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MEAN-VALUE PRINCIPLE
UNDER CUMULATIVE PROSPECT THEORY

BY
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ABSTRACT

In the paper we introduce a generalization of the mean-value principle under 
Cumulative Prospect Theory. This new method involves some well-known ways 
of pricing insurance contracts described in the actuarial literature. Properties 
of this premium principle, such as translation and scale invariance, additivity 
for independent risks, risk loading and others are studied.

1. INTRODUCTION

From the practical point of view, the mean-value principle is based on a belief  
that people use a utility function while making decisions under risk and uncer-
tainty and they can properly evaluate the probabilities of  gains and losses. 
Gerber (1979), Goovaerts et al. (1984) and Rolski et al. (1999) study the prop-
erties of  this principle assuming that a value function is convex and twice 
differentiable. However, in reality, these assumptions are usually incorrect.
On the one hand, numerous experiments carried out by Kahneman and Tversky 
(1979) confi rm the fact that under risk and uncertainty people make decisions 
using a function which assigns virtual value to monetary outcomes. On the other 
hand, they notice that people decide which outcomes they see as basically 
identical and they set a reference point and consider lower outcomes as losses 
and larger as gains. They suggest replacing the utility function, which measures 
absolute wealth, with a value function that depends on relative payoff and meas-
ures gains and losses. According to them, such a function should be convex 
for negative and concave for positive arguments.

In addition to this observation, Köszegi and Rabin (2007) notice that mak-
ing decisions under uncertainty increases risk aversion if  the risk is expected. 
Reference points, which infl uence decision maker to take certain action under 
uncertainty, are allocated on the basis of beliefs of a decision maker concerning 
a possible outcome and they can be determined in a stochastic way. Taking action 
relies on maximizing the functional EF Ò v (w|r) dG (r), where v is the value 
function proposed by Kahneman and Tversky, w is the wealth with distribution 
F and G is a probability distribution function of a discrete random variable R 
with fi nite support. Under these assumptions we may deal with value function 
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v(w)    =    Ò v (w|r) dG (r) with very irregular shapes, in particular they can be 
functions which are not differentiable at many points. Gillen and Markowitz 
(2010) suggest functions which are piecewise convex and concave, thus have 
some infl ection points, but are differentiable at every point. The analysis of 
certain subclasses of these functions allows us to determine a decision maker’s 
willingness to undertake risk. It still remains an issue for debate which type
of a value function corresponds the most to human behavior while making 
decisions. Therefore, in order to obtain results for possibly large class of value 
functions, we should put possibly weak assumptions concerning the value 
function.

Kahneman and Tversky (1979) also discover that people distort probabilities 
while making decisions under risk and uncertainty. Rank-dependent utility 
model eliminates the problem of overweighting very small probabilities (e.g. 
Quiggin 1982). Formalization of this idea relies on distorting the cumulative 
distribution function, not the single probabilities. Tversky and Kahneman (1992) 
use the concept of rank-dependent utility model and create Cumulative Pros-
pect Theory in which they assume that probabilities of gains and losses are 
distorted in a different way. This theory has already been widely applied and 
discussed in many papers (e.g. Schmidt et al., 2008, Teitelbaum, 2007). During 
last years some authors have adjusted classical theories of fi nance and insurance 
to Cumulative Prospect Theory (see Schmidt and Zank, 2007, De Giorgi et al., 
2009, De Giorgi and Hens, 2006, Bernard and Ghossoub, 2010). In this paper we 
would like to study a new version of the mean-value principle under Cumulative 
Prospect Theory.

The paper is organized as follows. In Section 2 we review the mathematical 
foundations of Cumulative Prospect Theory and defi ne a new version of the 
mean-value principle adapted to this theory. In Section 3 we analyze properties 
of  this premium principle. Section 4 summarizes the whole article. In the 
Appendix one may fi nd proofs of theorems and propositions.

2. PREMIUM PRINCIPLE UNDER CUMULATIVE PROSPECT THEORY

In rank-dependent utility model it is assumed that probabilities are distorted 
by some non-decreasing function g   :   [0,1]  →  [0,1] such that g(0)  =  0 and 
g(1)  =  1, called probability distortion function (e.g. Segal, 1989). Let G denote 
the class of all probability distortion functions. For a fi xed g ! G and random 
variable X, the Choquet integral is defi ned by

 gt tg ( ) ( )E X g P1> >
0

0

- +
3

3

-

P X dt X ,dt=: ^^ ^h h h# #

provided both integrals are fi nite. Further we assume that all random variables 
are defi ned on some probability space (W,  A,  P). If  X takes fi nite number of 
values x1  <  x2  <  …  <  xn with probabilities P(X   =  xi )  =  pi  >  0, then Eg X  =  x1  +  
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1
1

ii = g qn -
^ h/  (xi  + 1  –  xi ), where ik 1=q pk=i +

n/ ; in particular for n  =  2 we have 
EgX  =  x1 (1  –  g(p2))  +  g(p2) x2. Further we write X $ 0 if  P(X $ 0)  =  1 and
X  !  X2

+   if  P(X  =  s)  =  q  =  1  –  P(X  =  0), where q  !  [0, 1] and s  >  0 are arbi-
trary. The Choquet integral is additive for comonotonic risks, positively homog-
enous, monotonic (i.e. EgX $ EgY if  X $  Y a.e.) and Eg(c)  =  c for all c  !  �. 
Moreover Eg( –X )  =  –  Eg X, where g(x)  =  1  –   g(1  –  x) is dual distortion function. 
In the literature we can fi nd some classes of probability distortion functions, 
e.g. g(p)  =  ,

( ( ) )p p

p

1 /1+ - g gg

g

 g(p)  =  ,( )p p
p
1+ - gg

g

 g(p)  =  exp (– (– ln p)g ), g(p)  =  p  +
g(p  –  p2) (see Tversky and Kahneman, 1992, Prelec, 1998, Goldstein and Ein-
horn, 1987, Sereda et al., 2010). For g, h  !  G we defi ne the generalized Choquet 
integral as

 X .E X Egh g h-+ +-E= X ^ h

It is introduced by Tversky and Kahneman (1992) for discrete random variables 
and is used to describe the mathematical foundations of Cumulative Prospect 
Theory. In numerous experiments Tversky and Kahneman notice that proba-
bilities of  losses are distorted in a different way than probabilities of  gains.
If  h(x)  =  g(x)  =  1  –  g(1  –  x), then EggX  =  EgX. Usually, formulas for h are 
similar to those for g but with different values of coeffi cient g.

