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ABSTRACT 

In this paper, we introduce a class of multivariate Erlang mixtures and present 
its desirable properties. We show that a multivariate Erlang mixture could be 
an ideal multivariate parametric model for insurance modeling, especially 
when modeling dependence is a concern.When multivariate losses are gov-
erned by a multivariate Erlang mixture, many quantities of interest such as 
joint density and Laplace transform, moments, and Kendall’s tau have a closed 
form. Further, the class is closed under convolutions and mixtures, which 
 enables us to model aggregate losses in a straightforward way. We also intro-
duce a new concept called quasi-comonotonicity that can be useful to derive 
an upper bound for individual losses in a multivariate stochastic order and 
upper bounds for stop-loss premiums of the aggregate loss. Finally, an EM 
algorithm tailored to multivariate Erlang mixtures is presented and numerical 
experiments are performed to test the effi ciency of the algorithm.
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1. INTRODUCTION

Modeling dependent fi nancial and insurance risks is central to the sound risk 
management of an insurance company. Multivariate parametric distributions 
were often used for this purpose in the past. In recent years, the use of copulas 
has become a dominant choice for multivariate modeling in fi nance, insurance, 
and even statistics. See, for example, Frees and Valdez (1998), Genest et al. 
(2009) and the papers in a special issue (Volume 44, Issue 2) of  Insurance 
Mathematics and Economics and references therein. An advantage of  the 
 copula approach is that it uses a two stage procedure that separates the 
dependence structure of  a model distribution from its marginals. Many 
researchers fi nd this feature very appealing as they make use of the rich sources 
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of univariate modeling techniques. However, the use of  copulas has some 
shortcomings. As Harry Joe pointed out in Joe (1997), p. 84, an ideal multi-
variate parametric model should have the following desirable properties: 

A. interpretability, which could mean something like mixture, stochastic or 
latent variable representation;

B. the closure property under the taking of margins, in particular the bivariate 
margins belonging to the same parametric family (this is especially impor-
tant if, in statistical modeling, one thinks fi rst about appropriate univariate 
margins, then bivariate and sequentially to higher-order margins);

C. a fl exible and wide range of dependence (with type of dependence structure 
depending on applications);

D. a closed-form representation of the cdf and density (a closed-from cdf is 
useful if  the data are discrete and a continuous random vector is used), 
and if  not closed-form, then a cdf and density that are computationally 
feasible to work with.

For the commonly used copulas, Properties C and D are some time not satis-
fi ed due to the specifi c analytical form of those copulas. Dimensionality could 
be another potential problem. Although this is not unique to copulas, it seems 
that some copulas could make the problem worse. See Mikosch (2006) for 
some criticisms on the copula methodology.

In this paper, we propose a direct approach by using a class of multivariate 
distributions that we will call multivariate Erlang mixtures. A distribution in 
the class is a mixture such that each of its component distributions is the joint 
distribution of independent Erlangs (gamma with integer shape parameter) 
which share a common scale parameter. Property A is partly addressed as the 
mixing distribution of the mixture gives good indication about tail heaviness 
and mode positions. We will show that Properties B, C and D are satisfi ed:
all the marginals and conditional marginals remain to be in the same class;
the class is dense in the sense of weak convergence in the space of all positive 
continuous multivariate distributions; and joint cdf  and density, moments
and Laplace transform, as well as correlation measures, are of a closed-form. 
Furthermore, a simple and stable EM algorithm is available to fi t a multi-
variate Erlang mixture to multivariate positive data. The algorithm can easily 
handle data sets with very high dimension.

The paper is organized as follows. We introduce the class of multivariate 
Erlang mixtures and present its basic properties in Section 2. We also show 
that for any positive continuous multivariate distribution, there is a sequence of 
multivariate Erlang mixtures that converge to the distribution weakly. We then 
derive the moments and common measures of  association in Section 3. In 
Section 4, we introduce a new concept called quasi-comonotonicity that is 
useful to derive an upper bound of individual losses in a multivariate stochastic 
order. Section 5 covers aggregate and excess losses, in which we derive the 
distribution of  the aggregate loss and analytical formulas for associated risk 
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measures such as value at risk (VaR) and tail VaR. We then give sharp upper 
bounds for the variance and stop-loss premium of  the aggregate loss and 
derive the distribution of the multivariate excess losses. We present an expec-
tation-maximization (EM) algorithm tailored to the class of  multivariate 
Erlang mixtures in Section 6. To show the effi ciency of the EM algorithm, we 
fi t the data generated from a multivariate lognormal distribution of 12 dimen-
sions and test its goodness of fi t in Subsection 6.2 and present two bivariate 
Erlang mixtures with extreme dependence in Subsection 6.3. We conclude by 
making some remarks on potential applications of  the multivariate Erlang 
mixture in Section 7.

2. MULTIVARIATE ERLANG MIXTURES

In this section, we introduce the class of multivariate Erlang mixtures with 
common scale parameter and study its properties.

Let p(x;  m, q) be the density of the Erlang distribution with shape parameter 
m, a positive integer, and scale parameter q. That is,
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In (2.2) and hereafter, we always denote x  =  (x1,  …,  xk), m  =  (m1,  …,  mk), A  =
(am  ; mi  =  1, 2, …; i  =  1, 2,  …,  k) with each am  $  0 and g1m m 1= =

3 3
a 1.mk1

=/ /

The proposed class of multivariate Erlang mixtures has many desirable proper-
ties. One of them is the conditional independence structure of the distributions, 
which allows us to easily calculate many quantities of interest in insurance.
It is also easy to verify that this class is closed under mixtures. However, before 
considering the use of a multivariate Erlang mixture for insurance modeling 
and valuation purposes, we must ask ourselves whether such a model can fi t 
insurance loss data of any kind well, a stronger assumption than Property C 
stated in Section 1. The following theorem provides a theoretical justifi cation 
for such a possibility. More precisely, it shows that for any positive continuous 
multivariate distribution, we may construct a sequence of multivariate Erlang 
mixtures that converge to the target distribution weakly.

Theorem 2.1. The class of multivariate Erlang mixtures of form (2.2) is dense 
in the space of positive continuous multivariate distributions in the sense of weak 
convergence.
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The proof is given in Appendix A.
It is well known that a distribution is a univariate Erlang mixture if and only 

if it can be expressed as a compound exponential distribution (see Lee and Lin 
(2010) and references therein). We show in the following theorem that this prop-
erty can be extended to the class of multivariate Erlang mixtures. As a result, 
various properties on the marginal distributions can be derived subsequently.

