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ABSTRACT

In this article we want to motivate and analyse a wide family of reserving
models, called linear stochastic reserving methods (LSRMs). The main idea
behind them is the assumption that the (conditionally) expected changes of
claim properties during a development period are proportional to exposures
which depend linearly on the past. This means the discussion about the
choice of reserving methods can be based on heuristic reasons about exposures
driving the claims development, which in our opinion is much better than a
pure philosophic approach. Moreover, the assumptions of LSRMs do not include
the independence of accident periods.

We will see that many common reserving methods, like the Chain-Ladder-
Method, the Bornhuetter-Ferguson-Method and the Complementary-Loss-
Ratio-Method, can be interpreted in this way. But using the LSRM framework
you can do more. For instance you can couple different triangles via exposures.
This leads to reserving methods which look at a whole bundle of triangles at
once and use the information of all triangles in order to estimate the future
development of each of them.

We will present unbiased estimators for the expected ultimate and estimators
for the mean squared error of prediction, which may become an integral part of
IFRS 4. Moreover, we will look at the one period solvency reserving risk, which
already is an important part of Solvency II, and present a corresponding estimator.

Finally we will present two examples that illustrate some features of LSRMs.
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1. INTRODUCTION

A main task of actuaries is to analyse random claim properties and project
their development. This often includes the combination of several sources of
information, but most of the standard reserving models cannot properly com-
bine such information. For instance, they only project payments or reported
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amounts separately, but cannot combine both. In recent years several authors
have studied models that can be used in specific situations in order to analyse
different claim properties simultaneously, see for instance Quarg-Mack [12],
Halliwell [5], Dahms [3] and Wiithrich-Merz [11].

In this paper we will introduce a wide class of stochastic reserving methods
that can deal with several claim properties simultaneously. The main idea
behind them is the assumption that the (conditionally) expected changes of
claim properties during a development period are proportional to exposures
which depend linearly on the past of claim properties. Therefore, we will call
such methods linear stochastic reserving methods or LSRMs. Another important
property of LSRMs is that they allow for various dependencies of accident
periods. Many of the classical reserving methods, like the Chain-Ladder-
Method, the Complementary-Loss-Ratio-Method and the Bornhuetter-Fergu-
son-Method, are LSRMSs, see Sections 2.1-2.4.

We will derive estimators for the ultimate outcome of claim properties
(Section 3), analyse the overall uncertainty of these estimators (Section 4) and
the one period uncertainty of the claims development result (Section 5). The
analysis of the overall uncertainty may become an integral part of IFRS 4 and
the analysis of the uncertainty of the claims development result already is an
important part of Solvency II. Moreover, we will see that in the case of some
classical reserving methods those estimators are the same as introduced before
by other authors, see for instance Mack [6], Buchwalder et al. [2] and Dahms-
Merz-Wiithrich [4].

In Section 6 we will present and discuss two examples of LSRMs based on
real data. We will not discus the question which method is the best for the
projection of specific data. Although this is a very important question it is
too complex for this paper. Moreover, we think that for the model selection
non triangle based information is of great importance, see the example of
Section 6.1, and it is very difficult to include such information into an analytic
triangle based rating of methods.

2. THE MODEL

Let S/, 0=m=<M,0=<i<1, 0=<k<=J, denote the incremental value of the
m-th claim property of the i-th accident period during the k-th development
period. We assume that / = J and that there is no development of any claim
property after development period J, which means we do not discuss any tail
development. Such claim properties may be the usual candidates like pay-
ments, reported amounts and number of reported claims or even more special
constructions like payments after reopening.

Our model contains three natural time lines: accident periods or rows,
development periods or columns and business periods or lower-left to upper-
right diagonals. We will use the indices i and / for accident periods, j and k for
development periods, / and m for claim properties and n for business periods,
see Figure 1.
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FIGURE 1I: Claim property triangle.

By L' and L, we denote the linear spaces generated by all increments S;”;
up to business period n and development period k, respectively. Moreover, by
L we denote the linear space generated by I" and I, i.e.
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where a A\ b and a V' b denote the minimum and maximum of the real numbers
a and b, respectively. The g-algebra of all information of accident period i up
to development period k is denoted by B; ;. Moreover, we denote the g-alge-
bras generated by I, L, and L} by D", D, and Dy, respectively, i.e.

1
Bi,k = O'(Sl’”]l . OSmSM, OSJSk), 'Z)k = U(Lk)ZG(U 8,"](),
i=0

) I
D" := (L) = U(U 8i,(n—i)/\]):
i=0

I
Op = a(L}) = U(EJO Bi,((n—i)/\])Vk)a

see Figure 1. We call the information D}"* the past of S/ 1, 0<m < M.
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Assumption 2.1. We call the stochastic model of the increments S} a linear sto-
chastic reserving method (LSRM) if there exist constants f;" and oml ™ such that

i) for all i, m and k the expectation of the clalm property Siy.1 under the
condition of all znformanon of its past DI is proportional to an exposure
R contained in L% N Ly ie

E[SIn| D8] = Ry e T F 0L, (2.2)

ii) for all'i, my,, my and k the covariance of the claim properties S’} . and S]'} ;|
under the Condmon of all mformallon of their past DL* is propornonal to
an exposure R,,k contained in '™ N Ly, ie.

Cov[Sit i1, 8171 | DY = g™ RIF™ e L 0 L. 2.3)

Remark 2.2.

m my,my

1. If accident periods are independent and if all exposures R;) and R;};

B, \-measurable it is enough to assume
l')’ E[Simk+1|8ik] = fkm

R my,my
i)’ COV[S, k+1,S ,k+1|B, k] = o RiK

are

mp,m .
2. You can not take arbitrary values for o™ and R; ;. The choice has to be
consistent with the corresponding covariance properties, i.e. the matrices
my,m
i

0<my,m=M

have to be positive semidefinite almost surely for all i and all k.
3. To get well defined objects we have to distinguish between the model parameters

m,l ml,mz

S and o™ and the method defining exposure parameters y;y. , ; and yi "

of

M I (i+k=h)Ak o M I (+k=hAk ;
m  __, LMy, my,my,
ik —- Z Vzkh,Sh] and R;j : Z Z Z Vikohj Sh,,
I1=0h=0 j=0 I=0h=0  j=0
(2.4)
respectively.

4. Often the choice of the exposures, i.e. of the parameters yl'"klh ; and yf)"k':,',’f;’l

in (2.4), is of great importance. Unfortunately, we neither can provide a sta-
tistical nor a general heuristic concept for this choice. In some cases, see for
instance Example 6.1, there is portfolio based information that may help with
the choice of exposures. An other useful technique is backtesting that means
to look for exposures for which we see now that the corresponding projections
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would have been reliable in the past. For instance, if we have been using the
same LSRM for several years and always got good results, there is no reason
to change the exposure.

5. If you are only interested in estimators for the expected ultimate outcome
you will not need assumption (2.3).

6. External given exposures may be included in a similar way as described for
the Complementary-Loss-Ratio-Method, see Section 2.2.