Lemma 1. The generalized Choquet integral has the following properties:

W1 Egh  1A  =   g(P(A));

W2 Egh (cX )  =  cEghX for all c $ 0;

W3 Egh ( –X )  =   – EhgX;

W4 if X # Y, then Egh X # EghY;

W5 if g(x) $ x and h (x) # x for x  !  [0, 1], then Egh X $ EX;

W5’ if g(x) # x and h(x) $ x for x  !  [0, 1], then Egh X # EX;

W6 if g(x)  =  h(x)  =  x, then Egh X  =  EX;

W7 Egh c  =  c for all c  !  �;

W8 for all c  !  � we have

 X X> >s sgE c h P Pg g

c

0

+ - - -h hX ds= ,c+ +E X^ ^^ ^^h hh hh6 @#  (1)

 c gsg g hE E X c P X P X s ds>h h

c

0

$+ = + -
-

X + ;^ ^^ ^^h hh hh6 @#  (2)

W9 Jensen’s inequality: If u  :  �  →  � is non-decreasing, concave and u (0)  =  0, 
then for g, h  !  G and arbitrary random variable X such that Egh X exists we 
have
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uu

gh h( ) ( ) ( )E u X u m P m X s g P m X s
� m m

0

# $ $-

-

�u
m

� ,u ds+^ ^^ ^^

^ ^

h hh hh

h h

6 @#  (3)

where m  =  Egh X and u� is the right-sided derivative of u. Moreover, if h(x) $ g(x) 
or X $ 0, then Egh u (X ) # u (Egh X ).

We introduce a premium principle which is a modifi cation of  the mean-value 
principle adjusted to Cumulative Prospect Theory. Let X be an arbitrary 
random variable which does not have to be non-negative. Then X should be 
regarded as a total claim made by the insured, decreased by the possible gain 
earned from investition. This allows us to consider insurance products involving 
some investment options such as investment-linked life insurance or variable 
annuity. In case of  non-life insurance it is plausible to study non-negative 
random variables. 

Consider a decision-maker whose reference point is w and who wants to 
purchase an insurance policy paying out the monetary equivalent of the random 
outcome X. Further, we call (X  –  w)+ losses and (w  –  X )+ gains. If  X $ 0, then 
(X  –  w) + and (w  –  X)+ denote catastrophic and non-catastrophic loss, respec-
tively. In the latter case there is a direct analogy with stop-loss reinsurance. 
Assume that u1, u2  :   �+  →  �+   are some non-decreasing value functions, where 
u1 measures gains and u2 losses. Let g and h be probability distortion functions 
of gains and losses, respectively. We propose premium H(X ) for insuring X as 
the solution of

 ( (X X XH H g ( .u u w E u E u X wh1 2 1 2- - = - - -+ + + +w - ) ) w )_a _̂ ^ _̂i k h i h h i

(4)

Notice that (4) can be rewritten as

 gh( )u w H X E u X- = -w^ ^h h (5)

with non-decreasing function u(x)  =  u1(x +)  –  u2 ((– x) +) for x  !  �. Gerber 
(1979) considers a similar equation for premium H(X) under assumptions that 
the value function u is concave and probabilities are not distorted, i.e. 
g(p)  =  h(p)  =  p. In a more general model Luan (2001) assumes that h  =  g,
g is convex and the value function is concave. Van der Hoek and Sherris (2001) 
analyze a functional with different probability distortion functions for gains 
and losses. However, they study only the case when the value functions are 
linear.

Let us determine the minimum assumptions about u under which the pre-
mium defi ned by (5) exists and is determined uniquely. It is commonly accepted 
that u should be non-decreasing. However, if  u was constant on some interval, 
then the premium could not be determined uniquely. Therefore we assume
that u is increasing. It turns out that u should also be continuous. Otherwise, 
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equation (5) may have no solutions. Without loss of generality we may assume 
that u (0)  =  0. Further we consider increasing and continuous functions u such 
that u (0)  =  0. To simplify the notation we write u  !  U if  u satisfi es these three 
conditions. We also denote u  !  U0 if  u (x)  =  cx, u (x)  =  (1  –  e  – cx) / a or u (x)  = 
(ecx  –  1) / a for x  ! � and some a, c  >  0.

In the following two examples we determine the premium H (X) if  u  !  U0.