Theorem 2.2. If X  =  (X1,  …,  Xk) has a multivariate Erlang mixture of (2.2), then 
each marginal random variable Xj has a compound exponential distribution, i.e. 
Xj  =  j

ii 1= E j
N/  in distribution for j  = 1,  …,  k, where Nj is the primary counting ran-

dom variable and Eij, i  = 1, 2,  …,  j  = 1,  …,  k, are iid exponential random variables 
with mean q. Moreover, the joint primary distribution of N  =  (N1,  …,  Nk) has 
probability function

 j 1,m= a( ) 1,2, ; …,…P mm= =, =N .kj  (2.3)

Proof. Suppose that random variables X1,  …,  Xk are of the from: Xj   =  E ,j
ii 1= j

N/  
j  =  1,  …,  k. Then, the characteristic function of X is given by
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where PN (z) is the probability generating function of N. It is obvious that the last 
expression is the characteristic function of the multivariate Erlang mixture (2.2). 
The uniqueness of the characteristic function leads to the theorem. ¡

Corollary 2.1. The marginal distribution of Xj is a univariate Erlang mixture. 
Moreover, the weights of the mixture are

 a ,(
jm ja , ,….1 2

def

, ; , ,
m

m l j m 1 2 …l l

= =
! =
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Furthermore, any p-variate (p  <  k) marginal is a p-variate Erlang mixture.

Proof. It is obvious. ¡
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Corollary 2.2. (Covariance Invariance) The covariance of any marginal pair 
(Xj , Xl ) is proportional to the covariance of (Nj , Nl ). More precisely,

 j ,,( ) ( ) .Cov X X Cov N Nl j l
2= q  (2.6)

Proof. It is obvious that E(Xj )  =  qE(Nj ),  j  =  1,  …,  k. Since for j  !  l,
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Corollary 2.3. The marginal random variables X1,  …,  Xk are mutually independent 
if the counting random variables N1,  …,  Nk are mutually independent. In this case, 
we have
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Proof. It is obvious. ¡

Univariate phase-type distributions have been widely used in modeling insur-
ance losses in insurance risk theory. See Asmussen and Albrecher (2010) and 
references therein. The main advantage of using a univariate phase-type dis-
tribution is the applicability of the matrix-analytic method. As a result, many 
quantities of interest related to the time of ultimate ruin of an insurance risk 
models can be written in an analytical form. Assaf et al. (1984) introduced a 
class of multivariate phase-type distributions. It is a generalization of the class 
of  univariate phase-type distributions. They also showed that the class has 
similar desirable properties, as in the univariate case: the matrix-analytic 
method is applicable, the density, moments and Laplace transform of a mul-
tivariate phase-type distribution can be written in an analytical form, and the 
class is dense in the space of all multivariate positive distributions. In the fol-
lowing theorem, we show that the class of fi nite multivariate Erlang mixtures 
is a subclass.
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Theorem 2.3. A fi nite multivariate Erlang mixture is a multivariate phase-type 
distribution defi ned in Assaf et al. (1984).

Proof. Obviously, an Erlang distribution is a univariate phase-type distribution. 
Thus, it follows from Theorem 2.1 of Assaf et al. (1984) that jj 1= , q( , )p mjxk%  
is a multivariate phase-type distribution. Since the class of multivariate phase-
type distributions is closed under fi nite mixtures (Theorem 2.2 of Assaf et al. 
(1984), a fi nite multivariate Erlang mixture is a multivariate phase-type distri-
bution. ¡

Although a phase-type distribution has many desirable analytical properties, 
fitting it to data is challenging. Even in the univariate case, the non-uniqueness of 
phase-type representation and exponential increase in the number of parameters 
make any estimation procedure ineffi cient (Asmussen et al. (1996)). To the best 
of our knowledge, there is no estimation procedure available for multivariate 
phase-type distributions higher than 2 dimensions. The bivariate phase-type 
modeling can be found in Eisele (2005). Readers can easily fi nd that the model 
cannot allow for a large number of states which are often required when mod-
eling heavy tailed data. Furthermore, it is extremely diffi cult to construct a 
phase-type representation with given marginals and predetermined dependent 
structure except the independent case. This might be the reason why few appli-
cations of multivariate phase-type distributions can be found. On the other 
hand, the class of multivariate Erlang mixtures is very easy to manipulate and 
analyze. It can be easily used to fi t loss data using an EM algorithm as we will 
show in Section 6.1. Moreover, the conditional independence structure allows 
us to deal with high dimensional data. In other words, the curse of dimension-
ality in terms of computational complexity can be partly overcome.

3. MOMENTS AND COMMON MEASURES OF ASSOCIATION

In this section, we show that, as in the univariate case, the moments of a mul-
tivariate Erlang mixture can be easily written in a closed form. Furthermore, 
some commonly used measures of  association such as Kendall’s tau and 
Spearman’s rho can also be written explicitly.

Theorem 3.1. Let X  =  (X1,  …,  Xk) have the multivariate Erlang mixture (2.2). 
Then, the joint moment
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In the following, we derive explicit formulas for Kendall’s tau and Spearman’s 
rho, two most widely used measures of association, for the multivariate Erlang 
mixture (2.2). Without the loss of  generality, we assume k  =  2. That is, we 
consider a bivariate Erlang mixture with mixing weights aij, i, j  =  1, 2, … 

The population version of Kendall’s tau for a pair of continuous random 
variables X and Y measures the tendency that X and Y will move in the same 
direction (concordance) and it is defi ned as

 YX X Y{( )( ) 0} {( )( ) 0},P Y P Y1 2 1 2 1 2 1 22 1= - - - - -t X X  (3.2)

where (X1,Y1) and (X2,Y2) are two iid copies of  (X,Y ). Unlike the (Pearson’s) 
correlation coeffi cient, it does not assume linear relationship. In this regard, 
Kendall’s tau is more meaningful in measuring the correlation between two 
random variables. The population version of  Spearman’s rank correlation 
coeffi cient (Spearman’s rho) is another commonly used measure of association. 
It is defi ned as

      X XY Y Y Y3 3- -3( {( )( ) 0} {( )( ) 0}),P P1 2 1 1 2 12 1= - - -r X X  (3.3)

where (X1,Y1), (X2,Y2) and (X3,Y3) are iid copies of (X,Y ). It is known that the 
value of the both ranges from –1 to 1: 1 indicates a perfect agreement and –1 
a perfect disagreement.