The following lemma contains some useful implications of Assumption 2.1.
Lemma 2.3. Assume S} satisfy Assumption 2.1. Then

a) E|Stin| 07 = E[sti| o] = £

b) Cov| St SlEa| 0| = Cov|STiar, S| D = o mRE™.

S my

n+1=j.

c) COV[S;"JLI

Z)n]ZO, forjlijz.

=Ji.J1>

d) provided that all exposures R and R]}"™ are B;,-measurable, accident

periods will be uncorrelated under the knowledge of some past, i.e. for all
a-algebras Dy, all i) F i, and arbitrary k,, k,, m; and m, we have

COV[S” kp> ,2 kz

o] =o. (2.9)

Proof. Since D" and D, are subsets of Of and R}y and R]}"™ are D" N Dy~
measurable parts a) and b) are direct consequences of Assumptlon 2.1.

For part c) assume that j, > j,. Then S,"},_, ; is D} _|-measurable and we get

my my
Cov|Sy+1 —J1.J1° St —J2.J2

1)”] = COV[E[S,Til—jI,jJDJ}?]—1]33321‘12’]2 Dn] =0,

where we used that E[S,T_Ll_j],jl ‘D}’l,]] eD"ND; 1 CD"CD]_;.

In order to prove part d) take i, # i, and arbitrary k, k|, k,,m;,m, and n. If
S,1 %, OF Si%, is measurable with respect to ) we are done. Otherwise, D}
is a subset of Z),’f,k i and Z),’:lk% ""and S}",, is measurable with respect to
the past of S;, or vice versa. Without loss of generality assume that S} is
D,’{:fczl_l-measurable. Then we get

Cov|s.S14,

| = E[cov[sr. st | ol 0%

Z)sz 1] [S

+ Cov[ [S,1 i

i o

ir,ky

= 0+ Cov| S, /2 R, | 02
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Since R}%,_1 € Bj, k,—1 it is enough to show that Sy and S;% | are Di-

5

conditional uncorrelated. Iterating this procedure we will finally reach a point

where S}, _; or §7% _; is Di-measurable, which proves (2.5). O

Remark 2.4. Under the assumption that all exposures R}y and R'}"™ are B, ;-

measurable Lemma 2.3 implies that the correlation of different accident periods

is determined by their first development period, i.e. there exist linear mappings
Ci.r: R” - R such that

m \0s=m=M m 0sm=M| _ m \0=m=M m \0=m=M
Cov[(S1) ="M, (S1,) == M| = Cov| €, 1 (870", C,y 1, (S110) ==
provided i, # i.

In the following sections we will discus for some well known reserving models
if and how they fit into the framework of LSRM:s.

2.1. Chain-Ladder-Method

For the Chain-Ladder-Method as analysed in Mack [6] one looks at one
cumulative claim property

k
e 0
Ci,k - z Si,j-
Jj=0

The assumptions for the Chain-Ladder-Method are
i)CL E[Ci,k+1|Bi,k] = 8k Ci,k'
i)t Var[Cpi1|Bii] = 07 Ci.
i) Accident periods are independent.
i+k

Since, C; are elements of ;" and since

E[Sgkﬂ“(gi,k] =(&—1DCy and Var[Sngrl‘Bi,k] = ot Cik

we see that the Chain-Ladder-Method is a LSRM.

2.2. Complementary-Loss-Ratio-Method

For the Complementary-Loss-Ratio-Method one looks at a claim property
S?; and an external given exposure P, that does not develop over time. The
assumptions for this method are

i)k E[S2k+1|8i,k] =g b
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iR Var|SY |8 = o2
iif)*R Accident periods are independent.

If we take
P, fork=0,

0, otherwise,

we see that the Complementary-Loss-Ratio-Method is a LSRM.

Note, usually one assumes a bit less and takes unconditional expectations. The
main differences between taking conditional and unconditional expectations
are:

* By taking the unconditional expectation you pretend to be only interested
in the overall expectation of the projected claim property, where the average
is taken over all triangles, although the projected claim property may depend
on the already observed triangle. In other words, the method does not use
all available information and therefore may not be optimal.

* By taking conditional expectations you explicitly assume that the projected
claim property does not depend on the already observed triangle.

2.3. Bornhuetter-Ferguson-Method

Here we look at one claim property S;. Usually the Bornhuetter-Ferguson-
Method is written as

J )
Z Sgk = f]1+1—iUip”, (2.6)

k=I+1-1i

where U”"" is a priori known estimate of the ultimate outcome, which may be
motivated by pricing arguments or by external experts. Now we have to esti-
mate the loss ratios ¢;. Often the Chain-Ladder factors are used. But we can
do better, see Mack [8]. We will use this idea and rewrite (2.6) as follows

J 0 J ri
Z Si,k: Z gk—lUip-

k=I+1-1i k=I+1-1i

If we now look at the unknown factors g, column by column we get
S2k+l = gkUtPri~

Finally, taking conditional expectations and U?”" as external exposure we see

that the Bornhuetter-Ferguson-Method can be looked at as Complementary-

Loss-Ratio-Method and therefore as a LSRM.
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2.4. Extended-Complementary-Loss-Ratio-Method

For this method we look at incremental payments S}, and changes of the
reported amounts Sl«l, « simultaneously. The coupling exposures are the case
reserves

k
R Rl = RO = RO = RIO= RIL = 3 (sL,- 50,

Using this we get the following LSRM

LR E[ST | Bi] = A2 (8L - S2) for me (0,13

)EER Cov| ST, STE| Bui| = o™Xk (S, = 89)) for mym, € (0,1},
iil)F'R Accident periods are independent.

Note, this method projects payments and reported amounts in a way that both
projections lead to the same ultimate. For details see Dahms [3].

2.5. Munich-Chain-Ladder-Method

This method, introduced in Quarg-Mack [12], considers the Chain-Ladder-
prOJectlons of cumulative payments C;; := Zf 0S?; and reported amounts
I = >k i=0 sS! ; together in order to reduce the systematic gap between the
stand alone Chain-Ladder-projections, see Braun [1]. But the gap is not closed

entirely.
As shown in Merz-Wiithrich [9] the Munich-Chain-Ladder-Method assumes

pycL E[Ci,k+1|ck]:fkci,k and E[Ii’k+1lfk]:gk1i,kﬂ

i)l Accident periods are independent.

Here C, and 7 contain all information of payments and reported amounts up
to development period k, respectively. Note, in 1)L you cannot extend these
sigma algebras to 9, like we have done in Section 2.2. Moreover, instead of
looking at E[C; ;| D; ;] and E[/; ;| D; ;], which are the orthogonal projections
of C; ;and I, ;, respectively, on the linear space of all 9,_;-measurable, square-
integrable random variables, the Munich-Chain-Ladder-Method considers the
orthogonal projections on a much smaller affine subspace, for details see Merz-
Wiithrich [9].

These are the main reasons why the Munich-Chain-Ladder-Method does
not fit into the framework of LSRMs.
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3. ESTIMATORS FOR FUTURE DEVELOPMENT

In this section we want to present estimators for the future development of
claim properties, motivate them and prove some properties. In order to shorten
notations we define - := 0.