Example 1. If u (x)  =  cx, then from W2, W3 and (1) we can rewrite (5) as

 
(XH X

s s

gh)
w

g .

c cE w

c w E X h P X P X ds> >hg 0

- = -

= - -+

w^ ^

^_ ^^a

h h

hi hh k6 @#

Finally we have

 (XH s s)
w

g .E X P X h P X ds> >hg 0
= + -^^ ^^hh hh6 @#  (6)

Example 2. For u (x)  =  (1  –  e  – cx) / d from (1) and W3 we can rewrite (5) as

 (XHc

c

-

-s

c

c

-

-1

e

cX

-)
gh

g .

e E

E e e h P e P e s ds

1 1

1 > >

w w X

h
cw w X w X

0

- =

= - -

- -

- - -+

^

^ ^^ ^^

^ ^

^ ^

h

h hh hh

h h

h h6 @#

From the above and W2 we have

 
1

g .e P e se P e se ds E e> >(cH X cw cX cw cX cw
hg

cX

0
- =h+ e) ^^ ^^hh hh6 @#

Thus

 (X t>H t>) g .lnc E e P e h P e dt1
exp

h
cX cX cX

cw

0

= + -^ ^^^

^

h hhh

h

6> @ H#  (7)

In a similar way we can derive a formula for H(X) if u (x)  =  (ecx  –  1) / d.

In the next example we will determine the premium if  we assume that prob-
ability distortion functions are neo-additive weighting functions (see Wakker, 
2010, p. 208). Further we denote sup  X  =  sup {t  :  P(X # t)  <  1} and  inf  X  = 
–  sup  ( – X ).

Example 3. Let u (x)  =  x. Assume that g(x)  =  c  +  dx, h(x)  =  a  +  bx for 
x  !  (0, 1), where b,  d  $ 0, a,  c $ 0, a  +  b # 1 and c  +  d # 1. If inf  X # 0 # sup X, 
then from (6) we have
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 (8)

where w(X )  =  min (max (inf X, w), sup X ). If c  =  0, 0 # d  <  1, inf  X  =  0 and
sup X  =  w, then H(X)  =  EX  +  (1  –  d ) (sup X  –  EX). This premium is analyzed 
by Kaluszka and Okolewski (2008). If w  =  0, b  =  1  –  a and d  =  1  –  c, then from 
(8) we get

 (XH c) EX .EX a= + - - -+ + + +sup X ( ) ( )sup X E X- -^ ^h h

If inf X # w # sup X and b  =  d, then

 (XH d d) .sup infa c w a X c X EX= - - - + + +1^ h

3. PROPERTIES OF PREMIUM PRINCIPLE UNDER CUMULATIVE

PROSPECT THEORY

Further we assume that X is an arbitrary random variable, unless it is stated 
otherwise.

1. Non- excessive loading: inf  X # H(X ) # sup X.

 This property holds for all u  !  U and g, h  !  G, which is the consequence of 
W4 and W7.

2. No unjustifi ed risk loading: H(a)  =  a for all a ! �.

 From W7 it follows that this condition is satisfi ed for all u  !  U and g,  h  !  G.

3. Translation invariance: H(X  +  b)  =  H(X )  +  b.

Proposition 1. Let u  !  U0 and g, h  ! G. Then H(X ) is translation invariant for 
all X and b  !  � if and only if h  =  g.

Proposition 2. Let u  !  U0 and g, h  ! G. Then H(X ) is translation invariant for 
all X $ 0 and b $ 0 if and only if h  =  g or w # 0.
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Theorem 1. Let u  !  U and g, h  !  G be continuous. If H(X ) is translation 
invariant for w  =  0 and some w  >  0, then u  ! U0 and h  =  g.

4. Scale invariance: H(aX )  =  aH(X ) for all a  >  0.

Theorem 2. Let u  !  U and g, h  !  G.

(i) Let u(x)  =  cx for some c  >  0. If w  =  0 or h  =  g, then H(aX )  =  aH(X ) for 
all a  >  0.

(ii) Let h be continuous. If X $ 0 and H(X ) is scale invariant for w  =  0, then 
u (x)  =  –  c (– x)d for x # 0 and some c, d  >  0.

(iii) Let g, h be continuous. If H(X ) is scale invariant for w  =  0 and all X, then 
u (x)  =  – c ( – x)d for x # 0 and some c, d  >  0 and u (x)  =  axb for x  >  0 and 
some a, b  >  0.

(iv) If h is continuous and H(X ) is scale invariant for all w $ 0 and all X, then 
u (x)  =  cx for some c  >  0 and all x  !  � and g  =  h.

5. Additivity for comonotonic risks.

Theorem 3. (i) Let u(x)  =  cx. If h  =  g  !  G, then H(X) is additive for comonotonic 
risks. 
(ii) If u  !  U, g, h  !  G, h is continuous and H(X), which is the solution of (5), 
is additive for comonotonic risks for all w $ 0 and all X, then u(x)  =  cx and h  =  g.

6. Additivity for independent risks.

Theorem 4. (i) If g(p)  =  h(p)  =  p and u  ! U, then H(X ) is additive for inde-
pendent risks if and only if u  !  U0.
(ii) Let u  !  U0, g, h  !  G be such that h (0 +)  =  0, h (1 – )  =  1 and there exists 
left-sided derivative of h at x  =  0. If H(X ) is additive for independent risks for 
w  =  0 and some w  >  0, then g(p)  =  h(p)  =  p.

Notice that in Theorem 4 we do not put any additional requirements on func-
tion g. Moreover, from (ii) it follows that in practice it is enough to check the 
additivity for independent risks for two values of w in order to be certain that 
probabilities are not distorted.

7. Subadditivity: H(X  +  Y ) # H(X )  +  H(Y ).

Theorem 5. Let u (x)  =  cx for some c  >  0 and h  =  g, where g  !  G. Then H(X ) 
is subadditive if and only if g is convex.

8. Stop-loss order preserving: X   #sl  Y   implies   H(X ) # H(Y ).

Theorem 6. If u  ! U is concave, g, h  !  G are such that g  =  h, g is convex and 
X  #sl  Y, then H(X ) # H(Y ).
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9. Risk loading.