Theorem 3.2. Kendall’s tau of a bivariate Erlang mixture is given by
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Proof. Let F(x, y) be the survival function for (X,Y ) and P(x;  i, q) the survival 
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where j 0=,i j 0=
k
i 0=

.,k l = l///  It is well known that
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Theorem 3.3. Spearman’s rho of a bivariate Erlang mixture is given by
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Proof. The derivation is similar and omitted. ¡

4. QUASI-COMONOTONICITY

Comonotonicity is an important concept in studying the dependence structure 
of multivariate risks with the given/fi xed marginal distribution of the risks.
It has applications in worst scenario analysis in insurance and fi nance. If losses 
from an insurance portfolio are comonotonic, they exhibit the strongest posi-
tive dependence among themselves and thus are undiversifi able. This type of 
insurance portfolios is the least favorable to an insurer. For the investigation 
of comonotonic risk and its applications in actuarial science and fi nance, see 
Dhaene et al. (2002a), Dhaene et al. (2002b) and references therein.

The concept of comonotonicity might not be best suitable for the class of 
multivariate Erlang mixtures. Given that the marginals are univariate Erlang 
mixtures, the comonotonic multivariate distribution is in general not a multi-
variate Erlang mixture. That motivates us to introduce a very similar concept 
called quasi-comonotonicity in this section such that a quasi-comonotonic 
multivariate distribution belongs to the class of multivariate Erlang mixtures. 
As we will show in this and next sections, quasi-comonotonicity is essentially 
an equivalent to comonotonicity except that it is defi ned within the class and 
almost all the properties associated with comonotonicity hold.

We begin by introducing a multivariate stochastic order called the upper 
orthant order. See Shaked and Shanthikumar (1994), p. 140, or Joe (1997), p. 36.
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Defi nition 4.1 (Upper orthant order). Let X  =  (X1,  …,  Xk) and Y  =  (Y1, …, Yk) be 
two random vectors with survival functions F(x1,  …, xk) and G(x1,  …,  xk).
We say that X is smaller than Y in the upper orthant order (denoted by X #uo Y) 
if, for any x  =  (x1,  …,  xk),

 ( (x x) ) .F G#  (4.1)

The upper orthant order is a generalization of the usual univariate stochastic 
order. Related results can be found in Shaked and Shanthikumar (1994) and 
Denuit et al. (2005). In the following theorem, we show that the upper orthant 
order between two mixing distributions is transformable to the upper orthant 
order between the two corresponding multivariate Erlang mixtures.

Theorem 4.1. Suppose that random vectors X  =  (X1, …, Xk) and Y  =  (Y1, …, Yk) 
have a multivariate Erlang mixture, and N  =  (N1, …, Nk) and M  =  (M1,  …, Mk) are 
the corresponding counting random vectors, respectively. If N #uo M, then X #uo Y.

Proof. Denote the survival functions of X, Y, N and M by F(x), G(x), H(m) 
and I(m), respectively. Then, we have
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 (4.2.)

By the defi nition of the upper orthant order, X #uo Y. ¡

We now focus on multivariate Erlang mixtures with fi xed marginals. Borrow-
ing the notation from Joe (1997), let Fq  (F1, …, Fk) be the subclass of multi-
variate Erlang mixtures with common scale parameter q in which each of the 
distributions has marginal cdf’s F1(x1),  …,  Fk(xk).

The Fréchet-Hoeffding upper and lower bounds (Hoeffding (1940), Hoeff-
ding (1941), Fréchet (1951) and Fréchet (1958)) are defi ned as
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The Fréchet-Hoeffding upper bound is a cdf but the Fréchet-Hoeffding lower 
bound is not always a cdf except when k  =  2 (Joe (1997), pp. 57-8). It follows 
from Theorem 3.5 of Joe (1997) that the Fréchet-Hoeffding upper bound is an 
upper bound of the subclass Fq  (F1, …, Fk) in the upper orthant order and the 
Fréchet-Hoeffding lower bound, if  it is a cdf, is a lower bound of the subclass 
in the upper orthant order. Furthermore, the random vector with FU (x) is 
comonotonic and vice versa. Similarly, the random vector with FL (x) is coun-
ter-comonotonic, when it is a cdf. See Dhaene et al. (2002a).

Although many useful risk measures for the Fréchet-Hoeffding bounds in 
(4.3) can be computed easily (see Dhaene et al. (2006)), the analytical form of 
these multivariate distributions might be diffi cult to obtain. More importantly, 
the Fréchet-Hoeffding bounds are in general not a multivariate Erlang mixture. 
Thus the Fréchet-Hoeffding bounds in the upper orthant order are not sharp 
bounds. As a result, the bounds based on the Fréchet-Hoeffding bounds for 
the variance and stop-loss premiums of the corresponding aggregate loss are 
not sharp either. To avoid these shortcomings and maintain most of the desir-
able properties of the Fréchet-Hoeffding bounds at meantime, we introduce 
the concept of quasi-comonotonicity.

Defi nition 4.2. Let random vector X  =  (X1,  …,  Xk) have a multivariate Erlang 
mixture with marginal cdf’s F1(x1),  …,  Fk(xk), and N  =  (N1, …, Nk) be the cor-
responding counting random vector. If N is comonotonic, we say that X is quasi-
comonotonic. In this case, we denote the comonotonic counting random vector 
by NU  =  (N1

U,  …,  Nk
U), the quasi-comonotonic random vector by XU  =  (X1

U, …, Xk
U) 

and its cdf by FQU(x). The notation is slightly different from that in Dhaene et al. 
(2002a).

Similarly, if N is countercomonotonic, we say that X is quasi-countercomonotonic. 
Similar notation applies: NL  =  (N1

L, …, Nk
L), XL  =  (X1

L, …, Xk
L) and FQL(x).

Obtaining the quasi-comonotonic distribution and the quasi-countercomonot-
onic distribution is fairly straightforward. Suppose that we are given k univariate 
Erlang mixtures F1(x1),  …,  Fk(xk) as the marginals. The cdf  of  the mixing 
distribution of  each Fj (xj ), j  = 1,  …,  k, can easily be obtained. We then may 
apply the formulas in (4.3) to obtain the multivariate mixing distributions for 
the quasi-comonotonic and quasi-countercomonotonic multivariate Erlang 
mixtures, respectively. In fact, we do not even need to use the formulas. There 
is a simple recursive procedure for counting distributions as demonstrated
in an example in the end of this section. We would like to remark that similar 
to the Fréchet-Hoeffding lower bound FL(x), when k  $  3 there is no guarantee 
that FQL(x) is a cdf.