Estimator 3.1 (of the model parameter f;"). Let S| satisfy Assumption 2.1.
Then for each set of D" N\ Dy-measurable weights w'y > 0 with

* Ry =0 implies wik =0 and

« I T wlle =1 if at least one R}y # 0

we get that
~ <ok Sz1k+ 1
= Z Tk~ (3.1)
i=0 ik

is a Dy-conditionally unbiased estimator of the model parameter f;"".

Moreover, for every tuple ", ..., fi'" with ky <k, < --- <k, we get

[ my ]?n:, Dk,] fml . mr = [fkl |Dk1] []?’:qr Dkl]’ (3.2)

which implies that the estimators are pairwise Dy, -conditionally uncorrelated.

Proof. Let us start with the derivation of (3.1):

A I-1-k E|E|S/% 1| D || D —1-k
vl = 3w |k ] gt SR _
i=0 ik i=0 zk
Moreover, for every tuple fk':’ L ”’ with k; < ky < --- < k, we compute

D,

]
]

@kl] = [ [fml - i
= E[fkrfl
= B[ Ao | 1

el i

]

_ my m,
- Jk fk,. ’

which proves (3.2). O
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Remark 3.2. Assumption 2.1.ii) implies that the weights

2 2\71
m . _ (RTk 1k (RZTk)
Wik = m,m Rm,m 5 (33)
ik h=0 h, k

result in estimators fkm with minimal yariance of all estimators of the form (3.1).
In other words the resulting estimators " are (homogeneous) credibility estimators.
Moreover, in case of the Chain-Ladder-Method, the Complementary-Loss-Ratio-
Method and the Extended-Complementary-Loss-Ratio-Method those variance
minimal estimators are the well known standard estimators, see for example
Mack [6] and [7] and Dahms [3].

In order to shorten notations for further calculations we will use the linear map-
pings
FroLtF R and FUL — L

defined by the exposure parameter y,’f’,;f nj» S€€ (2.4),

Xi'ks fori+ k<n,
(F"x)ix = [ (- Ak

Y X X, foritk=n+1, (3.4)
I=0h=0 j=0

Frix o= (F™ %) 0
Remark 3.3.

o The mapping F" fills the n+ 1-th diagonal of all claim property triangles based
on all diagonals up to the n-th business period.

s The functional F does depend on coordinates within 1.** N 1y, only.
The concatenation of linear mappings F” is denoted by

I a1, for n, < ny,
F2F"=" ... F" for ny > ny, (3.5)

Fr—m .=

Fix o= (F7 ),
where Il;» denotes the projection on the first » diagonals. Moreover, we will
use the symbol S” for the vector

no._ mN\0=m=M
S" = (Si,k i+tk<n -



LINEAR STOCHASTIC RESERVING METHODS 11

Asa consequence we get
m i+k myi+k Qi+k
[S1k+n+1|1)k ] - Fl k+n S >

E[Sn1+n2+l|z)n1] — Fn1+n2kn1 Snl.

This together with Estimator 3.1 lead to estimators for the future development
of all claim properties.

Estimator 3.4 (of the future development). Let Si% satisfy Assumption 2.1.
Then

~

Shoy = FRISL 1—i<k <y, (3.6)

are both Z)I ;and D' N D;_;-conditionally unbiased estimators for E[S{'} | D, i
where Fl " is defined in the same way as F[}", see (3.4) and (3.5), but with f
instead of f;".

Proof. Since D! N D,_;is a subset of D, ; and since F‘i,”;(’ISI is measurable with
respect to D! N D, _, it is enough to prove the stated D, ,-conditional unbias-
edness of the estimators S/%.

Because each mapping £} depends linearly on f ', we can rewrite the estima-
tors as follows

~ ,I /\ X
F,,W;( SI — Z fk km, ml ...,m,

I-i<ki<--<k<k

where X" ™ are elements of D' D,,. Now the stated unbiasedness fol-
lows from the properties of fk , stated in Estimator 3.1. O

In the same way we get D, -conditionally unbiased estimators R} and R/}
for the exposures R}, and R;}"™ by

M (i+k—h)Nk M (i+k—h) Nk i
— Wl] my ., __ my,my,
=2 2 Vzkh]Shj and R =2 2 > Vikoh | Sh],
I=0h=0 j=0 I1=0h=0 j=0

(3.7)

. . ! /
respectively, with exposure parameters y;;, ; and y/;"%", see (2.4). Moreover,

in order to shorten notations we will use for k < I — i the definitions

om . m omo . m DMLy _ my, ny
Si,k = Si,ka Ri,k = Ri,k and Ri,k = Ri,k .
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4. MEAN SQUARED ERROR OF PREDICTION

In the previous section we presented estimators for the ultimate outcome of
claim properties. Now let us look at the (conditional) mean squared error of
prediction for the estimated future development. Often we are in a situation
where we are not only interested in a single claim property but in a linear
combination of several claim properties, see for instance the examples pre-
sented in Section 6. Therefore, take 9D/-measurable weights o/, 0 < i< I and
me M<{0,...,M}.

We will start with a fixed accident period i > I — J. The corresponding mean
squared error of prediction is defined by

-1
mse| >, > a?SM+

meMk=1—i

J=1 N
=E ( DD 04’1’”<Sir.”k+1 —Si’,"k+1)>‘i)ll. 4.1)

meMk=1—i

A short calculation yields

J=1 R
s 5 a,ms;:m]

mse
meM k=1-i
J—1 J—1 N ; 2
m m m
=Var| ¥ Y a'SHa|D|+| XX olE[SVin — S| D]
meMk=I1-i meMk=1-i
= process variance + parameter estimation error. 4.2)

For estimators of second moments we have to estimate the model parameters
o™ If k<J A (I-1) one can take the following unbiased estimators

1 my phy nmy my
amomy 1 IRTERGRGE [ Sikrt || Sik+1 o, 43)
- my,my my, my my k ny k .
Z =0 Rix R Rii

with
myumy oy q_ kR Rmz

I-1-k
my, my . __ m my . mp ik
Zk1 2= Z l_W,‘jk—W,k'FWlkW,k leR le N
i=0 ik h=0 h,k

As we will see later we will not need estimators of a;""* for m, # m,. Finally,
for m; = m, and I = J one could take the extrapolatlon, see Mack [6],

Am, I11

~m,m ,_ ( Am,m  Am,m

051 = mm( &mm ,01—3,01—2)- (4.4)
J=3

Remark 4.1. The estimation of the model parameters o™ is a wide field and
you may often find better estimators than presented here. For instance, you may
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introduce weighted estimators and use other extrapolations. But since such custom-
ising usually depends heavily one the analysed data we will not go into details here.