One of the properties characterizing the premium is risk loading, i.e. H(X ) $ 
E(X ). If  this condition is not satisfi ed, then obviously no insurance company 
would decide to sell the policy. The following propositions describe in terms 
of rank-dependent utility theory two groups of people: those who either can 
afford to buy an insurance or refuse to be insured. Generally, risk loading 
holds if  and only if

 (X X) ( ) .w u E u wE gh# - -1- ` j  (9)

 
Since it can be diffi cult to evaluate the right-hand side of (9), we give some 
suffi cient conditions when risk loading is satisfi ed.

Proposition 3. If u  !   U is concave and g, h  !  G are such that g(x) # h (x) # 
x for all 0 # x # 1, then H(X ) $ E (X ).

In the next two propositions we assume that X $ 0.

Proposition 4. Assume that u  !  U, g, h  !  G and X is non-negative, bounded 
random variable such that w  <  s  =  sup X. Then H(X ) $ E (X ) holds, if

 (X s s( )=) ( ) ( ) ( ) .E w u g P w u w h P u<1
# - + -- X wX^ ^h h6 @  (10)

If X takes only the values from the set {0, w, s}, then (10) is equivalent to H(X) $ 
E (X ).

Proposition 5. Assume that u  !  U and g  !  G. Then H(X ) $ E (X ), if

 w( ) ( ) ( ) .E w u u w g P <# - 1-X X^_ hi  (11)

If P(X  =  0)  +  P(X  =  w)  =  1, then (11) is equivalent to H(X ) $ E (X ).

Example 4. For some types of value functions and probability distortion functions 
we can check directly when risk loading holds. Let u(x)  =  x, g(p)  =  p  +  g1(p  –  p2) and 
h(p)  =  p  +  g2(p  –  p2), where |g1|, |g2| # 1. If g1 # 0, then g is convex and for g1  $  0 
function g is concave. Moreover g(p)  –  h(p)  =  –  p(1  –  p) (g1  +  g2). From (6) we have

(X

X X

H

s s

s

s

s s

<$

s

s

$

)

.EX P ds P dsg g= + -

ds-

3-w

( )P X P P X s ds P X s P X s ds

P P P X

P X X P X s

> > >

> >

w

w

2
0

1 2
0

1
0

2 1

# #

# #

g g g

g

= + - +

- + - -

3

3

3

X

X

^ ^ ^ ^ ^

^ ^ ^

^ ^ ^ ^

h h h h h

h h h

h h h h

6

6

@

@

# #
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# #
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Thus H(X ) $ EX if and only if

 P P
3-w

.X s P X s ds X s P X s ds> >
w

1# $ #g g
3

2 ^ ^ ^ ^h h h h# #

This condition is satisfi ed for example if g2 $ 0 and g1 # 0. Let X  =  max (X, w), 
X   =  min (X, w). Notice that if X and X� are i.i.d. random variables, then

 
s>

=

s

E

w

+

P X s P X s ds E X ds

E X X X X2
1

>
w

1 1# #=

= -

3 3

-� �

X�

,

^ ^ ^ ^

^

h h h h

h

# #

which is known as Gini coeffi cient.

In a smilar way we prove that E
3-

.P X s P X s ds X X2
1>

w

# = -�^ ^h h#  Since

| x  –  y |  =  2max (x, y)  –  x  –  y, we have 

 (X E:2 2H E-) EX X X X X2 1g g= + - -:2 2E ,E^ ^h h

 

where X2:2  =  max (X,  X�) and X 2:2  =  max (X , �X ).

4. CONCLUDING REMARKS

We have presented a new version of  premium principle under Cumulative 
Prospect Theory. This premium principle satisfi es non-excessive and no unjus-
tifi ed risk loading conditions for all types of value functions and probability 
distortion functions. It is translation invariant only if the value function is linear 
or exponential and h  =  g. Scale invariance and additivity for comonotonic risks 
are satisfi ed if the value function is linear and h  =  g. Additivity for independent 
risk holds if  the value function is linear and exponential and probabilities
are not distorted which corresponds to the case described by Gerber (1979). 
If  the value function is linear and h  =  g, then the principle is subadditive if  
and only if  g is convex. In general this premium principle does not satisfy risk 
loading, but we give some conditions under which this property holds. This 
paper extends results by Gerber (1979), Van der Hoek and Sherris (2001) and 
Luan (2001) under mild assumptions on considered functions. The results are 
obtained by examining functional equations instead of differential equations.
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APPENDIX

Proof of Lemma 1. Proofs of W1, W3 and W6 are obvious. Proofs of W2, 
W5, W5’ and W7 are the consequence of the defi nition of the generalized Cho-
quet integral, the Choquet integral and properties of the Choquet integral.

Ad W4 If  X # Y, then P(X  >  t) # P(Y  >  t) for t  ! �. Thus

 .Yg +gE g P X t dt P Y t dt E> > g
0 0

= =
3 3

+X #^^ ^^hh hh# #

Moreover, if  X  # Y, then –Y #  – X and P(–Y  >  t)  #  P(–X  >  t) for t  !  �. 
Hence Eh(–X ) +   $  Eh(–Y ) +.

Ad W8 Firstly, we will prove (1). We have

 

hc

g h

g h

g h

c- c

cc-

g

E X c g P t dt P X t c dt

P X t dt P X t dt

E P X t dt P X t dt

E X P X s ds P X s ds

E c h P X s P X s ds

> >

> >

> >

< >

> >

gh

gh

gh

c c

gh

c

0 0

0 0

0 0

0

+ = - - - +

= - -

= - -

= - + -

= + + - - -

3 3

3 3

,X

X

+

X +

^ ^^ ^^

^^ ^^

^^ ^^

^^ ^^

^^ ^^

h hh hh

hh hh

hh hh

hh hh

hh hh6 @

# #

# #

# #

# #

#

because the modifi cation of  values of  the integrated function at a countable 
number of points yields  

c cg gP X s ds P X s ds> #- = -
0 0

^_ ^_hi hi# # . Formula (2) 
is obtained from (1) after making some elementary calculations.

