765 5’897 8.0% 8.4% 

16 99.29% 99.69% 90’656 88’897 88’864 6’373 6’549 7.0% 7.4% 

17 98.91% 99.44% 102’764 100’412 100’425 7’707 7’824 7.5% 7.8% 

18 98.72% 99.41% 90’343 87’150 87’332 9’092 8’906 10.1% 10.2% 

19 98.67% 99.53% 142’365 138’381 138’445 10’693 10’738 7.5% 7.8% 

20 98.36% 99.60% 142’585 136’460 136’744 13’654 12’774 9.6% 9.4% 

21 98.40% 100.04% 126’460 118’925 118’880 15’938 14’291 12.6% 12.0% 

22 98.48% 100.48% 125’213 116’434 115’704 18’159 15’146 14.5% 13.0% 

23 99.69% 102.21% 153’111 144’103 141’922 19’740 17’725 12.9% 12.3% 

24 100.66% 101.41% 205’725 203’149 202’454 24’655 26’502 12.0% 13.0% 

25 102.59% 101.49% 262’721 267’507 267’278 28’535 33’753 10.9% 12.6% 

Total 1’794’990 1’746’719 1’743’375 61’926 64’813 3.4% 3.7%
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APPENDIX

A. Proofs

Inversion of the Fisher Information Matrix. In order to calculate the inverse 
of the Fisher information matrix in (4.8), (4.25) and (4.31) we need to invert 
a matrix of the form 
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where a0,  a1,  …,  aJ  –  1  !  R  5  {0}. We number the rows and columns of A start-
ing from 0 and denote the entry in row j and column k by Aj, k, 0  #  j, k  #  J  –  1, 
that is, Aj, k  =  1  +  aj 1{ j  =  k}. We claim that 
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where we used the defi nition of d in the last equation. ¡

Proof of Equation (4.13). With bj   =  1 for j  >  J we have
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Proof of Remark 4.7. Estimating the a priori loss ratios with a moving aver-
age of  the ultimate loss ratios over n years and assuming that ni   /  n and 
Var(Ui  / n )  =  s2 / n2 yields the following formulas 

 l
i

l i= 0 ,q n
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where Ui denotes the ultimate claim amount for accident year i. For i  #  k it 
follows with the independence of accident years 
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and since Var(mi)  =  s2/n we obtain 
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B. Data
TABLE 5

INDUSTRIAL PROPERTY, CUMULATIVE PAYMENTS AND A PRIORI ESTIMATES mi.

i /j 0 1 2 3 4 5 ultimate mi

 0 52’572 76’651 80’044 80’524 80’870 81’459 81’587 81’552 
 1 58’623 89’190 94’040 95’592 95’637 95’765 95’898 87’138 
 2 71’086 108’235 110’410 110’917 110’883 111’092 111’049 100’276 
 3 58’236 86’079 91’586 90’303 90’490 90’507 90’372 99’319 
 4 66’661 108’829 113’347 114’785 115’656 115’756 116’481 102’035 
 5 56’059 90’688 96’389 96’661 97’015 97’160 97’542 100’963 
 6 52’443 87’856 91’063 91’846 92’414 92’855 92’920 101’178 
 7 67’307 102’881 107’783 108’279 108’644 108’844 109’599 102’764 
 8 67’829 98’815 102’008 102’374 102’775 102’868 102’792 111’570 
 9 69’259 100’684 104’879 106’717 106’602 106’668 114’284 
10 41’714 66’880 69’390 69’697 69’869 113’055 
11 54’717 82’924 86’781 89’270 102’519 
12 46’429 79’564 86’174 96’879 
13 55’001 95’511 98’517 
14 52’630 97’041
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TABLE 6

MOTOR LIABILITY, DIAGONAL PAYMENTS.

i C ,i I i
paid

-  

 0 268’392 
 1 286’310 
 2 272’781 
 3 341’679 
 4 337’137 
 5 381’388 
 6 399’724 
 7 424’117 
 8 419’528 
 9 411’082 
10 410’387 
11 435’980 
12 372’513 
13 411’770 
14 380’622 
15 384’000 
16 364’883 
17 336’143 
18 317’801 
19 300’874 
20 262’034 
21 242’768 
22 206’808 
23 199’872 
24 185’856 
25 132’116
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