4.1. Process variance for an accident period

In order to get estimators for the process variance let us start with some com-
putations of the expectation of products of S/

Lemma 4.2. Assume S/ satisfy Assumption 2.1. Then forall [+ 1 <n=<I1+J
and arbitrary D" '-measurable real numbers gin; and g5, ; we get

I (n=hy)AJ

M L (n=h)nJ M n—1
Z ZO 'ZO 1 NI Shl,/l s Z z Z g2 hy, jo Shz b D
= J1=

my =0 h my=0h,=0 j,=0

= z Z gl n JoJ g2 n—j,j 0.7171,]7”2 Rmkl/?jifl (45)
n—1

my,my=0 j=

Proof. Take arbitrary D" '-measurable real numbers g}’ "n.; and g5, ;. Since
Sy is O™ !_measurable for all 7 +j<n—1 we get

I (m=h)AJ I (n=hy)NJ

Cov Z z Z g1 hl,]IShl J1° z z z gIZnIlz]zShz]z 'Z)n71

0/’[]—0 ]| Wl2—0h2—0 jz—

M
ny m ny
z z gl n=jij1 g2 n=jzj2 COV[S” —Jus jl’S" ~J2:Ja

my,my=0 ji,ja=n—1

Dn—l]

my, my g, my
Z Z gln—]/an j]O-j— R n—j,j—1»

my,my=0j=n—1

where we used the covariance assumption on a LSRM and part ¢) of Lemma 2.3
for the last step. O

Now fix iy, i, k; and k, with I < i} + k, < i, + k,. Then we get

Cov[si';fl,m,E[S,z k2+,\z)lz+kz] @1]

m my 4
Cov|[Sik+1> Sk, +1 |D ]

o

my mz,i2+k2 ir+ky
COV[Szl k1 Foi S

_ my my, iy +ki+1 Qiy+ki+1 1
= COV[Sil,k1+1’Fi2,k2 S D

i1+ki+1 j j
EI:COV[S;Zlkl_'_l,F:Zz]é;I ki Sll+k1+l‘,®ll+kl:|

o]

+ COV[le,l1+k1 Sll+k1 sz,ll+k1 Sll +ky | DI:I

iz, ky
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An iteration of the last step leads to

11+k1+1
0| = E|Cov[ 2 s", B s”

m my
Cov [Sibkl’ l2 ka
n= I+ 1

o],

Applying the covariance formula (4.5) we can proceed with

ny my I
COV[SII k1+19Si2,k2+l‘D ]

h+ki+1  m

=Y S S RS o (e (R,

n=I+11,L,=0j=n—1 " n=hJ

Using the same techniques we get similar formulas for all remaining indices
i\, b, k, and k, with i, + k, i, + k, = I. Finally, we replace all unknown model
parameters by their estimators:

Estimator 4.3 (of the process variance of a single accident period)

Assume S} satisfy Assumption 2.1 and take arbitrary D'-measurable factors
al', me M {0, ..., M}. Then the process variance of a single accident period
can be estimated by

. J-1 , J-1 M it(ank)+1 g—1
m Qm “— my ., my
Var| 2. 2 of'S7k| D= 2 o > > > >
meMk=I-i my,myeM ki, ky=1—il,lhb=0 n=I+1 j=n—-1-1
A/1»12§11,12 i-mls”)ll (’F\,mz,n)lz
gj n=l=j j\Pike ;i \Fbka Jy1—j je1e

4.2. Parameter estimation error for an accident period

In order to get an estimator for the parameter estimation error we will apply
the conditional resampling approach, see Wiithrich-Merz [10, Section 3.2.3].
Therefore, we will look at

2
AM (( k)g:;]ljl 1) = ( ;Maf" Z E[Szk+1 ir,nk+l|1)1])

J-1 J-1 , (40
= T oy Fi's'- X ar Y 'S
> ik

meMm k=1-i mem k=1-i
as a function of the estimated model parameters f . The conditional resampling
approach means to estimate A" by its expected value under the resampling
probability measure P*, which is the product measure of

P*<<fk>1<m<MeA> —P((fk )1<m M A‘Dlﬂﬂ)k>.
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We denote the expectation, variance and covariance with respect to P* by E*,
Var* and Cov*, respectively.

Remark 4.4. From the definition of the conditional resampling measure it fol-
lows that:

1. Under P* every collection { fk"f', m”} with ky < -+ <k, is a collection of
independent variables.
2. Forall 0Sm< M and all 0 <k < J—1 we have E*[fkm] =

3. Forall 0 <m,my< M and all 0 < k < J -1 we have
miy, mp

Emy,my L w[ pmy pmy| _ _my, mz my ik
Ok T COV [ k »Jk ]_ Z Wlk ik leR (47)

Using Remark 4.4 we get

Q

N~ E[AY] = vart| 3 o Z S,kH]
k=

mem
- =1 . 2
- 2ol > S|l

mem k=I—i

(4.8)

~

* m = Am ’
Za,- Z ik+1

mem k=I—i

In order to get an estimator for the first addend on the right hand side let us
start with some computations of expectations of products of S;% under P*:

x[Smy Smy _ lz+k2
E [Sil,k1+l Si2,k2+l] =E [Sz ke 1Fik, S

for all iy + ky = I. If k, > k, the variables SI 4,1 and S do not depend on
f > and we can use Remark 4.4 in order to obtain

= [om Smy _ m l2+k2
B[S0 01 8 ] = EX[S7 1 B 87T, (4.9)

Analogously we compute for0<k<J-1and i, i, =>1-k

B (87 S| = (14 ppmome) B |ETL ST B S| @0

with p;™:-" is the covariance coefficient corresponding to ;""" defined in
4.7), 1.e.

0_;m1 LMy for fml - 7& 0

p;ml,mz = kml ny > k Jk (411)

0, otherwise.
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Now we want to take the linear operators F; out of the expectation. Therefore,
we define the following linear operators:

H. (1) Li®Li - L ® Lis

by
my,my
(Hk(T)xy)zllkl i, Ky (4.12)
Fy O F,-';?,;”“'Z“‘”y, foriyAiy<T—k—1or k,Aky<k,
A+ FE X E y, otherwise,

where 7is a M x M x I x I x(J— 1) matrix of real numbers.

Note, F/"/V 0 = F", for iy + ky > I'and k, = k, and F O x = xin
all other cases of the first line of the definition of H, (7).

Concatenations of those operators will be denoted by

sz%kl(T)qufl(f) Hkl(T), for k, = ky,

H,._,(7) = i
fa kl() HL/I€2+1®L/{'2+]’ otherwise, (4.13)

my, ny,
"11,"12 —
H3 (0% = (Hivin 00X, a1

. . I I
where H%H@MZH denotes the projection onto Li,+1® L, +1.