Ad W9 Obviously u (x)  #  u (m)  +  u�(m)(x  –  m) for all x, where u� is the 
right-sided derivative of u. From this, W2, W4 and (2) we have

 
( ) ( )m m

gh

h

� �( ) ( ) ( ) ( )

( )

E E u m u m m u m X

u m P X s g P X s ds
�( ) ( )

gh

u m m u m

0

#

$ $

- +

= -

-

Xu

� �u u+ ^^ ^^hh hh

6

6

@

@#
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and we get (3). Moreover u�(m) m  –  u (m)  #  0 and u (0)  =  0, so if  h $ g,
then Egh u (X )  #  u (Egh X ). If  X  $  0, then P(u�(m) X  $  s)  =  1, hence Egh u (X)  #   
u (Egh X ). ¡

Proof of Proposition 1. Let u (x)  =  cx. From (6) and W8 we have

 
b

s s

b .ds+

g

g

( )H b E b h P X P X ds

P X s h P s

> >

> >

hg

b

w
0

0

+ = + - - -

- - -

X X

X

+ ^^ ^^

^^ ^^

hh hh

hh hh

6

6

@

@

#

#

Hence H(X  +  b)  =  H(X )  +  b for all b  !  � if  and only if  

 
(12) 

b s b

g

g g .

h P X s P X s ds

P s P s h P h P s ds

> >

> > > >

b

w
0

0

- - -

= - - - - -X X X X

^^ ^^

^_ ^^ ^^ ^^_

hh hh

hi hh hh hhi

7

6

A

@

#

#
 

Clearly, if  h  =  g, then H(X ) is translation invariant. Suppose now that h(z)  !
g(z) for some z. Let b  >  w $ 0 and X be the random variable such that P(X  =
–  s0)  =  z  =  1  –  P(X  =  0), where b  –  w  <  s0  <  b. Then (12) can be rewritten as

 
( (

gz

s-

g g) )

.

h z z s h z z dt

h z w b s

w b

0

0

0

- = - - -

= - - - - +

-

1 1

1 1

^ ^

^ ^_ _

h h

h hi i

6 6@ @#

Since (h (z)  –  g(z))s0  !  0, we get a contradiction that b is arbitrary such that 
max (s0, w)  <  b  <  s0  +  w. For w  <  0 let b  <  w and let X be such that P(X  =  s0)  =
z  =  1  –  P (X  =  0), where 0  <  w  –  b  <  s0  <    –  b. Then (12) can be rewritten as

 w b+g g( ) ( )s z h z h z z0 0- - - = - -1 s1 ,^ ^^ ^ ^h hh h h

which contradicts that b is arbitrary such that w  –  s0  <  b  <  min (– s0,  w).
Let u (x)  =  (1  –  e  – cx) / a. From (7) under b  >  w $ 0 we have

s>sg( ) .lnH b c E P h P ds b1 >

( ( ))exp

h
cX cX cX

c w b

0

+ = - +

-

X e ee + ^^ ^^hh hh6> @ H#  (13)

If h  =  g, then H(X  +  b)  =  H(X)  +  b for all b  ! �. Suppose that g(z)  !  h(z) for some 
z. Let X be such that P(X  =  s0)  =  1  –  z  =  1  –  P(X  =  0), where s0  <  w  –  b  <  0. Then
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 s s> >

b

g g !( ) ( ) ( ) ( ) 0P h P ds z h z e
( ( ))

( )
exp

cX cX
c

cs c w b

0

0- = - - -e
w-

e e^ ` ^ ^h j h h9 C#

and from (13) and (7) it follows that H(X) is not translation invariant. An analo-
gous proof can be carried out for u (x)  =  (ecx  –  1) / d. ¡

Proof of Proposition 2. Since P (X  >  t)  =  1 for t  <  0 and g(1)  =  h(1)  =  1, then 
for b $ 0 we have

 

b h-g g

g .

P s P X s b ds P X t h P X t dt

P t h P X t dt

> > > >

>

w

b

w b

w b
0

0

- - = -

=
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X >
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hi hi hh hh

hh hh

6 6

6

@ @

@

# #

#

Notice that Ehg(X  +  b)  =  Ehg X  +  b, because X  +  b $ 0. Hence for u(x)  =  cx 
from (6) it follows that

 g( ) .H X b H h P X s P X s ds> >
w b

w

+ = -
- +

X + b +^ ^^ ^^

^

h hh hh

h

6 @#  (14)

From (14) it follows that if w # 0 or g  =  h, then H(X  +  b)  =  H(X)  +  b. Suppose 
that w  >  0 and g(z)  !  h(z) for some z. Let b  >  w and X be such that P(X  =  s0)  =
z  =  1  –  P (X  =  0), where 0  <  s0  <  w. Then

 g ( )z
+

g !0,h P X s P X s ds s> >
w b

w

0- = -
-

( )h z^_ ^^ ^

^

hi hh h

h

8 B#

which means that H(X ) is not translation invariant.
If  u (x)  =  (1  –  e  –  cx) / d, then from (7) and (13) for b  >  0 we have

 s s>
e

g( ) .lnH b c E P h P ds b1 >h
cX cX cX

0

(c

+ = + - +X

)w b-

e e e_` ^^ij hh9> C H#

If  w # 0 or g  =  h, then H(X ) is translation invariant because ec(w  –  b)  <  1 for
b $ 0 and ecX $ 1. Let w  >  0 and g(z)  !  h(z) for some z. For random variable 
X such that P(X  =  s0)  =  z  =  1  –  P(X  =  0), where 0  <  s0  <  w  –  b we get

 s>s>g g !( ) ( ) 0P h P ds e z h z1cX cX
e

cs

0

( )c w b

0- = - -

-

,e e_` ^` ` ^ij hj j h9 C#
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which means that H(X ) is not translation invariant. An analogous proof can 
be carried out for u (x)  =  (ecx  –  1) / d. ¡