In the following we will show that the quasi-comonotonic distribution and 
the quasi-countercomonotonic distribution may serve as the sharp upper and 
lower bounds.

Theorem 4.2. Let FQU(x) be the quasi-comonotonic cdf, and FQL(x) be the quasi-
countercomonotonic cdf (if it exists) with fi xed marginals F1(x1),  …,  Fk(xk), 
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respectively. Then, they are the sharp upper and lower bounds for all the dis-
tributions in Fq (F1,  …,  Fk) in the upper orthant order. In other words, for any
F  !  Fq (F1,  …,  Fk),

 ( ( () ) ), 0.x x x xQL QU 2# #F FF  (4.4)

Proof. The proof is straightforward. It follows from Theorem 3.5 of Joe (1997) 
that for any N that generates a multivariate Erlang mixture in Fq (F1,  …,  Fk), 
we have

 NL #uo N #uo NU.

Inequality (4.4) follows immediately from Theorem 4.1. The sharpness is obvious 
as the bounds are the members of the subclass. ¡

The quasi-comonotonic random vector and the quasi-countercomonotonic 
random vector are not only upper and lower bounds in the upper orthant 
order but also upper and lower bounds for the pairwise correlation coeffi cients 
as seen in the following corollary.

Corollary 4.1. For any X with its cdf in Fq (F1,  …,  Fk), we have

 j jjl l,( , ) ( ( , ),Corr X X Corr X X Corr X X ll# # jL L !U U) . (4.5)

Proof. Without the loss of generality, assume j  =  1, l  =  2. (4.5) follows from (4.4) 
and

 (
33

{ , , , , ) .E X x x 0 01 2 1 2 1 200
g= F}X dx dx##

 ¡

We now demonstrate how to obtain the quasi-comonotonic distribution and 
the quasi-countercomonotonic distribution using a simple example. As shown 
in this example, fi nding the distributions is simple. The recursive method we 
use in the example can be extended to any dimension.

Example 4.1 (A Simple Example). In this example, we are given three marginal 
densities:

 f(x)   =   0.4 p(x; 10, 100) + 0.4 p(x; 30, 100) + 0.2 p(x; 80, 100)

g(y)   =   0.4 p(y; 20, 100) + 0.3 p(y; 40, 100) + 0.3 p(y; 70, 100)

h(z)   =   0.2 p(z; 4, 100) + 0.5 p(z; 5, 100) + 0.3 p(z; 6, 100)
 (4.6)

Note that the shape parameters are arranged in the ascending order.
We fi rst derive the density of the upper bound fQU (x, y, z): all the possible 

combinations and their weights. They can be determined in a tabulation method 
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as shown in Table 4.1: Start with the Erlangs with the smallest shape param-
eter in each of the marginals. In the fi rst row, list these Erlangs (10, 20, 4). The 
respective weights are 0.4, 0.4 and 0.2. Assign the smallest weight (0.2) to this 
combination. Thus, the ‘unused’ weights of Erlangs with shape parameters 10 
and 20 are 0.2 and 0.2 respectively. Since the weight for the Erlang with shape 
parameter 4 is ‘used’, the Erlang is removed. The Erlangs with the smallest 
shape parameter in each of the marginals are now 10, 20, 5 with weights 0.2, 
0.2 and 0.5, respectively. They are listed in the second row and the smallest 
weight (0.2) is assigned to the combination. Since the weights of Erlangs with 
shape parameters 10 and 20 are ‘used’, these two Erlangs are removed. The 
Erlangs with the smallest shape parameter in each of the marginals are (30, 
40, 5) with weights 0.4, 0.3 and 0.3, respectively. Thus, 0.3 is assigned to this 
combination and they are list in the next row. Continue in this matter until we 
exhaust all the Erlangs.

TABLE 4.1.

WEIGHTS AND COMBINATIONS FOR fQU (x, y, z)

Weights x y z

0.2 10 20 4

0.2 10 20 5

0.3 30 40 5

0.1 30 70 6

0.2 80 70 6

Based on Table 4.1, we have

fQU (x, y, z) = 0.2 p(x; 10, 100) p(y; 20, 100) p(z; 4, 100) + 0.2 p(x; 10, 100)  
 p(y; 20, 100) p(z; 5, 100)

 + 0.3 p(x; 30, 100) p(y; 40, 100) p(z; 5, 100) + 0.1 p(x; 30, 100)  
 p(y; 70, 100) p(z; 6, 100)

 + 0.2 p(x; 80, 100) p(y; 70, 100) p(z; 6, 100).

The lower bound is computed by using (4.3) on the mixing distributions. Since 
we are essentially dealing with counting distributions, the Fréchet-Hoeffding 
lower bound can be obtained easily. The weights are then the joint probability 
function that can be computed using a formula in Example 2.21 of Nelson 
(1999). The weights and combinations are given in Table 4.2. The density of 
the trivariate Erlang mixture of  13 components can be written accordingly.
It is easy to check that the joint distribution reproduces the three marginals. 
However, one can see that this is not a proper density as some weights are 
negative. As pointed out in Joe (1997), when there are more than 2 marginals, 
the Fréchet-Hoeffding lower bound is often not a proper distribution, which is 
also the case here.
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The upper and lower bounds FQU (x) and FQL(x) may be used to model depend-
ency for a portfolio of k correlated losses. Suppose that these losses have cdf’s 
F1(x1),  …,  Fk(xk), and they are positive correlated at a level of 0  #  g  #  1. One 
way to model this situation is to use the well-known one-factor Gaussian cop-
ula of Li (2000), in which each loss is interpreted as the time of default of a 
fi rm. Alternatively, we may use a multivariate Erlang mixture as follows.

 Fg (x)   =   gFQU (x) + (1  –  g) FI  (x), (4.7)

where FI (x1,  …,  xk)  =  j 1= ( )jxFj
k%  is the independent joint cdf. Distribution (4.7) 

preserves all the marginals and permits the correlation ranging from 0 (g  =  0) 
to the maximal correlations allowed within the subclass (g  =  1). In addition to 
the appealing features of Erlang mixtures, this model allows for the marginals 
being inputed directly, which avoids the cdf matching as did in the Gaussian 
copula model.

When k  =  2, we may extend the above idea further by considering the fol-
lowing three mixture models:

  Fg1
(x, y)   =   g1 FQU  (x, y)  +  (1  –  g1) FI  (x, y), 0  #  g1  #  1,

  Fg2
(x, y)   =   g2 FQL (x, y)  +  (1  –  g2) FI  (x, y), 0  #  g2  #  1,

        and

Fg12
(x, y)   =   g1 FQU  (x, y)  +  g2 FQL (x, y) +(1  –  g1  –  g2) FI  (x, y),

          g1   $   0, g2   $   0, g1  +  g2   #   1.