Corollary 4.5. At point T =0 we have

my, my my, 1 m
Hil,kl,iz,b(o)xy - Fll ke X F

Moreover, a linearisation of H}'\"} (1) at T =0 yields

my,my _ il my, I
H; i n(@xy — Fix F 5y

kiANky M

I . / . /
- m1,111+j+1)1 ( m2,/12+j+1>2
~ z Z Z (Filakl hy, j+1 Fiz,k2 ha, j+1 (4.14)
J=1-(1Aiy) 1,1 =0 hy,hy=1-j

11 1)
Thy by, j Fhl jx th i¥-

Proof. The first statement of Corollary 4.5 is a direct consequence of the defi-
nition of Hj'"\""; ; (7). Moreover, ‘L'hllhz ; is only contained within the (/;, b, h;,

j+1, hy, j+1) coordinate of H}";"} (7). This proves (4.14). O

i,
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Iterating (4.9) and (4.10) we get for I<i, + k,, i, + k,

B[S o1 S| = HEWT 1 (p)S'S' (*.15)
with
s's' o= (s s ),
and
p’;tVll;:Z’lz = p/j}m,mz' (416)

Combining (4.13) with Corollary 4.5 and replacing all unknown parameters
by their estimates we get

Estimator 4.6 (of the single period parameter estimation error)

Assume S} satisfy Assumption 2.1 and take arbitrary D'-measurable factors
af', me M < A0, ..., M}. Then the parameter estimation error for accident
period i can be estimated by

J=1
M TFM,My o~ =My, My Il
= Y arar 3 (AT - HiE0)S'S.
my, my M ki ky=1—1i

where the operator H(p*) is defined in the same way as the operator H(p*), see
(4.12) and (4.13), but with f;" instead of f;".

Moreover, a linear approximation for the operator H(z) at T = 0 leads to

i PN
A~ > ama™ Y Y XY RS SR

my,myeM kiko=1—i j=I—il,l,=0 hy,hy=1—j
(le,lll+j+l)ll (Amz,/12+j+l>12
' ik hi,j+1 i,k hy,j+1°

4.3. Single period mean squared error of prediction
Combining the results of the previous two sections we obtain

Estimator 4.7 (of the mse of prediction for a single accident period)

Assume S/} satisfy Assumption 2.1 and take arbitrary D'-measurable factors
af', me M <SA{0,...,M}. Then the mean squared error of prediction for the
projected claim properties of accident period i can be estimated by
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J=1
oA m m
mse| >, of > Si,k+1}
T—i

mem k=
L my J= ml,n12 ml,mz Il
= 2 oMo Y |[(Hikik(p*) — Hik.ik(0))S'S
my,meM ki ko=1—1i
M itk Ak)+1 g1

1 /
All,lz Sl ~myp,n\1 smy, n\12
I ST UMD Sy S M 0 NN ot

el
Ih=0 n=I+1 j=n—1-1I eIt

Moreover, a linear approximation for the operator H(z) at © = 0 leads to

-1 J—1 M
—= m m ~ my . m
mse Z o Z Slk+l = Z o 'aiz Z
mem k=I—i my,mEeM kiko=1—il,1Lb=0
i+(kiAkp)+1 -1 '\llallelalz (le,n I sz’n Il
n—1—jj\Liky ) _1_. iky |, _q_i:
neTHl  j=n—l—1 n—1-—jj+1 n—1-—jj+1
kyNky . I . )/
sl o oh (Aml,h]+]+1)1 (Amz,hz+j+l>2
+ Z Z Pj S/11,/+1Shz,j+1 Fl»kl B, j+ 1\ bk hy, j+ 1|

j=I—=ih,hy=1—j

Remark 4.8. For the Chain-Ladder-Method the stated estimator is the same as
in Buchwalder et al. [2, Approach 3] and the linear approximation is the same
as in Mack [6].

Moreover, for the Extended-Complementary-Loss-Ratio-Method the linear
approximation is the same as in Dahms [3].

4.4. Overall mean squared error of prediction

n11

Since the estimators S; '}, and Sl2 %, depend on the observed data of all acci-
dent periods they are usually not uncorrelated. Therefore, the overall mean
squared error of prediction is not equal to the sum of all single period mean
squared errors of prediction. As in Section 4 we can decompose the overall
mean squared error of prediction as follows

mse

£ $ar S S

memi=0 k=1I-i

I =
2 2o 2 Shia|D

memMi=0 k=1I—i

= Var

I J—=1 ~ 2
+( z ZO(T Z E[Si',”k+1—S§f’k+1|1)1])

memMi=0 k=1I—i

= process variance + parameter estimation error

Using the same arguments like in Sections 4.1 and 4.2 we get
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Estimator 4.9 (of the overall mean squared error of prediction)

Assume S} satisfy Assumption 2.1 and take arbitrary D'-measurable factors
o', me M <{0,...,M}. Then the overall mean squared error of prediction
for the projected claim properties can be estimated by

I J=1
mse|>. > o D Sf’k+1]

i=0meM k=I-i

L my,m - —my,m
= Z z a;rlll a?zzz z z [(Hll lkl, 122 k(p*) — Hi, lkl 122,k2 (0)>SISI

i, i, =0my,meMm ky=1—iyky=1—1i,
M (h+k)A(p+k)+1  g-1 / !
All LHhhL ENANAR =My, n\2
+ X by by RyZ1-j i\ Fiky n—1—-j, j+1 Fir n—1—-j, j+1[°
I, =0 n=1+1 j=n—1-1

Moreover, a linear approximation for the operator H(z) at t = 0 leads to

S c L J=1  J=1 M
mse m m ~ my _ny
mse[z 2. af Z (S SIS > altalr Y >
i=0meM k=1-i i, i =0my,meM ki=I1—i\ky=I—irl},,=0
i1+ k) A+ )+ 1 _
(i + k) A+ k) J=1 Albzth b (f‘f"“")ll (F‘f’”’")lz
; n=1=jj\Fivky Jp 1y jer\Fizka Ju1-j j1
n=I1+1 j=n—1-1 4
kyNky I ) ; A ,
Akl LS oh amy, hyp+j+1\41 iy, hy +j+1\2
. 2SS (Fi by, j+1\L iz k2 i+l
J=I1=(i\Aig) hy,hy=1—j

Remark 4.10. For the Chain-Ladder-Method the stated estimator is the same
as in Buchwalder et al. [2, Approach 3] and the linear approximation is the same
as in Mack [6].

Moreover, for the Extended-Complementary-Loss-Ratio-Method the linear approxi-
mation is the same as in Dahms [3].

5. SOLVENCY RESERVING RISK

In this section we want to look at what we can say at the end of business
period I about the development result related to the estimates S 71 at the
end of the next business period, assuming that we will take the same LSRM.
For the projection of payments this means we want to analyse the profit or
loss of the next business period related to the estimated reserves.

In order to distinguish between the objects of the previous sections, which
belong to estimation period 7, and the objects of the next estimation period 7 + 1,
we will introduce, if necessary, an additional upper index that indicates the time
which the object belongs to.
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Taking the same LSRM means:

Assumption 5.1. There exist D' N Dy-measurable factors 0 < w4 < 1 with

© RI i =0 implies wii™' =0,

s wii = A= w i wi for 0<i<T-1-k.
Remark 5.2. The above assumption means that we do not change our (relative)
believes into the old development periods and only put some credibility wi"'*"

to the new encountered development.
The variance minimizing weights, introduced in Remark 3.2, satisfy Assumption 5.1.