Proof of Theorem 1. Assume that H(X  +  b)  =  H(X)  +  b for all b $ 0. Consider 
X  !  X2

+. Then from (5) under w  =  0 we have

 E =( ) ( ) ( ) ( ) ( ) .u H u E u u s h qgh h- = - = - - - -+X X X^ ^h h

Thus 

 (q) ( )
( )

.h u s
u H

=
-

- X^ h
 (15)

Since H(X )  =  0 for q  =  0 and H(X )  =  s for q  =  1, from the monotonicity and 
continuity of u and h it follows that H(X ) is continuous and non-decreasing 
function of variable q, thus it takes all values from [0, s ]. From the translation 
invariance of H(X ), we can rewrite (5) for X  +  b as

 
( ) ( ) ( )

( ) ( ) ( ) ( ) .

u H b E u X b E u X b

u b h q u s b h q1

gh h- - = - - = - - - -

= - - + - -

+X^ ^

^

h h

h
 (16)

Putting (15) into (16), denoting x  =  – H(X ), y  =  –  b and dividing both sides of 
obtained equation by u (x)  u (– s), we get

 ( , ( ,f x y f s y= -) ) (17)

for all y # 0, s  >  0 and –  s # x # 0, where f (x, y)  =  (u(x  +  y)  –  u (y)) / u (x). 
Setting s  =  1 in (17) yields

 ( , ( ,f x y f y1= -) ) (18)

for y # 0, – 1 # x # 0. Putting x  =  – 1 in (17) gives

 ( , ( ,f y f ys 1= -- ) ) (19)

for y # 0 and – s #  – 1. From (18) and (19) we have f (x, y)  =  f (– 1, y) for all
x, y # 0. Hence for a fi xed y we have

 ( (y( ) ) ( ) )u c u x u+ = +x y y  (20)

for all x # 0, where c(y) is some function. By the symmetry we have

 ( ( () ( ) ) ( ) ) ( )c u x u c x u u x+ = +y y y
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for x, y # 0, which is equivalent to

 ( () 1 ( ) ( ) )c u x c x u1- = -y y^ ^h h  (21)

for x, y # 0. If  c(y) ! 1 for all y  <  0, then

 (
(

( )
( )

) 1
)

c x
u x

c
u

1-
=

-y
y

for x, y # 0. Hence u (x)  =  d (c (x)  –  1) for some d  >  0 and from (20) we get

 (y( ) ( ) )c c x c+ =x y  (22)

for x, y # 0. Since u(x)  =  d (c(x)  –  1) and u  !  U, it follows that c is continuous 
and increasing if  d  >  0. Thus the only solution of (22) is c(x)  =  eax for x # 0 
and some a  >  0 (see Kuczma, 2009, p. 349). Hence the only solution of (20) is 
u (x)  =  d (eax  –  1) for x # 0. If  d  <  0, then using a similar reasoning we get 
u (x)  =  (1  –  e  – ax)  / d, where a  >  0. If  c (y)  =  1 for some y, then from (21) it fol-
lows that c (x)  =  1 for x  #  0. From (20) and continuity of  u it follows that 
u(x)  =  ax for x # 0.

We will show that u is linear or exponential on � and h  =  g. Rewriting (5) 
for X  !  X2

+, from the translation invariance of H(X ) we have

 q( ) ( ) (1 ) ( ) (u H b u w b g u w s b h- = - - + - -X qw - )^ h  (23)

if  b # w # b  +  s and

 b( ) ( ) (1 ( )) ( ) ( )u H u w b h q u w s b h q- = - - + - -Xw -^ h  (24)

for b $ w. Let u (x)  =  cx for x  <  0. For b  >  w from (24) we have H(X )  =  sh (q). 
For q0  !  (0, 1) such that h(q0)  =  1/2, s  =  2(w  –  b) and H(X )  =  sh(q0) from (23) 
we get u (x)  =  c1x for x  >  0, where c1  =  c / (2g(1  –  q0)). Setting s  =  w  –  b in (23) 
yields g  =  h and c1  =  c. Now, let u(x)  =  (1  –  e  –  cx) / a for x  <  0. From (24) we 
have H(X )  =  c

1  ln (ecsh(q)  +  (1  –  h (q))). Putting s  =  ln (2ec(w  –  b)  –  1) / c and the 
formula for H(X ) with q0 into (23) gives u (x)  =  (1  –  e  –  cx) / a1 for x  >  0, where 
a1  =  2ag (1  –  q0). In order to prove that u (x)  =  (1  –  e  –  cx) / a for x $ 0 and h  =  g 
we use a similar reasoning as in the previous case. An analogous proof can be 
carried out for u (x)  =  (ecx  –  1) / a. ¡

Proof of Theorem 2. (i) If  u (x)  =  cx, then from (6) for a  >  0 we have

 w

s s

g

g

( ) ( ) / /

.

H a E a P X s a h P X s a ds

a a P h P ds

> >

> >
/

hg

w

hg

a
0

0

= + -

= + -
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E X X X
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If w  =  0 or h  =  g, then H(X ) is scale invariant.