TABLE 4.2.

WEIGHTS AND COMBINATIONS FOR fQL (x, y, z)

Weights x y z

0.1 10 40 6

0.1 10 70 5

0.2 10 70 6

0.2 30 20 6

0.2 30 40 5

0.2 30 70 5

– 0.2 30 70 6

0.1 80 20 5

0.1 80 20 6

0.1 80 40 5

– 0.1 80 40 6

0.2 80 70 4

– 0.2 80 70 5
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5. AGGREGATE AND EXCESS LOSSES

Assume that there are k blocks of  business or k types of  policies. Let Xj , 
j  =  1,  …,  k, represent the associated individual losses. In order to model the 
aggregate loss arising from the portfolio in a tractable way, we usually assume 
the independence among individual losses in actuarial science. This assump-
tion becomes unnecessary if  we use a multivariate Erlang mixture since, (i) the 
aggregate and excess losses have again an Erlang mixture as shown below; and 
(ii) there is an effi cient statistical algorithm that can fi t a multivariate Erlang 
mixture to loss data well, as seen in the next section.

Throughout this section, we assume the individual losses Xj , j  =  1,  …,  k, 
have joint density (2.2). The following theorem identifi es the distribution of the 
aggregate loss.

Theorem 5.1. The aggregate loss Sk  =  X1  + … +  Xk has a univariate Erlang mix-
ture with the mixing weights being the coeffi cients of the power series PN(z,  …,  z): 
for i  =  1, 2, …,

 a .
=

ia m
m m ik1 g+ +

S = /  (5.1)

Proof. It is obvious from the proof of Theorem 2.2 that Sk  =  Ek ,i1 Ng+ +
i 1=
N/  

where Ei’s are iid exponential random variables with mean q. Since PN(z,  …,  z) 
is the probability generating function of  N1  + … +  Nk, the mixing weights are 
its coeffi cients. ¡

Since the distribution of the aggregate loss is a univariate Erlang mixture, the 
mean, variance and other moments of Sk can be obtained easily. Furthermore, 
the associated risk measures such as value-at-risk (VaR) and Tail VaR (TVaR) 
of the aggregate loss Sk can be obtained explicitly as shown below.

Corollary 5.1. The value-at-risk at confi dence level p, V  =  VaRp(Sk), is the solu-
tion of equation

 V

q
p/ -1e Q

i
V

i i
i 0

=
3

q-

=

i

!
/  (5.2)

where Qi  =  jj i 1= +
3

aS/  and jaS  is given in (5.1).
The tail VaR at confi dence level p, TVaRp(Sk), is given by

 
V /-

q-
( ,TVaR p

e Q
i

V V1p k i i
i 0

= +
3q

=

q *S )
i

!
/  (5.3)

where ( i1 j= j i j i= = + )=
33

a .Q Qi j
* j - S/ /
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Proof. They follows from 5.1 and the properties of a univariate Erlang mix-
ture (see, for example, Willmot and Woo (2007) or Lee and Lin (2010)). ¡

The stop-loss premium of  Sk at deductible level d, E{(Sk  –  d) +}, where x+  =
max(x, 0), is obtainable immediately from (5.3): 

 d-

q
{( } .E d e Q

i
d/

k i i
i 0

q=
3

q

=

*
+S -

i

!
) /  (5.4)

In the following, we give the sharp upper bounds for the variance and the 
stop-loss premiums of Sk with the help of quasi-comonotonicity. To do that, 
we begin with a result in convex ordering. A random variable X is said to be 
smaller than a random variable Y in convex ordering, if for any convex function 
h(x), E{h(X )}  #  E{h(Y )}. See p. 55 of Shaked and Shanthikumar (1994).

Theorem 5.2. For the aggregate loss Sk  =  X1  + … + Xk , let Sk
U  =  X1

U  + … + Xk
U 

be the corresponding quasi-comonotonic sum. Then, Sk is smaller than Sk
U in 

convex ordering:

 Sk #cx Sk
U. (5.5)

Proof. From the proof of Theorem 5.1, we may write Sk  =  Ek ,i1 Ng+ +
i 1=
N/  where

Ei’s are iid exponential random variables. Similarly, Sk
U  =  E1 k

1 .i

U UN Ng+ +
i =/  Theo-

rem 7 of Dhaene et al. (2002a) means

 N1  + … +  Nk   #cx   N1
U  + … +  Nk

U.

It follows from Theorem 2.A.7 of Shaked and Shanthikumar (1994) that

 Sk #cx Sk
U.

 ¡

Theorem 5.2 enables us to obtain the sharp upper bounds for the variance and 
the stop-loss premium as below.

Corollary 5.2.

 Var(Sk) # Var(Sk
U ) (5.6)

Moreover, for any deductible d, we have

 E{(Sk  –  d )+} # E{(Sk
U  –  d )+}. (5.7)

Proof. These are the direct results of Formulas (2.A.4) and (2.A.5) of Shaked 
and Shanthikumar (1994). ¡
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168 S.C.K. LEE AND X.S. LIN

We now turn to the distribution of the multivariate excess losses that is impor-
tant for the calculation of economic capital for an insurance portfolio.

Let d  =  (d1, …, dk) be deductible levels (or economic capitals) of the indi-
vidual losses X  =  (X1, …, Xk) from an insurance portfolio. The associated 
multivariate excess losses may thus be defi ned as the conditional random vec-
tor Yd  =  X  –  d | X  >  d. We identify the distribution of Yd in the next theorem, 
when X has a multivariate Erlang mixture.

Theorem 5.3. When X has a multivariate Erlang mixture, the joint density of Yd 
is again a multivariate Erlang mixture with the same scale parameter. Its mixing 
weights are given by (5.9) below.

Proof. Let fd (y) be the joint distribution of Yd. Then

 (
(

(
d

f d
F

)
)

)
.yfd =

+y

Since

 d-d i

m i-/
( ; , ) ( ) !