The estimates of the model parameters for the next period are given by

Amirl Y mr S+ for 1 < k < ! :
Je = .ZOW’?" gy o forl= <J-1. (5.1)
i= 1

Note, the estimates fk’"’l *1 for the model parameters f;" may depend on
ST-k k+1 and are therefore usually not O’-measurable. Their at time / expected
values are

foo= E[fr o] = (1w ) f w52

Therefore, the estimate of the at time 7 expected value of the model parameter
f}(m, I+1 iS

=g (5.3)

Using (5.2) we compute for the D’-conditional expected value of the next
years projected claim properties

St = E[Sfih 0] = BTES (5.4)

where F/;" is defined in the same way as F/;", see (3.5), but with f;" instead

of f". For the exposures we get

P M 1 (+k—h)Ak ; ;

pm ., __ m, Il m, o

Riy = E[Ri,k |D] =22 2 %niSh
I1=0h=0 j=0

1 (i+k—h)Ak (5-5)

M

5MLMy Smy,my, I+1 Il _ ml mo, 1

Ry = = E[Ri,k |D] =22 2 v Shj
I=0h=0 j=0

with exposure parameter 7%/, ; and yi'f}c‘j,fj’l, see (2.4).
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In order to shorten notations we define

F/" = F/" and §""'=§":=8"

I+1 pmliI+l 3 I+1
for n < I, and analogously for the exposures R’" s R R

ik
m1m21+l ’
R,,k .

The at time 7 + 1 observed (claims) development result (CDR) of a linear
combination of claim properties for a single accident period i is given by

and

J-1
CORM'' = 3 o 3 (S = S80ih), (5.6)

where " are arbitrary D’-measurable real numbers. Since the estimates S
and S "1 are unbiased, the expected development result will be zero. More—
over, because of (5.3) and (5.4), the at time / estimated D’-conditional expected
value of the CDR is zero, too.

Now, we want to look at the uncertainty of the observed development
result in terms of the D’-conditional mean squared error of prediction.

As for the ultimate mean squared error of prediction, see Section 4, we can
split the mse of the observed development result for a single accident period i
into a process variance term and a parameter estimation error term:

mse[CDR’i""”l] =E

_ 2
( z 0[,' Z < lmki-:l_Szn}fiJ 0) DI‘

meMm k=I1—i
. (E

5.1. Process variance of a single period CDR

~

-1
T ar ¥ 8|0

mem k=I—i

J=1
m omI+1 <
Z a; Z <Si,k+1 =S k+1>

mem k=I—i

= Var

We will split the process variance term of the CDR as follows

Z Olz Z 1+1

mem k=1I—i

2
( S Y sml)

mem k=I1—i

In order to get estimators for the first addend on the right hand side let us
start with some computations of 9D’-conditional expectations of products of
S " I+1 Therefore, take k, < k, and k, + i, > 1. Then we get
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omuI+1 Gmy, I+1 I m1,1+1 omy,I+1 I
B[S/ Spyl o] = BlE[S/s! Sl | ok || o

m|,1+1 iy +ky, I+1 I
E[Sll ki+1 12 AZS ‘Z) .

In case of k| = k, =: k we compute

my, I+1 Qmy, I+1 1 my,my\ gy &btk I+1 ir+k I+1 7
E[Sllk+l 12k+1 ‘D E[1+plllzk)Fll, S lsz D
with
—fAml,[Jrl]?mz,]Jrl
Cov | HE— — km—2 Of|, forini,>I+1—k,
A
[ I+1
Sl k+lfmz’
k L
Cov ‘— Ofl, fori,>ip=I+1—k,
le m2
i,k
plme =9 2mpI+1 gmy
pll,IZ,k f] 1 Sl 1 ;
2> . .
Cov my g, Rmz ﬂk N for >0 = I+1-— k,
| AR
St 1 ST
s ink+1 I ..
Cov mlRm] my R D |, for L=1p= I+1—k,
i1, k. ~fk ir, k
0, otherwise or denominator equals zero.

A short calculation yields

my,my my, my
my,I+1_ my, I[+1 Ok Rl*k,k

wr— k,k Wl—k,k £y £y m my 5
fk fk Rl*k,lefk.k

for i, i, > I —k,

my, ny mla’nz
my, I+1 Ok Ry

Wik k pmiFm; , for i, > i, =1—k,
S R kARI—k,k

ml,m2 — my.m
/711 ik = Uml,mz R

> m, I+1 Yk I-k,k . .

Wlflk,k Fi gmy iy R for h>ih=1- k,

T & e RIZ i
O']an’m2 le,mz o
1y i 5 for i =i=1— k,
T 'fx Tk R 1k
0, otherwise or denominator equals zero.

L

Finally we use the same arguments like in Section 4.2 and replace all unknown
parameters by their estimators at time /. This leads to:
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Estimator 5.3 (of the process variance of CDRM!* 1)

Assume S['y satisfy Assumptions 2.1 and 5.1 and take arbitrary D'-measurable
factors &', m & M S {0, ..., M}. Then the process variance of the claim devel-
opment result of a single accident period can be estimated by

}

J-=1 - .
=2 o™ (H,’”/L;”?m( 7 Hf”/L;’”sz(O))s’sf.

my,myeM kiko=1—1i

Var

Z ai Z Szn;(i-'il

mem k=I—i

Moreover, a linear approximation for the operator H(z) at t = 0 leads to
Var| ¥ o Y Suli|o

mem k=I—-i ]

DI AT S SED SR SR Ty AR

my,nmpeM kl,kZ:I—il[,lzzoj:I—ihl,hzzl J

Q

(A ml,h1+_/+l>ll (Amz,hz+j+l>12
ik . j+1\" bk hy, j+1

5.2. Parameter estimation error of a single period CDR

As for the ultimate parameter estimation error in Section 4.2 we use the resampling
method and estimate

J-1
M m om Tm oM om
AP = Z oo Z (Si,lirl - Si,k1+1><Si,k2+l - Si,k2+l)

my,myEeM ki ky=1—i

by its expectation under the resampling measure P*. Hence, we have to analyse
terms of the form

15l KT S ool KECAY B - KGN ' ol S |
(5.8)

We already know the last addend from Section 4.2:

E* S,\ml omy = g™ m 5 SIS[
ik 18500 +1] = Hilk 76, (p7) .

The other three addends of the right hand side of (5.8) will by analyse in the same
way. Using the properties of the resampling measure P* stated in Remark 4.4
we obtain
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B[S o1 St | = EF[Er 80450
B[S0 S ] = B[ 8752
B[Stk S| = BB 877451,

for k; > k, and i; + k; = I. Moreover, i

n case of k; =k, =: k the last three

identities still hold if at least one claim property lies on or above the diagonal

I+ 1. Otherwise, we get

% my oo *12my, m my & +k pmy Qir+k
B (ST 8] = B [(1+ gt ) By 80 R 8]
« [ amy _ *2m,m m &tk mmy i +k
E [ ll k+1 i, k+1] [( l] iz,lk Z)El,k S E2,ks : ]
* % *1 my, m Fm Gi+k pmy, @itk
E [Szl k+1 Stzk+1 =E [(1 + Pirink 2) ok STTUFLLS ]
with
_omp I+ emy my . :
Sy (1 Wik )pll’lz,k , forijtk>I+1and i, +k=1+1,
iy ik - .
0, otherwise,
I+ . . )
oy (1 — Wk )p:"f; W, foriy+k=I+1land i, +k>1+1,
i[,iz,/{ - .
0, otherwise,
my, I+1 my, I+1\ *my,m . .
2y, my (1_ I—lk,k )(1 _Wl—zk,k )pil,i;,kzj fOI‘ ll‘l‘k, 12+k>1+ 1,
iy, ip, k - .
0, otherwise.