(ii) Assume that H(aX )  =  aH(X ). For X  ! X2
+ from (5) under w  =  0 we have

 ( ) ( ) ( )u a h q u as- = -y  (25)

for all a  >  0, where y  =  H(X ). Setting f (x)  =  – u (– x) and determining h (q) 
from (25) with a  =  1, we can rewrite (25) as

 (
(

) ( ) ( )
)

f a f as f s
f

=y
y

 (26)

for all s  >  0 and 0 # y # s. If  we put s  =  1 in (26) and divide both sides of this 
equation by u (– 1), we get z(ay)  =  z(a) z(y) for all 0 # y # 1 and a  >  0, where 
z(x)  =  f(x) / (– u(– 1)). Setting y  =  1 in (26) yields z(a) z(s)  =  z(as) for s $ 1 and 
a  >  0. From the last two equations we have z(ax)  =  z(a) z(x) for all x  >  0 and 
a  >  0. By the continuity of z we get z(x)  =  xd for all x $ 0 and some d  >  0
(see Kuczma, 2009, p. 349). Hence u (x)  =  – c(– x)d for all x # 0, some c  =
– u (– 1)  >  0 and d  >  0.

(iii) The formula for u (x) if x # 0 follows from (ii). Assume that H (aX )  =
aH (X ). Let X be such that P(X  =  –  s)  =  q  =  1  –  P(X  =  0), where s  >  0 and 
q  !  [0, 1] are arbitrary. From (5) under w  =  0 we have

 ( ) ( ) ( )u a g q u as=y  (27)

for all a  >  0, where y  =  – H(X ). If  we determine g(q) from (27) with a  =  1 and 
put this expression into (27), we obtain again equation (26) with f (x)  =  u(x). 
Hence u (x)  =  axb for x $ 0 and some a, b  >  0.

(iv) From the scale invariance of H(X ) and (5) we have

 ( ) ( ) (1 ) ( ) ( )u w aH u w g q u w as h q- = - + -X^ h  (28)

when a $ w / s and

 ( )aH ( ) ( ) ( ) ( )u X u w g q u w as g q1 1 1- = - + - - -w^ ^h h (29)

if  0 # a  <  w / s. Setting as  =  2w in (28) and choosing q0  !  [0,1] such that 
H(X )  =  s / 2, from (ii) it follows that u (w)  =  cwdh(q0) / (1  –  g(q0)). Thus u (x)  =
c1xd for x $ 0 and some c1  >  0. Putting this into (29), differentiating both sides 
of  (29) with respect to a and setting a  =  0 we get H(X )  =  sg(q). If  we put 
H(X)  =  sg(q), a  =  1 and w  =  s into (29), we obtain (1  –  g(q))d  =  (1  –  g(q)). Thus 
d  =  1. Putting w  =  0 into (28) yields H(X)  =  sh(q). Since H(X)  =  sg(q), we have 
g  =  h. As c1  =  ch (q0)  /  (1  –  g(q0)) and h(q0)  =  1/2, we obtain c  =  c1. ¡
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Proof of Theorem 3. (i) Let u (x)  =  cx. If  h  =  g, then H(X )  =  EgX and the 
additivity of the Choquet integral for comonotonic risks ends the proof of (i).
(ii) If  H(X ) is additive for comonotonic risks, then it is scale invariant. From 
Theorem 2 it follows that u (x)  =  cx and h  =  g. ¡

Remark 1. From the proofs of Theorem 2 (iv) and Theorem 3 (ii) it follows that 
it is enough to assume that X  !  X2

+.

Lemma 2. If the domain of u is ,0 2
18 B, then the solution of

 ( ) 2 ( )u x x2 = u  (30)

is u(x)  =  xh(ln x), where h is a periodic function with period ln 2 and 0 · h(– 3)  =  0. 
If we additionally assume that u has right-sided derivative at x  =  0 (we allow 
u+(0)  =  3), then the only solution is u (x) =  cx for some c  >  0.

Proof. Putting x  =  0 in (30) implies u (0)  =  0. Let u be a solution of (30). It is 
easy to check that h(t)  =  e– t u (et) is periodic with period ln 2. Setting x  =  et we 
have u (x)  =  xh (ln x) for x  >  0, where h is an arbitrary periodic function with 
period ln 2. Since u has the right-sided derivative at x  =  0 and

 � ( )
( )

lim lim lnu x
u x

h x0
x x0 0

= =
" "

+ +
,^ h

h is constant, as a periodic function which has the limit in – 3. ¡

Proof of Theorem 4. (i) The proof will be carried out basing on the idea by 
Gerber (1979). Let X be an arbitrary risk and Y be constant, i.e. P(Y  =  d )  =  1 
for some d  >  0. As H(X ) satisfi es no unjustifi ed risk loading, then from the 
additivity for independent risk it follows that H(X ) is translation invariant. 
From Theorem 1 we conclude that u  !  U0.

(ii) Let u (x)  =  cx and w  =  0. Assume that H(X ) is additive for independent 
risks. Assume that X, Y  !  X2

+ are independent random variables such that 
P(X  =  1)  =  p, P(Y  =  1)  =  q. Then

 ( Yh( ) ), ( (H p H h= =X q),)  (31)

 Y p q pq pq+ -( ) ( ) ( ) .H X h h+ = +  (32)

Since H(X ) is additive for independent risk, from (31) and (32) it follows that

 (p q pq h+ - pq( ) ( ) ) (h h p h+ = + q) (33)

for all 0 # p,  q # 1. Put q  =  c  –  p, where 0 # c # 1. Let (pn)n  !  � be the sequence 
such that p0  =  c

2  and pn  + 1  =  pn(c  –  pn). Then (pn)n  !  � is generated by logistic 
difference equation (see Polyanin, Manzhirov, 2007, p. 875). From (33) we have
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 n1 ... 2 / .h p h p h p h p h c 2n n n1+ = + = =+ +c - c -^ ^ ^ ^ ^h h h h h  (34)