( )
( ; , )p m e

d
p y i

i

m

1
+ =

-
=

q
q

q/q ,my /
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 (5.8)
 

where i  =  (i1, …, ik) and

 a
j

m i-d

d i
j 1=

jj( )-

j

j

F ( ) ( ) !
( / )

c e d
i m

m i m i j

k

1k k1 1

=
-

3 3

= = =

q/k

.m

q

g %/ /
/

 (5.9)

Note that F(d) is obtained in the second line of (4.2). ¡

We remark that Theorem 5.3 implies that the use of  a multivariate Erlang 
mixture may have certain advantages over the use of a copula for risk manage-
ment. In general, the joint distribution of multivariate excess losses can not be 
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obtained explicitly using a copula approach. As a result, risk measures related 
to an insurance/investment portfolio are often obtained by simulation. Second, 
when we apply a multivariate model to the times of default for a collection of 
fi rms, it is extremely important to know how the correlations among the times 
of default change over time. Since the explicit joint conditional distribution of 
the times of default, conditioning on a future time point (say one day later), 
is not available when using a copula, there is no meaningful connection between 
the original model and a re-calibrated model at the future time. On the other 
hand, we may use a multivariate Erlang mixture such that the random variable 
Xj represents the default time of Firm j. By setting d1  = … =  dk  =  t that repre-
sents the future time for model evaluation, we could then easily compare the 
mixing weights of the joint conditional distribution from the original model 
using (5.8) and a re-calibrated model at the future time.

6. PARAMETER ESTIMATION: AN EM ALGORITHM

We have shown in the previous sections that the class of multivariate Erlang 
mixtures has many desirable properties. We have also shown that there is a 
simple method in the proof of Theorem 2.1 that can approximate any positive 
continuous multivariate distribution. However, if  we employ this simple 
method when treating the data as the empirical distribution, the parameters 
in the mixture do not maximize the likelihood in general. Improving the accu-
racy or likelihood by increasing the number of component distributions, or 
equivalently lowering the value of q is undesirable, as it often risks the problem 
of over-fi tting in many situations. Hence, there is a need to fi nd an effi cient 
fi tting tool, otherwise the class might not be as useful in practice. In this sec-
tion, we present an EM algorithm that can effi ciently fi t a multivariate Erlang 
mixture to multivariate positive data. Our goal is to optimize the parameters 
by applying the EM algorithm and to reduce the number of parameters needed 
for fi tting. The EM algorithm proposed in this section is a simple extension 
of that in Lee and Lin (2010) for the univariate case.

6.1. The EM algorithm

The EM algorithm was proposed in Dempster et al. (1977). It is an iterative 
algorithm for fi nding the maximum likelihood estimate of the parameters of 
an underlying distribution from a set of incomplete data and is particularly 
useful in estimating the parameters of a fi nite mixture.

Consider now a data set of size n: xv  =  (x1v, x2v,  …,  xkv ), v  =  1, …,  n. We are 
to use a k-variate fi nite Erlang mixture to fi t the data. The set of  shape 
parameters of the Erlang distributions are preset and we denote it by M, i.e. 
M contains a fi nite number of m’s. For notational convenience, hereafter if
m  " M, we set am  =  0. In this case, the set of parameters (denoted by F) to 
be estimated are the scale parameter q and the weights am where m  ! M.
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Assuming that the parameter values from the l  –  1st iteration are F (l  –  1), the 
posterior probability function given the observation xv and F (l  –  1) in the E-step 
is, for m  ! M,
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 (6.1)

and the corresponding expected log-likelihood,

 xF jv j xm ( )l 1-
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The M-step is then to maximize the expectation:

 )( 1l
F( | )max Q (lF =

F

-)
F  (6.3)

Taking partial derivatives of Q(F|F(l  – 1)) with respect to the parameters and 
with the constraint )l
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The iterations will continue until the convergence of the expected log-likelihood 
to a predefi ned tolerance is reached.

Good initial estimates of the parameters are crucial for the EM algorithm. 
It helps signifi cantly reduce the computing time by requiring fewer iterations. 
It is especially important when dealing with multivariate data as the number 
of  parameters to optimize increase nonlinearly. In Lee and Lin (2010), we 
propose a method to determine the initial value of  q and the weights of  a 
univariate Erlang mixture, and a model selection procedure using Schwarz’s 
Bayesian Information Criterion (BIC) that penalizes over-fi tting. The method 
and the procedure can be easily adopted for the multivariate case and we omit 
the details.
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FIGURE 6.1: Histograms of 12 marginal lognormal distributions and marginal densities of fi tted distribution.

6.2. Fitting Data from a Multivariate Lognormal Distribution

In this subsection, we fi t data generated from a multivariate lognormal distri-
bution of 12 dimensions to demonstrate the effi ciency of the EM algorithm for 
high-dimensional data.

Let Zj, j  =  1, 2,  …,  12, be iid lognormal random variables with parameters 
m and s, and

 1,Z ,j
1

2, ,12,…ii
j

i
= =

=

X %  (6.6)

Then, (X1,  …,  X12) has a multivariate lognormal distribution. This model is 
motivated by the applications in the pricing of  options and equity-indexed 
annuities (EIA). Consider the price of a risky asset or an equity index that 
follows a geometric Brownian motion with drift 12m and volatility 12s over a 
one-year period. Thus, X1,  …,  X12 represent the prices of the asset at the end 
of each month. If  we could model the joint distribution of (X1,  …,  X12) using 
a multivariate Erlang mixture, the distribution of  the sum S12  =  i 1= Xi

12/  is 
readily obtained (Theorem 5.1). Note that 12

1  (S12  –  12K )+ is the payoff of an 
arithmetic Asian option with strike price K maturing at the end of one year, it 
follows from (5.4) that the price of this Asian option has a closed-form solution. 
Furthermore, 12

1  (S12  –  12K)+ may also be viewed as the payoff of the so-called 
Asian-end minimum guarantee with monthly averaging of an EIA, where K is 
the minimum guarantee required by the non-forfeiture law in the United States. 
See Lin and Tan (2003).
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We now assume that m  =  2.5 % and s  =  10 % and simulate 8000 obser-
vations from (X1, X2,  …,  X12). The estimated values of  the parameters are
given in Table B.1 of Appendix B. Figure 6.1 shows the fi tting results for all 
the 12 marginals.

However, the validity of using the marginals to represent the fi tness of the 
model is questionable as the dependence structure is not shown in these plots. 
To address the issue and from a viewpoint of applications to EIA, we investigate 
the fi tness of the density of S12 obtained by using the formula in Theorem 5.1. 
Since a poor overall fi tting to the multivariate data would in general result in 
a poor fi tting to the aggregated data, fi tting to the aggregated data could be a 
good measure for the goodness of  fi t. Figure 6.2 provides the visual fi tting 
result in this regard. It shows the histogram of the aggregated data and the 
density represented by the solid line.