Summarizing all parts and replacing all unknown parameters by their estimators

yields

Estimator 5.4 (of the parameter estimation error of CDRM!* 1)

Assume S|y satisfy Assumptions 2.1 and
factors &', m e M <= {0,...,M}. Then

5.1 and take arbitrary D'-measurable
the parameter estimation error of the

claim development result of a single accident period can be estimated by

~ J—1
AM my _m my, niy M1
AT = 2 aa™ Y (Hrkukz(p*) Hik in(p*)
my, my €M ki ko=1—1i
—=my,my ==my,my —~ alal
— L (57) + HI P (572) )S'S
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Moreover, a linear approximation for the operator H(z) at t = 0 leads to

AU i i i1 i
m my *[, 1 AL A*2 11,1 A*21, 1
i~ Z oo Z Z Z Z (phl,hz, “Phihyi ~ Phikiyg t Phy i)
my,myEM kiky=I—il,lLb=0j=1—ih,hy=1-j
~myphy+j+1\I ~my by +j+1\2 oh
‘(Fi,kl >h|,j+1 Fix, hz,j+1Sl11,]+lSh2,j+1-

5.3. Mean squared error of a single period CDR
Combining the results of the previous two sections we obtain:
Estimator 5.5 (of the mean squared error of CDR}*/*!)

Assume S satisfy Assumptions 2.1 and 5.1 and take arbitrary D'-measurable
factors o', m e M S {0, ..., M}. Then the mean squared error of the claim
development result of a single accident period can be estimated

J— my,m m ,m
mse [CDRﬁM’ I+ 1] = Z al’."’l a;_ﬂz Z ( i, ]1€1,12k2 (p) i, ]161,121(2 (0)

my,my M ki ky=1—1i

ml,mz /\ml,mz

lklalkz(p ) — lkl,lkz(ﬁ*l)

ml»mz Ty /M1, M2

HG L () + H D5 )S'S!

Moreover, a linear approximation for the operator H(z) at t = 0 leads to

kiNky

mse[CDR! ] = Y afalm S8 oy
my,myeM kiko=1—il,l[=0j=1—ih,hy=1—]j
I, 1 Axly, Axll, D Ax211, 1 Ax1211, 1)
(Phl,hz, VP ™ P ™ Phictag  Phyhaj

=my,hy+j+ 1)11 (Amz,hz +/+l>l o4
(F’?kl i+l Fik, 112,/+1Sh1,/+1Sh2 j+l

5.4. Mean squared error of the overall CDR

As for the single period CDR we split the mean squared error of the overall
CDR into a process variance and parameter estimation error term:

I . 2
mse| 3 coR = B[ 3 5 o 5 (515t o |

i=0 i=0meM k=I-i

L o m I+1
= Var Z Z o’ Z ik+1

i=0meM k=

I I= )
El2 2 « Z < zn}cJIrJlrl_Si,léJIrJ o'

i=0meM k I-i

)

2
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Since S,’l"};l”l and Sl'z”zk’; ! depend on the new observed diagonal they are usu-
ally not D’-conditionally uncorrelated. Therefore, the overall process error as
well as the parameter estimation error are not equal to the sum of all single
period process and parameter errors, respectively.

Analogue to Sections 5.1 and 5.2 we can calculate the additional terms and

get

Estimator 5.6 (of the mean squared error of the overall CDR)

Assume S{'y satisfy Assumptions 2.1 and 5.1 and take arbitrary D'-measurable
factors o', m & M S {0, ...,M}. Then the mean squared error of the overall
claim development result can be estimated by

Ju 7 J-1 -1
mse| >, CDRM* "= ) > aal Y >

i=0 i i =0 my,my e M ki=I—iyky=1I—is
mp,m m m nmy,m m m —~
( ll,lkl,?z ky (P) ll,lkl,?z,kz (0) + Hll,lkl,?l ky (P ) lllkl,?z,kz (P*l) (59)

==my,ny ==y,

- Hil,l’fl,iz,kz (P 2) + Hll,/\’l,lz,kz (ﬁ*u) ) SISI-

Moreover, a linear approximation for the operator H(z) at T = 0 leads to

I
mse| Y, CDR}* /!

i=0
I ki Nk I
~ my Ny
~ 2 2 alal Z DD )Y
i1,ip=0my,meMmM =1—i1ky=1—iy l1,[,=0 j=1—(iyNip) hj,hy=1—]
=1, A*ll IS AxL 1,1 NN Ax1211, 1)
(phl ha,j phl,hz] phl,hzj Phyhaj hy, ha, j

~myphy +j+ 1\ <Am2,h2+j+1)lz ~a b
’ <Fi1’k1 )hl,j+1 Fiz’kz 112,j+1Sh1,_/‘+1Shz,jJrl-

Remark 5.7. For the Chain-Ladder- and the Extended-Complementary-Loss-Ratio-
Method the linear approximation is the same as in Buchwalder et al. [2, Approach 3]
and Dahms-Merz-Wiithrich [4], respectively.

If at time I we do not believe in the development of the next period, that means
if ' we take all W,'"_’Erkl = 0, the last four terms of (5.9) and its linearisation will
vanish. This means the mean squared error of the overall CDR is the sum of the

process variance terms

Ay, my p Iy, My
gj Ry

transferred to the ultimate by
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asmy,h+j+1 xmy, h+j+1

Fi1, ki Fi2a ke

Moreover, increasing the credibility w}"_’ﬁkl we give to the development of the
next period will increase the part of the ultimate uncertainty that belongs to the
development of the next period.

The technically Assumption 5.1 could be weakened to arbitrary D' N Dy-meas-
urable weights w,’qu{[ U hich satisfy the normalizing assumption. But in general

this will lead to

’E[fkm,IJrl'DI] ;éf"km,Hl’

which means that at time I the estimated expected CDR would not be zero. This
does not get along with most of the reserving standards. Moreover, we would have
to be a bit more careful with the resampling.

6. TWO EXAMPLES

In the following we will present two examples of LSRMs. The first one illus-
trates the power of LSRM:s if we want to analyse different kinds of reserves
(or claims) by using different methods for the estimation without losing the
ability to estimate the mean squared error of prediction of the overall ultimate
outcome and of the overall claims development result. The second example
shows how different methods may be mixed in order to estimate the reserves
and the corresponding mean squared errors of prediction of the ultimate out-
come and of the claims development result.