As pn  + 1 / c  =  c · pn / c · (1  –  pn / c), where c # 1, thus p
0.lim

n c
n =

"3
 Hence = .lim 0

n n"3
p  

Function h is continuous at 0 and at 1, thus letting n " 3 in (34) yields h(c)  =
2h(c / 2) for all 0  #  c  #  1. Since h has right-sided derivative at 0 (we allow 
h�(0)  =  3), from Lemma 2 it follows that h(p)  =  p. We will prove that g(p)  =  p. 
Let w  >  0 be such that H(X ) is additive for independent risks. Let X, Y  ! X2

+   
be independent random variables such that P(X  =  2w / 3)  =  1 , P(Y  =  2w / 3)  =  q. 
Then for h(x)  =  x from (6) we have

 Y( q s( ) , ) ( ) ,H w H qw ds3
2

3
2

, /

w

w
0

0 2 31= = -X g ( )q+ 6 6@ @#  (35)

 Y q s( (1 ) ( ) .H X w q ds3
2

2 /3, 4 /3

w

w w
0

1+ = + + -g ( )q) 6 6@ @#  (36)

From (35), (36) and the additivity for independent risks we get

 q qs( ) ( ) .ds s ds0,2 /3 2 /3, 4 /3

w

w

w

w w
0 0

1 1- = -g g( ) ( )q q6 66 6@ @@ @# #

Thus 2w (g(q)  –  q)  =  w (g(q)  –  q). Hence g(q)  =  q and fi nally g(q)  =  q.
Now, let u (x)  =  (1  –  e  –  cx) / d and X, Y  ! X2

+ be independent random vari-
ables such that P(X  =  s)  =  p, P(Y  =  s)  =  q. From (7) under w  =  0 we get

 
Y

( (

(

( (

h q

h

( ( (h q

pq

( ) 1 ) ) ( ) ) ) ,

1 ) ( ) )) ) .

ln ln

ln

H c h p h p e H c e

H X Y c p q pq e h p q h pq h pq e

1 1 1

1

cs cs
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= - + = - +
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Additivity for independent risks yields

 
( ( ( (

( ( ( (

( )q(1 ))(1 ) ) ( ) 2 ) ( ) ) ( )

1 ) ) ) ) .

h p h e h p h q h p h q e h p h q

h p q pq e h p q pq h pq h pq e

cs cs

cs cs

2

2

- - + + - +

= - + - + + - - +

^

^

h

h

We obtained equality of two polynomials of variable ecs. If  we compare coef-
fi cients of these polynomials, we will get (33). Thus h(x)  =  x. Let w  >  0 be such 
that H(X ) is additive for independent risks. For p  =  1 we have

 ( )H Y = ln,s q= g( ) 1 ( ) ( ) ,H c q e q q t dt1
,

cs
e

e
0

0

cw

cs1- + - -X 6> 6@ H@#  (37)
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 Y ) q g(q)( ( ) ( ) .lnH c e e q t dt1
,

cs cs
e

e e
2

0

cw

cs cs21+ = - + q -1 -X 6> 6@ H@#  (38)

From (37), (38) and the additivity for independent risks it follows that

 g g( ) ( ) ( ) .q dt q t dt, ,

e

e

e

e e
0

0
0

cw

cs

cw

cs cs21 1( )t -q q- =6 66 6@ @@ @# #

Thus g(q)  =  q and fi nally g(q)  =  q. An analogous proof can be carried out for 
u (x)  =  (ecx  –  1) / d. ¡

Proof of Theorem 5. Let u (x)  =  cx. Then from (6) we have H(X )  =  Eg X. 
Assume that g is convex. It is known that Eg(X  + Y) # EgX  +  EgY if  and only 
if  g is concave (see Denneberg, 1994). Thus for g, which is concave, we have

 Y Y( ) ( ) ( ) ( ) .H E E X E Y H H Yg g g#+ = + + = +XX X  (39)

Assume now that H(X) is subadditive. Then (39) holds, hence g is concave. ¡

Proof of Theorem 6. Let g  =  h and X  #sl  Y. Then Eg [– u(w  –  X)]  # Eg [– u(w  – Y )]. 
Hence Eg [u (w  –  X )]   $  Eg [u (w  – Y )], because Eg [– u (X )]  =  – Eg [u (X )]. By the 
defi nition of H(X ) we have

 YY g g( ( ) ) ( ) .u H E u E u H#= =X X-) (uw - w w -w -^ ^h h6 6@ @

From the monotonicity of u we get H(Y ) $ H(X ). ¡

Proof of Proposition 3. From W9 we have

 )X(gh( ( )) ( )) ( ),u H E u Egh #=X Xu w -w - ( -w

Thus from W3 and (1) we get

 s h sg( ) ( ) ( ) .H E P X P X ds> >hg

w

0

$ -X X + ^ ^h h6 @#

Since g(x) $ h(x) $ x, from W5 it follows that H(X ) $ Ehg X $ E(X ). ¡

Proof of Proposition 4. Put Y  =  0 if  X  <  w, Y  =  w when w # X  <  s and Y  =  s 
if  X  =  s . Since Y # X, from the monotonicity of  the generalized Choquet 
integral we obtain
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Y

s

gh( ( )) ( ) ( )

( ( )) ( ) ( ( )) ( ) .

u H E u E u

g P X w u w h P X u w s<

gh#=

= + = -

X X -w w-w -

From the above and (10) it follows that H(X )  $  E (X ). ¡

Proof of Proposition 5. Put Y  =  0 for X  <  w and Y  =  w for X $ w. Then X  =  Y 
if  and only if  P(X  =  0)  +  P(X  =  w)  =  1. Since Y # X, then

 
Ygh( )H X( ) ( ) )

( ( )) ( ) .

u E u E

g P X w u w<

g#=

=

X (uw w w- - -

From the above and (11) we have H(X ) $ E (X ). ¡
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