FIGURE 2: Histogram of aggregated data and density of sum of marginals
from fi tted distribution.

We can also check the fi tness quantitatively by performing several common 
statistical tests. The tests we use in this section are the Chi-square test, the 
Kolmogorov-Smirnov test and the Anderson Darling test.

TABLE 6.3

STATISTICAL TESTS FOR FITNESS OF ERLANG MIXTURE TO AGGREGATED DATA

Test Statistic p-value Accepted at 5% signifi cant level?

Chi Square Test 818.32 0.3099 Yes

K-S Test 0.05 0.27 Yes

AD Test 0.4378 0.2228 Yes

95371_Astin42-1_07_Lee.indd   17295371_Astin42-1_07_Lee.indd   172 5/06/12   13:555/06/12   13:55



 MODELING DEPENDENT RISKS WITH MULTIVARIATE ERLANG MIXTURES 173

The fi tted distribution passed all three tests with signifi cant margins. It implies 
that the fi tted distribution is a good representation of the aggregate distribution. 
Another quantitative aspect is to compare the fi rst 5 raw moments of the empir-
ical and fi tted distributions:

TABLE 6.4

FIRST 5 MOMENTS OF EMPIRICAL AND FITTED DISTRIBUTIONS

Moment Empirical 
Distribution

Fitted 
Distribution

Fitted/
Empirical

Percentage 
Difference (%)

1 1.1791 1.1791 1.00000 0.0000%

2 1.4566 1.4588 0.9985 0.1511%

3 1.8871 1.8971 0.9947 0.5284%

4 2.5654 2.5985 0.9829 1.2712%

5 3.6605 3.7592 0.9737 2.6237%

Recall that higher order moments amplify the deviations at the upper tail. The 
percentage difference of the 3rd order moment is 0.5284 % which is negligible. 
Again, it shows that the fi tted distribution is a good fi t to the data.

We have also performed other numerical examples to examine the fi tness of 
the multivariate Erlang mixture to data. In particular, we have used data gener-
ated from the Gumbel-Hougaard copula and Frank copula with fi xed Pareto 
marginals to examine the fi tness. All the fi tting results we have obtained are 
very satisfactory. To avoid repetitiveness, they are not presented in this paper. 

6.3. Construction of bivariate Erlang mixtures with extreme dependence

In this subsection, we construct two bivariate Erlang mixtures from two given 
marginal distributions. One has Spearman’s rho very close to 1 and the other 
has Spearman’s rho very close to – 1. The purpose of the construction is two-
fold: (i) to show that the multivariate Erlang mixture is indeed fl exible in terms 
of dependence structure even in an extreme case; and (ii) to demonstrate that 
the EM algorithm in Section 6.1 not only is an effi cient fi tting algorithm but 
also a useful tool in providing a multivariate distribution with a given level of 
dependence.

We begin with two gamma marginal distributions: one has a1  =  1.7 and 
q1  =  1.67, and the other has a2  =  2.6 and q2  =  2. Note that both are not Erlang 
distributions. The Fréchet-Hoeffding upper bound of these two distributions 
gives a bivariate distribution with Spearman’s r  =  1 and the Fréchet-Hoeffding 
lower bound of them gives a bivariate distribution with Spearman’s r  = – 1. 
We generate data from both bivariate distributions, respectively, and then 
apply the EM algorithm in Section 6.1 to each.

In the case of r  =  1, we obtained a bivariate Erlang mixture with 19 com-
ponents. The parameters of the mixture are given in in the left three columns 
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of Table B.2 in Appendix B. The marginal and joint distributions are plotted 
in Figures 6.3 and 6.4.

Spearman’s rho of the fi tted distribution is 0.9733. The value of r will be 
higher if  we further increase the number of components. The fi tting results are 
good for both the marginals and the joint distribution.

In the case of r  = – 1, we have a bivariate Erlang mixture of 12 compo-
nents. The parameters of the mixture are given in the last three columns of 
Table B.2 in Appendix B. The marginal and joint distributions are plotted in 
Figures 6.5 and 6.6 below.

Spearman’s rho of the fi tted distribution is – 0.9728. The fi tting results are 
again good for both the marginals and the joint distribution. Also note that 
since 12 components are used, the fi tting results are slightly worse than those 
in Figures 6.3 and 6.4.

FIGURE 6.3: Gamma densities (solid lines) versus marginal densities
of fi tted distribution (dotted lines).

FIGURE 6.4: Comparison of actual joint cdf to fi tted joint cdf.
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7. CONCLUDING REMARKS AND DISCUSSION

In this paper, we introduced a class of multivariate Erlang mixtures. We have 
shown that the class has many desirable properties and could be useful for mul-
tivariate modeling in insurance and risk management. An effi cient EM algorithm 
is developed to fi t a multivariate Erlang mixture to multivariate positive data.

Possible applications of the multivariate Erlang mixture include pricing path 
dependent options and valuation of equity indexed annuities (EIAs). It is a 
common practice in option pricing to assume that the value of the underlying 
asset of an option follows a geometric Brownian motion or more generally
the logarithm of a Gaussian process. As discussed in Subsection 6.2, when
the value of an asset follows such a process, the price of an arithmetic Asian 
option written on the asset under the constant interest rate does not have a 

FIGURE 6.5: Gamma densities (solid lines) versus marginal densities
of fi tted distribution (dotted lines).

FIGURE 6.6: Comparison of actual joint cdf to fi tted joint cdf.
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closed form because the sum of  lognormal random variables is no longer 
lognormal. However, if  one uses a multivariate Erlang mixture to approximate 
the joint distribution of the lognormal random variables, the distribution of 
the sum is a univariate Erlang mixture. The latter enables us to obtain a closed 
form for the price of the arithmetic Asian option. Furthermore, if  a random 
vector has a multivariate Erlang mixture, their maximum has a univariate 
Erlang mixture. As a result, the price of  the usual lookback options has a 
closed form when we use the same approximation. These results are particu-
larly useful in the valuation of EIAs when the guarantee of an EIA is linked 
to the average of the index or is of high-water mark. Another possible applica-
tion is the valuation of basket options. Again, if  we assume the values of the 
stocks in a portfolio at maturity have a multivariate Erlang mixture, the total 
value of the portfolio has a univariate Erlang mixture and the price of a basket 
option may be obtained explicitly. We are currently working on these problems 
and intend to compare our numerical results with those in Dhaene et al. (2002b) 
and Vanduffel et al. (2005) in which the authors propose comonotonicity 
based bounds to estimate the stop-loss premium of the sum of lognormal ran-
dom variables and hence the price of arithmetic Asian options.