6.1. Example 1

The first example is an accident portfolio where we have three types of liabilities:

* Medical expenses (ME) will be estimated using the Chain-Ladder-Method.
The motivation for the choice of this method (exposure) is mainly that it
worked fine in the past. Data are provided in Table 3.

* Payments for incapacitation for work (IW) are by law proportional to the
insured salary, which is limited to a maximum amount. Moreover, during
accident period 7 the maximum insured salary has been increased by about
20%, valid for all claims happening afterwards. Therefore, we think the
Complementary-Loss-Ratio-Method with the insured salary as external
exposure is a good method to estimate the corresponding reserves. Data are
provided in Tables 4 and 5.

* Subrogation (Sub) possibilities are huge. The reason is that many claims are
caused by car accidents and that by law the accident insurer of the insured
persons has to pay first and may take subrogation against the motor liability
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insurer afterwards. Therefore, we assume that the amount of possible sub-
rogation is proportional to the total amount that already had been paid, i.e.
to ME+IW+Sub. Data are provided in Table 6.

For the coupling of those three types of payments we choose the cumulative
total payments, i.e. R];' "™ is the sum of all payments (including subrogation)
for all claims of accident period i up to development period k.

For the estimation we used the standards weights of (3.3) and the corre-
sponding unbiased estimators for the model parameters (3.1), (4.3) and (4.4).
Note, a few of the estimated correlation matrices for development period 6
and 7 are slightly non-positive defined. We believe that this is more an estima-
tion problem than a model problem and we could change the estimated ;"""
slightly in order to get always non-negative defined correlation matrices and
only change the resulting MSEP and CDR by less than 0.5%. Therefore, we did
not do that.

Table 1 shows the resulting estimates for the reserves, the MSEP and the CDR.
In the last column we added the corresponding results of an overall Chain-
Ladder-Method. Note, the difference between the shown figures and their linear
approximations are less than 0.03. We see that the total reserves of the LSRM
are much higher (11%) than the Chain-Ladder-Reserves. The main reason is
that the Complementary-Loss-Ratio-Method fits the special development of the
payments for IW better than the Chain-Ladder-Method. Moreover, the sub-
rogation potential has been increased by the higher expected total payments.

Taking the Complementary-Loss-Ratio- instead of the Chain-Ladder-Method
for the projection of IW is only important for the second development period.
This can be verified by backtesting, but we do not have a good explanation for
this behaviour. Since other parameters which have an impact on IW, like a
change in the general economic situation, are not reflected within the insured
salary it may be a further improvement to the model to choose the insured
salary as exposure for the second development period and switch to the Chain-
Ladder-Method for all other development periods.

The differences of the MSEP and the CDR between the LSRM and the
Chain-Ladder-Method are not so significant, which confirms that neither
the MSEP nor the CDR should be used to decide which method is the best.
We strongly recommend to look for good exposure measures R, that can be
motivated by other facts than triangle based statistics.

TABLE 1

RESULTS OF EXAMPLE 1

ME 1A% Sub Total Total CL
Reserves 81954 1257809 —46°443 1617319 1447788
MSEP 3777 57991 4975 8504 8633

CDR 27795 4723 37208 6°088 6°484
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6.2. Example 2

In this example we want to show how LSRMs may be used in order to com-
bine method based results with actuarial judgement. For instance, assume we
have projected payments and reported amounts (or incurred) separately with
some LSRM (the method based results). Now we look at those projections
and decide about a final ultimate, which is a linear combination of the two
projections (actuarial judgement). If we introduce in addition a coupling expo-
sure R?,l we automatically get a corresponding estimate of the overall uncer-
tainty and the uncertainty of the claims development result.

As example we take the data of Dahms [3, Example 1]. The triangles are
shown in Tables 7 and 8. We will apply the following two LSRM:s:

* ECLRM: The Extended-Complementary-Loss-Ratio-Method, see Section 2.4.
We take the same parameter as in Dahms [3]. Note, the parameters 6,
of Dahms [3] are not the variance minimising estimators for ¢}’ as pre-
sented in (4.3), but the effect on the estimators for the uncertainty is less
than 0.5%.

« CL: We project payments S;x and reported amounts S}, separately by the

Chain-Ladder-Method and couple the projections by the exposure

k
0,1 .__ 0 1
R == 2 Si;+Si;.
j=0

For the coupling of the projected estimates we take a credibility approach that
is a generalisation of the credibility interpretation of the Bornhuetter-Ferguson-
Method, which is the credibility mixture of a projected ultimate C; ; and an
external given ultimate U,. The credibility weight given to U; is proportional
to the distance of the projected ultimate and the last known value C;; ;. This
means we look at the credibility mixture

C'i,l—i
Cis

Ci,J B Ci, I-i
Cis

Cir Cir-
Cis+ U =-—7F"C,+{1-——FF—]|U.

Ci,] Ci,]

This works fine as long as C; ;_; < C; ;. If this is not the case we could take
i.J

Cfl—i instead of CC—’; Finally, generalising the above formula to M projected
ultimates we get the following credibility mixture
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TABLE 2

ESTIMATES OF EXAMPLE 2.

Reserves MSEP MSEP proxy CDR CDR proxy
CL Paid 10°165'612  1°517°861 1'517°480 1°004°481 1'004°164
CL Incurred 10°665°287 455802 455794 347°709 347698
Mixed CL 10°539°276 676047 675927 478°785 478688
ECLRM Paid 10°728°771 467964 467814 346°640 346°576
ECLRM Incurred 10°728°771 4727131 471873 3507692 3507534
Mixed ECLRM 1077287771 469°518 469324 3487110 3487009

Table 2 shows the resulting estimates for the reserves, for the mean squared
error of prediction (MSEP) and for the uncertainty of the claims development
result (CDR). Moreover, the table contains the linear approximations of the
presented estimators. Note, they differ from their original values by less than
0.1%.

For the estimation of the reserves within the ECLRM the credibility mixture
has no effect, because this method already combines both triangles in such
a way that the projection of payments lead to the same estimated reserves
like the projection of reported amounts. But in order to get estimates for the
MSEP and the uncertainty of the CDR such a credibility mixture may be
useful, although in this example the corresponding values differ only slightly.
The linear approximations are the same as presented in Dahms [3] and Dahms-
Merz-Wiithrich [4].

The credibility weighted estimates for the Chain-Ladder-Methods tent
more in the direction of the projection of the reported amounts. But this does
not have to be the case. Although the weighted estimates for each single acci-
dent period always lie between the corresponding two estimates of the separate
projections the overall estimates (for all accident periods) do not have to be
between the corresponding two estimates of the separate projections.

7. CONCLUSION

Up to now in most cases discussions about the choice of reserving methods were
more philosophic than scientific. By introducing LSRMs we want to encourage
actuaries to spend more time on the investigation of drivers (exposures) behind
the development of portfolios, claims and claim properties. If such a driver is,
at least heuristically, identified and if the dependence structure is linear we
have a very good reason to look at the corresponding LSRM for reserving
purposes. This means the discussion about the choice may now be based on
heuristic reasons about exposures driving the claims development, which in
our opinion is much better than a pure philosophic approach.
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