The class of multivariate Erlang mixtures can be expanded by not restrict-
ing N to be a positive counting random vector. That is, each component Nj is 
a usual counting random variable, taking all the non-negative integers, which 
in turn allows for multivariate Erlang mixtures to have a probability mass at 
zero. For example, we may let N be a multivariate Poisson random vector with 
common shock such that Nj  =  J0  +  Jj,  j  =  1, 2,  …, where J0, J1,  …,  Jk are mutu-
ally independent Poisson random variables with means l0,  l1,  …,  lk, respec-
tively. See Johnson et al. (1997), p. 139. In this case, it follows from (2.4) that 
the moment generating function is
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The above multivariate compound Poisson distribution belongs to the multivari-
ate Tweedie family with dispersion parameter p  =  1.5. For the multivariate Tweedie 
family and its properties and applications in actuarial science, see Furman and 
Landsman (2010) and references therein. We caution that the multivariate Tweedie 
family is not dense in the space of all non-negative multi variate distributions.

Note that the recursive formulas (6.4) and (6.5) are no longer applicable 
when we expand the class to include non-negative counting random vectors. 
In principle, the standard EM algorithm will still work but an optimization 
technique needs to be used for the M-step. Alternatively we may use a naïve 
approach by partitioning a data set such that each sub-dataset Ds is a subset 
of the subspace {x; xi  =  0, i  "  s}, where s  !  S and S is the collection of all 
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the subsets of  {1, 2, …,  k}, including the null set. The EM algorithm (6.4)
and (6.5) are then applied to estimate the Erlang mixture Fs(x) on the subspace 
{x; xi  =  0, i  "  s}, using the positive data taken from Ds. The fi nal estimated 
Erlang mixture will then be

 s ( )xFs
s S

b
!

,/

where bs is the ratio of the size of Ds to the size of the entire data set. A short-
coming of this approach might be that there could be too many parameters. 
Seeking more effective algorithms for estimation of  extended multivariate 
Erlang mixtures would be an interesting project for future research.

APPENDIX A: PROOF OF THEOREM 2.1

The proof is very similar to that in Lee and Lin (2010). We fi rst show in the 
following that for a k-variate distribution on the set R+

k  =  {x  =  (x1,  …,  xk); 
xj  >  0, j  =  1,  …,  k} with density f (x), there is a sequence of k-variate Erlang 
mixtures such that their characteristic functions converge pointwise to the 
characteristic function of f (x).

For any given value q, consider a k-variate Erlang mixture with the following 
density
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Let f(z)  =  g
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# #  f (x) dx be the characteristic function of f (x), where 

i  =  1- , z  =  (z1,  …,  zk), dx  =  dxk  …  dx1 and z · x is the usual inner product. 
Similarly, fq(z) is the characteristic function of f (x | q ).

From (A.2) and the fact that the characteristic function of p(x;  m, q) is 
(1  –  iqz) – m, we have
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where the ceiling function ⎡x⎤ gives the smallest integer greater than or equal 
to x. Since (1  –  iqz)– ⎡x/q⎤ is bounded from above as long as q |z|  <  1 and
limq " 0 (1  –  iqz)– ⎡x/q⎤   =   e izx, limq " 0 fq (z)  =  f(z) for all z by the Dominance 
 Convergence Theorem. By Levy’s Continuity Theorem on convergence in dis-
tribution (Billingsley, 1995, pp. 381-3), the joint distribution function of (A.1) 
converges to the joint distribution function of f (x) pointwise, as q " 0.

APPENDIX B: ESTIMATED PARAMETER VALUES FOR FITTED DISTRIBUTIONS

TABLE B.1.

SHAPE PARAMETERS AND ESTIMATED WEIGHTS OF FITTED DISTRIBUTION WITH q  =  0.01253039

mi1 mi2 mi3 mi4 mi5 mi6 mi7 mi8 mi9 mi10
mi11

mi12
am

1 75 70 65 62 59 57 55 54 53 52 52 52 0.03519954

2 77 75 73 72 73 75 78 82 86 91 97 101 0.06750167

3 75 70 66 64 63 63 64 65 68 70 73 75 0.05352882

4 80 79 79 81 83 86 91 98 106 115 122 129 0.06488830

5 80 81 84 89 96 103 109 113 114 114 112 112 0.06019880

6 83 86 90 94 99 105 111 120 129 138 145 150 0.08021910

7 80 79 78 77 75 72 69 66 64 62 61 61 0.06330692

8 79 78 77 77 77 77 77 77 77 78 79 80 0.11508296

9 82 83 84 86 87 89 91 92 94 94 95 97 0.13055435

10 85 88 94 100 109 119 129 143 158 171 182 191 0.03218294

11 89 99 109 116 125 133 139 143 146 149 152 156 0.04549171

12 85 89 92 93 92 90 87 83 79 77 76 76 0.05818215

13 87 92 97 99 100 100 100 102 105 110 116 121 0.06408133

14 87 93 99 103 105 106 105 102 99 96 93 93 0.05392744

15 88 96 104 112 119 122 123 123 122 122 121 122 0.05431533

16 91 103 114 128 141 156 167 178 189 199 209 214 0.02133865

TABLE B.2.

SHAPE PARAMETERS AND MIXING WEIGHTS OF FITTED DISTRIBUTIONS

r  =  1 r  =  – 1

q  =  0.04178421 q  =  0.04139381

mi1 mi2 am mi1 mi2 am

1 1 6 0.008375923 2 436 0.008375923

2 2 8 0.028893781 6 327 0.028893781

3 3 12 0.059347992 12 258 0.059347992
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r  =  1 r  =  – 1

q  =  0.04178421 q  =  0.04139381

mi1 mi2 am mi1 mi2 am

4 6 20 0.096291043 20 206 0.096291043

5 9 28 0.130629033 31 164 0.130629033

6 12 34 0.150767902 45 130 0.150767902

7 13 36 0.154488303 62 101 0.154488303

8 17 44 0.139608365 84 77 0.139608365

9 20 50 0.108410072 111 56 0.108410072

10 27 62 0.072483792 146 39 0.072483792

11 28 65 0.038706564 195 24 0.038706564

12 39 83 0.011997230 277 11 0.011997230

13 52 104 0.072483792

14 69 130 0.038706564

15 91 162 0.011997230

16 118 201 0.011997230

17 153 250 0.072483792

18 202 316 0.038706564

19 282 422 0.011997230
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